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GENERALIZED PRINCIPAL BUNDLES AND QUOTIENT STACKS

ELENA CAVIGLIA

Abstract. We consider the internalization of the usual notion of principal bundle
in a site that has all pullbacks and a terminal object. We use this notion to consider
the explicit construction of quotient prestacks via presheaves of categories of principal
bundles equipped with equivariant morphisms in this abstract context. We then prove
that, if the site is subcanonical and the underlying category satisfies some mild conditions,
these quotient prestacks satisfy descent in the sense of stacks.
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1. Introduction

Principal bundles over topological spaces and smooth manifolds have been originally studied
in geometry and topology (see [13], [7] or [20]). Over the years the notion of principal
bundle has been generalized in different directions. Kock in [10] studied generalized fibre
bundles introducing a notion that makes sense in any category with finite inverse limits,
while a notion of principal bundle in a Grothendieck topos has been studied, even in the
infinite dimensional case, by Nikolaus, Schreiber and Stevenson in [16].

In this paper we consider an internalized notion of principal bundle that makes sense
in any site, provided that the underlying category has all pullbacks and a terminal object.
The topological group involved in the standard notion becomes here a group object of the
category and the notion of locally trivial morphism is internalized by considering pullbacks
along the morphisms of a covering family for the Grothendieck topology of the site. This
internalized notion was essentially present in Grothendieck’s work (see [4] and[3]) and
a similar notion has been used also by Sati and Schreiber in [18]. This internal notion
coincides with the classical one when the site is pTop, stdq, where Top is the category of
compactly generated Hausdorff topological spaces (and continuous maps between them)
and std is the standard Grothendieck topology, i.e. the covering families of a topological
space coincide with its open coverings. Moreover, also principal bundles in the algebraic
geometry context (see [11] or [15]) are an instance of this notion.

We believe that one of the main advantages of this internal notion is that it could
make possible to use the rich and important theory of principal bundles in new contexts
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of geometry and mathematical physics.
The importance of principal bundles lies also in the fact that they are the objects

classified by classifying spaces via homotopy pullbacks (see [13]) and by classifying stacks
via 2-pullbacks. Classifying stacks are particular cases of the very important notion of
quotient stacks. Quotient stacks are commonly thought as stackifications of presheaves of
action groupoids (see as a classical reference the book [11] by Laumon and Moret-Bailly),
but an explicit construction that uses presheaves of groupoids of principal bundles equipped
with equivariant maps to a fixed space is also present in the literature in the algebraic case
and in the differentiable case (see, for instance, [15] and [5] respectively). In this paper
we perform the same construction in the internal context to define quotient prestacks.
We, then, prove that these objects are well defined pseudofunctors. A crucial difference
between these quotient prestacks and the classical ones is that in our case prestacks take
values in Cat and not necessarily in Gpd , while classical quotient stacks are stacks of
groupoids. This is due to the fact that a generic Grothendieck topology does not always
behave well with respect to the morphisms of the category in a sense that is explained in
Remark 3.2.

Since the classical quotient prestacks are always stacks, it is natural to wonder whether
this is true for the internal ones. The answer to this question seems negative, but a proof
of this is not given in this paper. However, we find sufficient abstract conditions that
guarantee that these generalized quotient prestacks are satisfy descent in the sense of
stacks. This is the content of the main result of this paper:

1.1. Theorem. Let C be a cocomplete category with pullbacks and a terminal object and
such that pullbacks preserve colimits. Let then τ be a subcanonical Grothendieck topology
on C and X,G P C with G a group object. Then the quotient prestack rX{Gs is a stack.

Notice that the required conditions on the category C are not so restrictive. They are,
in fact, satisfied by all locally cartesian closed categories with a terminal object. This
gives us many contexts in which it is possible to apply our result, such as all cocomplete
quasitopoi (see [17]) that include the interesting case of diffeological spaces in the sense
of [19] as well as all cocomplete elementary topoi. To prove this theorem, that appears
in Section 4 as Theorem 4.5, we show that the quotient prestack is a stack when the
considered topology is the canonical topology. To do so, we use the basis of the canonical
topology introduced by Lester in [12].

The proof of Theorem 1.1 is rather technical, especially when it comes to prove that
every descent datum is effective, and we need to use the language of sieves, instead of
the one of covering families, to avoid even more complicated technicalities. We recall this
useful version of the definition of descent datum that is surely well-known, but for which
we could not find a reference.

1.2. Definition. Let F : C op Ñ Cat be a prestack and let S be a sieve on Y P C . A

descent datum on S for F is an assignment for every morphism Z
f
ÝÑ Y in S of an

object Wf P FpZq and, for every pair of composable morphisms Z 1 g
ÝÑ Z

f
ÝÑ Y with f P S,

of an isomorphism φf,g : g�Wf
�
ÝÝÑ Wg�f such that, given morphisms Z2 h

ÝÑ Z 1 g
ÝÑ Z

f
ÝÑ Y
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with f P S, the following diagram is commutative

h�pg�Wf q h�pWf�gq

pg � hq�pWf q Wf�g�h.

�

h�φf,g

φf�g,h

φf,g�h

This descent datum is called effective if there exist an object W P FpY q and, for every

morphism Z
f
ÝÑ Y P S, an isomorphism

ψf : f�pW q
�
ÝÝÑ Wf

such that, given morphisms Z 1 g
ÝÑ Z

f
ÝÑ Y with f P S, the following diagram is commutative

g�pf�pW qq g�pWf q

pf � gq�W Wf�g.

�

g�ψf

φf,g

ψf�g

A stack for us will be a pseudofunctor that satisfies the descent condition up to
equivalence (see, for instance, [15]), as in the following definition:

1.3. Definition. A prestack F : C op Ñ Cat is a stack if it satisfies the following
conditions:

- Every descent datum for F is effective;

- (Gluing of morphisms) Given a covering family U � tfi : Ui Ñ UuiPI , objects x and
y of FpUq and morphisms φi : x

��
Ui
Ñ y

��
Ui

in FpUiq for every i P I such that for

every i, j P I φi
��
Uij

� φj
��
Uij
, there exists a morphism η : xÑ y such that η

��
Ui
� φi;

- (Uniqueness of gluings) Given a covering family U � tfi : Ui Ñ UuiPI , objects x and
y of FpUq and morphisms φ, ψ : xÑ y such that for every i P I φ

��
Ui
� ψ

��
Ui
, then

φ � ψ.

