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QUASI-UNIFORM STRUCTURES AND FUNCTORS

MINANI IRAGI AND DAVID HOLGATE

Abstract. We study a number of categorical quasi-uniform structures induced by
functors. We depart from a category C with a proper (E ,M)-factorization system, then
define the continuity of a C-morphism with respect to two syntopogenous structures
(in particular with respect to two quasi-uniformities) on C and use it to describe the
quasi-uniformities induced by pointed and copointed endofunctors of C. In particular,
we demonstrate that every quasi-uniformity on a reflective subcategory of C can be lifted
to a coarsest quasi-uniformity on C for which every reflection morphism is continuous.

Thinking of categories supplied with quasi-uniformities as large “spaces”, we generalize
the continuity of C-morphisms (with respect to a quasi-uniformity) to functors. We
prove that for anM-fibration or a functor that has a right adjoint, we can obtain a con-
crete construction of the coarsest quasi-uniformity for which the functor is continuous.
The results proved are shown to yield those obtained for categorical closure operators.
Various examples considered at the end of the paper illustrate our results.

1. Introduction

The introduction of categorical closure operators ([DG-1987]) by Dikranjan and Giuli
was the point of departure for study of topological structures on categories. This approach
eventually motivated the introduction of categorical interior ([RV-2000]) and neighbour-
hood ([HS-2011]) operators. While the categorical interior operators were shown to be
pleasantly related to neighbourhood operators, a nice relationship between closure and
neighbourhood operators in a category was lacking until the categorical topogenous struc-
tures ([HIR-2016, MI-2019]) were recently introduced. Indeed the conglomerate of cate-
gorical topogenous structures is order isomorphic to the conglomerate all neighbourhood
operators and contains both the conglomerates of all interior and all closure operators as
reflective subcategories.

A natural generalization of the definition of a categorical topogenous structures leads
to the concept of categorical syntopogenous structure which provides a convenient setting
to investigate a quasi-uniform structure on a category. This is the point of departure
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in ([HIRA-2019, MI-2019]) where a categorical quasi-uniform structure is introduced and
studied. Moreover, the use of syntopogenous structures allows the description of a quasi-
uniformity as a family of categorical closure operators (see e.g [HIRA-2019]). A recent
account of this relationship between quasi-uniformity and closure operators can be found
in [HI-2021].

The present paper aims to further study a categorical quasi-uniform structure. Con-
sidering a category C with a proper (E ,M)-factorization system, we show that for a syn-
topogenous structure S on C and an E-pointed endofunctor (F, η) of C, there is a coarsest
syntopogenous structure SF,η on C for which every ηX : X −→ FX is (SF,η,S)-continuous.
Since a categorical quasi-uniformity is equivalent to a co-perfect syntopogenous structure
and simple co-perfect syntopogenous structures are equivalent to idempotent closure op-
erators (see e.g [HIRA-2019]), SF,η allows us to construct the quasi-uniform structure and
the closure operator induced by a pointed endofunctor. In particular, we demonstrate
that every quasi-uniformity U on a reflective subcategory of C can be lifted to a coarsest
quasi-uniformity UF,η on C for which every reflection morphism is (UF,η,U)-continuous.
When applied to spaces, UF,η turns out to describe initial structures induced by reflection
maps. Dual results shall be obtained in the case of a copointed endofunctor.

For a functor F : A −→ C and quasi-uniformities U and V on A and C respectively, we
introduce the (U ,V)-continuity of F . It is shown that if F is anM-fibration or has a right
adjoint, then one can concretely describe the coarsest quasi-uniformity VF on A for which
F is (VF ,V)-continuous. We then use the categorical co-perfect syntopogenous structures,
to obtain a concrete description of the largest closure operator making F continuous.

In section 4, we describe categorical quasi-uniform structures induced by (co) pointed
endofunctors, which we construct using the syntopogenous structures (Proposition 4.4,
Theorems 4.4 and 4.9). It is interesting to note that particular cases of these quasi-uniform
structures correspond to the closure operators obtained by Dikranjan and Tholen in [DT-
1995] (chapter 5, Theorems 5.12 and 5.12∗). The study of continuity of functors with
respect to two quasi-uniform structures and its use to describe the initial quasi-uniform
structures induced by an M-fibration or a functor having a right adjoint (Proposition
5.4, 5.7 and 5.9, Theorems 5.5 and 5.8) are devoted to section 5. Finally in section 6, we
present a number of examples to illustrate the results obtained.

