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BIFUNCTOR THEOREM AND STRICTIFICATION TENSOR
PRODUCT FOR DOUBLE CATEGORIES WITH LAX DOUBLE

FUNCTORS

BOJANA FEMIĆ

Abstract. We introduce a candidate for the inner hom for the category of double
categories and lax double functors, and characterize a lax double functor into it obtaining
a lax double quasi-functor. The latter consists of a pair of lax double functors with four
2-cells resembling distributive laws. We extend this characterization to a double category
isomorphism. We show that instead of a Gray monoidal product we obtain a product
that in a sense strictifies lax double quasi-functors. We explain why laxity of double
functors hinders our candidate for the inner hom from making the category of double
categories and lax double functors a closed and enriched category over 2-categories (or
double categories). We prove a bifunctor theorem by which certain type of lax double
quasi-functors give rise to lax double functors on the Cartesian product. We extend
this theorem to a double functor between double categories and show how it restricts to
a double equivalence. The (un)currying double functors are studied. We prove that a
lax double functor from the trivial double category is a monad in the codomain double
category, and show that our above double functor recovers the specification in that
double category of the composition natural transformation on the monad functor.

1. Introduction

In recent years the importance of double categories, and more generally of internal cat-
egories, has been increasingly recognized in the literature. It was observed by various
authors ([Shulman, 2008, Shulman, 2010, Douglas, 2009, Fiore, Gambino, Kock, 2011])
that it is often more convenient to work in the internal i.e. double-categorical setting,
than in the bicategorical one. In Mod-type bicategories the 1-cells are (also) “objects”
but of different nature than the 0-cells, and they do not present real maps between 0-cells,
so the latter are missing in the picture. This also happens in the 2-category Mnd(K) of
monads in a 2-category K, a fact which gave rise to the introduction of the (pseudo) dou-
ble category of monads in a (pseudo) double category in [Fiore, Gambino, Kock, 2011].
Namely, it is known that various algebraic structures can be expressed as monads in suit-
able bicategories, but that the corresponding morphisms are not morphisms of monads,
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considered as 1-cells in Mnd(K) (up to weakening of 2-categories). Rather than being real
morphisms of monads, 1-cells in Mnd(K) are distributive laws between them. In order
to include morphisms of monads, vertical 1-cells among monads are introduced in [Fiore,
Gambino, Kock, 2011] as well as the corresponding (pseudo) double category.

For pseudo double categories the Strictification Theorem is proved in [Grandis, Paré,
1999, Section 7.5]. One has that the category of pseudo double categories and pseudo
double functors is equivalent to the category Dblst of double categories and strict double
functors. However, the lax double functors cannot be “strictified”, so the category of
double categories and lax double functors Dbllx is properly more general than Dblst.
Apart from the Cartesian monoidal product known in the literature for both categories,
a Gray-type monoidal product ⊗ was introduced in [Böhm, 2020] for Dblst. In [Femić,
2021] we have described the monoidal category structure of A⊗B for double categories A
and B. In the present paper we show that although one can construct natural candidates
A⊗ B and JA,BK for the tensor product, respectively inner hom, for the category Dbllx,
it turns out that A⊗ B does not satisfy the expected universal property, and that JA,BK
is not a bifunctor. Instead of a Gray-type monoidal product for Dbllx, we prove that
A⊗ B satisfies a universal property by which lax double functors A −→ JB,CK bijectively
correspond to strict double functors A⊗ B −→ C.

Recent results on 2-categories of [Faul, Manuell, Siqueira, 2021] naturally inspired us
to study the analogous properties in double categories. Namely, in loc. cit. conditions were
studied for two families of lax functors with a common codomain 2-category to collate
into a lax bifunctor, i.e. a lax functor on the Cartesian product 2-category. (This question
corresponds to a 2-category analogue of the first proposition in [Mac Lane, 1971], page
37.) The authors proved a version of a bifunctor theorem for lax functors, which even
extends to a 2-functor K : Dist(A,B,C) −→ Laxop(A × B,C) into the corresponding 2-
category of bifunctors. The 2-functor K is proved to restrict to a 2-equivalence on certain
sub-2-categories.

We noticed that the conditions found by the authors to fulfill the above-mentioned
goal are the weak (lax) version of the 2-categorical part of the data of a cubical double
functor, that we introduced in [Femić, 2021, Definition 2.2]. Namely, starting from the
Gray-type closed monoidal structure on the category (Dblst,⊗) constructed in [Böhm,
2020], we characterized in [Femić, 2021, Proposition 2.1] a strict double functor F :A
−→ JB,CK with codomain the inner-hom object. We obtained that F corresponds to two
families of double functors with codomain C, satisfying a longer list of conditions. The
latter pair of families we called a cubical double functor, in analogy with [Gordon, Power,
Street, 1995, Section 4.2].

Our above-mentioned observation led us to conjecture that weakening our character-
ization in [Femić, 2021, Proposition 2.1] to double categories and lax double functors,
would lead to a double functor into the corresponding double category of lax double bi-
functors, generalizing the above 2-functor K to a double-categorical setting. Establishing
this is one of the main goals of the present paper, and we achieve it in Section 4 (con-
cretely, we construct the double functor F in Proposition 5.6), where we also identify a



826 BOJANA FEMIĆ

double equivalence functor which is a restriction of F (Theorem 5.7). We present this
and the rest of our results in more details in the continuation.

We start by introducing the double category Laxhop(A,B) of lax double functors of
double categories A −→ B, horizontal oplax transformations as 1h-cells (horizontal 1-
cells), vertical lax transformations as 1v-cells (vertical 1-cells), and modifications. It is
a generalization of inner homs in Dblst from [Böhm, 2020, Section 2.2] to lax double
functors. In Section 3 we explore JA,BK : = Laxhop(A,B) as a candidate for inner hom
in Dbllx and we show why it fails to be one. We then characterize a lax double functor
F : A −→ JB,CK as a pair of two families of lax double functors into C, satisfying a list
of properties, that we call a lax double quasi-functor. We use this characterization to
describe a double category A⊗ B in Subsection 3.6. We finish Section 3 by showing why
laxity of double functors prevents − ⊗ − from being a monoidal product and also Dbllx
from being a category enriched over 2-categories (and then also over double categories).

In Section 4 we introduce the double category q-Laxhop(A×B,C) of lax double quasi-
functors, horizontal oplax transformations as 1h-cells, vertical lax transformations as 1v-
cells, and modifications. In this double-categorical context, the 1h-cells in q-Laxhop(A×
B,C) have four defining axioms HOT q1 −HOT

q
4 , whereas in the analogous 2-categorical

situation, the 1-cells of the 2-category Dist(A,B, C) for 2-categories A,B, C from [Faul,
Manuell, Siqueira, 2021] have a single axiom, corresponding to our HOT q1 , called a Yang–
Baxter equation therein. (The 2-category Dist(A,B, C), in turn, is a lax version on 0-cells
and an oplax version on 1-cells of the 2-category q-Fun(A × B, C) from [Gray, 1974,
Section I.4]. Namely, the 0-cells in Dist(A,B, C) are pairs of families of lax functors of
2-categories together with their distributive law, whereas the 0-cells in q-Fun(A×B, C) are
“quasi-functors of two variables” defined in terms of pairs of families of strict 2-functors.
Morphisms of distributive laws of lax functors, i.e. 1-cells in Dist(A,B, C) are oplax natural
transformations, while the 1-cells in q-Fun(A × B, C) are quasi-natural transformations,
which are lax (see I.4.1 and I.3.3 of [Gray, 1974]).) In Subsection 4.8 we prove that the
double categories q-Laxhop(A× B,C) and Laxhop(A, JB,CK) are isomorphic.

The objective in Section 5 is to find a description of lax double quasi-functors in
terms of ordinary lax double functors on the Cartesian product A × B. In order to
obtain this description we find it necessary to require that the vertical lax transforma-
tions in JB,CK be strict, in which case we obtain a double category JB,CKst. Concretely,
it is on the isomorphic counterpart q-Laxsthop(A × B,C) of Laxhop(A, JB,CKst) (in the
isomorphism from the previous paragraph) that we managed to construct the double
functor F : q-Laxsthop(A × B,C) −→ Laxhop(A × B,C) in Proposition 5.6. Restricting to

certain double subcategories we obtain a double equivalence F ′ : q-Laxst-uhop (A × B,C)

−→ Laxudhop(A× B,C) in Theorem 5.7. In terms of pseudo double functors it comes down

to a double equivalence F ′′ : q-Pssthop(A× B,C) −→ Pshop(A× B,C).
The double category isomorphism from Section 4, the double functor F above and

the double equivalences F ′ and F ′′ are generalizations to double categories of the cor-
responding results in [Faul, Manuell, Siqueira, 2021]. In Section 6 we give applications
of these results in three different contexts. In (13) we obtain a double-categorical ver-
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sion Laxhop(A, JB,CKst) −→ Laxhop(A×B,C) of the “uncurrying” 2-functor J from [Faul,
Manuell, Siqueira, 2021, Section 4] and establish a “currying” functor, i.e. a 2-equivalence
Laxudhop(A× B,C) ' Laxuhop(A, JB,CKst-u) in a double-categorical setting.

In Subsection 6.2 we establish a universal property of A⊗B which extends to a double
category isomorphism. The universal property that A ⊗ B satisfies is that for every lax
double quasi-functor H : A × B −→ C there is a unique strict double functor H : A ⊗ B
−→ C such that H = HJ , where J : A × B −→ A ⊗ B is a naturally obtained lax double
quasi-functor.

The final subsection is devoted to applications to monads in double categories. We
show that a monad in a double category D, as defined in [Fiore, Gambino, Kock, 2011,
Definition 2.4], is a lax double functor ∗ −→ D from the trivial double category. Moreover,
we obtain isomorphisms of double categories Laxhop(∗,D) ∼= Mnd(D) and q-Laxhop(∗ ×
∗,D) ∼= Mnd(Mnd(D)). We argue that a version of our double functor F from above,
q-Laxhop(∗×∗,D) −→ Laxhop(∗,D), corresponds via the above isomorphisms to the natural
transformation Comp: MndMnd −→ Mnd evaluated at the double category D. Some
prospects of further research are indicated.

The reader is assumed to be familiar with the notion of double categories; for the
reference we recommend [Grandis, Paré, 1999, Grandis, 2019]. All double categories in
this paper will be strict.

2. The double category Laxhop(A,B) and more

The double category Laxhop(A,B) consists of lax double functors A −→ B, horizontal oplax
transformations as 1h-cells, vertical lax transformations as 1v-cells, and modifications with
respect to the two types of transformations as 2-cells. For the reader’s convenience we
give the explicit definitions of all these notions in this section. Moreover, we will give the
definitions of the notions that we will be using in Section 3.

Let us first fix the notation in a double category D. Objects we denote by A,B, . . . ,
horizontal 1-cells we will call for brevity 1h-cells and denote them by f, f ′, g, . . . (and by
(K, k), (K ′, k′), (L, l), . . . in the Cartesian product of double categories A × B), vertical
1-cells we will call 1v-cells and denote by u, v, U, . . . , and squares we will call just 2-cells
and denote them by ω, ζ, . . . . We denote the horizontal identity 1-cell by 1A, vertical
identity 1-cell by 1A for an object A ∈ D, horizontal identity 2-cell IA on the 1h-cell 1A,
horizontal identity 2-cell on a 1v-cell u by Idu, and vertical identity 2-cell on a 1h-cell
f by Idf (with subindexes we denote those identity 1- and 2-cells which come from the
horizontal 2-category lying in D). For a (vertically) globular 2-cell α, that is, one whose
1v-cells are identities, we will write α : f ⇒ g as in bicategories. The composition of
1h-cells as well as the horizontal composition of 2-cells we will denote by juxtaposition,
while the composition of 1v-cells as well the vertical composition of 2-cells we will denote
by fractions •• . When combining horizontal and vertical composition of 2-cells we will also
use the notation: [α|β] : = βα for the horizontal composition.
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When dealing with pseudodouble categories, we use the convention that the horizontal
direction is weak and the vertical one strict. For this reason our lax double functors will
be lax in the horizontal direction. We stress this fact only in the definition that follows,
and will not repeat it afterwards.

2.1. definition. A (horizontally) lax double functor F : C −→ D between double cate-
gories is given by: 1) the data: images on objects, 1h-, 1v- and 2-cells of C, globular
2-cells: compositor Fgf : F (g)F (f)⇒ F (gf) and unitor FA : 1F (A) ⇒ F (1A) in D, and 2)
rules (in D):

� (functoriality in vertical morphisms)

(lx.f.v1)
F (u)

F (u′)
= F (

u

u′
), (lx.f.v2) F (1A) = 1F (A);

� (functoriality in squares)

(lx.f.s1) F (
ω

ζ
) =

F (ω)

F (ζ)
, (lx.f.s2) F (Idf ) = IdF (f);

� (coherence with compositors and unitors)

(lx.f.cmp)
[Fgf |IdF (h)]

Fh,gf
=

[IdF (f)|Fhg]
Fhg,f

(lx.f.u)
[FA|IdF (f)]

Ff1A

= IdF (f) =
[IdF (f)|FB]

F1Bf

;

� (naturality of the compositor)

(lx.f.c-nat)

F (A) F (B)-
F (f)

F (C)-
F (g)

F (A′) F (B′)-
F (f ′)

F (C ′)-
F (g′)?

u

?

v

?

wF (α) F (β)

F (A′) F (C ′)-
F (g′f ′)?

=

?

=Fg′f ′

=

F (A) F (B)-
F (f)

F (C)-
F (g)

F (A) F (C)-
F (gf)?

=

?

=Fgf

F (A′) F (C ′)-
F (g′f ′)?

u

?

wF (βα)

;



BIFUNCTOR THEOREM AND STRICTIFICATION TENSOR PRODUCT 829

� (naturality of the unitor)

(lx.f.u-nat)

F (A) F (A)-=

F (A′) F (A′)-=

F (A′) F (A′)-
F (1A′)

?

F (u)

?

=

?

F (u)

?

=

IdF (u)

FA′

=

F (A) F (A)-=

F (A) F (A)-
F (1A)

F (A′) F (A′)-
F (1A′)

?

=

?

F (u)

?

=

?

F (u)

FA

F (Idu)

,

where u, u′ are composable 1v-cells, ω, ζ vertically composable 2-cells, α, β horizontally
composable 2-cells, and f, g, h composable 1h-cells.

A pseudodouble functor is a lax double functor whose compositor and unitor 2-cells
are invertible.

We now define horizontal oplax and vertical lax transformations between lax double
functors and their modifications, and their respective compositions.

2.2. definition. A horizontal oplax transformation α between lax double functors F,G : A
−→ B consists of the following:

1. for every 0-cell A in A a 1h-cell α(A) : F (A) −→ G(A) in B,

2. for every 1v-cell u : A −→ A′ in A a 2-cell in B:

F (A) G(A)-
α(A)

F (A′) G(A′)-
α(A′)?

F (u)
?
G(u)αu

3. for every 1h-cell f : A −→ B in A a 2-cell in B:

F (A) F (B)-
F (f)

G(B)-
α(B)

F (A) G(A)-
α(A)

G(A)-
G(f)?

=
?
=δα,f

so that the following are satisfied:
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� (coherence with compositors for δα,−): for any composable 1h-cells f and g in A the
2-cell δα,gf satisfies:
(h.o.t.-1)

F (A) -
F (f)

F (A) F (C)-
F (g)

?

=
?

=

?

=
?

=

F (C) G(C)-
α(C)

F (A) -
F (gf)

Fgf

F (A) G(A)-
α(A)

G(C)-
G(gf)

δα,gf

=
F (B) F (C)-

F (g)
G(C)-

α(C)

δα,g

F (A) F (B)-
F (f)

G(B)-
α(B)

G(C)-
G(g)?

=

?

=

F (A) G(A)-
α(A)

G(B)-
G(f)

G(C)-
G(g)?

=

?

=δα,f

Ggf

G(A) G(C)-
G(gf)?

=

?

=

(coherence with unitors for δα,−): for any object A ∈ A:

(h.o.t.-2)

F (A) F (A)-=

?
=

?
=

F (A) F (A)-
F (1A)

FA

G(A)-
α(A)

F (A) G(A)-
α(A)

G(A)-
G(1A)?

=
?

=δα,1A

=

F (A) G(A)-
α(A)

?
=

?
=Idα(A)

F (A) -
α(A)

G(A) G(A)-=

G(A) G(A)-
G(1A)

?
=

?
=GA

� (coherence with vertical composition and identity for α•): for any composable 1v-
cells u and v in A:

(h.o.t.-3) α
u
v =

αu

αv
and (h.o.t.-4) α1A = Idα(A);

� (oplax naturality of 2-cells): for every 2-cell in A A B-f

A′ B′-
g

?
u

?
va

the following identity

in B must hold:
(h.o.t.-5)

F (A) F (B)-
F (f)

G(B)-
α(B)

F (A′) F (B′)-
F (g)

G(B′)-
α(B′)?

F (u)

?

F (v)

?

G(v)F (a) αv

F (A′) G(A′)-
α(A′)

G(B′)-
G(g)?

=

?

=δα,g

=

F (A) F (B)-
F (f)

G(B)-
α(B)

F (A) G(A)-
α(A)

G(B)-
G(f)?