It is well-known that in the classical case isomorphism classes of principal G-bundles
are in bijection with the first cohomology group with coefficients in G (see [8] for a proof
of this fact) and we believe that an analogous, but stronger, result can be proved in our
generalized setting, taking into account not only the objects but the whole categorical
structure on both sides. This result, together with a 2-dimensional version of the theory
presented in this paper, is work in progress of the author.
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Outline of the paper. In section 2, after recalling the notions of action and equivariant
morphism in the context of group objects of a category, we construct an action of an
internal group on a pullback, given its actions on the sources of the two morphisms involved
in the pullback (Construction 2.4). This particular action is needed to internalize the
notion of principal bundle and will be used several times throughout the paper. Moreover,
we introduce the notion of locally trivial morphism in a site (Definition 2.7) and we use it
to define principal bundles and morphisms between them in this context (Definitions 2.8
and 2.9). We conclude the section observing that this notion truly generalizes the classical
notion of principal bundle over a topological space. Section 3 is dedicated to the definition
of generalized quotient prestacks (Definition 3.1). A key result of the section is that
generalized principal bundles are stable under pullbacks (Proposition 3.3), as this is crucial
to prove that our definition of quotient prestack is a good one (Proposition 3.4). We start
the last section of the paper (Section 4) recalling some useful results about the canonical
topology. We, then, prove the main result of the paper (Theorem 4.5) which states that,
under certain mild assumptions on the underneath category, the quotient prestacks are
stacks with respect to every subcanonical topology.

2. Generalized principal bundles

Let C be a category with pullbacks and terminal object T and let τ be a Grothendieck
topology on it. In this section we will consider principal G-bundles over X, where X is an
object of C and G is an internal group in C .

Firstly, we recall the well-known definitions of action of an internal group of C on
another object of the category and equivariant morphism (see Grothendieck’s [4] and
Heckmann and Hilton’s [1] and [2] as classical references).

2.1. Definition. Let G be an internal group in C and let X be an object of C . An
action of G on X is a morphism

x : G� X Ñ X

such that the following diagrams are commutative

G� G� X G� X

G� X X

idG �x

m�idX x

x

T � X G� X

X X,

e�idX

pr2 x

idX

where T is the terminal object of C , m : G � G Ñ G is the internal multiplication of G
and e : T Ñ G is the internal neutral element of G.

2.2. Definition. Let G be a group object in C that acts on the objects X and Y of C with
actions x : G� X Ñ X and y : G� Y Ñ Y respectively. A G-equivariant morphism
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f : X Ñ Y is a morphism in C such that the following square is commutative:

G� X X

G� Y Y.

x

idG �f f

y

2.3. Remark. Notice that every morphism of C is G-equivariant when the source and
the target are equipped with trivial actions of G. Having this in mind, we will always think
of the objects of C as equipped with trivial actions of G when the action is not specified.

We now describe how to define an action of G on the pullback of two morphisms in C ,
given actions of G on the domains of the the morphisms. This action will be largely used
throughout the article.

2.4. Construction. Let G be a group object of C that acts on P P C with action
p : G � P Ñ P , on Y P C with action y : G � Y Ñ Y and on Z P C with action
z : G� Z Ñ Z and let f : P Ñ Y and g : Z Ñ Y be G-equivariant morphisms.

Consider, then, the pullback square

P �Y Z P

Z Y.

f�g

g�f

{

f

g

We want to define an action of G on the pullback P �Y Z and we can do this using the
morphism ψ : G� pP �Y Zq Ñ P �Y Z induced by the universal property of the pullback
P �Y Z as in the following diagram

G� pP �Y Zq

P �Y Z P

Z Y,

p�pidG �f�gq

z�pidG �g�fq

ψ

f�g

g�f

{

f

g

where the outer square is commutative since it can be obtained by gluing commutative
squares as follows

G� pP �Y Zq G� P P

G� Z G� Y Y

Z Y,

idG �f�g

idG �g�f

p

idG �f f

idG �g

z

y

g
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where the upper right square is commutative, because f is equivariant and the lower square
because g is equivariant.

2.5. Proposition. The morphism ψ : G�pP�Y Zq Ñ P�Y Z defined in Construction 2.4
is an action of G on P �Y Z.

Proof. To prove that ψ is an action we need to show that the following diagrams commute:

G� G� pP �Y Zq G� pP �Y Zq

G� pP �Y Zq P �Y Z

idG �ψ

m�idP�Y Z ψ

ψ

T � pP �Y Zq G� pP �Y Zq

P �Y Z P �Y Z.

e�idP�Y Z

pr2 ψ

idP�Y Z

To do this, we will use the universal property of the pullback P �Y Z.
We start from the diagram on the left and we consider the post-composition with f�g,

so we need to prove that f�g � ψ � pidG�ψq � f�g � ψ � pm� idP�Y Zq. This is shown by
the following commutative diagram

G� G� pP �Y Zq G� pP �Y Zq P �Y Z

G� G� P G� P

G� P

G� pP �Y Zq P �Y Z P.

idG �ψ

m�idP�Y Z

idG �pidG �f�gq

ψ

idG �f�g

f�g

idG �p

m�idP

p

pidG �f�g

ψ f�g

Analogously, we have to prove that g�f � ψ � pidG�ψq � g�f � ψ � pm� idP�Y Zq and this
is shown by the commutative diagram

G� G� pP �Y Zq G� pP �Y Zq P �Y Z

G� G� P G� Z

G� Z

G� pP �Y Zq P �Y Z Z.

idG �ψ

m�idP�Y Z

idG �pidG �g�fq

ψ

idG �g�f

g�f

idG �z

m�idZ

z

zidG �g�f

ψ g�f
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By the universal property of the pullback P �Y Z, we conclude that the first property
required to be an action holds. To prove that the second property holds as well, we use
again the universal property of the pullback P �Y Z.
The following diagram shows that f�g � ψ � e� idP�Y Z � f�g � pr2:

T � pP �Y Zq G� pP �Y Zq P �Y Z

T � P G� P

P �Y Z P.

pr2

e�idP�Y Z

idT �f�g

ψ

idG �f�g

f�g
e�idP

pr2

p

f�g

Analogously, the following diagram shows that g�f � ψ � e� idP�Y Z � g�f � pr2:

T � pP �Y Zq G� pP �Y Zq P �Y Z

T � Z G� Z

P �Y Z Z.

pr2

e�idP�Y Z

idT �g�f

ψ

idG �g�f

g�f
e�idZ

pr2

z

g�f

Hence we conclude that ψ � e� idP�Y Z � pr2 and so the second property of action holds
for ψ.