2. Preliminaries

Our blanket reference for categorical concepts is [AHS-2006]. The basic facts on categori-
cal closure operators used here can be found in [DT-1995] or [DG-1987]. For the categorical
topogenous, quasi-uniform and syntopogenous structures, we use [HIR-2016] and [HIRA-
2019]. Throughout the paper, we consider a category C supplied with a proper (E ,M)-
factorization system for morphisms. The category C is assumed to be M-complete so
that pullbacks ofM-morphisms along C-morphisms and arbitraryM-intersections ofM-
morphisms exist and are again in M. For any X ∈ C, subX = {m ∈ M | cod(m) = X}.
It is ordered as follows: n ≤ m if and only if there exists j such that m ◦ j = n. If m ≤ n
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and n ≤ m then they are isomorphic. We shall simply write m = n in this case. SubX
is a (possibly large) complete lattice with greatest element 1X : X −→ X and the least
element 0X : OX −→ X.

Any C-morphism, f : X −→ Y induces an image/pre-image adjunction f(m) ≤ n if
and only if m ≤ f−1(n) for all n ∈ subY , m ∈ subX with f(m) theM-component of the
(E ,M)-factorization of f ◦m while f−1(n) is the pullback of n along f . We have from
the image/pre-image adjunction that f(f−1(n)) ≤ n (with f(f−1(n)) = n if f ∈ E and
E is pullback stable along M-morphisms) and m ≤ f−1(f(m)) (with m = f−1(f(m)) if
f ∈M) for any n ∈ subY and m ∈ subX.

Applying adjointness repeatedly we obtain the lemma below.

2.1. Lemma. Let

X Y
f

//

X ′

X

p′

��

X ′ Y ′
f ′ // Y ′

Y

p

��

be a commutative diagram. Then for any subobject n ∈ subY ′, p′(f ′−1(n)) ≤ f−1(p(n)).

2.2. Definition. A pointed endofunctor of C is a pair (F, η) consisting of a functor
F : C −→ C and a natural transformation η : 1C −→ F .

For any C-morphism f : X −→ Y , (F, η) induces the commutative diagram below.

Y FYηY
//

X

Y

f

��

X FX
ηX // FX

FY

Ff

��

If each ηX ∈ F where F is a class of C-morphisms, then (F, η) is F -pointed. A copointed
endofunctor of C is defined dually.

2.3. Definition. A closure operator c on C with respect to M is given by a family of
maps
{cX : subX −→ subX | X ∈ C} such that:

(C1) m ≤ cX(m) for all m ∈ subX;

(C2) m ≤ n⇒ cX(m) ≤ cX(n) for all m,n ∈ subX;

(C3) every morphism f : X −→ Y is c-continuous, that is: f(cX(m)) ≤ cY (f(m)) for all
m ∈ subX.

We denote by CL(C,M) the conglomerate of all closure operators on C with respect
to M ordered as follows: c ≤ c′ if cX(m) ≤ c′X(m) for all m ∈ subX and X ∈ C.
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2.4. Definition. A closure operator c on C is idempotent if cX(cX(m)) = cX(m) for all
m ∈ subX and X ∈ C.

ICL(C,M) will denote the conglomerate of all idempotent closure operators on C.

2.5. Definition. [HIR-2016] A topogenous order @ on C is a family {@X | X ∈ C} of
relations, each @X on subX, such that:

(T1) m @X n⇒ m ≤ n for every m,n ∈ subX,

(T2) m ≤ n @X p ≤ q ⇒ m @X q for every m,n, p, q ∈ subX, and

(T3) every morphism f : X −→ Y in C is @-continuous, m @Y n⇒ f−1(m) @X f−1(n)
for every m,n ∈ subY .

Given two topogenous orders @ and @′ on C, @⊆@′ if and only if m @X n⇒ m @′X n
for all m,n ∈ subX. The resulting ordered congolomerate of all topogenous orders on C
is denoted by TORD(C,M).
A topogenous order @ is said to be

(1)
∧

-preserving if (∀i ∈ I : m @X ni)⇒ m @X

∧
ni, and

(2) interpolative if m @X n⇒ (∃ p) | m @X p @X n for all X ∈ C.

The ordered conglomerate of all
∧

-preserving and interpolative topogenous orders is de-
noted by

∧
-TORD(C,M) and INTORD(C,M). respectively.