=

?

=δα,f

G(a)

F (A′) G(A′)-
α(A′)

G(B′).-
G(g)?

F (u)

?

G(u)

?

G(v)αu



BIFUNCTOR THEOREM AND STRICTIFICATION TENSOR PRODUCT 831

A horizontal strict transformation is a horizontal oplax transformation for which the 2-
cells δα,f in item 3 are identities.

The lax version of the above definition we will need in Corollary 3.5. A horizontal
lax transformation α between lax double functors F,G : A −→ B differs from its oplax
counterpart in that the globular 2-cells δα,f for any 1h-cell f in A goes in the other
direction, namely

F (A) G(A)-
α(A)

G(A)-
G(f)

F (A) F (B)-
F (f)

G(B)-
α(B)?

=
?
=σα,f

and the axioms (h.o.t.-1)-(h.o.t.-5) are accordingly changed by the analogous axioms that
we will refer to as to (h.l.t.-1)-(h.l.t.-5). Indeed, note that only the three axioms (h.o.t.-
1), (h.o.t.-2) and (h.o.t.-5) are changed into (h.l.t.-1), (h.l.t.-2) and (h.l.t.-5).

The above two definitions are “oplax, respectively lax, and horizontal” versions of a
“strong vertical transformation” from [Grandis, Paré, 1999, Section 7.4] for strict (rather
then pseudo) double categories. Similarly, the following is a horizontal version of a “strong
modification” from loc. cit. with H and K being identities.

The composition of 1h-cells in Laxhop(A,B), that is of horizontal oplax transformations
α and β acting between lax double functors F,G,H : A −→ B, is given by the vertical
composition of transformations, which we make explicit here:

2.3. Lemma. Vertical composition of two horizontal oplax transformations F
α⇒ G

β⇒ H
between lax functors F,G,H : A −→ B, denoted by α

β
, is given by:

1. for every 0-cell A in A a 1h-cell in B:

(
α

β
)(A) =

(
F (A)

α(A)−→ G(A)
β(A)−→ H(A)

)
,

2. for every 1v-cell u : A −→ A′ in A a 2-cell in B:

(
α

β
)u =

F (A) G(A)-
α(A)

H(A)-
β(A)

F (A′) G(A′)-
α(A′)?

F (u)
?
G(u)αu

H(A′)-
β(A′) ?

H(u)βu

3. for every 1h-cell f : A −→ B in A a 2-cell in B:

δα
β
,f =

F (A) F (B)-
F (f)

G(B)-
α(B)

F (A) G(A)-
α(A)

G(B)-
G(f)

H(B)-
β(B)?

=
?

=δα,f

δβ,f

G(A) H(A)-
β(A)

G(B).-
H(f)?

=
?

=
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Proof. In [Femić, 2021, Lemma 3.7] we proved that the vertical composition of two
horizontal pseudonatural transformations between double pseudo functors is given in the
same way as in the statement of the present lemma. For the purpose of the present setting,
for horizontal oplax transformations between lax functors, we have checked that the same
holds, in the exactly same way: the proof does not rely on the nature of the coherence
2-cells of the transformations, nor of the double functors in question.

Since the vertical composition of horizontal oplax transformations is defined in terms
of the horizontal composition in B, it is strictly associative. From here one also sees that
Laxhop(A,B) as a to-be-constructed double category is strict.

2.4. definition. A vertical lax transformation α0 between lax double functors F,G : A
−→ B consists of:

1. a 1v-cell α0(A) : F (A) −→ G(A) in B for every 0-cell A in A;

2. for every 1h-cell f : A −→ B in A a 2-cell in B:

F (A) F (B)-
F (f)

G(A) G(B)-
G(f)?

α0(A)
?
α0(B)(α0)f

3. for every 1v-cell u : A −→ A′ in A a 2-cell in B:

F (A) F (A)-=

F (Ã)
?
F (u)

G(Ã) G(Ã)-= ?
α0(Ã)

?
G(u)

G(A)
?

α0(A)

αu0

which need to satisfy:

� (coherence with compositors for (α0)•): for any composable 1h-cells f and g in A:

(v.l.t.-1)

F (A) F (B)-
F (f)

F (C)-
F (g)

G(A) G(B)-
G(f)

G(C)-
G(g)?

α0(A)

?

α0(B)

?

α0(C)(α0)f (α0)g

G(A) G(C)-
G(gf)?

=

?

=Ggf

=

F (A) F (B)-
F (f)

F (C)-
F (g)

F (A) F (C)-
F (gf)?

=

?

=Fgf

(α0)gf

?

α0(A)

?

α0(C)

G(A) G(C)-
G(gf)
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(coherence with unitors for (α0)•): for any object A in A:

(v.l.t.-2)

F (A) F (A)-=

?
=

?
=FA

F (A) F (A)-
F (1A)

?
α0(A)

?
α0(A)

G(A) G(A)-
G(1A)

(α0)1A

=

F (A) F (A)-=

?
α0(A)

?
α0(A)Idα0(A)

G(A) G(A)-=

?
=

?
=

G(A) G(A)-
G(1A)

GA

� (coherence with vertical composition for α•0): for any composable 1v-cells u and v in
A:

(v.l.t.-3) α
u
u′
0 =

F (A) F (A)-=

G(A)
?

α0(A) αu0

G(Ã) G(Ã)-=
?

G(u)

?
F (u)

F (Ã)

?
α0(Ã)

F (Ã)-=

G( ˜̃A)-=

?
F (u′)

F ( ˜̃A)

?
α0( ˜̃A)

G( ˜̃A)
?

G(u′)

αu
′

0

(coherence with vertical identity for α•): for any object A in A:

(v.l.t.-4) α1A

0 = Idα0(A)

� (lax naturality of 2-cells): for every 2-cell in A A B-f

Ã B̃-
g

?
u

?
va

the following identity

in B must hold:

(v.l.t.-5)

F (A) F (A)-= -
F (f)

G(A)
?

α0(A)

αu0

G(Ã) -=?

G(u)

G(Ã)
?

α0(Ã)

F (Ã)
?

F (u) F (a)

-
F (g)

G(B̃)
?

α0(B̃)

F (B)

F (B̃)
?

F (v)

-
G(g)

(α0)g

=

F (A) F (B)-
F (f)

-=

G(A)
?

α0(A)

αv0

G(Ã) -
G(g)?

G(u)

G(B̃)
?

G(v)

G(B)
?

α0(B)(α0)f

-
G(f)

G(B̃).
?

α0(B̃)

F (B)

F (B̃)
?

F (v)

-
=

G(a)

The oplax version of the vertical transformations we will need in Corollary 3.5. A
vertical oplax transformation differs from its lax counterpart in that the (horizontally)
globular 2-cell αu0 for any 1v-cell u in A goes in the other direction, and the axioms
(v.l.t.-3) and (v.l.t.-5) are accordingly changed. Namely:
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2.5. definition. A vertical oplax transformation α0 between lax double functors F,G : A
−→ B consists of:

1. a 1v-cell α0(A) : F (A) −→ G(A) in B for every 0-cell A in A;

2. for every 1h-cell f : A −→ B in A a 2-cell in B:

F (A) F (B)-
F (f)

G(A) G(B)-
G(f)?

α0(A)
?
α0(B)(α0)f

3. for every 1v-cell u : A −→ A′ in A a 2-cell in B:

F (A) F (A)-=

G(Ã) G(Ã)-=

F (Ã)
?

F (u)

?
α0(Ã)

?
G(u)

G(A)
?
α0(A)

αu0

which need to satisfy:

� (coherence with composition for (α0)•): for any composable 1h-cells f and g in A:

(v.o.t.-1)

F (A) F (B)-
F (f)

F (C)-
F (g)

G(A) G(B)-
G(f)

G(C)-
G(g)?

α0(A)

?

α0(B)

?

α0(C)(α0)f (α0)g

G(A) G(C)-
G(gf)?

=

?

=Ggf

=

F (A) F (B)-
F (f)

F (C)-
F (g)

F (A) F (C)-
F (gf)?

=

?

=Fgf

(α0)gf

?

α0(A)

?

α0(C)

G(A) G(C)-
G(gf)

(coherence with identity for (α0)•): for any object A in A:

(v.o.t.-2)

F (A) F (A)-=

?
=

?
=FA

F (A) F (A)-
F (1A)

?
α0(A)

?
α0(A)

G(A) G(A)-
G(1A)

(α0)1A

=

F (A) F (A)-=

?
α0(A)

?
α0(A)Idα0(A)

G(A) G(A)-=

?
=

?
=

G(A) G(A)-
G(1A)

GA
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� (coherence with composition for α•0): for any composable 1v-cells u and v in A:

(v.o.t.-3) α
u
u′
0 =

F (A) F (A)-=

F (Ã)
?

F (u)

αu0

G(Ã)-=?

α0(Ã)
?

G(u)

G(A)
?

α0(A)

F (Ã) -=

?

F (u′)

F ( ˜̃A)

G( ˜̃A)
?

α0( ˜̃A)

-=

G(Ã)

G( ˜̃A)
?

G(u′)αu
′

0

(coherence with identity for α•): for any object A in A:

(v.o.t.-4) α1A

0 = Idα0(A)

� (lax naturality of 2-cells): for every 2-cell in A A B-f

Ã B̃-
g

?
u

?
va

the following identity

in B must hold:

(v.o.t.-5)

F (A) -
F (f)

G(Ã)
?

α0(Ã)

F (Ã)
?

F (u) F (a)

-
F (g)

G(B̃)
?

α0(B̃)

F (B)

F (B̃)
?

F (v)

-
G(g)

(α0)g

F (B)-=

G(B)
?

α0(B)

?

G(v)

αv0

G(B̃)-=

=

-=

G(Ã)
?

α0(Ã)

F (A)

F (Ã)
?

F (u)

αv0

(α0)f

F (B)-
F (f)

-
G(f)

G(Ã) -
G(g)?

G(u)

-
=

G(a)

F (A)

G(A)
?

α0(A)

G(B)
?

α0(B)

G(B̃).
?

G(v)

The definition of vertical composition of two vertical lax transformations of lax double
functors, that we give in the next lemma, is the same — up to the orientation of the
coherence 2-cells — as that in [Femić, 2021, Lemma 3.8] for vertical pseudonatural trans-
formations of double pseudofunctors. Precisely as in the proof of Lemma 2.3, the proof
of well-definedness is direct and does not depend on the coherence structures of double
functors and their transformations.

2.6. Lemma. Vertical composition of two vertical lax transformations α0 : F ⇒ G : A
−→ B and β0 : G⇒ H : A −→ B between lax double functors, denoted by α0

β0
, is given by:

� for every 0-cell A in A a 1v-cell on the left below, and for every 1h-cell f : A −→ B
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in A a 2-cell on the right below, both in B:

(
α0

β0

)(A) =

F (A)

G(A)
?

α0(A)

H(A)
?

β0(A)

(
α0

β0

)(f) =

F (A) F (B)-
F (f)

G(A) G(B)-
G(f)

H(A) H(B)-
H(f)

?

α0(A)

?

β0(A)

?

α0(B)

?

β0(B)

(α0)f

(β0)f

� for every 1v-cell u : A −→ A′ in A a 2-cell in B:

(
α0

β0

)u =

F (A) F (A)-=

F (A′)
?

α0(A) αu0

G(A′) G(A′)-=

?
F (u)

F (Ã)

?

α0(Ã)

F (A′)

F (A′′)
?

β0(A)

-=

G(A′′)-=

?

G(u)

?

β0(Ã)

G(A′′)
?

H(u)

βu0

Analogously to Lemma 2.6, vertical composition of two vertical oplax transformations
is given so that the (horizontally) globular 2-cell (α0

β0
)u accordingly changes.

We finally define 2-cells for the double category Laxhop(A,B).

2.7. definition. A modification Θ between two horizontal oplax transformations α and
β and two vertical lax transformations α0 and β0 depicted below on the left, where the lax
double functors F,G, F ′, G′ act between A −→ B, is given by a collection of 2-cells in B
depicted below on the right:

F G-α

F ′ G′-
β

?
α0

?
β0Θ

F (A) G(A)-
α(A)

F ′(A) G′(A)-
β(A)

?
α0(A)

?
β0(A)ΘA

(1)

which satisfy the following rules:
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(m.ho-vl.-1) for every 1h-cell f , we have

F (A) F (B)-
F (f)

G(B)-
α(B)

F ′(A) F ′(B)-
F ′(f)

G′(B)-
β(B)?

α0(A)

?

α0(B)

?

β0(B)(α0)f ΘB

F ′(A) G′(A)-
β(A)

G′(B)-
G′(f)?

=

?

=δβ,f

=

F (A) F (B)-
F (f)

G(B)-
α(B)

F (A) G(A)-
α(A)

G(B)-
G(f)?

=

?

=δα,f

?

α0(A)

?

β0(B)ΘA (β0)f

?

β0(A)

F ′(A) G′(A)-
β(A)

G′(B)-
G′(f)

and
(m.ho-vl.-2) for every 1v-cell u, we have

F (A) F (A)-= -
α(A)

F ′(A)
?

α0(A)

αu0

F ′(Ã) -=?

F ′(u)

F ′(Ã)
?

α0(Ã)

F (Ã)
?

F (u) αu

-
α(Ã)

G′(Ã)
?

β0(Ã)

G(A)

G(Ã)
?

G(u)

-
β(Ã)

ΘÃ

=

F (A) G(A)-
α(A)

-=

F ′(A)
?

α0(A)

βu0

F ′(Ã) -
β(Ã)?

F ′(u)

G′(Ã)
?

G′(u)

G′(A)
?

β0(A)ΘA

-
β(A)

G′(Ã).
?

β0(Ã)

G(A)

G(Ã)
?

G(u)

-
=

βu

The horizontal composition of 2-cells in Laxhop(A,B) is induced on components by the
horizontal composition of the corresponding 2-cells:

[Θ|Θ′](A) =

F (A) G(A)-
α(A)

H(A)-
α′(A)

F (A) G(A)-
β(A)

H(A).-
β′(A)?

α0(A)

?

β0(A)

?

β′0(A)ΘA Θ′A

The vertical composition of modifications is induced on components by the vertical
composition of the corresponding 2-cells:

(
Θ

Σ
)(A) =

F (A) G(A)-
α(A)

F (A)
?

α0(A)

F (A)
?

α′0(A)

G(A).
?
β′0(A)

G(A)
?
β0(A)ΘA

-
β(A)

-
γ(A)

ΣA

It is clear that the associativity and unitality of 2-cells in both horizontal and vertical
direction hold strictly.
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Taking, so to say, a horizontal and a vertical restriction of modifications in Defini-
tion 2.7, we obtain the definitions of:

� modifications between horizontal oplax transformations given by families of (verti-
cally globular) 2-cells

F (A) G(A)-
α(A)

F ′(A) G′(A)-
β(A)

?
=

?
=ΘA

(2)

and axioms (m.ho.-1) and (m.ho.-2) obtained from (m.ho-vl.-1) and (m.ho-vl.-2)
by ignoring the 2-cells (α0)f , (β0)f , α

u
0 and βu0 , and

� modifications between vertical lax transformations given by families of (horizontally
globular) 2-cells

F (A) G(A)-=

F ′(A) G′(A)-
=

?
α0(A)

?
β0(A)ΘA

(3)

and axioms (m.vl.-1) and (m.vl.-2) obtained from (m.ho-vl.-1) and (m.ho-vl.-2)
by ignoring the 2-cells δα,f , δβ,f , α

u and βu.

The above two types of modifications will be used in Subsection 4.5.

The modifications in Laxhop(A,B) we will refer to as “modifications with respect to
horizontally oplax and vertically lax transformations”. This is the motive for the abbre-
viations “m.ho-vl.” in their axioms. Apart from them we will consider:

2.8. definition. Let α : F −→ G, β : F ′ −→ G′ be horizontal lax transformations, and
α0 : F −→ F ′, β0 : G −→ G′ vertical oplax transformations. A modification with respect to
horizontally lax and vertically oplax transformations α, β, α0, β0 has the (same) form Θ
and is given by a collection of 2-cells ΘA in B of the same form as in (1) which satisfy
the rules:

(m.hl-vo.-1) for every 1h-cell f , we have

F (A) G(A)-
α(A)

G(B)-
G(f)

F (A) F (B)-
F (f)

G(B)-
α(B)?

=

?

=σα,f

?

α0(A)

?

β0(B)(α0)f ΘB

?

α0(B)

F ′(A) F ′(B)-
F ′(f)

G′(B)-
β(B)

=

F (A) G(A)-
α(A)

G(B)-
G(f)

F ′(A) G′(A)-
β(A)

G′(B)-
G′(f)?

α0(A)

?

β0(A)

?

β0(B)ΘA (β0)f

F ′(A) F ′(B)-
F ′(f)

G′(B)-
β(B)?

=

?

=δβ,f

and
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(m.hl-vo.-2) for every 1v-cell u, we have

F (A) G(A)-
α(A)

-=

F (Ã)
?

F (u)

βu0

F ′(Ã) -
β(Ã)?

α0(Ã)

G′(Ã)
?

β0(Ã)

G(Ã)
?

G(u)αu

-
α(Ã)

G′(Ã)
?

G′(u)

G(A)

G(Ã)
?