2.6. Remark. Notice that the result of Proposition 2.4 can be seen as consequence of the
fact that G-actions are the algebras for the monad G� � and monadic functors create all
limits that exist. This is the approach used in the case of topological spaces by Sati and
Schreiber in [18].

In order to introduce the concept of principal bundle in this more general context, we
need to define locally trivial morphisms with respect to the fixed Grothendieck topology
on C .

2.7. Definition. Let g : Y Ñ X be a morphism of C . We say that g is locally trivial
if there exists a covering tfi : Ui Ñ XuiPI of X such that for every i P I the pullback

Y �X Ui Y

Ui X

g�fi

f�i g

{

g

fi



574 E. CAVIGLIA

is isomorphic to G� Ui and the isomorphism

φi : Y �X Ui Ñ G� Ui

is G-equivariant, i.e.

G� pY �X Uiq Y �X Ui

G� pG� Uiq G� Ui,

ψi

idG �φi φi

θi

where the action θi : G�pG�Uiq Ñ G�Ui is the composition of the canonical isomorphism
G � pG � Uiq

�
ÝÑ G � Ui with the internal multiplication m : G � G Ñ G of G and the

action ψi : G� pY �X Uiq Ñ Y �X Ui is defined as in Construction 2.4.

We are now ready to give the main definition of this section.

2.8. Definition. Let G be an internal group in the site pC , τq and let X be an object of C .
A principal G-bundle over X is a a G-equivariant locally trivial morphism πP : P Ñ X,
where the object P of C is equipped by an action p : G� P Ñ P .

2.9. Definition. Let πP : P Ñ X and πQ : Q Ñ X be principal G-bundles over X in
C . A morphism of principal G-bundles φ from πP : P Ñ X to πQ : Q Ñ X is a
morphism φ : P Ñ Q in C such that

P Q

X.

φ

πP πQ

2.10. Notation. Principal G-bundles over X and morphisms of principal bundles between
them form a category that we will denote BunGpXq.

2.11. Remark. Consider the category Top is the category of compactly generated Haus-
dorff topological spaces and std is the standard topology on it, i.e. the coverings of a space
are the usual open coverings (with inclusions of the opens in the space as morphisms). In
this setting our notion of principal bundles coincides with the usual one.

Notice that up to now we do not need to restrict ourselves to only consider compactly
generated Hausdorff spaces but we have chosen to do so both because this category is much
more well-behaved than the category of all topological spaces and because this way we can
apply Theorem 4.5 to pTop, stdq as pullbacks preserve colimits in this category.

3. Generalized quotient prestacks

In this section we will explicitly construct quotient prestacks over a site using the traditional
construction in our internal context. We will then prove that they are well-defined
pseudofunctors. To do so, we will also show that the principal bundles introduced in
Definition 2.8 are stable under pullbacks.
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We are now ready to give the explicit construction of quotient prestacks in our context.
This construction follows a well-known recipe that is present in the literature in the case
of schemes over a field (see for instance page 28 of [15]) and in the differentiable case (see
for instance Example 1.5 of [5]).

3.1. Definition. Let C be a category with pullbacks and terminal object and let τ be a
Grothendieck topology on it. Let then X be an object of C and let G be a group object of
C that acts on X with action x : G� X Ñ X The quotient prestack

rX{Gs : C op Ñ Cat
is defined as follows:

• for every object Y P C we define rX{GspY q as the category that has

– as objects the pairs pP, αq where πP : P Ñ Y is a principal G-bundle over Y
and α : P Ñ X is a G-equivariant morphism;

– as morphisms from the object pP, αq to the object pQ, βq the morphisms of
principal G-bundles φ : P Ñ Q such that

P Q

X;

φ

α β

• for every morphism f : Z Ñ Y in C , the functor

rX{Gspfq : rX{GspY q Ñ rX{GspZq

sends

– an object pP, αq P rX{GspY q to the pair pP �Y Z, α � π
�
Pfq, where P �Y Z is

the pullback

P �Y Z P

Z Y ;

π�P f

f�πP

{

πP

f

– a morphism φ : pP, αq Ñ pQ, βq to the morphism rX{Gspfqpφq defined by the
universal property of the pullback as in the following diagram

P �Y Z

Q�Y Z Q

Z Y,

φ�π�P f

πP

rX{Gspfqpφq

π�Qf

f�πQ

{

πQ

f

where the biggest square is commutative because φ is G-equivariant.
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3.2. Remark. While the classical quotient prestacks take values in Gpd , this is not
necessarily true for the ones just introduced. This is due to the fact that in a generic site
it is not always possible to define morphisms locally (on a covering) and then use the local
definitions to define a global morphism. The classical proofs of the fact that morphisms of
principal bundles over topological spaces are always isomorphisms (see for instance [14],
Proposition 2.1) strongly rely on this special property of the site pTop, stdq.

In order to show that rX{Gs is well-defined and that it is a prestack (i.e. a pseudofunctor
that takes values in Cat ), we will need the following result.

3.3. Proposition. Let πP : P Ñ Y be a principal G-bundle over Y . Then the pullback
P �Y Z given by the following pullback square

P �Y Z P

Z Y

π�P f

f�πP

{

πP

f

is a principal G-bundle over Z with morphism πP�Y Z :� f�πP .

Proof. We begin considering the action ψ : G� pP �Y Zq Ñ P �Y Z of G on the pullback
P �Y Z defined as in Construction 2.4.

We notice that the morphism πP�Y Z is G-equivariant since the square

G� pP �Y Zq P �Y Z

G� P P,

ψ

idG �f�πP f�πP

p

is commutative by definition of ψ.
We now need to show that πP�Y Z is locally trivial.

Since πP : P Ñ Y is a principal G-bundle, there exists a covering V � tgi : Vi Ñ Y uiPI of
Y such that for every i P I the pullback

P �Y Vi P

Vi Y

π�P gi

g�i πP

{

πP

gi

is isomorphic to G� Vi and the isomorphism αi : P �Y Vi Ñ G� Vi is G-equivariant (here
the action of G on P �Y Vi is defined as in Construction 2.4). Therefore, we can use the
covering V of Y to define the family U � tf�gi : Vi �Y Z Ñ ZuiPI that is a covering of Z
by definition of Grothendieck topology. In order to use this covering to prove that πP�Y Z

is locally trivial, we need to show that for every i P I there exists an isomorphism

φi : pP �Y Zq �Z pVi �Y Zq Ñ G� pVi �Y Zq.
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Equivalently, we need to show that G� pVi �Y Zq satisfies the universal property of the
pullback pP �Y Zq �Z pVi �Y Zq. To do this, we define a morphism

hi : G� pVi �Y Zq Ñ P �Y Z

for every i P I as shown in the following diagram

G� pVi �Y Zq

P �Y Z P

Z Y

π�P gi�α
�1
i � pidG �g�i fq

pr2 �pidG �f�giq

hi

π�P f

f�πP

{

πP

f

and we want to show that G� pVi �Y Zq with morphisms hi : G� pVi �Y Zq Ñ P �Y Z
and pr2 : G � pVi �Y Zq Ñ Vi �Y Z satisfies the universal property of the pullback
pP�Y Zq�Z pVi�Y Zq. Firstly, we need to prove that the following diagram is commutative:

G� pVi �Y Zq P �Y Z

Vi �Y Z Z.

hi

pr2 f�πP

f�gi

This is true since we can obtain this square by gluing a commutative square given by the
definition of hi and a trivially commutative square.