∧
-INTORD(C,M) will

denote the conglomerate of all interpolative meet preserving topogenous orders.

2.6. Proposition. [HIR-2016]
∧

-TORD(C,M) is order isomorphic to CL(C,M). The
inverse assignments of each other are given by

c@X(m) =
∧
{p | m @X p} and m @c

X n⇔ cX(m) ≤ n for all X ∈ C.

2.7. Corollary.
∧

-INTORD(C,M) is order isomorphic to ICL(C,M).

3. The quasi-uniform structures

It is well known (see e.g [CD-1962]) that an (entourage) quasi-uniformity on a set X can
be equivalently expressed as an appropriate family of maps U : X −→ P(X). Since these
maps can easily be extended to endomaps on P(X), it is possible to think of a quasi-
uniformity on C as a suitable family of endomaps on subX for each X ∈ C. This is the
point expressed in Definition 3.1. Let us denote by F(subX) the endofunctor category
on subX for each X ∈ C. It is clear that for all U, V ∈ F(subX), U ≤ V if U(m) ≤ V (m)
for all m ∈ subX.
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3.1. Definition. [HIRA-2019] A quasi-uniformity on C with respect to M is a family
U = {UX | X ∈ C} with UX a full subcategory of F(subX) for each X such that:

(U1) For any U ∈ UX , 1X ≤ U ,

(U2) For any U ∈ UX , there is U ′ ∈ UX such that U ′ ◦ U ′ ≤ U ,

(U3) For any U ∈ UX and U ≤ U ′, U ′ ∈ UX ,

(U4) For any U,U ′ ∈ UX , U ∧ U ′ ∈ UX ,

(U5) For any C-morphism f : X −→ Y and U ∈ UY , there is U ′ ∈ UX such that
f(U ′(m)) ≤ U(f(m)) for any m ∈ subX.

We shall denote by QUnif(C,M) the conglomerate of all quasi-uniform structures on
C. It is ordered as follows: U ≤ V if for all X ∈ C and U ∈ UX , there is V ∈ VX such that
V ≤ U . In most cases we describe a quasi-uniformity by defining a base for it. A base for
a quasi-uniformity U on C is a family B = {BX |X ∈ C} with each BX a full subcategory
of F(subX) for all X ∈ C satisfying all the axioms in Definition 3.1 except (U3). If BX
for any X ∈ C is a base element with a single member V , we shall write VX . A base for
quasi-uniformity on C is transitive if for all X ∈ C and U ∈ BX , U ◦ U = U . A quasi-
uniformity with a transitive base is called a transitive quasi-uniformity. The ordered
conglomerate of all transitive quasi-uniformities on C will be denoted by TQUnif(C,M).

3.2. Definition. [HIRA-2019] A syntopogenous structure on C with respect to M is a
family
S = {SX | X ∈ C} such that each SX is a set of relations on subX satisfying:

(S1) Each @X∈ SX is a relation on subX satisfying (T1) and (T2),

(S2) SX is a directed set with respect to inclusion,

(S3) @X=
⋃
SX is an interpolative topogenous order.

The ordering of topogenous orders can be extended to syntopogenous structures in
the following way: S ≤ S ′ if for all X ∈ C and @X∈ SX , there is @′X∈ S ′X such that
@X⊆@′X . The resulting conglomerate will be denoted by SYnt(C,M). S ∈ SYnt(C,M) is
co-perfect if each @X∈ SX is

∧
-preserving for all X ∈ C. It is interpolative if every @X∈

SX interpolates. The ordered conglomerate of all interpolative co-perfect syntopogenous
structures will be denoted by INTCSYnt(C,M). The ordered conglomerate of all co-
perfect syntopogenous structures will be denoted by CSYnt(C,M). S ∈ SYnt(C,M) is
simple if SX = {@X} where @X is an interpolative topogenous order for any X ∈ C.
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3.3. Theorem. [HIRA-2019] QUnif(C,M) is order isomorphic to CSYnt(C,M). The
inverse assignments of each other U 7−→ SU and S 7−→ US are given by

SUX = {@U
X | U ∈ UX} where m @U

X n⇔ U(m) ≤ n, and

SSX = {U@ | @X∈ SX} where U@(m) =
∧
{n | m @X n}

for all X ∈ C and m, n ∈ subX.

Since SX ⊆
∧

-TORD(C,M) for each S ∈ CSYnt(C,M), it follows from the above
theorem and Proposition 2.6 that a quasi-uniformity on C is a collection of families of
closure operators.