β0(A)

-
=

ΘÃ

=

F (A) F (A)-= -
α(A)

F (Ã)
?

F (u)

αu0

F ′(Ã) -=?

α0(Ã)

F ′(Ã)
?

F ′(u)

F ′(A)
?

α0(A) ΘA

-
β(A)

G′(Ã).
?

G′(u)

G(A)

G′(A)
?

β0(A)

-
β(Ã)

βu

Observe that analogously to the double category Laxhop(A,B), lax double functors as
0-cells, horizontal lax transformations as 1h-cells, vertical oplax transformations as 1v-cells
and modifications from Definition 2.8 form another double category Lax∗hlt(A,B).

3. Candidates for inner hom and lax Gray-type monoidal product in Dbllx,
and lax double quasi-functors

Let Dbllx denote the category of double categories and lax double functors. For the
purpose of exploring the existence and properties of an inner hom in Dbllx, we will denote
JA,BK : = Laxhop(A,B) for two double categories A,B.

Observe that the double category JA,BK is analogous to one in [Böhm, 2020, Sec-
tion 2.2]. The double category JA,BK from [Böhm, 2020, Section 2.2] consists of the fol-
lowing: 0-cells are strict double functors, 1h-cells are horizontal pseudo-transformations,
1v-cells are vertical pseudo-transformations and 2-cells are modifications among the lat-
ter two. It is the strictness of double functors that allows J−,−K to be a bifunctor
(Dblst)

op × Dblst −→ Dblst, where Dblst is the category of double categories and strict
double functors. Furthermore, the author constructs a Gray-type monoidal product
− ⊗ − : Dblst × Dblst −→ Dblst, so that there is an adjunction (− ⊗ D, JD,−K) for ev-
ery double category D and (Dblst,⊗) is a closed monoidal category.

In contrast to the case where the double functors are strict or pseudo, our double
category JA,BK will not induce a bifunctor J−,−K : (Dbllx)

op × Dbllx −→ Dbllx. We will
explain this in Subsection 3.1. As can be appreciated from the previous section, all the
cells in our double category JA,BK are more general than in [Böhm, 2020, Section 2.2].
However, the price we pay is that we loose closedness for Dbllx.

After Subsection 3.1 we will characterize a lax double functor F : A −→ JB,CK for
another double category C in terms of a bifunctor from the Cartesian product A × B
−→ C of double categories. Setting C = A× B and reading off the structure of the image
double category F (A)(B) for a specific lax double functor F : A −→ JB,A × BK, which
would play the role of the unit of the adjunction (−×B a JB,−K) if such an adjunction
existed, we will obtain a full description of a new structure on the underlying double
category A × B. The obtained structure we will denote by A ⊗ B. In this paper we do
not investigate if ⊗ provides a monoidal tensor product for the category Dbllx. We will
however prove a universal property that it satisfies in Subsection 6.2.
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3.1. Why JA,BK is not an inner hom. The double category JA,BK does not induce
a functor J−,−K : (Dbllx)

op ×Dbllx −→ Dbllx, and so it cannot play the role of the inner
hom in Dbllx. The point is that at the level of morphisms, given lax double functors F : A
−→ A′ and G : B −→ B′, what should be a lax double functor JF,GK : JA′,BK −→ JA,B′K
cannot be defined on 1h-cells. Namely, the components of their images should be naturally
defined in an analogous way as it has been done in similar constructions, that is, as GxFh

in [Böhm, 2020, Section 2.3] (strict double functor case), or as δH(α),f in [Femić, 2021,
Lemma 3.4] (double pseudofunctor case). Namely, JF,GK on a 1h-cell, that is a horizontal
oplax transformation α : H −→ H ′, should give another horizontal oplax transformation
JF,GK(α) = G(α(F (−))). Its 2-cell component at a 1h-cell f in A should be defined via

GHF (A) GHF (B)-
GHF (f)

GH ′F (B)-
GαF (B)

GHF (A) GH ′F (A)-
GαF (A)

GH ′F (B)-
GH ′F (f)?

=

?

=δJF,GK(α),f

=

GHF (A) GHF (B)-
GHF (f)

GH ′F (B)-
GαF (B)

?

=

?

=
GαF (B),HF (f)

?

=

?

=

GHF (A) -=

GHF (A) -=

GHF (A) (GH′FB)−1

GH ′F (B)-=

GH ′F (B)-=

GHF (A) GH ′F (B)-
GαF (B),HF (f)

GHF (A) GH ′F (B)-
G
(
H ′F (f)αF (A)

)
?

G(1HFA)
?

G(1H
′FB)

G(δα,F (f))

G−1
H′F (f),αF (A)

GHF (A) GH ′F (A)-
GαF (A)

GH ′F (B),-
GH ′F (f)?

=

?

=

which makes sense only if G is both lax and colax. In conclusion, in order to be able
to define a functor J−,−K and have JA,BK as an inner hom for some category of double
categories, 0-cells of the latter should be double functors which are strict or pseudo in
the horizontal direction. This is not the case in our context, i.e. for Dbllx, and we can
abandon the idea to get closedness of Dbllx in the expected way.

We record that the categoryDbllx is not enriched over double categories (or 2-categories)
for the following reason. The composition on the hom-category JA,BK = Laxhop(A,B) for
Dbllx should naturally be induced by the composition of lax double functors (0-cells in
the hom-categories), horizontal composition of horizontal oplax and vertical lax transfor-
mations and of modifications. However, one can only define the horizontal composition
of horizontal oplax transformations if the functors have both lax and colax structure.
(See e.g. [Femić, 2021, Lemma 3.5] where we proved horizontal composition of horizontal
oplax transformations for pseudo double functors; one uses δF (α),f defined similarly as in
Subsection 3.1, for which both lax and colax double functor structure is needed.)
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3.2. Generating lax double quasi-functors. Having in mind the definition of a
lax double functor and of JB,CK, when writing out the list of the data and relations that
determine a lax double functor F : A −→ JB,CK, one gets the following characterization
of it:

3.3. Proposition. A lax double functor F : A −→ JB,CK of double categories consists of
the following:
1. lax double functors

(−, A) : B −→ C and (B,−) : A −→ C

such that (−, A)|B = (B,−)|A = (B,A), for objects A ∈ A, B ∈ B,
2. 2-cells

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

?

=

?

=(k,K)

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)

(B,A) (B,A′)-
(B,K)

(B̃, A) (B̃, A′)-
(B̃,K)?

(u,A)

?

(u,A′)(u,K)

(B,A) (B′, A)-
(k,A)

(B, Ã) (B′, Ã)-
(k, Ã)?

(B,U)

?

(B′, U)(k, U)

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u, U)

(B̃, Ã) (B̃, Ã)-=?

(u, Ã)
?

(B̃, U)

(B̃, A)
?

(u,A)

in C for every 1h-cells A
K−→ A′ and B

k−→ B′ and 1v-cells A
U−→ Ã and B

u−→ B̃ which
satisfy:
• ((1B, K))

(B,A) (B,A)-=

(B,A) (B,A)-
(1B, A)

(B,A′)-
(B,K)

(B,A′)-
(B,K)?

=
?
=(−, A)B

?
=Id(B,K)

?
=

?
=

(B,A) (B,A′)-
(B,K)

(B,A′)-
(1B, A

′)

(1B, K)
=

(B,A) -
(B,K)

(B,A′) (B,A′)-=

?
=

?
=

?
=

(B,A) -
(B,K)

(−, A′)B

(B,A′) (B,A′)-
(1B, A

′)

Id(B,K)
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• ((k, 1A))

(B,A) (B,A)-= (B,A′)-
(k,A)

?
=Id(k,A)

?
=

?
=

(B,A) (B,A)-
(B, 1A)

(B,−)A

(B′, A)-
(k,A)

=

(B,A) -
(k,A)

(B′, A) (B′, A)-=

?
=

?
=

?
=

(B′, A)-
(B′, 1A)

(B,A) (B′, A)-
(k,A)

(B′,−)AId(k,A)

?
=

?
=

(B,A) (B,A)-
(B, 1A)

(B′, A)-
(k,A)

(k, 1A)

where the 2-cells (−, A)B and (B,−)A come from laxity of the lax double functors (−, A)
and (B,−)
• ((u, 1A))

(B,A) (B,A)-=

(B̃, A) (B̃, A)-=

(B̃, A) (B̃, A)-
(B̃, 1A)

?

(u,A)

?

=

?

(u,A)

?

=

Id(u,A)

(B̃,−)A

=

(B,A) (B,A)-=

(B,A) (B,A)-
(B, 1A)

(B̃, A) (B̃, A)-
(B̃, 1A)

?

=

?

(u,A)

?

=

?

(u,A)

(B,−)A

(u, 1A)

• ((1B, U))

(B,A) (B,A)-=

(B,A) (B,A)-
(1B, A)

(B, Ã) (B, Ã)-
(1B, Ã)

?

=

?

(B,U)

?

=

?

(B,U)

(−, A)B

(1B, U)

=

(B,A) (B,A)-=

(B, Ã) (B, Ã)-=

(B, Ã) (B, Ã)-
(B̃, 1Ã)

?

(B,U)

?

=

?

(B,U)

?

=

Id(B,U)

(−, Ã)B

• ((1B, K)) (1B, K) = Id(B,K) and • ((k, 1A)) (k, 1A) = Id(k,A)

• ((1B, U)) (1B, U) = Id(B,U) and • ((u, 1A)) (u, 1A) = Id(u,A)

• ((k′k,K))

(B′, A) (B′′, A)-
(k′, A)

(B′′, A′)-
(B′′, K)

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B′′, A′)-
(k′, A′)?

=

?

=(k′, K)

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)?

=

?

=(k,K)

(B′′, A′)-
(k′, A′)

?

=

?

=

(B,A′) (B′′, A′′)-
(k′k,A′)

(−, A′)k′k

=

(B,A) (B′, A)-
(k,A)

(B′′, A)-
(k′, A)

?

= (−, A)k′k

(B,A) -
(k′k,A)

(B′′, A) (B′′, A′)-
(B′′, K)?

=

(B,A) (B,A′)-
(B,K)

(B′′, A′)-
(k′k,A′)

(k′k,K)

?

=

?

=

where (−, A)k′k is the 2-cell from the laxity of (−, A)
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• ((k,K ′K))

(B′, A) (B′, A′)-
(B′, K)

(B′, A′′)-
(B′, K ′)

(B,A) (B′, A)-
(k,A)

(B′, A′′)-
(B′, K ′K)?

=

?

=(B′,−)K′K

(B,A) (B,A′′)-
(B,K ′K)

(B′, A′′)-
(k,A′′)?

=

?

=(k,K ′K)

=

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)

(B′, A′′)-
(B′, K ′)?

=

?

=(k,K)

(k,K ′)

(B,A′′)-
(B,K ′)

(B′, A′′)-
(k,A′′)?

=

?

=

(B,A) (B,A′)-
(B,K)

?

=

?

=

(B,A) (B,A′′)-
(B,K ′K)

(B,−)K′K

where (B,−)K′K is the 2-cell from the laxity of (B,−)
• ((u,K ′K))

(B,A) (B,A′)-
(B,K)

(B,A′′)-
(B,K ′)

(B,A) (B,A′′)-
(B,K ′K)?

=

?

=(B,−)K′K

(B̃, A) (B̃, A′′)-
(B̃,K ′K)?

(u,A)

?

(u,A′′)(u,K ′K)

=

(B,A) (B,A′)-
(B,K)

(B,A′′)-
(B,K ′)

(B̃, A) (B̃, A′)-
(B̃,K)

(B′′, Ã)-
(B̃,K ′)?

(u,A)

?

(u,A′)

?

(u,A′′)(u,K) (u,K ′)

(B̃, A) (B̃, A′′)-
(B̃,K ′K)?

=

?

=(B̃,−)K′K

• ((k′k, U))

(B,A) (B′, A)-
(k,A)

(B′′, A)-
(k′, A)

(B, Ã) (B′, Ã)-
(k, Ã)

(B′′, Ã)-
(k′, Ã)?

(B,U)

?

(B′, U)

?

(B′′, U)(k, U) (k′, U)

(B, Ã) (B′′, Ã)-
(k′k, Ã)?

=

?

=(−, Ã)k′k

=

(B,A) (B′, A)-
(k,A)

(B′′, A)-
(k′, A)

(B,A) (B′′, A)-
(k′k,A)?

=

?

=(−, A)k′k

(B, Ã) (B′′, Ã)-
(k′k, Ã)?

(B,U)

?

(B′′, U)(k′k, U)

• (( u
u′
, K)) ( u

u′
, K) = (u,K)

(u′,K)
and • ((k, U

U ′
)) (k, U

U ′
) = (k,U)

(k,U ′)
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• ((u, U
U ′
))

(u,
U

U ′
) =

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u, U)

(B̃, Ã) (B̃, Ã)-=?

(u, Ã)
?

(B̃, U)

(B̃, A)
?

(u,A)

(B, Ã) -=

?

(B,U ′)

(B, Ã′)

(B̃, Ã′)
?

(u, Ã′)

-=

(B̃, Ã)

(B̃, Ã′)
?

(B̃, U ′)(u, U ′)

• (( u
u′
, U))

(
u

u′
, U) =

(B,A) (B,A)-=

(B, Ã)
?

(B,U)

(u, U)

(B̃, Ã) -=?

(u, Ã)

(B̃, Ã)
?

(B̃, U)

(B̃, A)
?

(u,A)

(B̃, A)-=

?

(u′, A)

(B̃′, A)

(B̃′, Ã)
?

(B̃′, U)

-=
(B̃′, Ã)

?

(U ′, Ã) (u′, U)

• ((k,K)-l-nat)

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)?

=

?

=(k,K)

(B̃, A) (B̃, A′)-
(B̃,K)

(B̃′, A′)-
(l, A′)?

(u,A)

?

(u,A′)

?

(v, A′)(u,K) (ω,A′)

=

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B̃, A) (B̃′, A)-
(l, A)

(B̃′, A′)-
(B̃′, K)?

(u,A)

?

(v, A)

?

(v,A′)(ω,A) (v,K)

(B̃, A) (B̃, A′)-
(B̃,K)

(B̃′, A′)-
(l, A′)?

=

?

=(l,K)

• ((k,K)-r-nat)

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)?

=

?

=(k,K)

?

(B,U)

?

(B, V )

?

(B′, V )(B, ζ) (k, V )

(B, Ã) (B, Ã′)-
(B,L)

(B′, Ã′)-
(k, Ã′)

=

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B, Ã) (B′, Ã)-
(k, Ã)

(B′, Ã′)-
(B′, L)?

(B,U)

?

(B′, U)

?

(B′, V )(k, U) (B′, ζ)

?

=

?

=(k, L)

(B, Ã) (B, Ã′)-
(B,L)

(B′, Ã′)-
(k, Ã′)
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• ((u, U)-l-nat)

(B,A) (B,A)-= (B,A) -
(k,A)

(B, Ã)
?

(B,U)

(u, U)

(B̃, Ã) -=?

(u, Ã)

(B̃, Ã)
?

(B̃, U)

(B̃, A)
?

(u,A) (ω,A)

-
(l, A)

(B̃′, Ã)
?

(B̃′, U)

(B′, A)

(B̃′, A)
?

(v, A)

-
(l, Ã)

(l, U)

=

(B,A) (B′, A)-
(k,A)

-=

(B, Ã)
?

(B,U)

(v, U)

(B̃, Ã) -
(l, Ã)?

(u, Ã)

(B̃′, Ã)
?

(v, Ã)

(B′, Ã)
?

(B′, U)(k, U)

-
(k, Ã)

(B̃′, Ã)
?

(B̃′, U)

(B′, A)

?

(v, A)

(B̃′, A)

-
=

(ω, Ã)

• ((u, U)-r-nat)

(B,A) (B,A)-= -
(B,K)

(B, Ã)
?

(B,U)

(u, U)

(B̃, Ã) -=?

(u, Ã)

(B̃, Ã)
?

(B̃, U)

(B̃, A)
?

(u,A) (u,K)

-
(B̃,K)

(B̃, Ã′)
?

(B̃, V )

(B,A′)

(B̃, A′)
?

(u,A′)

-
(B̃, L)

(B̃, ζ)

=

(B,A) (B,A′)-
(B,K)

-=

(B, Ã)
?

(B,U)

(u, V )

(B̃, Ã) -
(B̃, L)?

(u, Ã)

(B̃, Ã′)
?

(u, Ã′)

(B, Ã′)
?

(B, V )(B, ζ)

-
(B,L)

(B̃, Ã′)
?

(B̃, V )

(B,A′)

?

(u,A′)

(B̃, A′)

-
=

(u, L)

for any 2-cells

B B′-k

B̃ B̃′-
l

?
u

?
vω and

A A′-K

Ã Ã′-
L

?
U

?
Vζ (4)

in B, respectively A.