Let now C be an object of C equipped with two morphisms r : C Ñ P �Y Z and
l : C Ñ Vi �Y Z such that

C P �Y Z

Vi �Y Z Z.

r

l f�πP

f�gi

We need to prove that there exists a unique morphism t : C Ñ G� pVi �Y Zq such that

C

G� pVi �Y Zq P �Y Z

Vi �Y Z Z.

r

l

t

hi

pr2

{

f�πP

f�gi
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We define
t :� ppr1 �αi � qq � l,

where q : C Ñ P �Y Vi is the morphism given by the universal property of P �Y Vi, as
shown in the following diagram:

C

P �Y Vi Vi

P Y.

g�i f�l

π�P f�r

q

π�P gi

g�i πP

{

πP

gi

It is clear that pr2 �t � l and so it remains to prove that hi � t � r and to do so we use the
universal property of the pullback P �Y Z. Looking at the post-composition with f�πP ,
we have the following commutative diagram:

C P �Y Z

Vi �Y Z

G� pVi �Y Zq Z

P �Y Z.

r

t

l

f�πP

f�gipr2

hi f�πP

On the other hand, the post-composition with π�
Pf gives the following commutative

diagram:

C P �Y Z

G� pVi �Y Zq P �Y Vi

G� Vi

P �Y Z P,

r

t
q

π�P f

hi

idG �g�i f

π�P gi

�
α�1
i

π�P f
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where every internal diagram is commutative by definition except the upper-left one which
is commutative because G� Vi has the universal property of the product and we have the
following commutative diagrams

C P �Y Vi G� Vi

G� pVi �Y Zq

G� pVi �Y Zq G� Vi G

q

t

αi

pr1

pr1

idG �g�i f pr1

C P �Y Vi G� Vi

Vi �Y Z

G� pVi �Y Zq G� Vi Vi.

l

q

t

π�P gi

αi

pr2

g�i f

idG �g�i f

pr2

pr2

Hence, we have shown that G� pVi � Y Zq satisfies the universal property of the pullback
pP �Y Zq �Z pVi �Y Zq and so there exists an isomorphism

φi : pP �Y Zq �Z pVi �Y Zq Ñ G� pVi �Y Zq.

We now have to prove that φi is G-equivariant, i.e. that the following diagram is
commutative

G� ppP �Y Zq �Z pVi �Y Zqq pP �Y Zq �Z pVi �Y Zq

G� pG� pVi �Y Zqq G� pVi �Y Zq,

ψi

idG �φi φi

θi

where ψi : G� ppP �Y Zq �Z pVi �Y Zqq Ñ pP �Y Zq �Z pVi �Y Zq is the action defined
using Construction 2.4. We want to use the universal property of the pullback satisfied by
G� pVi �Y Zq and so we start considering the post-composition with hi and we obtain
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the following diagram:

G� ppP �Y Zq �Z pVi �Y Zqq pP �Y Zq �Z pVi �Y Zq G� pVi �Y Zq

G� pP �Y Zq

G� pG� pVi �Y Zqq G� pVi �Y Zq P �Y Z.

ψi

idG �φi

idG �pf�πP q�pf�giq

φi

pf�πP q�pf�giq

hi

ψ

θi

hi

We notice that the central and the right diagrams commute by the definitions of ψi and
φi and so it suffices to prove that the left diagram commutes. To do so we can use the
universal property of P �Y Z. The following commutative diagrams show that both the
post-composition with f�πP and π�

Pf work:

G� ppP �Y Zq �Z pVi �Y Zqq G� pP �Y Zq P �Y Z

G� Z

G� pG� pVi �Y Zqq G� pVi �Y Zq P �Y Z Z

idG �ppf�πP q�pf�gqq

idG �φi

ψ

idG �f�πP

pr2 f�πP

pr2

θi

idG �hi

hi f�πP

G� ppP �Y Zq �Z pVi �Y Zqq G� pP �Y Zq P �Y Z

G� P

G� pP �Y Viq P �Y Vi

G� pG� Viq G� Vi

G� pG� pVi �Y Zqq G� pVi �Y Zq P �Y Z P,

idG �ppf�πP q�pf�gqq

idG �φi

ψ

idG �π�P f

π�P f

ρ

idG �f�gi

βi

f�gi

idG �α�1
i

γi

α�1
i

idG �pidG �g�i fq

idG �hi

θi hi

idG �g�i f

π�P f

where
βi : G� pP �Y Viq Ñ P �Y Vi
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is the action given by Construction 2.4 and

γi : G� pG� Viq Ñ G� Vi

is the action given by the internal product of G on the product G� Vi.
Now we consider the post-composition with pr2 and we obtain the following commutative

diagram

G� ppP �Y Zq �Z pVi �Y Zqq pP �Y Zq �Z pVi �Y Zq G� pVi �Y Zq

G� pVi �Y Zq

G� pG� pVi �Y Zq G� pVi �Y Z Vi �Y Z.

ψi

idG �φi

idG �ppf�giq
�pf�πP qq

φi

pf�giq
�pf�πP q

pr2

pr2pr2

θi pr2

This shows that φi is G-equivariant and so we have proved that πP�Y Z : P �Y Z Ñ Z is a
principal G-bundle over Z.

We are now ready to prove that the quotient prestack rX{Gs is a pseudofunctor (see
for instance [15] for a definition of pseudofunctor).

3.4. Proposition. The quotient prestack rX{Gs of Definition 3.1 is a pseudofunctor.

Proof.The fact that rX{Gs is well-defined on objects follows from the previous Proposition
and straightforward observations.