By Corollary 2.7 ( see also [MI-2019], Corollary 4.2.3),
∧

-INTORD(C,M) is iso-
morphic to the conglomerate of idempotent closure operators and from Theorem 3.3,
CSYnt(C,M) ∼= QUnif(C,M). Thus every idempotent closure operator on C is a quasi-
uniformity.

4. Quasi-uniform structures induced by (co)pointed endofunctors

Throughout this section, the class E will be assumed to be stable under pull-
backs along M-morphisms.

Already the axiom (S3) of Definition 3.2 includes the fact that every morphism in C
must be continuous with respect to the syntopogenous structure. In the next definition,
we introduce the continuity of C-morphisms with respect to two syntopogenous structures
on C. Our aim being to use this definition to construct new syntopogenous structures from
old. In particular new quasi-uniformities and new closure operators from old. These are
particularly important as they turn out to describe initial structures induced by certain
maps in spaces.

4.1. Definition. Let S, S ′ ∈ SYnt(C,M). A morphism f : X −→ Y is (S,S ′)-
continous if for all @′Y∈ S ′Y , there is @X∈ SX such that f(m) @′Y n ⇒ m @X f−1(n)
for all m ∈ subX and n ∈ subY , equivalently m @′Y n ⇒ f−1(m) @X f−1(n) for all
n,m ∈ subY.

Since every C-morphism f is (S,S)-continuous and (S ′,S ′)-continuous, f is (S,S ′)-
continuous if S ′ ≤ S. Because S is simple if each SX = {@X} where @X is an interpolative
topogenous order, we obtain the following proposition.

4.2. Proposition. Let S and S ′ be simple syntopogenous structures i.e SX = {@X

},S ′X = {@′X} ⊆ INTORD(C,M). Then f is (S,S ′)-continuous if and only if f(m) @′Y
n⇒ m @X f−1(n) for all m ∈ subX and n ∈ subY .

The next proposition is obtained from Theorem 3.3.

4.3. Proposition. If S, S ′ ∈ SYnt(C,M). Then f is (S,S ′)-continuous if and only if
for any V ∈ BS′Y there is U ∈ BSX such that f(U(m)) ≤ V (f(m)) for all m ∈ subX.
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Proof. Assume that f : X −→ Y is (S,S ′)-continuous and S, S ′ ∈ SYnt(C,M). Then
for any V ∈ BS′Y , there is @′Y∈ S ′Y which determines V and there is @X∈ SX such
that f(m) @′Y n ⇒ m @X f−1(n). Now U(m) = U@

X(m) =
∧
{p | m @X p} ≤∧

{f−1(n) | f(m) @′Y n} = f−1(V (f(m))) ⇒ U(m) ≤ f−1(V (f(m)) ⇔ f(U(m)) ≤
V (f(m)). Conversely, assume that for any V ∈ BSY there is U ∈ BSX such that f(U(m)) ≤
V (f(m)). Now, for any @′Y∈ S ′Y , there is, by Theorem 3.3, V ∈ BS such that @Y =@V .
Thus f(m) @′Y n ⇔ V (f(m)) ≤ n ⇒ f(U(m)) ≤ n ⇔ U(m) ≤ f−1(n) ⇔ m @U

X

f−1(n)⇔ m @X f−1(n).

The proposition above provides us with the next definition.

4.4. Definition. Let U , U ′ ∈ QUnif(C,M) and f : X −→ Y a C-morphism. f is
(U , U ′)-continous if for any U ′ ∈ U ′Y , there is U ∈ UX such that f(U(m)) ≤ U ′(f(m))
for all m ∈ subX.

Propositions 4.2 and Corollary 2.7 allow us to prove the following.

4.5. Proposition. Let S and S ′ be simple and co-perfect syntopogenous structures i.e
SX = {@X},S ′X = {@′X} ⊆

∧
−INTORD(C,M). Then f is (S,S ′)-continuous if and

only if f(c@X(m)) ≤ c@
′

X (f(m)) for all m ∈ subX.

4.6. Definition. [DT-1995] Let c, c′ ∈ CL(C,M) and f : X −→ Y a C-morphism. f is
(c, c′)-continuous if f(cX(m)) ≤ c′X(f(m)) for all m ∈ subX.