Proof. The images of the four types of cells in A, which we typically denote as A,K,U, ζ,
by the lax double functor F : A −→ JB,CK are being denoted by F(x) = (−, x), for any
of such cells x in A. Then one first sees that (−, A) : B −→ C is a lax double functor.
That (B,−) : A −→ C is a lax double functor follows from the eight axioms for F as a lax
double functor in the following way. Axioms (lx.f.v1) and (lx.f.v2) for F are equalities of
vertical lax transformations (v.l.t.). When evaluated at B (this corresponds to the part 1
of (−, U), respectively of (−, 1A), being a v.l.t.), they yield axioms (lx.f.v1) and (lx.f.v2)
for a lax double functor (B,−). The remaining six axioms of F as a lax double functor
are equalities of modifications in JB,CK, and as such we only may evaluate them at B.
It is evaluating them at B that we cover the remaining six axioms for (B,−) to be a lax
double functor (B,−). The origin of the four 2-cells and each of the axioms obtained in
part 2 of this proposition are summarized in Table 1.
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New axiom Origin from F : A −→ JB,CK
2-cell (k,K) part 3 of (−, K) being a h.o.t.

2-cell (u,K) part 2 of (−, K) being a h.o.t.

2-cell (k, U) part 2 of (−, U) being a v.l.t.

2-cell (u, U) part 3 of (−, U) being a v.l.t.

((1B, K)) (h.o.t.-2) of (−, K)

((k, 1A)) (m.ho-vl.-1) of unitor FA : Id(−,A) V (−, 1A)

((1B, K)) (h.o.t.-4) of (−, K)

((u, 1A)) (m.ho-vl.-2) of unitor FA : Id(−,A) V (−, 1A)

((1B, U)) (v.l.t.-2) of (−, U)

((k, 1A)) (lx.f.v2) of F (is an equality of v.l.t.) evaluated at k

((1B, U)) (v.l.t.-4) of (−, U)

((u, 1A)) (lx.f.v2) of F (is an equality of v.l.t.) evaluated at u

((k′k,K)) (h.o.t.-1) of (−, K)

((k,K ′K)) (m.ho-vl.-1) of compositor FLK : (−, L)(−, K)V (−, LK)

(( u
u′
, K)) (h.o.t.-3) of (−, K)

((u,K ′K)) (m.ho-vl.-2) of compositor FLK : (−, L)(−, K)V (−, LK)

((k′k, U)) (v.l.t.-1) of (−, U)

((k, U
U ′

)) (lx.f.v1) of F (is an equality of v.l.t.) evaluated at k

((u, U
U ′

)) (lx.f.v1) of F (is an equality of v.l.t.) evaluated at u

(( u
u′
, U)) (v.l.t.-3) of (−, U)

((k,K)-l-nat) (h.o.t.-5) of (−, K)

((k,K)-r-nat) (m.ho-vl.-1) of (−, ζ)

((u, U)-l-nat) (v.l.t.-5) of (−, U)

((u, U)-r-nat) (m.ho-vl.-2) of (−, ζ)

Table 1: Generation of a lax double quasi-functor A× B −→ C

In analogy to [Gray, 1974, Definition I.4.1] we set:

3.4. definition. A lax double quasi-functor H : A× B −→ C consists of:

1. two families of lax double functors

(−, A) : B −→ C and (B,−) : A −→ C
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such that H(A,−) = (−, A), H(−, B) = (B,−) and (−, A)|B = (B,−)|A = (B,A),
for objects A ∈ A, B ∈ B, and

2. four families of 2-cells (k,K), (u,K), (k, U), (u, U) in C for 1h-cells K of A and k
of B, and 1v-cells U of A and u of B,

satisfying the conditions listed in part 2 of Proposition 3.3.

From the data in the above proposition we may draw several consequences.

3.5. Corollary. For any 1h-cell K : A −→ A′, 1v-cell U : A −→ Ã and 2-cell ζ in A, and
for any 1h-cell k : B −→ B′, 1v-cell u : B −→ B̃ and 2-cell ω in B, the following hold:

1. (−, K) : (−, A) −→ (−, A′) is a horizontal oplax transformation, (−, U) : (−, A) −→
(−, Ã) is a vertical lax transformation, and (−, ζ) is a modification with respect to
horizontally oplax and vertically lax transformations, and

2. (k,−) : (B,−) −→ (B′,−) is a horizontal lax transformation, (u,−) : (B,−) −→
(B̃,−) is a vertical oplax transformation, and (ω,−) is a modification with respect
to horizontally lax and vertically oplax transformations.

Proof. Part 1 highlights the meta-results from the above proposition: (−, K), (−, U),
(−, ζ) are images of F .

That (k,−) is a horizontal lax transformation follows from ((k,K ′K)), ((k, 1A)),
((k, U

U ′
)), ((k, 1A)), ((k,K)-r-nat) of Proposition 3.3.

That (u,−) is a vertical oplax transformation follows from ((u,K ′K)), ((u, 1A)),
((u, U

U ′
)), ((u, 1A)), ((u, U)-r-nat).

That (ω,−) is a modification in the sense of Definition 2.8 follows from ((k,K)-l-nat)
and ((u, U)-l-nat).

3.6. A candidate for a lax Gray-type monoidal product. We may now describe
A ⊗ B by reading off the structure of the image double category F (A)(B) for a specific
lax double functor F : A −→ JB,A × BK, which would play the role of the unit of the
adjunction (−×B a JB,−K) if such an adjunction existed, using the definition of a lax
double functor. Namely, the result of F (A)(B) are pairs (y, x) living in the Cartesian
product A×B for any 0-, 1h-, 1v- or 2-cells x of A and y of B. By setting x⊗ y : = (y, x)
we come to the following definition. (Recall that a double category can be seen as a
category internal to the category of categories. In this viewpoint, we denote the source
and target, composition and unit functors by s, t, c, i, respectively.)

3.7. definition. Let A⊗ B be generated as a double category by the following data:
objects: A⊗B for objects A ∈ A, B ∈ B;
1h-cells: A⊗ k,K ⊗B, where k is a 1h-cell in B and K a 1h-cell in A;
1v-cells: A⊗ u, U ⊗B and vertical compositions of such obeying the following rules:

A⊗ u
A⊗ u′

= A⊗ u

u′
,

U ⊗B
U ′ ⊗B

=
U

U ′
⊗B, A⊗ 1B = 1A⊗B = 1A ⊗B
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where u, u′ are 1v-cells of B and U,U ′ 1v-cells of A;
2-cells: A⊗ ω, ζ ⊗B:

A⊗B A⊗B′-A⊗ k

A⊗ B̃ A′ ⊗ B̃′-A⊗ l?

A⊗ u
?

A⊗ vA⊗ ω

A⊗B A′ ⊗B-K ⊗B

Ã⊗B Ã′ ⊗B-L⊗B?

U ⊗B
?

V ⊗Bζ ⊗B

where ω and ζ are as in (4), four (vertically) globular 2-cells from the laxity of double
functors (−, A) and (B,−):

(A⊗ k′)(A⊗ k)
(A⊗−)k′k⇒ A⊗ (k′k), (K ′ ⊗B)(K ⊗B)

(−⊗B)K′K⇒ (K ′K)⊗B (5)

1A⊗B
(A⊗−)B⇒ A⊗ 1B, 1A⊗B

(−⊗B)A⇒ 1A ⊗B

which satisfy associativity and unitality laws, and where k, k′ are 1h-cells of B and K,K ′

1h-cells of A, and four types of 2-cells coming from the 2-cells of point 2 in Proposition 3.3:
a vertically globular 2-cell K ⊗ k : (A′ ⊗ k)(K ⊗ B) ⇒ (K ⊗ B′)(A ⊗ k), a horizontally
globular 2-cell U⊗u : U⊗B

Ã⊗u ⇒
A⊗u
U⊗B̃ (so that 1A⊗1B = 1A⊗B), and 2-cells K⊗u and U⊗k,

subject to the rules induced by the rules of point 2 in Proposition 3.3 and the following
ones:

A⊗B A⊗B′-A⊗ k
A⊗B′′-A⊗ k′

A⊗ B̃ A⊗ B̃′-A⊗ l
A⊗ B̃′′-A⊗ l′?

A⊗ u
?

A⊗ v
?

A⊗ wA⊗ ω A⊗ ω′

A⊗ B̃ A⊗ B̃′′-A⊗ l′l?

=

?

=(A⊗−)l′l

=

A⊗B A⊗B′-A⊗ k
A⊗B′′-A⊗ k′

A⊗B A⊗B′′-A⊗ k′k?

=

?

=(A⊗−)k′k

A⊗ B̃ A⊗ B̃′′-A⊗ l′l?

A⊗ u
?

A⊗ wA⊗ ω′ω

A⊗B A′ ⊗B-K ⊗B
A′′ ⊗B-K ′ ⊗B

A⊗B A′′ ⊗B-K ′K ⊗B?

=

?

=(−⊗B)K′K

Ã⊗B Ã′′ ⊗B-L′L⊗B?

U ⊗B
?

U ′′ ⊗Bζ ′ζ ⊗B

=

A⊗B A′ ⊗B-K ⊗B
A′′ ⊗B-K ′ ⊗B

Ã⊗B Ã′ ⊗B-L⊗B
Ã′′ ⊗B-L′ ⊗B?

U ⊗B
?

U ′ ⊗B
?

U ′′ ⊗Bζ ⊗B ζ ′ ⊗B

Ã⊗B Ã′′ ⊗B-L′L⊗B?

=

?

=(−⊗B)L′L

A⊗ ω

ω′
=
A⊗ ω
A⊗ ω′

,
ζ

ζ ′
⊗B =

ζ ⊗B
ζ ′ ⊗B

,

A⊗ Idk = IdA⊗k, IdK ⊗B = IdK⊗B, A⊗ Idu = IdA⊗u, IdU ⊗B = IdU⊗B .
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The source and target functors s, t on A ⊗ B are defined as in A × B, the composition
functor c is defined by horizontal juxtaposition of the corresponding 2-cells, and the unit
functor i is defined on generators as follows:

i(A⊗B) = 1A⊗B, i(A⊗ v) = 1A ⊗ v(= IdA⊗v) and i(U ⊗B) = U ⊗ 1B(= IdU⊗B).

Since A⊗B is defined by generators and relations on A×B, it is clear that there is a lax
double quasi-functor J : A×B −→ A⊗B given by J(−, B)(x) = x⊗B, J(A,−)(y) = A⊗y
for cells x in A and y in B and with unique 2-cells K ⊗ k,K ⊗ u, U ⊗ k and U ⊗ u in
A ⊗ B, where the usual notation is used. It turns out that the universal property that
A⊗ B satisfies is the following: for every lax double quasi-functor H : A× B −→ C there
is a unique strict double functor H : A ⊗ B −→ C such that H = HJ . Moreover, in
Subsection 6.2 we will prove a double category isomorphism:

q-Laxhop(A× B,C) ∼= Dblhop(A⊗ B,C).

Although we do not investigate in the paper if⊗ provides a monoidal tensor product on
Dbllx, we observe the following. Clearly, the only kind of “isomorphism” between double
categories (A⊗B)⊗C and A⊗(B⊗C) must be (an invertible) pseudo double functor. On
the other hand, for two lax double functors F : A −→ B and G : C −→ D in order to define
F ⊗G : A⊗C −→ B⊗D we need to define in particular how F ⊗G acts on 1h-cells of type
(A′ ⊗ k)(K ⊗ C) : A⊗ C ⇒ A′ ⊗ C ′, and similar. It is not clear how to do that without
taking F ⊗ G to be a strict or pseudo double functor. These two observations are in
accordance with the strictification result (15) that we get in Subsection 6.2, in particular,
that lax double functors A −→ JB,CK correspond to strict double functors A⊗ B −→ C.

4. The double categories Laxhop(A, JB,CK) and q-Laxhop(A × B,C) are
isomorphic

Observe that a pair of families of lax functors of 2-categories together with their distribu-
tive law, which is given by a family of 2-cells σf,g for 1-cells f, g, defined in [Faul, Manuell,
Siqueira, 2021, Definition 3.1] present a lax version of “quasi-functors of two variables” of
[Gray, 1974, Definition I.4.1]. Namely, σf,g from the former precisely corresponds to γf,g
of the latter, only the functors in [Gray, 1974] are strict 2-functors. The single condition
QF23 of the latter is equivalent to the two conditions (D5) and (D6) of the former. In
[Garner, Gurski, 2009, Gordon, Power, Street, 1995] the 2-cells γf,g of a quasi-functor of
two variables were considered to be invertible. Such a quasi-functor of two variables in
these references was called “cubical functor”. In Proposition 2.1 and Definition 2.2 of
[Femić, 2021] we generalized cubical functors to strict double categories and called them
cubical double functors.

In Proposition 3.3 and Definition 3.4 above we generalized cubical double functors to
the lax case. (Observe that the corresponding 2-cell mentioned in the above paragraph is
not invertible, so we do not work here in a cubical setting, and follow Gray’s terminology.)
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Thus our Proposition 3.3 is a generalization to the double-categorical setting of [Faul,
Manuell, Siqueira, 2021, Lemma 4.1].

Morphisms of distributive laws of lax functors from [Faul, Manuell, Siqueira, 2021,
Definition 4.3] are the oplax version of quasi-natural transformations from [Gray, 1974,
Definition I.4.1], which are lax (see I.4.1 and I.3.3 of [Gray, 1974]). In this section we will
first introduce the notions corresponding to horizontal oplax and vertical lax transforma-
tions and their modifications in the lax double quasi-functor setting, and then prove that
the latter are in 1-1 correspondence with the horizontal oplax and vertical lax transfor-
mations between lax double functors of the form A −→ JB,CK and their modifications.

4.1. The double category q-Laxhop(A×B,C) . By q-Laxhop(A×B,C) we will denote
the double category consisting of lax double quasi-functors, horizontal oplax transforma-
tions of lax double quasi-functors as 1h-cells, vertical lax transformations as 1v-cells and
modifications among the latter two. We define its 1- and 2-cells below.

4.2. definition. A horizontal oplax transformation θ : (−,−)1 ⇒ (−,−)2 between lax
double quasi-functors (−,−)1, (−,−)2 : A × B −→ C is given by: for each A ∈ A a hori-
zontal oplax transformation θA : (−, A)1 ⇒ (−, A)2 and for each B ∈ B a horizontal oplax
transformation θB : (B,−)1 ⇒ (B,−)2, both of lax double functors, such that θAB = θBA
and such that

(HOT q1 )
(B′, A)1 (B′, A′)1

-
(B′, K)1

(B′, A′)2
-

θB
′

A′

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
θB
′

A (B′, A′)2
-

(B′, K)2
?

=

?

=θB
′

K

(B,A)1 (B,A)2
-

θAB (B′, A)2
-

(k,A)2
?

=

?

=θAk

(B′, A′)2
-

(B′, K)2

?

=

?

=

(B,A)2 (B,A′)2
-

(B,K)2
(B′, A′)2

-
(k,A′)2

(k,K)2

=

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A′)1

-
(B′, K)1

(B,A)1 (B,A′)1
-

(B,K)1
(B′, A′)1

-
(k,A′)1

(B′, A′)2
-

θA
′

B′
?

=

?

=(k,K)1

θA
′

k

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
θA
′

B (B′, A′)2
-

(k,A′)2
?

=

?

=

?

=

?

=

(B,A)1 (B,A)2
-

θBA (B,A′)2
-

(B,K)2

θBK

for every 1h-cells K : A −→ A′ and k : B −→ B′,

(HOT q2 )

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
θA
′

B

(B̃, A)1 (B̃, A′)1
-

(B̃,K)1
(B̃, A′)2

-
θA
′

B̃
?

(u,A)1

?

(u,A′)1

?

(u,A′)2
(u,K)1 θA

′
u

(B̃, A)1 (B̃, A)2
-

θA
B̃

(B̃, A′)2
-

(B̃,K)2
?

=

?

=θB̃K

=

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
θA
′

B

(B,A)1 (B,A)2
-

θAB (B,A′)2
-

(B,K)2
?

=

?

=θBK

(B̃, A)1 (B̃, A)2
-

θA
B̃

(B̃, A′)2
-

(B̃,K)2
?

(u,A)1

?

(u,A)2

?

(u,A′)2
θAu (u,K)2

for every 1h-cell K : A −→ A′ and 1v-cell u : B −→ B̃,
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(HOT q3 )

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
θAB′

(B, Ã)1 (B′, Ã)1
-

(k, Ã)1
(B′, Ã)2

-
θÃB′?

(B,U)1

?

(B′, U)1

?

(B′, U)2
(k, U)1 θB

′
U

(B, Ã)1 (B, Ã)2
-

θÃB
(B′, Ã)2

-
(k, Ã)2

?

=

?

=θÃk

=

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
θAB′

(B,A)1 (B,A)2
-

θAB (B′, A)2
-

(k,A)2
?

=

?

=θAk

(B, Ã)1 (B, Ã)2
-

θÃB
(B′, Ã)2

-
(k, Ã)2

?

(B,U)1

?

(B,U)2

?

(B′, U)2
θBU (k, U)2

for every 1v-cell U : A −→ Ã and 1h-cell k : B −→ B′, and

(HOT q4 )

(B,A)1 (B,A)1
-= -

θAB

?

(B,U)1

(B, Ã)1
(u, U)1

(B̃, Ã)1
-=?

(u, Ã)1

(B̃, Ã)1

?

(B̃, U)1

(B̃, A)1

?

(u,A)1 θAu

-
θA
B̃

(B̃, Ã)2

?

(B̃, U)2

(B,A)2

(B̃, A)2

?