Let f : Z Ñ Y be a morphism in C . We have to show that the assignment

rX{Gspfq : rX{GspY q Ñ rX{GspZq

of Definition 3.1 is a functor.
Let pP, αq be an object of rX{GspY q. By Proposition 3.3, we have that P �Y Z is a

principal G-bundle over Z with morphism πP �Y Z :� f�πP . Moreover, the morphism
α � π�

Pf : P �Y Z Ñ X is G-equivariant since the following diagram is commutative

G� pP �Y Zq P �Y Z

G� P P

G� X X,

ψ

idG �π�P f π�P f

p

idG �α α

x

where ψ is the action of G on the pullback P �Y Z defined as in Construction 2.4. Then
we have shown that pP �Y Z, α � π�

Pfq is an object of rX{GspY q and so rX{Gspfq is
well-defined on objects. To prove that it is well-defined on morphisms as well, we need to
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show that given a morphism φ : pP, αq Ñ pQ, βq in rX{GspY q, the morphism rX{Gspfqpφq
given by the universal property of pullback as in the following diagram

P �Y Z

Q�Y Z Q

Z Y,

φ�π�P f

πP

rX{Gspfqpφq

π�Qf

f�πQ

{

πQ

f

is a morphism in rX{GsrZs. But this is true by definition and it remains to prove just
that rX{Gspfq preserves identities and compositions.

Let pP, αq be an object of rX{GspY q. Then the morphism rX{GspfqpidpP,αqq is the
unique morphism such that the following diagram is commutative

P �Y Z

P �Y Z P

Z Y.

π�P f

f�πP

rX{GspfqpidpP,αqq

π�P f

f�πP

{

πP

f

But the morphism idpP�Y Z,idpP,αq �π
�
P fq

: P �Y Z Ñ P �Y Z makes the diagram commute too

and so rX{GspfqpidpP,αqq � idpP�Y Z,idpP,αq �π
�
P fq

and we have shown that rX{Gspfq preserves
identities.

Let now φ : pP, αq Ñ pQ, βq and ψ : pQ, βq Ñ pR, δq be morphisms in rX{GspY q. The
morphism rX{Gspfqpψ � φq is the unique morphism such that the following diagram is
commutative

P �Y Z

R �Y Z R

Z Y

pψ�φq�π�P f

πP

rX{Gspfqpψ�φq

π�Rf

f�πR

{

πR

f

and so to prove the equality rX{Gspfqpψ � φq � rX{Gspfqpψq � rX{Gspfqpφq it suffices
to show that the composite rX{Gspfqpψq � rX{Gspfqpφq makes the diagram commute as
well. We notice that the morphism rX{Gspfqpψq � rX{Gspfqpφq makes the upper triangle
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of the above diagram commute, since we have the following commutative diagram

P �Y Z P Q R

Q�Y Z Q

R �Y Z R.

π�P f

rX{Gspfqpφq

φ

φ

ψ

π�Qf

rX{Gspfqpψq
ψ

π�Rf

Finally, the morphism rX{Gspfqpψq�rX{Gspfqpφq makes the lower triangle of the diagram
commute because the following diagram is commutative

P �Y Z Q�Y Z R �Y Z

Z

rX{Gspfqpφq

f�πP

rX{Gspfqpψq

f�πQ
f�πR

and so we have shown that rX{Gspfq preserves compositions. This concludes the proof
that rX{Gspfq is a functor. To prove that rX{Gs is a prestack we now need to show that
it is pseudofunctorial. Let Y be an object of C op. We have to show that there exists an
invertible natural transformation

ιY : rX{GspidY q Ñ idrX{GspY q .

Given pP, αq P rX{GspY q, we define pιY qpP,αq : pP �Y Y, α�π
�
P idY q Ñ pP, αq as the unique

isomorphism from P �Y Y to P that exists because they are both pullbacks of the pair
pπP , idY q. It is then straightforward to check that ιY is a natural transformation.

Let now g : W Ñ Z and f : Z Ñ Y be morphisms in C . We have to show that there
exists an invertible natural transformation

εf,g : rX{Gspf � gq Ñ rX{Gspgq � rX{Gspfq.

Given pp, αq P rX{GspY q, we define

pεf,gqpP,αq : pP �Y W,α � π
�
P pf � gqq Ñ ppP �Y Zq �W Z, α � π�

Pf � π
�
P�Y Z

gq

as the unique isomorphism from P �Y Z to pP �Y Zq �W Z (both pullbacks of the pair
pπP , f � gq). It is straightforward to check that pεf,gqpP,αq is a morphism in rX{GsrW s and
the fact that εf,g is a natural transformation follows, then, from the pseudofunctoriality of
the pullback. This proves that rX{Gs is a prestack.
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Proof. To prove that rX{Gs is a prestack we need to show that it is a pseudofunctor.
Let Y be an object of C op. We have to show that there exists an invertible natural
transformation

ιY : rX{GspidY q Ñ idrX{GspY q .

Given pP, αq P rX{GspY q, we define pιY qpP,αq : pP �Y Y, α�π
�
P idY q Ñ pP, αq as the unique

isomorphism from P �Y Y to P that exists because they are both pullbacks of the pair
pπP , idY q. It is then straightforward to check that ιY is a natural transformation.

Let now g : W Ñ Z and f : Z Ñ Y be morphisms in C . We have to show that there
exists an invertible natural transformation

εf,g : rX{Gspf � gq Ñ rX{Gspgq � rX{Gspfq.

Given pp, αq P rX{GspY q, we define

pεf,gqpP,αq : pP �Y W,α � π
�
P pf � gqq Ñ ppP �Y Zq �W Z, α � π�

Pf � π
�
P�Y Z

gq

as the unique isomorphism from P �Y Z to pP �Y Zq �W Z (both pullbacks of the pair
pπP , f � gq). It is straightforward to check that pεf,gqpP,αq is a morphism in rX{GsrW s and
the fact that εf,g is a natural transformation follows, then, from the pseudofunctoriality of
the pullback. This proves that rX{Gs is a prestack.

Analogously to the topological case, we can consider the particular case of rT {Gs where
T is the terminal object of C and so the morphisms with target T are uniquely determined
and the category rT {GspY q is isomorphic to BunGpY q.

3.5. Definition. Let C be a category with terminal object T and let G be a group object
in C . The prestack rT {Gs is called classifying stack and will be denoted BG.

3.6. Remark. If we consider the category Top equipped with the standard topology the
terminal object is the one-point space and the classifying stacks over Top are the usual
classifying stacks of topological groups.

4. Generalized quotient stacks

In this section we will prove that, if the category C is cocomplete such that pullbacks
preserve colimits and the topology τ is subcanonical, the quotient prestacks defined in the
previous section are stacks. In order to prove this important result, we will show that the
quotient prestacks satisfy the gluing conditions required for a stack with respect to the
canonical topology.