For a syntopogenous structure S on C and a class F of C-morphisms, we ask if there
is a coarsest syntopogenous structure S ′ on C for which every morphism in F is (S ′,S)-
continous. In the next theorem, we provide an answer to this question in the case F =
{ηX : X ∈ C}, for an E-pointed endofunctor (F, η) of C. Later on we shall deal with a
somehow dual case. Let us also note that a similar question has been asked in the case
of a closure operator (see [DT-1995], chapter 5). We prove that the results obtained in
([DT-1995]) can be deduced from those we prove here.

4.7. Theorem. Let (F, η) be an E-pointed endofunctor of C and S a syntopogenous struc-
ture on C with respect to M. Then SF,ηX = {@F,η

X | @FX∈ SFX} with m @F,η
X n ⇔

ηX(m) @FX p and η−1X (p) ≤ n for some p ∈ subFX is the coarsest syntopogenous struc-
ture on C with respect to M for which every ηX : X −→ FX is (SF,η,S)-continuous. If
S is interpolative (co-perfect), then SF,η is interpolative (co-perfect, respectively).

Proof. SF,η is clearly a syntopogenous structure and ηX is (SF,η,S)-continuous, since
for all @X∈ SX , ηX(m) @FX n⇒ ηX(m) @FX (ηX(η−1X (n))⇔ m @F,η

X η−1X (n).
If S ′ is another syntopogenous structure on C such that ηX is (S ′, S)-continuous, then
for any @F,η

X ∈ S
F,η
X , m @F,η

X n⇔ ηX(m) @FX p and η−1X (p) ≤ n. This implies that there is
@′X∈ S ′X such that m @′X η−1X (p) ≤ n⇒ m @′X n. Thus SF,η ≤ S ′.

If S is interpolative and m @F,η
X n, then ηX(m) @FX p and η−1X (p) ≤ n for some

p ∈ subFX. This implies that there is l ∈ subFX such that ηX(m) @FX l @FX p. Thus
ηX(m) @FX ηX(η−1X (l)) @FX p, that is m @F,η

X η−1X (l) @F,η
X n. It is also not hard to see

that SF,η is co-perfect if S has the same property.
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Viewing a reflector as endofunctor of C, one obtains the proposition below.

4.8. Corollary. Let A be E-reflective subcategory of C and S a syntopogenous structure
on A with respect toM. Then SAX = {@AFX | @FX∈ SFX} with m @AX n⇔ ηX(m) @FX p
and η−1X (p) ≤ n for some p ∈ subFX is the coarsest syntopogenous structure on C with
respect to M for which every reflection morphism ηX : X −→ FX is (SA,S)-continous.
If S is interpolative (co-perfect), then SA is interpolative (co-perfect, respectively).

Since SF,η is co-perfect provided S is co-perfect, Theorem 3.3 gives us the next propo-
sition.

4.9. Proposition. Let (F, η) be a pointed endofunctor of C and S ∈ CSYnt(C,M).
Then

BSF,ηX = {U@F,η | U@ ∈ BSFX} with U@F,η(m) = η−1X (U@(ηX(m)))

is a base for the coarsest quasi-uniformity on C with respect to M for which every
ηX : X −→ FX is (USF,η ,US)-continous. BSF,η is a transitive base provided that S is
interpolative.

Proof. (U1), (U2) and (U4) are clear. (U5) Let f : X −→ Y be a C-morphism and
U@F,η ∈ BSF,ηY for @FY∈ SFY . Then there is @FX∈ SFX such that f(V @FX (m)) ≤
U@FY (f(m)).

Thus f(V @F,η(m)) = f(η−1X (V @FX (ηX(m)))

≤ η−1Y (Ff)(V @FX (ηX(m))) Lemma 2.1

≤ η−1Y (U@FY (Ff)(ηX(m)))

= η−1Y (U@FX (ηY (f(m))) Definition 2.2

= U@F,η(f(m))

Since, for any @X∈ SX , U@F,η(m) = η−1X (U@(ηX(m))) ⇒ ηX(U@F,η(m)) ≤ U@(ηX(m)),

ηX is (USF,η , U)-continous for all X ∈ C. If S is interpolative then U@F,η(U@F,η(m)) =
U@F,η(η−1X (U@(ηX(m))) = η−1X (U@(ηX(η−1X (U@(ηX(m)))) ≤ η−1X (U@(U@(ηX(m)))) =

η−1X (U@(ηX(m))) = U@F,η(m).
Let B′ be a base for another quasi-uniformity U ′ on C such that ηX is (U ′, US)-continuous,
then for any U@ ∈ BSFX , there is U ′ ∈ B′X such that ηX(U ′(m)) ≤ U@(ηX(m))⇔ U ′(m) ≤
η−1X (U@(ηX(m))) = U@F,η(m). Thus BSF,η ≤ B′.