(u,A)2

-
θÃ
B̃

θB̃U

=

(B,A)1 (B,A)2
-

θAB -=

(B, Ã)1

?

(B,U)1
θBU

(B̃, Ã)1
-

θÃ
B̃

?

(u, Ã)1

(B̃, Ã)2

?

(u, Ã)2

(B, Ã)2

?

(B,U)2

(u, U)2-
θÃB

(B̃, Ã)2

?

(B̃, U)2

(B,A)

?

(u,A)2

(B̃, A)2

-
=

θÃu

for every 1v-cells U : A −→ Ã and u : B −→ B̃.

4.3. definition. A vertical lax transformation θ0 : (−,−)1 ⇒ (−,−)2 between lax double
quasi-functors (−,−)1, (−,−)2 : A × B −→ C is given by: for each A ∈ A a vertical lax
transformation θA0 : (−, A)1 ⇒ (−, A)2 and for each B ∈ B a vertical lax transformation
θB0 : (B,−)1 ⇒ (B,−)2, both of lax double functors, such that (θA0 )B = (θB0 )A and such
that

(V LT q1 )
(B,A)1 (B,A)1

-=

(B,A)2

?

(θA0 )B (θA0 )u

(B̃, A)2 (B̃, A)2
-=

?

(u,A)2

?

(θA0 )B̃

(B̃, A)1

?

(u,A)1

(B,A)2
-=

?

(B,U)2

(B, Ã)2

(B̃, Ã)2

?

(u, Ã)2

-= (B̃, Ã)2

?

(B̃, U)2
(u, U)2

(B̃, A)1
-=

(B̃, Ã)1

?

(B̃, U)1

(B̃, Ã)2

?

(B̃, U)2

(B̃, Ã)2

?

(θB̃0 )Ã

-=

(θB̃0 )U

=

(B,A)1 (B,A)1
-=

(B,A)2

?

(θA0 )B

(θB0 )U

(B, Ã)2
-=

?

(B,U)2

(B, Ã)2

?

(θB0 )Ã

(B, Ã)1

?

(B,U)1

(B, Ã)1
-=

?

(u, Ã)1

(B̃, Ã)1

(B̃, Ã)2

?

(θÃ0 )B̃

-=(B̃, Ã)
?

(u, Ã)2
(θÃ0 )u

(B,A)1 (B,A)1
-=

?

(B,U)1

(B̃, A)1

?

(u,A)1

(B̃, Ã)1

?

(B̃, U)1

-=

(u, U)1

for every 1v-cells U : A −→ Ã and u : B −→ B̃;
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(V LT q2 )

(B,A)1 (B,A)1
-= -

(B,K)1

(B,A)2

?

(θA0 )B

(θA0 )u

(B̃, A)2
-=?

(u,A)2

(B̃, A)2

?

(θA0 )B̃

(B̃, A)1

?

(u,A)1 (u,K)1

-
(B̃,K)1

(B̃, A′)2

?

(θB̃0 )A′

(B,A′)1

(B̃, A′)1

?

(u,A′)1

-
(B̃,K)2

(θB̃0 )K

=

(B,A)1 (B,A′)1
-

(B,K)1 -=

(B,A)2

?

(θA0 )B (θB0 )K

(B̃, A)2
-

(B̃,K)2
?

(u,A)2

(B̃, A′)2

?

(u,A′)2

(B,A′)2

?

(θA
′

0 )B

(θA
′

0 )u-
(B,K)2

(B̃, A′)2

?

(θA
′

0 )B̃

(B,A′)1

(B̃, A′)1

?

(u,A′)1

-
=

(u,K)2

for every 1h-cell K : A −→ A′ and 1v-cell u : B −→ B̃,

(V LT q3 )

(B,A)1 (B,A)1
-= -

(k,A)1

(B,A)2

?

(θB0 )A

(θB0 )U

(B, Ã)2
-=?

(B,U)2

(B, Ã)2

?

(θB0 )Ã

(B, Ã)1

?

(B,U)1 (k, U)1

-
(k, Ã)1

(B′, Ã)2

?

(θÃ0 )B′

(B,A′)1

(B′, Ã)1

?

(B′, U)1

-
(k, Ã)2

(θÃ0 )k

=

(B,A)1 (B′, A)1
-

(k,A)1 -=

(B,A)2

?

(θA0 )B (θA0 )k

(B̃, A)2
-

(k, Ã)2
?

(B,U)2

(B′, Ã)2

?

(B′, U)2

(B′, A)2

?

(θB
′

0 )A

(θB
′

0 )U-
(k,A)2

(B′, Ã)2

?

(θÃ0 )B′

(B′, A)1

(B′, Ã)1

?

(B′, U)1

-
=

(k, U)2

for every 1v-cell U : A −→ Ã and 1h-cell k : B −→ B′, and

(V LT q4 )

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A′)1

-
(B′, K)1

(B,A)1 (B,A′)1
-

(B,K)1
(B′, A′)1

-
(k,A′)1

?

=

?

=(k,K)1

(B,A)2 (B,A′)2
-

(B,K)2
(B′, A′)2

-
(k,A′)2

?

(θA0 )B
?

(θB0 )A′

?

(θA
′

0 )B′(θB0 )K (θA
′

0 )k

=

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A′)1

-
(B′, K)1

(B,A)2 (B′, A)2
-

(k,A)2
(B′, K)2

-
(B′, K)2

?

(θA0 )B
?

(θB
′

0 )A
?

(θB
′

0 )A′
(θA0 )k (θB

′
0 )K

(B,A)2 (B,A′)2
-

(B,K)2
(B′, A′)2

-
(k,A′)2

?

=

?

=(k,K)2

for every 1h-cells K : A −→ A′ and k : B −→ B′.

4.4. definition. Let horizontal oplax transformations θ, θ′ and vertical lax transforma-
tions θ0, θ

′
0 acting between lax double quasi-functors H1, H2, H3, H4 : A× B −→ C be given

as in the left diagram below. Denote by (−, A)i : B −→ C, (B,−)i : A −→ C, i = 1, 2, 3, 4
the pairs of lax double functors corresponding to H1, H2, H3, H4, respectively. A modi-
fication Θ (on the left below) is given by a pair of modifications τA, τB acting between
transformations among lax double functors:

H1 H2
-θ

H3 H4
-
θ′

?
θ0

?
θ′0τ

(−, A)1 (−, A)2
-θ
A

(−, A)3 (−, A)4
-

θ′A

?
θA0 ?

θ′A0τA
(B,−)1 (B,−)2

-θ
B

(B,−)3 (B,−)4
-
θ′B

?
θB0 ?

θ′B0τB
(6)
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such that τAB = τBA for every A ∈ A, B ∈ B.

The composition of 1- and 2-cells in q-Laxhop(A×B,C) is given in the analogous way
as in Laxhop(A, JB,CK).

4.5. The 1-1 correspondence between 1h- and 1v-cells. We proceed to show
that the double categories Laxhop(A, JB,CK) and q-Laxhop(A×B,C) are isomorphic. From
Proposition 3.3 and Definition 3.4 we know that we have a 1-1 correspondence between
their corresponding 0-cells.

Let F,G : A −→ JB,CK be two lax double functors and take a horizontal oplax trans-
formation α : F ⇒ G. Set (−,−)1 and (−,−)2 for the two lax double quasi-functors
obtained from F and G, respectively. Evaluating at a 0-cell A ∈ A we get α(A) : F (A)
−→ G(A) a 1h-cell in JB,CK of the form (−, A)1 −→ (−, A)2. This 1h-cell is a horizontal
oplax transformation between lax double functors, so we have the following cells in C: a
1h-cell α(A)B : (B,A)1 −→ (B,A)2, a globular 2-cell α(A)k = δα(A),k, and a 2-cell α(A)u,

for a 0-cell B, a 1h-cell k : B −→ B′, and a 1v-cell u : B −→ B̃ in B. The 2-cells α(A)k and
α(A)u in C satisfy the five axioms from Definition 2.2.

On the other hand, evaluating the horizontal oplax transformation α : F ⇒ G at a
1h-cell K : A −→ A′ in A, one obtains a globular 2-cell αK = δα,K : (−,K)1

α(A′)
V α(A)

(−,K)2
in

JB,CK, which, by the horizontal restriction of Definition 2.7, is a modification between
(the vertical composition of) horizontal oplax transformations of lax double functors. It
has a free slot for 0-cells in B, so that after evaluation at some B ∈ B it yields a globular
2-cell αK(B) in C. Finally, evaluating α at a 1v-cell U : A −→ Ã in A, one obtains a 2-cell
αU :

(−, A)1 (−, A)2
-

α(A)

(−, Ã)1 (−, Ã)2
-

α(Ã)?
(−, U)1

?
(−, U)2

αU
(7)

in JB,CK (thus a modification in the sense of Definition 2.7) with a free slot for 0-cells in
B (after evaluation at B ∈ B it yields a 2-cell αU(B) in C).

The families of 2-cells αK and αU in JB,CK from the horizontal oplax transformation
α : F ⇒ G satisfy the five axioms from Definition 2.2. Evaluating these five axioms
at B ∈ B one obtains five axioms for families of 2-cell αK(B) and αU(B) in C. The
latter axioms mean that α(−)B : F (−)(B) ⇒ G(−)(B), obtained by reading α : F ⇒ G
described above the other way around, that is, evaluating at a 0-cell B ∈ B and leaving a
free slot for cells from A, is a horizontal oplax transformation between lax double functors
(B,−)1 −→ (B,−)2 which act between A −→ C. Namely, set α(K)B = δα(−)B ,K : = αK(B)

and α(U)B : = αU(B), for a 1h-cell K : A −→ A′ and 1v-cell U : A −→ Ã in A.
Now, we may set θA : = α(A) and θB : = α(−)B for two horizontal oplax transformations

between lax double functors. We do have that θAB = θBA , it remains to check the other four
conditions in order for the pairs (θA, θB) for A ∈ A, B ∈ B to make a horizontal oplax
transformation θ : (−,−)1 ⇒ (−,−)2 between lax double quasi-functors.
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4.6. Proposition. Let F,G : A −→ JB,CK be two lax double functors with the corre-
sponding lax double quasi-functors (−,−)1, (−,−)2 : A × B −→ C. For every A ∈ A and
B ∈ B let α(A) : F (A) −→ G(A) and α(−)B : F (−)(B) −→ G(−)(B) be horizontal oplax
transformations between lax double functors. The following are equivalent:

1. αK : (−,K)1
α(A′)

V α(A)
(−,K)2

is a modification on the vertical composition of horizontal oplax

transformations of lax double functors (with components (αK)B = δα(−)B ,K : (B,K)1
α(A′)B

V
α(A)B
(B,K)2

, recall (2)) for every 1h-cell K : A −→ A′ in A, and αU of the form (7) is a

modification in the sense of Definition 2.7 for every 1v-cell U : A −→ Ã in A;

2. the pairs (θA, θB) : = (α(A), α(−)B) for A ∈ A, B ∈ B form a horizontal oplax
transformation θ : (−,−)1 ⇒ (−,−)2 between lax double quasi-functors.

Proof. In Corollary 3.5 we saw that (−, K)i, i = 1, 2 are horizontal oplax transforma-

tions. From Lemma 2.3 we have that the composite transformations [ (−,K)1
α(A′)

]k and [ α(A)
(−,K)2

]k
evaluated at a 1h-cell k : B −→ B′ have the following form:

δ (−,K)1
α(A′) ,k

=
(B,A)1 (B′, A)1

-
(k,A)1

(B′, A′)1
-

(B′, K)1

(B,A)1 (B,A′)1
-

(B,K)1
(B′, A′)1

-
(k,A′)1

(B′, A′)2
-

α(A′)B′?

=
?

=δ(−,K)1,k

δα(A′),k

(B,A′)1 (B,A′)2
-

α(A′)B
(B′, A′)2

-
(k,A′)2

?

=
?

=

and
δ α(A)

(−,K)2
,k

=
(B,A)1 (B′, A)1

-
(k,A)1

(B′, A)2
-

α(A)B′

(B,A)1 (B,A)2
-

α(A)B
(B′, A)2

-
(k,A)2

(B′, A′)2
-

(B′, K)2
?

=
?

=δα(A),k

δ(−,K)2,k

(B,A)2 (B,A′)2
-

(B,K)2
(B′, A′)2

-
(k,A′)2

?

=
?

=

Now the first modification condition (m.ho.-1) for αK reads:

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A′)1

-
(B′, K)1

?

=
?

=

(B,A)1 (B,A′)1
-

(B,K)1
(B′, A′)1

-
(k,A′)1 -

α(A′)B′
(B′, A′)2

?

=
?

=

δ(−,K)1,k

δα(A′),k

(B,A)1
-

(B,K)1
(B,A′)1 (B,A′)2

-
α(A′)B

(B′, A′)2
-

(k,A′)2

?

=
?

=

(B,A)1
-

α(A)B
(B,A′)1 (B,A′)2

-
(B,K)2

δα(−)B ,K

=

?

=
?

=

(B′, A)1 (B′, A)1
-

(B′, K)1
(B′, A′)2

-
α(A′)B′

δα(−)B′ ,K

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
α(A)B′

(B′, A′)2
-

(B′, K)2

?

=
?

=δα(A),k

(B,A)1 (B,A)2
-

α(A)B
(B′, A)2

-
(k,A)2

(B′, A′)2
-

(B′, K)2

?

=
?

=δ(−,K)2,k

(B,A)2 (B,A′)2
-

(B,K)2
(B′, A′)2

-
(k,A′)2
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Recall from Corollary 3.5 that δ(−,K)i,k = (k,K)i for i = 1, 2 and that we are setting
θA : = α(A) and θB : = α(−)B, thus δα(A),k = θAk and δα(−)B ,K = θBK . We have that the
above modification condition is precisely (HOT q1 ).

By Lemma 2.3 we have:

(−, K)1

α(A′)
|u =

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
α(A′)B

(B̃, A)1 (B̃, A′)1
-

(B̃,K)1
(B̃, A′)2

-
α(A′)B̃?

(u,A)1

?

(u,A′)1

?

(u,A′)2
(u,K)1 α(A′)u

and

α(A)

(−, K)2

|u =

(B,A)1 (B,A)2
-

α(A)B
(B,A′)2

-
(B,K)2

(B̃, A)1 (B̃, A)2
-

α(A)B̃
(B̃, A′)2

-
(B̃,K)2

?

(u,A)1

?

(u,A)2

?

(u,A′)2
α(A)u (u,K)2

for a 1v-cell u : B −→ B̃. Now the second modification condition (m.ho.-2) for αK reads:

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
α(A′)B

(B̃, A)1 (B̃, A′)1
-

(B̃,K)1
(B̃, A′)2

-
α(A′)B̃?

(u,A)1

?

(u,A′)1

?

(u,A′)2
(u,K)1 α(A′)u

(B̃, A)1 (B̃, A)2
-

α(A)B̃
(B̃, A′)2

-
(B̃,K)2

?

=

?

=δα(−)B̃ ,K

=

(B,A)1 (B,A′)1
-

(B,K)1
(B,A′)2

-
α(A′)B

(B,A)1 (B,A)2
-

α(A)B
(B,A′)2

-
(B,K)2

?

=

?

=δα(−)B ,K

(B̃, A)1 (B̃, A)2
-

α(A)B̃
(B̃, A′)2

-
(B̃,K)2

?

(u,A)1

?

(u,A)2

?

(u,A′)2
α(A)u (u,K)2

Setting θAu = α(A)u and θBK = δα(−)B ,K this is precisely (HOT q2 ).
The two modification conditions (m.ho-vl.-1) and (m.ho-vl.-2) for αU are:

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
α(A)B′

(B, Ã)1 (B′, Ã)1
-

(k, Ã)1
(B′, Ã)2

-
α(Ã)B′?

(B,U)1

?

(B′, U)1

?

(B′, U)2
(k, U)1 αU(B′)

(B, Ã)1 (B, Ã)2
-

α(Ã)B
(B′, Ã)2

-
(k, Ã)2

?

=

?

=δα(Ã),k

=

(B,A)1 (B′, A)1
-

(k,A)1
(B′, A)2

-
α(A)B′

(B,A)1 (B,A)2
-

α(A)B
(B′, A)2

-
(k,A)2

?

=

?

=δα(A),k

(B, Ã)1 (B, Ã)2
-

α(Ã)B
(B′, Ã)2

-
(k, Ã)2

?

(B,U)1

?

(B,U)2

?

(B′, U)2
αU(B) (k, U)2

and

(B,A)1 (B,A)1
-= -

α(A)B

(B, Ã)1

?

(B,U)1

(u, U)1

(B̃, Ã)1
-=?

(u, Ã)1

(B̃, Ã)1

?

(B̃, U)1

(B̃, A)1

?

(u,A)1 α(A)u

-
α(A)B̃

(B̃, Ã)2

?

(B̃, U)2

(B,A)2

(B̃, A)2

?

(u,A)2

-
α(Ã)B̃

αU(B̃)

=

(B,A)1 (B,A)2
-

α(A)B -=

(B, Ã)1

?

(B,U)1 αU(B)

(B̃, Ã)1
-

α(Ã)B̃?

(u, Ã)1

(B̃, Ã)2

?

(u, Ã)2

(B, Ã)2

?

(B,U)2

(u, U)2-
α(Ã)B

(B̃, Ã)2

?