Firstly, we recall the definition of canonical topology on a category (for a reference see
[12]).

4.1. Definition. Let C be a category. The canonical topology κ on the category C
is the finest Grothendieck topology on C such that every representable presheaf of C is a
sheaf on the site pC , κq. A Grothendieck topology τ on C is said subcanonical if it is
contained in κ, i.e. if every representable presheaf of C is a sheaf on the site pC , τq.

A very useful characterization of the sieves of the canonical topology has been mentioned
in [9] and studied in detail by Lester in [12]. Lester has shown that the canonical topology
is the collection of all universal colim sieves in the sense of the following definition.
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4.2. Definition. Let C be a category and let X be an object of C . A sieve S on X is a
colim sieve if X � colimS dom, where dom: C {X Ñ C is the domain functor. Moreover,
S is a universal colim sieve if for every morphism f : Y Ñ X in C the sieve f�S on
Y is a colim sieve.

In [12], Lester also gives a basis for the canonical topology under the hypothesis that
the category C is cocomplete, has all pullbacks and has stable and disjoint coproducts.
The result is the following:

4.3. Theorem. [12] Let C be a cocomplete category with stable and disjoint coproducts
and all pullbacks. Then the family tfi : Yi Ñ XuiPI is in κpXq if and only if the morphism

º
iPI

fi :
º
iPI

Yi Ñ X

is a universal effective epimorphism (i.e.
²
iPI

fi is the coequalizer of its kernel pair and the

change of basis of
²
iPI

fi along every morphism of C has the same property).

Before stating the main theorem of this section, we recall a simple well-known fact
that will be useful in the proof of the theorem:

4.4. Lemma. Let F,G : D Ñ C be functors and let γ : Gñ F be a natural transformation.

Consider C P C . If
!
F piq

fiÝÑ C
)
iPI

is a cocone for F over C, then
!
Gpiq

fi�γiÝÝÝÑ C
)
iPI

is a

cocone for G over C.

Proof. Straightforward using the naturality of γ.

We are now ready to prove the main theorem of this section.

4.5. Theorem. Let C be a cocomplete category with pullbacks and a terminal object and
such that pullbacks preserve colimits. Let then τ be a subcanonical Grothendieck topology
on C and X,G P C with G a group object. Then the quotient prestack rX{Gs is a stack.

4.6. Remark. Notice that every cocomplete locally cartesian closed category with a termi-
nal object satisfies the hypothesis of the theorem. For example, every cocomplete quasitopos
in the sense of [17] satisfies the hypothesis of the theorem. This includes all cocomplete
elementary topoi, but also other interesting cases such as cocomplete Heyting Algebras (see
[6]) and the category of diffeological spaces originally introduced by Souriau in [19].

Proof. We are going to show that rX{Gs is a stack when we have the canonical topology
κ on C and this will imply that it is a stack every time the considered topology is
subcanonical, since the principal bundles with respect to a fixed subcanonical topology
are principal bundles in pC , kq as well.

In order to show that rX{Gs is a stack, we will show that the three gluing conditions
hold.

Consider a covering family U � tfi : Ui Ñ Y uiPI of Y for the canonical topology κ.
Let pP, αq, pQ, βq P rX{GspY q and for every i P I let φi : pP, αq

��
Ui
Ñ pQ,αq

��
Ui

be a

morphism of C such that for every i, j P I we have φi
��
Uij

� φj
��
Uij

(where Uij is given by the

pullback of fi and fj). We want to show that there exists a morphism η : pP, αq Ñ pQ, βq
such that η

��
Ui
� φi for every i P I.
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Let K the pullback given as

K
²
iPI

P �Y Ui

²
iPI

P �Y Ui P

γ1

γ2

{

²

iPI
π�P fi

²

iPI
π�P fi

and consider the morphism

δ :�
º
iPI

pπ�
Qfi � φiq :

º
iPI

P �Y Ui Ñ Q.

Moreover, we notice that, since pullbacks preserve colimits in C and
²
iPI

fi is a universal

effective epimorphism, the morphism
²
iPI

π�
Pfi is an effective epimorphism and so the

following is a coequalizer diagram

K
²
iPI

P �Y Ui P.
γ1

γ2

²

iPI
π�P fi

In order to use the universal property of this coequalizer to produce a morphism η : P Ñ Q
we show that the morphism δ :

²
iPI

P �Y Ui Ñ Q previously defined coequalizes γ1 and

γ2. Since pullbacks preserve colimits, we have that K is isomorphic to the coproduct²
iPI

²
jPI

pP �Y Uiq �P pP �Y Ujq and so, to prove that δ coequalizes γ1 and γ2, it suffices to

prove that, for every i P I and every j P J , the following diagram is commutative

pP �Y Uiq �P pP �Y Ujq P �Y Uj Q�Y Uj

P �Y Ui Q�Y Ui Q.

φj

π�Qfj

φi π�Qfi

But the commutativity of this diagram follows from the fact that φi
��
Uij

� φj
��
Uij

, using that

pP�Y Uiq�P pP�Y Uiq is isomorphic to pP�Y Uiq�Ui
pUi�Y Ujq and pQ�Y Uiq�P pP�Y Uiq

is isomorphic to pQ�Y Uiq�Ui
pUi�Y Ujq. This shows that δ coequalizes γ1 and γ2 and so,

by the universal property of the coequalizer, there exists a unique morphism η : P Ñ Q
such that

K
²
iPI

P �Y Ui P

Q.

γ1

γ2

²

iPI
π�P fi

δ
η

Let us now observe a general fact that will be useful several times during the proof.
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4.7. Remark. Since the category C is cocomplete also the category rX{GspY q is cocomplete.
In fact, given a diagram in rX{GspY q, its colimit can be constructed by taking the colimit
in C of the domains of the given arrows and equipping it with a morphism into Y and a
morphism into X both induced by the universal property of the colimit in C .

By the previous remark, we know that η is a morphism of G-bundles from pP, αq to
pQ, βq. Moreover, the equality η

��
Ui
� φi holds since the diagram

P �Y Ui Q�Y Ui

Ui

φi

f�i πP f�i πQ

is commutative because φi is a morphism of G-bundles over Ui and the diagram

P �Y Ui P

Q�Y Ui Q

π�P fi

φi η

π�P fi

commutes by definition of γ and η.
This conclude the proof that the first of the gluing conditions holds.