One sees from the proof of the above proposition that the condition of (F, η) being
E-pointed is not needed when the syntopogenous structure is co-perfect.
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4.10. Proposition. Let (F, η) be a pointed endofunctor of C and S be simple and co-
perfect syntopogenous structures i.e SX = {vX} ∈

∧
−INTORD(C,M). Then c@

F,η
(m) =

η−1X (c@FX(ηX(m))) is an idempotent closure operator. It is the largest closure operator on

C for which every ηX : X −→ FX is (c@
F,η
, c@)-continuous.

The above closure operator was first introduced on the category of topological spaces
and continuous maps by L. Stramaccia ([LS-1988]), then on topological categories by
D. Dikranjan ([DI-1992]) and later on an arbitrary category by Dikranjan and Tholen
([DT-1995]). It is a special case of the pullback closure studied by D. Holgate in [DH-
1995, DH-1996].

4.11. Corollary. Let A be a reflective subcategory of C and S a co-perfect syntopoge-
nous structure on A with respect to M. Then

BAX = {U@A | U@ ∈ BSFX} with U@A
(m) = η−1X (U@(ηX(m)))

is a base for the coarsest quasi-uniformity on C with respect toM for which every reflection
morphism ηX : X −→ FX is (USA , US)-continous. BSA is a transitive base provided that
SF,η is interpolative.

Corollary 4.11 allows us to obtain the quasi-uniform structure induced by any reflective
subcategory of QUnif and to conclude that it is the initial quasi-uniformity for which
the reflection map is quasi-uniformly continous (see Example 6.1).

4.12. Theorem. Let (G, ε) be a M-copointed endofunctor of C and S a syntopogenous
structure on C, then SG,εX = {@G,ε

X | @GX∈ SGX} with m @G,ε
X n ⇔ ε−1X (n) @GX ε−1X (n)

for all m ∈ subX and n ≥ m, is the finest syntopogenous structure on C for which every
εX : GX −→ X is (S,SG,ε)-continuous.

Proof. A routine check shows that SG,ε is a syntopogenous structure on C. For all X ∈ C,
εX : GX −→ X is (S, SG,ε)-continuous, since for any @G,ε

X ∈ S
G,ε
X and m,n ∈ subX with

n ≤ m, m @G,ε
X n⇒ ε−1X (n) @GX ε−1X (n).

If S ′ is another syntopgenous structure on C such that εX is (S,S ′)-continuous, then
for any @X∈ S ′X , m @′X n ⇒ εX(ε−1X (m)) @′X n ⇒ ∃ @GX∈ SGX | ε−1X (m) @X ε−1X (n) ⇔
m @G,ε

X n.

4.13. Corollary. Let A be an M-coreflective subcategory of C and S a syntopogenous
structure on A, then SAX = {@AX | @GX∈ SGX} with m @AX n ⇔ ε−1X (n) @GX ε−1X (n)
for all m ∈ subX and n ≥ m, is the finest syntopogenous structure on C for which every
coreflection εX : GX −→ X is (S,SA)-continuous.

4.14. Proposition. Assume that f−1 commutes with the join of subobjects for any f ∈
C. Let (G, ε) be an M-copointed endofunctor of C and S ∈CSYnt(C,M). Then

BSG,εX = {V @G,ε | V @ ∈ BSGX} with V @F,ε
X (m) = m ∨ εX(V @(ε−1X (m)))

is a base for the finest quasi-uniformity on C which makes every εX (V ,VG,ε)-continous.
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Proof. It is not hard to check that BSG,εX is a base for a quasi-uniformity on C. Since
εX(V @(ε−1X (m))) ≤ V @G,ε(m)⇔ V @(ε−1X (m)) ≤ ε−1X (V @G,ε(m)), εX is (V ,VSG,ε)-continous.
Let B′ be base for another quasi-uniformity V ′ on C such that εX is (V ,V ′)-continuous.
Then for all V ′ ∈ V ′X , there is V ∈ VGX such V (ε−1X (m)) ≤ ε−1X (V ′(m))⇔ εX(V (ε−1X (m)))

≤ V ′(m)⇒ m ∨ εX(V (ε−1X (m))) ≤ V ′(m)⇔ V @G,ε(m) ≤ V ′(m). Thus B′ ≤ BG,ε.