(B̃, U)2

(B,A)2

?

(u,A)2

(B̃, A)2

-
=

α(Ã)u



856 BOJANA FEMIĆ

which by additional identifications θAu = α(A)u and θBU = αU(B) are (HOT q3 ) and (HOT q4 ).

Now we have that α : F ⇒ G yields θ : (−,−)1 ⇒ (−,−)2. Before seeing the converse,
let us summarize our above findings:

4.7. Proposition. A horizontal oplax transformation α : F ⇒ G between lax double
functors F,G : A −→ JB,CK consists of the following data:

� a horizontal oplax transformation α(A) : F (A) −→ G(A) between lax double functors
for every A ∈ A;

� a (globular) modification αK : (−,K)1
α(A′)

V α(A)
(−,K)2

for every 1h-cell K : A −→ A′;

� a modification αU (of the form (7)) for every 1v-cell U : A −→ Ã;

so that αK and αU obey five axioms, which (after evaluation at B ∈ B) yield that
α(−)B : F (−)(B) −→ G(−)(B) is a horizontal oplax transformation between lax double
functors for every B ∈ B (by setting α(K)B : = αK(B) and α(U)B : = αU(B)). (Both
modifications above are meant in the sense of Definition 2.7.)

Now, assuming that θ : (−,−)1 ⇒ (−,−)2 given by pairs (θA, θB) for A ∈ A, B ∈ B is a
horizontal oplax transformation between lax double quasi-functors, whose corresponding
lax double functors are F,G : A −→ JB,CK, we define a horizontal oplax transformation
α : F ⇒ G as follows. For A ∈ A, set α(A) : = θA; for a 1h-cell K : A −→ A′ let the desired
globular modification αK be given by components αK(B) : = θBK , and for a 1v-cell U : A −→
Ã let the desired modification αU be given by components αU(B) : = θBU . Since moreover
α(A)B = θAB = θBA , we have that α(−)B : = θB is a horizontal oplax transformation of
lax double functors with α(K)B : = θBK = αK(B) and α(U)B : = θBU = αU(B). Now by
Proposition 4.6, αK and αU are modifications. By Proposition 4.7 we have that α : F ⇒ G
is indeed a horizontal oplax transformation between lax double functors.

The two assignments of horizontal oplax transformations are clearly inverse to each
other.

The 1-1 correspondence between 1v-cells works completely analogously as for 1h-cells.
(This time modifications (α0)u of the type (2) are used instead of αK in the analogous
place in the above two propositions.)

4.8. The 1-1 correspondence between 2-cells. A modification Θ in Laxhop(A, JB,CK),
i.e. a modification between two horizontally oplax and two vertically lax transformations,
is given by 2-cells

F (A) G(A)-
α(A)−

F ′(A) G′(A)-
β(A)−

?
α0(A)−

?
β0(A)−(ΘA)−
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in JB,CK with free slots in B ∈ B which satisfy axioms (m.ho-vl.-1) and (m.ho-vl.-2).
Evaluating the latter two axioms at a fixed B ∈ B, and considering the slot occupied by
0-, 1h- and 1v-cells in A as variable, these two axioms mean that one has a modification
(Θ−)B:

F (A) G(A)-
α(−)B

F ′(A) G′(A).-
β(−)B

?
α0(−)B

?
β0(−)B(Θ−)B

We now identify τA = ΘA and τB = (Θ−)B and recall the identifications from Subsec-
tion 4.5: θA = α(A), θB = α(−)B and θ′A = β(A), θ′B = β(−)B, and similarly for the
vertical lax transformations: θA0 = α0(A), θB0 = α0(−)B, and θ′A0 = β0(A), θ′B0 = β0(−)B.
Then we clearly have τAB = τBA and hence that τA and τB constitute a modification τ of
horizontal oplax transformations θ = (θA, θB)A∈A

B∈B
and θ′ = (θ′A, θ′B)A∈A

B∈B
and vertical lax

transformations θ0 = (θA0 , θ
B
0 )A∈A

B∈B
and θ′0 = (θ′A0 , θ

′B
0 )A∈A

B∈B
between lax double quasi-functors

(recall the last two squares in (6)).
Reading the above characterization of a modification Θ and how we obtained the

modification τ in the reversed order, one finds the converse assignment, and it is clear
that these two assignments are inverse to each other.

It is directly seen that the assignments defined in Subsection 4.5 and this subsec-
tion determine a strict double functor between double categories Laxhop(A, JB,CK) and
q-Laxhop(A × B,C). To see that it is compatible with compositions, viewing Proposi-
tion 4.7 may be helpful. We conclude that there is an isomorphism of double categories

q-Laxhop(A× B,C) ∼= Laxhop(A, JB,CK). (8)

5. A double functor from q-Laxst
hop(A× B,C) to Laxhop(A× B,C)

We define JB,CKst to be the full double subcategory of JB,CK in which the vertical lax
transformations are strict. The corresponding full double subcategory of q-Laxhop(A ×
B,C) isomorphic to Laxhop(A, JB,CK)st in (8) we denote by q-Laxsthop(A×B,C). It differs
from q-Laxhop(A× B,C) only in 0-cells, so that the 2-cells (u, U) of its lax double quasi-
functors are trivial.

We can prove that there is a double functor from q-Laxsthop(A × B,C) (and thus also
from Laxhop(A, JB,CKst)) to the double category Laxhop(A×B,C), consisting of lax double
functors on the Cartesian product of double categories, and their corresponding horizontal
oplax and vertical lax transformations and modifications. We will denote it by

F : q-Laxsthop(A× B,C) −→ Laxhop(A× B,C). (9)

Moreover, restricting to certain double subcategories of q-Laxsthop(A×B,C) and Laxhop(A×
B,C) we obtain a double equivalence of double categories. For this purpose we will con-
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struct a tuple (F ′,G, κ, λ) of double equivalence functors and horizontal strict transfor-
mations κ : Id ⇒ GF ′ and λ : F ′G ⇒ Id. The results that we obtain will generalize
Theorems 4.10 and 5.3 of [Faul, Manuell, Siqueira, 2021] to the context of double cate-
gories.

5.1. The double functor F on 0-cells. Let us show that a lax double quasi-functor
H : A × B −→ C, with lax double functors H(A,−) = (−, A) and H(−, B) = (B,−),
whose 2-cells (u, U) are identities determines a lax double functor P : A×B −→ C on the
Cartesian product.

Instead of typing the whole proof, we will indicate the list of its steps. For that purpose
recall the notation [α|β] = βα for the horizontal composition of 2-cells α (first) and β
(second) from the end of the second paragraph of Section 3.

We set:
P (A,B) = H(A,B),
P (K, k) = H(A′, k)H(K,B) = (k,A′)(B,K), for K : A −→ A′ and k : B −→ B′,

P (U, u) = (B,U)

(u,Ã)
for 1v-cells U : A −→ Ã, u : B −→ B̃, and

P (α, β) : = (B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)

(B, Ã′)
?

(B,U ′)

?

(B′, U ′)

?(u, Ã
′) ?

(u′, Ã′)
(β, Ã′)

(k, U ′)

(B, Ã)
?

(B,U)

(B̃, Ã)
?

(u, Ã)

(B,α)

(u, K̃)

-
(B, K̃)

- (B′, Ã′)
(k, Ã′)

(B̃, Ã′)-

(B̃, K̃)
(B̃′, Ã′)-

(k̃, Ã′)

(10)

for 2-cells α in A and β in B as in (11).
For the lax structure γ(f ′,g′)(f,g) : P (f ′, g′)P (f, g) ⇒ P (f ′f, g′g) and ιP : 1P (A,B) ⇒

P (1d(A,B)) of P we set

(k,K) : =

-
(k,A′)

-
(B′, K ′)

-
(B,K)

-
(B,K ′)

-
(k,A′′)

-
(k′, A′′)?

=
?
=

?
=

?
=

?
=

(k,K ′)

-
(B,K ′K)

-
(k′k,A′′)

(B,−)K′K (−, A′′)k′k

and

ιP(A,B) : =

(B,A) -= (B,A) (B,A)-=

?
=

?
=

?
=

(B,A) -
(B, 1A)

ιBA

(B,A) (B,A)-
(1B, A)

ιAB

where ιBA = (B,−)A and ιAB = (−, A)B of H.
The hexagonal law (lx.f.cmp) for γ and the unital laws (lx.f.u) can be formulated in

the underlying horizontal 2-category, where they amount to the same data as in [Faul,
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Manuell, Siqueira, 2021, Theorem 3.2]. The same holds for preservation of the identity
2-cell on a 1h-cell (lx.f.s2). We will discuss vertical naturality of ιP with respect to 1v-
cells (lx.f.u-nat), the naturality of γ with respect to 2-cells (lx.f.c-nat), and the vertical
functoriality of P with respect to 2-cells (lx.f.s1). P is strictly compatible with vertical
composition of 1v-cells and vertical identities on objects, rules (lx.f.v1) and (lx.f.v2), since
(B,−) and (−, A) are strict in the vertical direction.

For (lx.f.c-nat) we take two 2-cells α, α′ in A and two 2-cells β, β′ in B:

A A′-K

Ã Ã′-

K̃

?U ?U
′α

A′′-K ′

?U
′′

Ã′′-

K̃ ′

α′ and
B B′-k

B̃ B̃′-

k̃

?
u

?u
′β

B′′-k′

?u
′′

B̃′′-

k̃′

β′ (11)

and we should prove the equality:

(B,A′) (B′, A′)-
(k,A′)

(B′, A′′)-
(B′, K ′)

(B,A) (B,A′)-
(B,K)

(B,A′′)-
(B,K ′)

(B′, A′′)-
(k,A′′)

(B′′, A′′)-
(k′, A′′)

?

=
?

=

?

=

?

=

?

=(k,K ′)

(B,−)K′K (−, A′′)k′k

(B,A) (B,A′′)-
(B,K ′K)

(B′′, A′′)-
(k′k,A′′)

(B, Ã′′)
?

(B,U ′′)

?

(u, Ã′′)

(B, Ã′′)
?

(B,U)

(B̃, Ã)
?

(u, Ã)

(B′′, Ã′′)
?

(B′′, U ′′)

(B̃′′, Ã′′)
?

(u′′, Ã′′)

(B,α′α) (k′k, U ′′)

(u, K̃ ′K̃) (β′β, Ã′′)

-
(B, K̃ ′K̃)

-
(k′k, Ã′′)

(B̃, Ã′′)-
(B̃, K̃ ′K̃)

-
(k̃′k̃, Ã′′)

=

(B,A) (B,A′)-
(B,K)

(B′, A′)-
(k,A′)

(B′, A′′)-
(B′, K ′)

(B′′, A′′)-
(k′, A′′)

(B, Ã)
?

(B,U)

(B, Ã′)
?

(B,U ′)

(B̃, Ã′)
?

(u, Ã′)

(B̃′, Ã′)
?

(u′, Ã′)

-

(k̃, Ã′)
(B̃′, Ã′′)-

(B̃′, K̃ ′)
-

(k̃′, Ã′′)

(B,α) (k, U ′)

(β, Ã′)

(B′, Ã′)
?

(B′, U ′)

(B̃, Ã)
?

(u, Ã)

?

(B′, U ′′)

(B′, Ã′′)-
(B′, K̃ ′)

-
(k′, Ã′′)

(u, K̃)

?

(u′, Ã′′)
(B′′, Ã′′)

?

(B′′, U ′′)

(B̃′′, Ã′′)
?

(u′′, Ã′′)

-
(B, K̃)

-
(k, Ã′)

-
(B̃, K̃)

(B′, α′)

(u′, K̃ ′)

(k′, U ′′)

(β′, Ã′′)

(B̃, Ã′)
?

=

(B̃′, Ã′′)
?

=

(B̃, Ã′′)-
(B̃, K̃ ′)

-
(k̃, Ã′′)

(k̃, K̃ ′)

(B̃, Ã) -
(B̃, K̃)

(B̃′′, Ã′′)-
(k̃′, Ã′′)

?

=
?

=
?

=(B̃,−)K̃′K̃ (−, Ã′′)k̃′k̃

(B̃, Ã) (B̃, Ã′′)-
(B̃, K̃ ′K̃)

(B̃′′, Ã′′)-
(k̃′k, Ã′′)
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In order to show that the left hand-side equals the right one, apply the following rules: 1)
naturality of the laxity of (B,−) in α′α and ((k′k, U)); 2) ((k,K)-r-nat), ((u,K ′K)) and
naturality of (−, A′′) in β′β, and 3) ((k,K)-l-nat).

For (lx.f.u-nat) we should prove the equality:
ιP
(A,B)

P (1(U,u))
= 1P (U,u)

ιP
(Ã,B̃)

, which translates into:

(B,A) (B,A)-=

(B,A) (B,A)-
(B, 1A)

(B,A)-=

(B,A)-
(1B, A)?

=
?
=(B,−)A (−, A)B

?
=

-
(1B̃, Ã)?

(B,U)
?

(B̃, Ã)
?
(B, Ũ)

(B, Ã) (B, Ã)-
(B, 1Ã)

(B, 1U) (1B, U)

(B̃, Ã)
?

(u, Ã)

(B̃, Ã)
?

(B̃, Ã)
?
(u, Ã)(u, 1Ã) (1u, Ã)

-

(B̃, 1Ã)
-

(1B̃, Ã)

=

-=(B,A)

(B, Ã)
?

(B,U)

?
(u, Ã)

-=

(B,A)

(B, Ã)
?
(B,U)

?
(u, Ã)

1(B,U)

1(u,Ã)

(B̃, Ã) -=
(B̃, Ã)-=

?
=

?
=(B̃,−)Ã ?

=

(B̃, Ã) (B̃, Ã)-

(B̃, 1Ã)
(B̃, Ã)-

(1B̃, Ã)

(−, Ã)B̃

which is true by: 1) vertical naturality of (B,−)A and ((u, 1A)), and 2) by ((1B, U)) and
vertical naturality of (−, Ã)B.

For (lx.f.s1) one takes two vertically composable pairs of 2-cells:

A Ã-K

A′ Ã′-K ′

Ã′′-K ′′

?
U

?
V

A′′
?U ′ ?V

′

α

α′

and

B B̃-k

B′ B̃′-k
′

B̃′′-k′′

?
u

?
v

B′′
?u′ ?v

′

β

β′

and one immediately sees that P ( α
α′
, β
β′

) = P (α,β)
P (α′,β′)

by ((u, U)-l-nat) and ((u, U)-r-nat).
Thus we obtain functoriality of P .

5.2. Remark. The requirement that the 2-cells (u, U) be identities is needed in the above
proof to show that P is strictly functorial with respect to 1v- and 2-cells. To prove the
naturality of γ, it is sufficient to assume merely invertibility of (u, U).

This finishes the proof that we have a lax double functor P : A× B −→ C.

Observe that if ιA and ιB are invertible, then so is ιP and also γ(1A,g)(f,1B′ )
. This

is exactly the same as in [Faul, Manuell, Siqueira, 2021, Lemma 5.2]. When ι’s are
invertible the lax double functor in question is called unitary, whereas the lax double
functor P : A× B −→ C is called decomposable when γ(1A,g)(f,1B′ )

is invertible in loc.cit..
We will prove later that the full double subcategory q-Laxst-uhop (A×B,C) of q-Laxsthop(A×

B,C) consisting of unitary lax double quasi-functors (in the sense that both (−, A) and
(B,−) are unitary) is double equivalent to the full double subcategory Laxudhop(A× B,C)
of Laxhop(A× B,C) consisting of the unitary and decomposable lax double functors. Let

F ′ : q-Laxst-uhop (A× B,C) −→ Laxudhop(A× B,C). (12)
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denote the corresponding restriction of F from (9), and let G denote a to-be-defined
quasi-inverse double functor for F ′.

5.3. A quasi-inverse G of F ′ and transformations κ, λ on 0-cells. We will
first show that a unitary and decomposable lax double functor P : A × B −→ C with
the structures γ and ιP determines a lax double quasi-functor H : A × B −→ C. Let
P (A, k) : = P (1A, k), P (A, u) : = P (1A, u), P (A, β) : = P (IA, β), where IA is the identity
2-cell for the object A, and k, u, β as usual, and similarly for P (−, B). It follows that
P (1A, 1B) = P (A, 1B) = P (1A, B).

Now set (−, A) = P (A,−) and (B,−) = P (−, B) and ιAB = ιBA : = ιP(A,B). Then

(k′, A)(k,A) = P (1A, k
′)P (1A, k) and similarly for (B,−), and we may define

(−, A)k′k : = γ(1A,k′)(1A,k) and (B,−)K′K : = γ(K′,1B)(K,1B).

We get that (−, A) and (B,−) are unitary lax double functors.
Observe the form of the 2-cell:

-
P (K, k)

-

P (K̃, k̃)

?
P (U, u)

?
P (V, v)P (α, β)

and notice then whenever either of the two 1h-cells or either of the two 1v-cells in P (−,−)
above is an identity, the form of P (−,−) becomes (B, x) i.e. (x,A) for the corresponding
1h- or 1v-cell x. Then we may further define

(k,K) : = -
(k,A)

-
(B′, f)

?
=

?
=

γ(K,1B′ )(1A,k)

γ−1
(1A′ ,k)(K,1B)

-
(B,K)

-
(k,A′)

(u,K) : =

-
(B,K)

-

(B̃,K)

?