Let now pP, αq, pQ, βq P rX{GspY q and let φ, ψ : pP, αq Ñ pQ, βq be morphisms such
that for every i P I φ

��
Ui
� ψ

��
Ui
. We want to prove that under this assumptions we have

φ � ψ. By definition, the restrictions of φ and ψ fit in the following commutative diagrams

P �Y Ui

Q�Y Ui Q

Ui Y

φ�π�P fi

πP�Y Ui

φ
�
�
�
Ui

πQ�Y Ui

{

πQ

fi

P �Y Ui

Q�Y Ui Q

Ui Y.

ψ�π�P fi

πP�Y Ui

ψ
�
�
�
Ui

πQ�Y Ui

{

πQ

fi

Since φ
��
Ui
� ψ

��
Ui

by hypothesis, the commutativity of the previous diagrams implies that
for every i P I

φ � π�
Pfi � ψ � π�

Pfi.

But then we can conclude that φ � ψ because the morphisms tπ�
PfiuiPI are jointly

epimorphic since the morphisms tfiuiPI are jointly regular epimorphic.
This shows that the second of the gluing conditions holds.

It remains to prove that every descent datum is effective and this is the trickiest part
of the entire proof. To prove this last condition, we are going to use sieves instead of
covering families as this makes the proof a bit less complex.
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Given a sieve S on Y , a descent datum on S for rX{Gs is an assignment for every

morphism Z
f
ÝÑ Y in S of an object pWf , αf q P rX{GspZq and, for every pair of composable

morphisms

Z 1 g
ÝÑ Z

f
ÝÑ Y

with f P S, of an isomorphism

φf,g : g�ppWf , αf qq
�
ÝÝÑ pWf�g, αf�gq

such that, given morphisms

Z2 h
ÝÑ Z 1 g

ÝÑ Z
f
ÝÑ Y

with f P S, the following diagram is commutative

h�pg�ppWf , αf qq h�ppWf�g, αf�gq

pg � hq�ppWf , αf qq pWf�g�h, αf�g�hq,

�

h�φf,g

φf�g,h

φf,g�h

where the isomorphism on the left is given by the fact that rX{Gs is a pseudofunctor.
This descent datum is effective if there exist an object pW,αq P rX{GspY q and, for

every morphism Z
f
ÝÑ Y P S, an isomorphism

ψf : f�ppW,αqq
�
ÝÝÑ Wf

such that, given morphisms

Z 1 g
ÝÑ Z

f
ÝÑ Y

with f P S, the following diagram is commutative

g�pf�ppW,αqq g�ppWf , αf q

pf � gq�ppW,αqq pWf�g, αf�gq.

�

g�ψf

φf,g

ψf�g

4.8. Notation. Abusing notation, we will sometimes identify the morphisms in rX{GspZq
with the corresponding morphisms of C and so, for example, we will write the morphism

φf,g as g�Wf
φf,g

ÝÝÑ Wf�g.

Firstly, we want to extend the assignment given by the descent datum to a functor.
Since every morphism of the sieve S is sent to an object of a different category of bundles
according to its domain, we need to see all these bundles as objects of the same category
of bundles. To do this, we can postcompone the given bundle with the starting morphism
in S to obtain an object of rX{GspY q.

We want, now, to construct a functor

Λ: S Ñ rX{GspY q
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and so we need to define the action on morphisms of S. Given two objects Z
f
ÝÑ Y and

P
t
ÝÑ Y of S, a morphism from f to t is simply a morphism in the slice category of C over

Y , i.e. a morphism Z
k
ÝÑ P in C such that the following triangle commutes

Z P

Y.

k

f t

Noticing that f � t � k, we define Λpkq : pWf , αf q Ñ pWt, αtq as the following composite

Wf
pφk,tq�1

ÝÝÝÝÝÑ k�Wt

π�Wt
k

ÝÝÝÑ Wt

and we observe that this is a morphism in rX{GspY q because the following diagram
commutes

Wf k�Wt Wt

Z Z P

Y.

pφk,tq�1

πWf

π�Wt
k

k�πWt
πWt

idZ

f

k

t

We now show that Λ, as such defined, is a functor.

Let Z
f
ÝÑ Y , P

t
ÝÑ Y and Q

s
ÝÑ Y be objects of S and let Z

k
ÝÑ P and P

l
ÝÑ Q be

morphisms between them. The following diagram shows, then, that Λpl � kq � Λplq � Λpkq:

Wf k�Wt Wt

k�pl�pWsqq l�Ws

pl � kq�Ws Ws.

pφt,kq�1

pφs,l�kq�1

pk�φs,lq�1

π�Wt
k

pφs,lq�1

�

l�pπ�Ws
kq

π�Ws
l

π�Ws
pl�kq

Moreover, if we consider Z
f
ÝÑ Y P S and idZ as morphism from f to itself in S, in order

to show that ΛpidZq � idΛpZq we need to prove that φidZ ,f � π�
Wf

idZ .
By the compatibility condition of the descent datum, we have that the following square
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is commutative

id�Zpid
�
ZWf q id�ZWf

id�ZWf Wf .

�

id�Z φ
f,idZ

φf,idZ

φf,idZ

On the other hand, by definition the morphism id�Z φ
f,idZ satisfies the following diagram

id�Zpid
�
ZWf q

id�ZWf Wf

Z Z.

φf,idZ �pid�Z πWf
q� idZ

id�Z id�Z πWf

id�Z φ
f,idZ

{

πWf

idZ

Combining the first diagram and the upper triangle of the second one, we obtain

φidZ ,f � π�
Wf

idZ

and this concludes the proof that Λ is a functor.
We can now define the pair pW,αq that will show that the descent datum is effective.

We define
W : � colimΛ

and for every f P S we call σf : Wf Ñ W the cocone morphism. Considering the morphism
αf : Wf Ñ X for every f P S, we obtain a cocone and so we can use the universal property
of the colimit to induce the morphism α : W Ñ X as the unique morphism such that, for
every f P S, the following triangle commutes

Wf W

X.