4.15. Proposition. Let (G, ε) be a copointed endofunctor of C and S be simple and
co-perfect syntopogenous structure i.e SX = {@X} ∈

∧
−INTORD(C,M), then for all

m ∈ subX, c@
G,ε

(m) = m ∨ εX(c@GX(ε−1X (m))) is is an idempotent closure operator on C.
It is the least closure operator for which every εX : GX −→ X is (c, cG,ε)-continuous.

4.16. Corollary. Assume that f−1 commutes with the join of subobjects for any f ∈ C.
Let A be an M-coreflective subcategory of C and S a syntopogenous A. Then

BAX = {V @A | V @ ∈ BSGX} with V @A
(m) = m ∨ εX(V @(ε−1X (m))

is a base for finest quasi-uniformity on C which makes every coreflection morphism εX
(V ,VA)-continous.

5. The continuity of functors with respect to quasi-uniform structures

Let A be a category endowed with an (E ′,M′)-factorization system for morphisms and
A be M′-complete.

5.1. Definition. [DT-1995] A functor F : A −→ C is said to preserve subobjects pro-
vided that Fm is an M-subobject for every M′-subobject m. It preserves inverse images
(resp. images) of subobjects if Ff−1(n) = (Ff)−1(Fn) (resp. (Ff)(Fm) = F (f(m))) for
any A-morphism f : X −→ Y and subobjects n ∈ subY , m ∈ subX.

5.2. Definition. Let F : A −→ C be a functor that preserves subobjects, U ∈
QUnif(A,M′) and V ∈ QUnif(C,M). Then F is (U , V)-continuous if for all V ∈ VFX ,
there is U ∈ UX such that FU(m) ≤ V (Fm) for all m ∈ subX, X ∈ A.

It can be easily seen that our definition for (U , V)-continuity of F is a generalization
of U -continuity of morphisms to functors. Using Theorem 3.3, we can formulate an
equivalent definition of the (U , V)-continuity of F in terms of co-perfect syntopogenous
structures so that F is (S,S ′)-continuous will mean that F is continuous with respect to
the quasi-uniform structures associated with S and S ′.

5.3. Proposition. Let F : A −→ C be a functor that preseves subobjects, S ∈
CSYnt(A,M′) and S ′ ∈CSYnt(C,M). Then F is (S, S ′)-continuous if for all @′FX∈
S ′FX , there is @X∈ SX such that FU@(m) ≤ U@′

(Fm) for all m ∈ subX, X ∈ A.

Continuity of a functor between categories supplied with fixed closure operators has
been studied in [DT-1995]. We next use the above proposition together with Corollary 2.7
and the fact that

∧
−INTORD(C,M) is equivalent to the simple co-perfect syntopogenous

structures to produce the (U , V)-continuity of F in terms of idempotent closure operators.
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5.4. Proposition. Let F : A −→ C be a functor that preseves subobjects,
S ∈ CSYnt(A,M′) and S ∈ CSYnt(C,M) with S and S ′ being simple i.e SX = {@X} and
S ′FX = {@′FX}. Then F is (S, S ′)-continuous if and only if for all Fc@X(m) ≤ c@

′

FX(Fm)
for all m ∈ subX, X ∈ A.

5.5. Definition. [DT-1995] Let F : A −→ C a faithful functor. F is called a fibration if
every g : A −→ FY has an F -initial (F -cartesian) lifting. If we require the existence of
an F -cartesian lifting of g : A −→ FY only if g ∈M, then F is called an M-fibration.

Let us denote by IniF the class of all F -initial morphisms in A. Then for an M-
fibration F : A −→ C, (EF ,MF ) where EF = F−1E = {e ∈ C | Fe ∈ E} and
MF = F−1M

⋂
IniF is a factorization system in A and M-subobject properties in

C are inherited by MF -subobjects in A.
In particular,

(1) A has MF -pullbacks if C has M-pullbacks.

(2) A is MF -complete if C is M-complete.

(3) the MF -images and MF -inverse images are obtained by initially lifting M-images
and M-inverse images. Consequently F preserves images and inverse images of
subobjects.