(u,A)
?

(u,A′)P (IdK , Id
u) and (k, U) : =

-
(k,A)

-

(k, Ã)

?

(B,U)
?

(B′, U)P (IdU , Idk)

Since P is strict in the vertical direction, we have (B,U)

(u,Ã)
= (u,A)

(B̃,U)
, so we may define a 2-cell

(u, U) (in the desired form) to be the identity. For the same reason the rules (( u
u′
, K)),

((k, U
U ′

)) and ((u, U)-l-nat), ((u, U)-r-nat) hold. The rules ((u,K ′K)) and ((k′k, U)) hold
by laxity of P .

Since P as a lax functor when evaluated at an identity 2-cell equals the identity, the
following rules hold true: ((1B, K)), ((u, 1A)), ((1B, U)) and ((k, 1A)). The rules ((1B, U))
and ((u, 1A)) hold since we defined (u, U) to be the identity.



862 BOJANA FEMIĆ

Observe that the naturality of γ with respect to 2-cells IdK from A and β from B
reads:

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

P (A,B) P (A′, B′)-
P (K, k)?

=

?

=γ(K,1B′ )(1A,k)

?

P (1A, u)
?

P (1A
′
, v)P (IdK , β)

P (A, B̃) P (A′, B̃′)-
P (K, k̃)

=

(B,A) (B′, A)-
(k,A)

(B′, A′)-
(B′, K)

(B̃, A) (B̃′, A)-
(k̃, A)

(B̃′, A′)-
(B̃′, K)?

P (1A, u)
?

P (1A, v)
?

P (1A
′
, v)P (IA, β) P (IdK , Id

v)

?

=

?

=γ(K,1B̃′ )(1A,k̃)

P (A, B̃) P (A′, B̃′)-
P (K, k̃)

Then applying this naturality of γ(K,1B̃′ )(1A,k̃) and γ−1
(1A′ ,k)(K,1B), one obtains that the rule

((k,K)-l-nat) holds. Analogously, the naturality of γ with respect to 2-cells α from A and
Idk from B are used to prove the rule ((k,K)-r-nat).

All the remaining rules from Proposition 3.3 concern only the horizontal structures and
are already shown to hold in [Faul, Manuell, Siqueira, 2021, Theorem 5.3]. We conclude
that the unitary and decomposable lax double functor P : A×B −→ C indeed determines
a unitary lax double quasi-functor H : A × B −→ C. Thus G, with G(P ) = H, is well
defined on 0-cells.

Let us now start to define two horizontal strict transformations: κ : Id ⇒ GF ′ and
λ : F ′G ⇒ Id. We will show that they are isomorphisms. This will yield that F ′ in (12)
is a double equivalence, as announced.

Let H be a lax double quasi-functor and F ′(H) = P . Observe that GF ′(H|(B,K)) =
P (K,B) = (B,K)(1B, A

′), and similarly GF ′(H|(k,A)) = P (A, k) = (B, 1A)(k,A). For a
fixed A ∈ A we proceed to define a horizontal oplax transformation χA (and similarly and
independently for a fixed B ∈ B a horizontal oplax transformation χB). We set χA(B) =
χAB : = 1(B,A); for a globular 2-cell χAk : χA(B′)(k,A) ⇒ GF(k,A)χA(B) which is actually

χAk : (k,A) ⇒ (B, 1A)(k,A), we set χAk : = [ιBA| Id(k,A)], and (χA)u : = (u, 1A) = Id(u,A)

by ((u, 1A)), with notations as usual. We obtain that (−, A) is naturally isomorphic to
P (A,−) if ιBA is invertible, through the horizontal oplax transformation χA. To prove the
property (h.o.t.-5) of Definition 2.2 in this double-categorical setting the interchange law
is used. Analogously, one proves a natural isomorphism (B,−) ∼= P (−, B) through χB,
if ιAB is invertible. Thus when H is unitary (i.e. ιA and ιB are invertible), χA and χB are
isomorphisms. It is easily seen that χAB = χBA.

Observe further that GF ′(k,K) is a 2-cell whose source and target 1h-cells are both
composites of four 1h-cells, and not of two 1h-cells as in the case of (k,K). To ex-
press GF ′(k,K), one uses that γ−1

(1A′ ,k)(K,1B) = [Id(B,K) |ιA
′

B |ιBA′| Id(k,A′)] by [Faul, Manuell,

Siqueira, 2021, Lemma 5.2]. Moreover, GF ′(u,K) and GF ′(k, U) are 2-cells whose source
and target 1h-cells are compositions of two 1h-cells, and not a single 1h-cell as in the
case of (u,K) and (k, U), respectively. It is easily seen and it is proved in [Faul, Manuell,
Siqueira, 2021, Theorem 5.3] that χA and χB obey (HOT q1 ). The axioms (HOT q2 )-(HOT q4 )
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for χA and χB hold almost trivially: χAu , χ
B
U are identities, and in properties (HOT q2 ) and

(HOT q3 ) use the interchange law to move the 2-cells ι••.
In this way we have defined a 0-component κH at a 0-cell H in q-Laxsthop(A×B,C) of

κ : Id⇒ GF ′, which will be a horizontal strict transformation.
To define the 0-component of a horizontal strict transformation λ : F ′G ⇒ Id, we see

that F ′G(P )(A,B) = P (A,B) for a unitary decomposable double lax functor P : A × B
−→ C, so we may set λP to be the identity between 0-cells. Similarly, as F ′G(P )(U, u) =
(B,U)

(u,Ã)
= P (1B ,U)

P (u,1Ã)
= P (U, u) we may set λP to be the identity also between 1v-cells. However,

F ′G(P )(K, k) = (k,A′)(B,K) = P (1A′ , k)P (K, 1B), then we set λP on a 1h-cell (K, k)
to be γ(1A,k)(K,1B′ )

: P (1A′ , k)P (K, 1B)⇒ P (K, k). Such defined λP is indeed a horizontal
oplax transformation of double lax functors: properties (h.o.t.-1) and (h.o.t.-2) are proved
in [Faul, Manuell, Siqueira, 2021, Theorem 5.3], properties (h.o.t.-3) and (h.o.t.-4) hold
since 1v-components of λP are identities, and (h.o.t.-5) holds by naturality of γ.

In the next two subsections we will finalize the proof that κ and λ are horizontal strict
transformations. Observe from above that restricting to the full double subcategories
q-Laxst-uhop (A×B,C) and Laxudhop(A×B,C) we indeed obtain a double equivalence. Namely,
in these double subcategories κ is an isomorphism since so are χA’s and χB’s, and λ is an
isomorphism since the 0-component of λ is defined to be γ(1A,k)(K,1B′ )

on 1h-cells (K, k).

5.4. (F ,G, κ, λ) on 1h- and 1v-cells. We first give the definitions of F and G on
1h-cells.

To define F on 1h-cells, let a horizontal oplax transformation between lax double
quasi-functors (−,−)1, (−,−)2 with images P, P ′ be given via a pair of families θA, θB, A ∈
A, B ∈ B of horizontal oplax transformations. We define Σ: P ⇒ P ′ by Σ(A,B) : = θAB,

Σ(U,u) : = (θB)U

(θÃ)u
and δΣ,(K,k) = Σ(K,k) : =

[Id(B,K)1
|θA′k ]

[θBK | Id(k,A′)2
]
. The properties (h.o.t.-1) and (h.o.t.-

2) of Definition 2.2 for Σ are proved in [Faul, Manuell, Siqueira, 2021, Theorem 5.3]. The

properties (h.o.t.-3) and (h.o.t.-4) follow by the same properties for θBU
V

and θ
˜̃A
u
v
, (HOT q4 )

and since by assumption the vertically globular 2-cells (u, V )1, (u, V )2 are identities. (This
includes the proof for Σ(1A,1B) = IdΣ(A,B).)

To prove the property (h.o.t.-5) of Definition 2.2 for Σ one uses: property ((u, U)-l-

nat) of (−,−)1 and property (h.o.t.-5) for θÃ
′
, then simultaneously (HOT q2 ) and (HOT q3 ),

and finally property (h.o.t.-5) for θB and ((u, U)-l-nat) of (−,−)2. Then Σ: P ⇒ P ′ is
indeed a horizontal oplax transformation of lax double functors.

By inspecting F( θ
θ′

) and F(θ)
F(θ′)

on (A,B), (U, u) and (K, k) and the action of F on the
identity one sees that F is a strict double functor.

For G, let P, P ′ : A × B −→ C be unitary and decomposable lax double functors and
Σ: P ⇒ P ′ a horizontal oplax transformation between them. Then G(Σ) is a horizontal
oplax transformation between lax double quasi-functors given by the families of θA : =
Σ(A,−), θB : = Σ(−, B) for A ∈ A, B ∈ B. It is clearly θAB = θBA and the condition (HOT q1 )
is proved to hold in [Faul, Manuell, Siqueira, 2021, Theorem 5.3]. Conditions (HOT q2 ) and
(HOT q3 ) hold by the property (h.o.t.-5) of Σ from Definition 2.2 with a = (IdK , Id

u) and
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a = (IdU , Idk), respectively, while (HOT q4 ) holds by the property (h.o.t.-3) thereof: both
sides in (HOT q4 ) equal Σ(U,u). It is directly computed that G is a strict double functor.

We now define F and G on 1v-cells.
Given a vertical lax transformation θ0 between lax double quasi-functors (−,−)1 and

(−,−)3 with images P, P̃ , with a pair of families θA0 , θ
B
0 , A ∈ A, B ∈ B of vertical lax trans-

formations, we define Σ0 : P ⇒ P̃ by Σ0(A,B) : = (θA0 )B = (θB0 )A,Σ
(U,u)
0 = [

(θB0 )U

IdP̃ (Ã,u)
| IdP (U,B)

(θÃ0 )u
]

and (Σ0)(K,k) : = [(θB0 )K |(θA
′

0 )k]. Analogously as in the case for 1h-cells it is proved that

Σ0 : P ⇒ P̃ is a vertical lax transformation between lax double functors.
For P, P̃ : A× B −→ C and Σ0 : P ⇒ P̃ a vertical lax transformation we define G(Σ0)

as a vertical lax transformation given by the families: θA0 : = Σ0(A,−), θB0 : = Σ0(−, B) for
A ∈ A, B ∈ B. The proof is analogous as in the case for 1h-cells and as before we have
GF ′((θA0 )B, (θ

B
0 )A)• = ((θA0 )B, (θ

B
0 )A)•, where • stands for the indexing over A ∈ A, B ∈ B.

Let us now study κ : Id ⇒ GF ′ at a 1h-cell component, a horizontal oplax trans-
formation between lax double quasi-functors given by a family (θA, θB), A ∈ A, B ∈ B.
To prove that κ is a horizontal strict transformation, on one hand, we should show the
identity κH

′ ◦ (θA, θB) = GF ′(θA, θB) ◦ κH . (Then the axioms (h.o.t.-1) and (h.o.t.-2)
hold trivially.) This means that both χA ◦ θA = GF ′(θA) ◦ χA (with abuse of notation by
writing GF ′(θA) which is easily understood) and the analogous identity for B must hold.
We check only the first identity. At a 0-component B we have that χAB is the identity and

it is easily seen that θAB = GF ′(θAB). At a 1h-component k: GF ′(θAk ) =
[Id(B,1A) |θAk ]

[θB1A
| Id(k,A)]

and

observe that by the property (h.o.t.-4) of Definition 2.2 we have that θB1A is the identity.
Recall that the χAB’s are identities by construction, so the compositions in the identity
χAk ◦ θAk = GF ′(θAk ) ◦ χAk make sense, and the identity is shown to hold by the interchange
law. Finally, at a 1v-component u we have that χAu is the identity, on one hand, and

observe that GF ′(θAu ) =
θB1A
θAu

, on the other. But θB1A is the identity, so we get indeed

χAu ◦ θAu = GF ′(θAu ) ◦ χAu , as desired.
On the other hand, we should define κ : Id ⇒ GF ′ at a 1v-cell component and check

that the axioms (h.o.t.-3) – (h.o.t.-5) hold. To define κ : Id⇒ GF ′ at a 1v-cell component
θ0 = (θA0 , θ

B
0 )• we should define a modification among four lax double quasi-functors (on

the left below), which is given by two modifications of four lax double functors, as shown:

H GF ′(H)-κ
H

H̃ GF ′(H̃)-

κH̃

?
θ0

?
GF ′(θ0)κθ0

(−, A)1 (−, A)1
-χ
A

(−, A)3 (−, A)3
-
χ̃A

?
θA0 ?

GF ′(θA0 )κθ
A
0

(B,−)1 (B,−)1
-χ
B

(B,−)3 (B,−)3
-
χ̃B

?
θB0 ?

GF ′(θB0 )κθ
B
0

where (κθ
A
0 )B = (κθ

B
0 )A for every A ∈ A, B ∈ B. When evaluating the latter two to-

be-defined modifications at 0-cells B ∈ B, respectively A ∈ A, we see that by construc-
tion the 1h-cells appearing in the obtained 2-cells (κθ

A
0 )B = (κθ

B
0 )A are identities: χAB =

χBA = 1(B,A) and χ̃AB = χ̃BA = 1(B,A)3 . Moreover, we also have that GF ′((θA0 )B, (θ
B
0 )A)• =
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((θA0 )B, (θ
B
0 )A)•. Then we may set (κθ

A
0 )B : = Id(θA0 )B and (κθ

B
0 )A : = Id(θB0 )A , which actually

are the same 2-cell for every A ∈ A, B ∈ B.
We next verify that this 2-cell obeys the axioms (m.ho-vl.-1) and (m.ho-vl.-2). As we

showed above that κ at a 1h-cell component gives an identity (globular) 2-cell (recall the
fact responsible for κ being a horizontal strict transformation), in the axiom (m.ho-vl.-1)
the 2-cells corresponding to δα,f and ΘA (and similarly for B) there are now identities,
so the axiom trivially holds. As for the axiom (m.ho-vl.-2), the 2-cells corresponding to
αu and βu there are now (χA)u and (χ̃A)u, which are by definition Id(u,A) and Id(u,A)3 ,
respectively. Then we again have that the axiom holds.

This terminates the definition of κ at a 1v-cell component θ0.

It remains to check that the axioms (h.o.t.-3) - (h.o.t.-5) hold for κ as a horizontal strict
transformation. As κ at a 1v-cell component is given by identity 2-cells in both variables,
(κθ

A
0 )B = (κθ

B
0 )A = Id(θA0 )B , and as we saw further above κ at a 1h-cell component is

also given by identity 2-cells in both variables, these three remaining axioms are trivially
fulfilled (although we still have not defined F and G ′ on 2-cells, i.e. on the respective
modifications).

To prove that λ is a horizontal strict transformation, to the proof in [Faul, Manuell,
Siqueira, 2021, Theorem 5.3] we need to add: 1) the check that λP

′

(U,u) ◦ F ′G(Σ(U,u)) =

Σ(U,u) ◦ λP(U,u), for an oplax transformation of double lax functors Σ: P ⇒ P ′, 2) define

a modification λΣ0 corresponding to λ at a 1v-vell component Σ0, and 3) verify the
axioms (h.o.t.-3) - (h.o.t.-5) for λ to be a horizontal strict transformation. We leave the
points 2) and 3) to the reader. To finish 1), recall that the 1v-components of λP are
identities, so it remains to check that F ′G(Σ(U,u)) = Σ(U,u) holds. We find: F ′G(Σ(U,u)) =
G(Σ(U,u))

B
U

G(Σ(U,u))
Ã
u

= Σ(U,1B)

Σ(1Ã,u)
= Σ(U, u), the latter identity holding by the property (h.o.t.-3) of

Σ being a horizontal oplax transformation of double lax functors. Thus we proved the
desired equality.

5.5. F and G on 2-cells. We start by defining F on modifications. Let a modification
τ = (τA, τB)A∈A,B∈B in q-Laxsthop(A × B,C) be given, recall (6). We define F(τ) by
F(τ)(A,B) : = τAB = τBA . It is directly checked that this is a modification in Laxhop(A×B,C).

Conversely, given a modification Θ in Laxhop(A×B,C) between horizontal oplax and
vertical lax transformations of lax double functors, define τA : = Θ(A,−) and τB : =
Θ(−, B). It is directly seen that they give modifications in the sense of Definition 2.7,
and it is clear that τAB = τBA , so we obtain a modification G(Θ) = (τA, τB)A∈A,B∈B of
horizontal oplax and vertical lax transformations of lax double quasi-functors.

To summarize, in this section we have proved the following results:

5.6. Proposition. With notations as at the beginning of Section 5 there is a double
functor

F : q-Laxsthop(A× B,C) −→ Laxhop(A× B,C).
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5.7. Theorem. With notations as explained above (12), the double functor F restricts
to a double equivalence functor

F ′ : q-Laxst-uhop (A× B,C) −→ Laxudhop(A× B,C)

with quasi-inverse G.