σf

αf
α

After having defined the pair pW,αq, our next step in the proof is the definition of an
isomorphism

ψf : f�W
�
ÝÝÑ Wf

for every f P S.
First of all, we observe that, under our assumption that pullbacks preserve colimits in

C , we have
f�W � colimpf� � Λq

with universal cocone given by f�σt for every t P S. This allows us to induce the
isomorphism ψf for every f P S using the universal property of the colimit and to do so

we need to define a cocone
!
f�Wt

ΣtÝÑ Wf

)
tPS

.
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We observe thatWf is the colimit of the pf�tq�Wf with t that varies in S with universal
cocone given by

pf�tq�Wf

π�Wf
pf�tq

ÝÝÝÝÝÑ Wf

for every t P S. Because of this, we can define Σt : f
�Wt Ñ Wf as

f�Wt
θtÝÝÑ pf�tq�Wf

π�Wf
pf�tq

ÝÝÝÝÝÝÑ Wf ,

where θt is defined as the following composite:

f�Wt
λf,t
ÝÝÑ pt�fq�pWtq

φt,t�f

ÝÝÝÑ Wt�t�f
pφf,f�tq�1

ÝÝÝÝÝÝÑ pf�tq�pWf q,

where λf,t is the isomorphism given by the universal property of the pullback pt�fq�Wt as
in the following diagram

f�Wt

pt�fq�Wt Wt

f�P P

Z Y.

pt�πWt
q�f

λf,t

�

f�pt�πWt
q

{

πWt

{

t�f

f�t t

f

Since we want to apply Lemma 4.4, we need to prove that there exist a functor

K : S Ñ rX{GspY q

and a natural transformation
Θ: Λ � f� ñ K

whose component associated to t P S is θt for every t P S.
We can define the desired functor as

K � pπWf
q� � f� � dom

and, given the morphism

R P

Y

l

t�l t

in S, the following diagram shows that Θ: Λ � f� ñ K of components θt for every t P S is
a natural transformation.
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f�Wt�l f�Wt

ppt � lq�fq�pl�Wlq

ppt � lq�fq�Wt�l pl � pt � lq�fq�Wt ppt � lq�lq�pt�fq�Wt pt�fq�Wt

Wf�pt�lq�f ppt�fq�lq�Wt�t�f Wf�t�f

ppt�fq�lq�pf�tq�Wf

π�
Wf
pf�pRqq π�

Wf
pf�pP qq

f�pΛplqq

λf,t�l λf,t

�ppt�lq�fq�ppφt,lq�1q

φt,pt�lq�f

�

ppt�fq�lq�φt,t�f φt,t�f

pφt�t�f,pt�fq�lq�1

pφt,l�pt�lq�f q�1

pφf,f�pt�lqq�1

pppt�fq�lq�pφf,f�tq�1

pφf,f�tq�1

�

Kplq

4.9. Remark. Most of the inner diagrams used to show that the previous diagram com-
mutes are compatibility diagrams for the descent datum. The other ones are given by the
explicit definitions of the morphisms in play.

By Lemma 4.4, we obtain that
!
f�Wt

ΣtÝÑ Wf

)
tPS

is a cocone for Wf and so, using the

universal property of the colimit, we can define ψf : f�W Ñ Wf as the unique morphism
such that the following diagram is commutative

f�Wt F �W

Wf

f�σt

Σt ψf

for every t P S. Moreover, since θt is an isomorphism for every t P S, we have that ψf is
an isomorphism.
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To conclude our proof it suffices to show that, given morphisms

Z 1 g
ÝÑ Z

f
ÝÑ Y

with f P S, the following diagram is commutative

g�pf�ppW,αqq g�ppWf , αf q

pf � gq�ppW,αqq pWf�g, αf�gq.
�

g�ψf

φf,g

ψf�g

Since g�pf�pW qq is a colimit with universal cocone given by

!
gp�pf�pWtqq

g�f�σtÝÝÝÝÑ f�pf�pW qq
)
tPS

,

it suffices to prove that the two paths of the diagram are equal if precomposed by g�f�σt
for every t P S. In order to prove this, we need to consider some isomorphisms given by
the universal property of pullbacks that are defined as in the following diagrams:
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ppf�tq�g � εq�pt�fqWt

g�ppt�fq�Wtq

ε�pppf�tq�gq�ppt�fq�Wtqq ppf�tq�gq�ppt�fq�Wtq pt�fq�Wt

pf � gq�P g�f�P f�P

Z 1 Z

j

�

k�1

�

{

ε̃

πW
f�f�t

ε

{

pf�tq�g

f�t

g

ppf�tq�g � εqWf�f�t

g�Wf�f�t

ε�pppf�tq�gq�Wf�f�tq ppf�tq�gq�Wf�f�t Wf�f�t

pf � gq�P g�f�P f�P

Z 1 Z

r

�

π�W
f�f�t

ppf�tq�g�εq

s�1

�

{

ε1

{
πW

f�f�t

ε

{

f�t

g

ppf�tq�g � εq�ppf�tq�Wf q

g�ppf�tq�Wf q

ε�pppf�tq�gq�ppf�tq�Wf qq ppf�tq�gq�ppf�tq�Wf q pf�tq�Wf

pf � gq�P g�f�P f�P

Z 1 Z

t

�

v�1

�

ε2

{ {

pf�tq�πWf

ε

{

t�f

g
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The following diagram, then, shows what we were required to prove:

g�pf�pWtqq g�pf�pW qq g�Wf

g�pt�fq�Wt g�Wf�f�t g�pf�tq�pWf q

ppf�tq�gq�ppt�fq�Wtq ppf�tq�gq�Wf�f�t ppf�tq�gq�ppf�tq�Wf q

ε�pppf�tq�gq�ppt�fq�Wtqq ε�pppf�tq�gq�Wf�f�tq ε�pppf�tq�gq�ppf�tq�Wf qq

ppf�tq�g � εq�ppt�fq�Wtq ppf�tq�g � εq�Wt�f�f ppf�tq�g � εq�ppf�tq�Wf q

t�pppf � gq�qWtq Wt�t�pf�gq ppg � pf � gq�tq�Wf

pf � gq�Wt pf � gq�pt�Wf�gq pf � gq�tq�pg�Wf q

g�pf�pW qq pf � gq�W Wf�g,

�

g�f�σt

g�λf,t

g�f�σt

g�ψf

ψf,g

g�φt,t�f g�ppφf,f�tq�1q

pg�pπ�Wf
qq�pf�tq

k

�

s

�

v

�

ε̃

�

ε1

�

ε2

�

j

�

ppf�tq�g�εq�φt,t�f

�
r

�

ppf�tq�g�εq�ppφf,f�tq�1q

φf�f�t,pf�tq�g�ε

t

�

φt,t�pf�gq pφf,g�pf�gq�tq�1

pφf�g,pf�gq�tq�1 �λf�g,t

pf�gq�σt π�Wf�g
ppf�gq�tq

ppf�gq�tq�φf,g

�
ψf�g

where all the inner diagrams are given either by compatibility conditions of the descent
datum or can be proved to be commutative in a direct way using the universal property of
the pullbacks involved and the definitions of the various morphisms.
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