This theorem is a double-categorical version of [Faul, Manuell, Siqueira, 2021, Theo-
rem 5.3]. We can straighten a bit its formulation by passing to pseudo (quasi-) functors,
as they are lax unitary (quasi-) functors with all γ’s invertible. The notation Lax changes
then to Ps, the upper index u becomes superfluous, but also d in the right hand-side.
Moreover, observe that in the 0-cells of q-Pssthop(A×B,C) in the left, the 2-cells (k,K) of
quasi pseudofunctors are invertible. Then the double equivalence functor F ′ restricts to
a double equivalence

F ′′ : q-Pssthop(A× B,C) −→ Pshop(A× B,C).

Observe that by [Faul, Manuell, Siqueira, 2021, Proposition 6.2] if the 2-cells (k,K) of a
lax unitary quasi-functor are invertible, as it is the case in pseudo quasi-functors, then
the properties ((1B, K)) and ((k, 1A)) in Proposition 3.3 are redundant. Namely, in the
underlying horizontal 2-category of A ⊗ B one can perform the computation carried out
in the proof of [Faul, Manuell, Siqueira, 2021, Proposition 6.2] and pull the result back
to the double category. It comes down to a series of “tricks”: starting from the left-hand
side of ((1B, K)), 1) add an identity 2-cell in the form of the right unity axiom of the lax
functor structure of (−, A′) to the right and below of the 2-cell (1B, K), 2) between the

added unitor and compositor 2-cells add (1B ,K)−1

(1B ,K)
= Id, 3) apply ((k′k,K)), 4) use the

unity axiom of the lax functor structure of (−, A), and finally use 5) (1B ,K)−1

(1B ,K)
= Id.

6. Applications

After proving our main results in Sections 3 and 4 we dedicate this last section to some
specific cases. We will also prove the universal property of A⊗ B and discuss monads in
double categories.

6.1. “(Un)currying” functor. At the beginning of Section 5 we commented that the
double category isomorphism (8) restricts to a double category isomorphism q-Laxsthop(A×
B,C) ∼= Laxhop(A, JB,CKst). Composing this with F we obtain a double functor:

Laxhop(A, JB,CKst) −→ Laxhop(A× B,C), (13)

which is a double-categorical version of the “uncurrying” double functor J at the end of
Section 4 of [Faul, Manuell, Siqueira, 2021]. (J was implicitly constructed in [Nikolić,
2019].)

In (12) we moreover restricted to unitary lax double (quasi) functors. On the left-
hand side therein (and in the last theorem above) unitarity of a lax double quasi-functor
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H refers to the unitarity of both (−, A) and (B,−) lax double functors comprising H.
In the isomorphism q-Laxsthop(A × B,C) ∼= Laxhop(A, JB,CKst) unitarity of (−, A) corre-
sponds to the unitarity of 0-cells in JB,CKst, while unitarity of (B,−) corresponds to the
unitarity of 0-cells in Laxhop(A, JB,CKst). Then the isomorphism q-Laxsthop(A × B,C) ∼=
Laxhop(A, JB,CKst) restricts further to a double category isomorphism

q-Laxst-uhop (A× B,C) ∼= Laxuhop(A, JB,CKst-u), (14)

where JB,CKst-u denotes the double category of 0: unitary lax double functors B −→ C, 1h:
horizontal oplax transformations, 1v: vertical strict transformations, and 2: modifications,
and where Laxuhop(A, JB,CKst-u) is the double category of 0: unitary lax double functors
A −→ JB,CKst-u, 1h: horizontal oplax transformations between them, 1v: vertical strict
transformations and modifications between the latter two. Joining (14) and Theorem 5.7
yields

Laxudhop(A× B,C) ' Laxuhop(A, JB,CKst-u),

which presents a setting in which the uncurrying double functor (13) restricts to a double
category equivalence, i.e. in which a “currying” functor exists.

6.2. The universal property of ⊗. At the end of Subsection 3.6 we announced a
universal property of A⊗ B by which it strictifies lax double quasi-functors. We prove it
here and upgrade it to an isomorphism of double categories.

6.3. Proposition. There is an isomorphism of double categories

q-Laxhop(A× B,C) ∼= Dblhop(A⊗ B,C),

where the right hand-side is the double category of strict double functors, horizontal oplax
transformations as 1h-cells, vertical lax transformations as 1v-cells, and modifications.

Proof. For H ∈ q-Laxhop(A × B,C) define H : A ⊗ B −→ C by H(A ⊗ y) : = H(A, y) =
(y, A) and H(x ⊗ B) : = H(x,B) = (B, x) for all four types of cells x in A and y in B.
Extend H to a strict double functor (in particular, H(1A⊗B) = 1H(A,B) = 1(B,A)) and
define H((A ⊗ −)B) : = (−, A)B, H((A ⊗ −)k′k) : = (−, A)k′k, and similarly for the other
entry, as well as for the 2-cells K ⊗ k,K ⊗ u, U ⊗ k and U ⊗ u.

Conversely, given G ∈ Dblhop(A ⊗ B,C), define (−, A) : B −→ C by (y, A) : = G(A ⊗
y), and by the two globular 2-cells: (−, A)k′k : G(A ⊗ k′)G(A ⊗ k) = G((A ⊗ k′)(A ⊗
k))

G((A⊗−)k′k)⇒ G(A ⊗ k′k) and (−, A)B : = G(A ⊗ −)B, and analogously for (B,−) : A
−→ C. Then it is easily and directly proved that (−, A) and (B,−) are lax double functors.
Define the 2-cells (k,K), (u,K), (k, U) and (u, U) in the obvious way, then the laws from
Proposition 3.3 for (−, A) and (B,−) to make a lax double quasi-functor pass mutatis
mutandi from the defining relations of A⊗ B, since G is a strict double functor.

Given a horizontal oplax transformation θ = (θA, θB)A∈A,B∈B between lax double quasi-
functors H ⇒ H ′ we define a horizontal oplax transformation Σ: H ⇒ H ′ by setting
Σ(A⊗ B) = θAB = θBA ,ΣA⊗k = θAk ,ΣK⊗B = θBK and ΣA⊗u = θAu ,ΣU⊗B = θBU . To check the
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property (h.o.t.-5) of Definition 2.2 for Σ, one should check it for ten types of 2-cells a in
A⊗B: for a being A⊗ω or ζ⊗B the property (h.o.t.-5) for Σ holds since θA respectively
θB is a horizontal oplax transformation, while for a being K ⊗ k,K ⊗ u, U ⊗ k and
U ⊗u the property (h.o.t.-5) for Σ holds by the properties (HOT q1 )-(HOT q4 ), respectively,
and for 2-cells of the type (5) it holds by (HOT q1 ). The properties (h.o.t.-1)-(h.o.t.-4)
of Definition 2.2 for Σ hold by the same properties for θA and θB. For the converse,
provided a horizontal oplax transformation of strict double functors Σ̃ : G ⇒ G

′
, define

ζ = (ζA, ζB)A∈A,B∈B in the obvious (converse) way.
The definition and correspondence on vertical lax transformations is analogous as for

horizontal oplax ones. Given a vertical lax transformation θ0 = (θA0 , θ
B
0 )A∈A,B∈B between

lax double quasi-functors H ⇒ H0, one constructs a vertical lax transformation Σ0 : H ⇒
H0 on strict double functors A⊗ B −→ C.

Given a modification τ = (τA, τB)A∈A,B∈B as in (6), we define a modification a

H H ′-Σ

H0 H ′0
-

Σ′
?

Σ0
?
Σ′0Θ

by Θ(A⊗B) = τAB = τBA . It is immediate to see that Θ is well defined. For the converse,
formulate the obvious (converse) definition.

On all the four levels of cells it is clear that one has a 1-1 correspondence, so that one
obtains an isomorphism of double categories, as claimed.

Joining the isomorphism from the above proposition and (8) we obtain that there is
an isomorphism of double categories

Dblhop(A⊗ B,C) ∼= Laxhop(A, JB,CK). (15)

This is a strictification result for lax double functors A −→ JB,CK.
Forgetting the vertical direction in the above double category isomorphism, i.e. re-

stricting to the horizontal 2-categories of A,B,C, we recover [Nikolić, 2019, Proposi-
tion 2.9] (more precisely (78) in Corollary 2.12 of loc. cit., as we work with horizontal
oplax transformations rather than their lax counterparts). Namely, the underlying hori-
zontal 2-category of our tensor product A⊗B is precisely the author’sA�cmpB constructed
in Section 2.8 for 2-categories A and B seen as the horizontal 2-categories of A and B,
respectively: H(A⊗ B) = H(A)�cmp H(B).

6.4. Remark. The reader may have noticed that the order of A and B in (15) is the
same on both sides, whereas it appears swapped in (78) of [Nikolić, 2019, Corollary 2.12].
However, our result is in accordance with Gray’s [Gray, 1974, Theorem I.4.14] for the oplax
version of transformations, while the order in Proposition 2.9 and (143) in Section 4.1 of
[Nikolić, 2019] appears swapped with respect to Gray’s [Gray, 1974, Theorem I.4.9] in the
lax case.
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By the 1-1 correspondence at the level of 0-cells in the double category isomorphism
(15) we conclude that there is an isomorphism of sets

Dblst(A⊗ B,C) ∼= Dbllx(A, JB,CK),

where Dblst is the category of double categories and strict double functors.

6.5. Monads in double categories. Many authors had observed that although var-
ious algebraic structures appear as monads in suitable bicategories, the corresponding
morphisms are not morphisms of monads, considered as 1-cells in the bicategory Mnd(B)
of monads in a bicategory B from [Street, 1972]. A very well-known example is the bicat-
egory B = Span(C) of spans over a category C with pullbacks, introduced in [Bénabou,
1967]. It is immediate to see that monads in Span(C) are categories internal to C. (As a
matter of fact, in [Bénabou, 1967, Section 5.4.3] categories internal to C are defined this
way.) However, although monads in Span(C) are internal categories in C, morphisms of
monads in Span(C) are not morphisms in Cat(C), the category of internal categories to
C.

To remediate this inconsistency, in [Fiore, Gambino, Kock, 2011, Example 2.1] a pseu-
dodouble category Span(C) of spans in C was introduced whose horizontal bicategory is
precisely the bicategory Span(C). Moreover, in [Fiore, Gambino, Kock, 2011, Defini-
tion 2.4] the authors introduced a pseudodouble category Mnd(D) of monads in a pseu-
dodouble category D, so that when D = Span(C), the vertical 1-cells in Mnd(Span(C)) are
morphisms of internal categories to C (see [Fiore, Gambino, Kock, 2011, Example 2.6]).
The construction of Mnd(D) enhanced also other examples of the described inconsistency
for bicategories B that could be upgraded into a double category D(B).

This explains why the authors defined a monad in a double category D as a monad in
the horizontal 2-category H(D) of D. On the other hand, Bénabou observed in [Bénabou,
1967] that a lax functor ∗ −→ K from the trivial 2-category to a 2-category K is nothing
but a monad in K: the lax functor structure corresponds to the multiplication and the
unit of the monad. It is straightforwardly seen that the analogous holds for monads in
a double category D: the only new thing now is that we have the identity 1v-cell on
the unique 0-cell, which is strictly preserved by a lax double functor, so no new data is
obtained. Let now ∗ denote the trivial double category, then we may write:

6.6. Proposition. A lax double functor ∗ −→ D is a monad in D.

Moreover, a 0-cell in q-Laxhop(∗ × ∗,D) is then given by two monads in D, and the
only surviving 2-cell (and laws) in the characterization Proposition 3.3 is the one of type
(k,K) = (id∗, id∗) and the rules ((1B, K)), ((k, 1A)), ((k′k,K)) and ((k,K ′K)), which
correspond to monad-monad distributive laws.

So far we have proved the 1-1 correspondence at the levels of 0-cells in the proposition
below. Since 1h-cells in Mnd(D) correspond to horizontal lax transformations between
lax double quasi-functors from the trivial double category, we are led to the double cate-
gory Lax∗hlt(∗,D) from the end of Section 2 (and correspondingly to the double category
q-Lax∗hlt(∗ × ∗,D), with the obvious meaning). To the axioms for cells in Lax∗hlt(∗,D)
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we will refer by the same labels as for those in Lax∗hlt(∗,D), to avoid introduction of ad-
ditional notation. This said, observe that one can consider two distinct versions of the
double category Mnd(D), depending on whether the distributive laws in its 1h-cells are
taken as lax or oplax.

6.7. Proposition. The following two pairs of double categories are isomorphic:

Lax∗hlt(∗,D) ∼= Mnd(D)

and
q-Lax∗hlt(∗ × ∗,D) ∼= Mnd(Mnd(D)).

Proof. For a 1h-cell θ in Lax∗hlt(∗,D) we find the following. It is (θ)id∗ = Idθ0(∗) (by
(h.o.t.-4)). Additionally, since the only 2-cell in the double category ∗ is the trivial one,
the axioms (h.o.t.-3) and (h.o.t.-5) hold trivially. On the other hand, (θ)id∗ is a non-trivial
2-cell such that (h.o.t.-1) and (h.o.t.-2) mean that a 1h-cell θ in Lax∗hlt(∗,D) (given thus
only by (θ)id∗) is a monad-monad distributive law, i.e. a 1h-cell in Mnd(D).

For a 1v-cell θ0 in Lax∗hlt(∗,D) the situation is similar. One has (θ0)id∗ = Idθ0(∗) (by
(v.l.t.-4)). The only non-trivial laws now are (v.l.t.-1) and (v.l.t.-2). They involve a non-
trivial 2-cell (θ0)id∗ and they precisely mean that a 1v-cell θ0 in Lax∗hlt(∗,D) (given thus
by (θ0)id∗) is a 1v-cell in Mnd(D).

For a modification in Lax∗hlt(∗,D), which is given by a 2-cell F (A) G(A)-
θ(∗)

F ′(A) G′(A)-

θ̃(∗)

?
θ0(∗)

?
θ′0(∗)Θ∗

, by

triviality of (θ)id∗ and (θ0)id∗ the axiom (m.ho-vl.-2) is trivial. The other axiom (m.ho-
vl.-1) is the only possible identity relating Θ∗, (θ)id∗ and (θ0)id∗ , and it precisely means
that Θ∗ is a 2-cell in Mnd(D).

The inspection for q-Lax∗hlt(∗ × ∗,D) goes similarly. A 1h-cell there is now a pair of
1h-cells in Lax∗hlt(∗,D) which relate according to (HOT q1 ), as the other axioms are trivial
now. These data precisely define a 1h-cell in Mnd(Mnd(D)). The situation for 1v-cells is
symmetric, now the only non-trivial axiom is (V LT q4 ).

A modification in q-Lax∗hlt(∗×∗,D) is given by a pair of modifications in Lax∗hlt(∗,D)

A A′-θ1

Ã Ã′-

θ̃1

?
θ1

0 ?
θ1′

0τ 1

A A′-θ2

Ã Ã′-

θ̃2

?
θ2

0 ?
θ2′

0τ 2

which satisfy: τ 1
∗ = τ 2

∗ . This means that the 2-cell τ 1
∗ = τ 2

∗ obeys two identities: one
relating τ 1

∗ , (θ
1)id∗ and (θ1

0)id∗ , and another relating τ 2
∗ , (θ

2)id∗ and (θ2
0)id∗ . This gives a

2-cell in Mnd(Mnd(D)).
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Recall that Mnd is an endofunctor on the category 2-Cat of 2-categories and 2-functors
(it sends a 2-category K to the 2-category Mnd(K)), and that there is a natural transfor-
mation Comp: MndMnd −→ Mnd, which evaluated at K sends a distributive law in K to
the induced composite monad, [Street, 1972].

Analogously, we can see Mnd as an endofunctor on the category Dblst of double cate-
gories and strict double functors by the construction from [Fiore, Gambino, Kock, 2011].
Moreover, we can consider a natural transformation Comp: MndMnd −→ Mnd, which
evaluated at D sends a distributive law in D to the induced composite monad in D.

In the present setting, being A = B = ∗, note that we can write the double functor
F from (9) as F : q-Laxhop(∗ × ∗,D) −→ Laxhop(∗,D). Then one has that the following
diagram commutes

q-Laxhop(∗ × ∗,D) Laxhop(∗,D)-F

?
∼=

Mnd(Mnd(D)) Mnd(D).-
Comp(D)

?
∼=

(16)

Moreover, it indicates that the general double functor F can be seen as a sort of generaliza-
tion of the double functor Comp(D). Either of the two horizontal arrows in this diagram
corresponds to the double categorification of Beck’s result, that given a monad-monad dis-
tributive law between monads T and S on a category (given by a natural transformation
φ : ST ⇒ TS), TS is a monad. In terms of our double functor F , the 2-cell φ : ST ⇒ TS
corresponds to the 2-cell γ(id∗,id∗)(id∗,id∗) from Subsection 5.1.

To further develop applications to monads, there are some prospects, along the lines
mentioned in the 2-categorical setting at the end of [Faul, Manuell, Siqueira, 2021]. We
highlight the cases when D is the double category D- Mat of matrices in a category D
with coproducts (see [Cottrell, Fujii, Power, 2017]), and Span(C) of spans in a category
C with pullbacks, as at the beginning of this subsection. The vertical categories of the
double categories D- Mat and Span(C) seen as internal categories are then D- Cat, the
category of categories enriched over D, and Cat(C), the category of categories internal to
C, respectively. The double functor F in (16) then may yield some kind of product on
the categories D- Cat and Cat(C), under certain assumptions.
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