5.6. Lemma. [DT-1995] Let F : A −→ C be a faithful M-fibration.

(1) For any X ∈ A, subX and subFX are order equivalent with the inverse assignments,
γX : subX −→ subFX and δX : subFX −→ subX, given by γX(m) = Fm and
δX(n) = p with Fp = n and p ∈ IniF .

(2) For any f : X −→ Y ∈ A and suitable subobjects n,m, n′ and m′.

(1) γY (f(m)) = (Ff)(γX(m)).

(2) f(δX(n)) = δY (Ff)(n).

(3) f−1(δY (m′)) = δX((Ff)−1(m′)).

(4) γX(f−1(n′)) = (Ff)−1(γY (n′)).

5.7. Proposition. Let F : A −→ C be faithful M-fibration and S be a syntopogenous
structure on C with respect to M. Then

SFX = {@F
X | @FX∈ SFX} where m @F

X n⇔ Fm @FX γX(n)

is a syntopogenous structure on A with respect to MF which is interpolative, co-perfect
provided S has the same properties. Moreover, an A-morphism f is SF -initial provided
Ff is S-initial.
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5.8. Theorem. Let F : A −→ C be a faithful M-fibration and B be a base for a quasi-
uniform structure on C with respect toM. Then BFX = {UF | U ∈ BFX} where UF (m) =
δX(U(Fm)) is a base for quasi-uniformity on A with respect to MF . It is the coarsest
quasi-uniformity for which F is (UF ,U)-continuous. BF is transitive provided that B is a
transitive base. Moreover an A-morphism f is UF -initial provided Ff is S-initial.

Proof. It is clear that BF is a base for a quasi-uniformity on A which is transitive if B is
transitive. F is (UF ,U)-continuous, since for any U ∈ BFX , UF (m) = δX(U(Fm)) ⇔
γX(UF (m)) = U(Fm) ⇔ F (UF (m)) = U(Fm). If B′ is a base for another quasi-
uniformity U ′ on A such that F is (U ′,U)-continuous, then for all UF ∈ BFX , there
is U ′ ∈ B′ such that FU ′(m) ≤ U(Fm) = FUF (m). Thus U ′(m) = δX(FU ′(m)) ≤
δX(FUF (m)) = UF (m), that is BF ≤ B′. If Ff is U -initial and UF ∈ UFX , there is U ′ ∈
UFY such that (Ff)−1(U ′(Ff)(p)) ≤ U(p) for all p ∈ subFX. Now f−1(U ′F (f(m))) =
f−1(δY (U ′(Ff(m))))
= δX((Ff)−1(U ′(Ff(m)))) = δX((Ff)−1(U ′((Ff)(Fm)))) ≤ δX(U(Fm)) = UF (m) for
all m ∈ subX.

5.9. Corollary. Under the assumptions of Theorem 5.8 and F is essentially surjective
on objects, then B is the base of the finest quasi-uniformity on C for which F is (UF ,U)-
continous.

Proof. By essential surjectivity of F on objects, we have that for all Y ∈ C, Y ∼= FX
for some X ∈ A. Thus if B′ is another quasi-uniformity on C such that F is (UF ,U ′)-
continuous, then for all Y ∈ C and U ′ ∈ U ′Y , there is X ∈ A and UF ∈ BF such that
Y ∼= FX and FUF (m) ≤ U ′(Fm) ⇔ U(Fm) = FδX(U(Fm)) ≤ U ′(Fm) = U ′(Fm).
Thus B′ ≤ B.

5.10. Proposition. Let F : A −→ C be a faithful M-fibration and S be a simple co-
perfect syntopogenous structure on C with respect to M i.e S = {@X} ∈

∧
−INTORD.

Then c@
F

(m) = δX(c@(Fm)) is an idempotent closure operator on A with respect to MF .
It is the largest closure operator on A for which F is (c@

F
, c@)-continuous.

Proof. It is easily seen that c@
F

is a closure operator for any simple co-perfect syntopoge-
nous structure S. Now, c@

F
(c@

F
(m)) = c@

F
(δX(c@FX(Fm))) = δX(c@FX(FδX(c@(Fm)))) =

δX(c@FX(c@FX(Fm))) = δX(c@FX(Fm)) = c@
F

(m), thus c@
F

is idempotent. F is (c@
F
, c@)-

continuous since, γX(c@
F

(m)) = c@(Fm) ⇔ Fc@
F

(m) = c@(Fm). If c′ is another clo-
sure operator on A such that F is (c′, c@)-continuous, then Fc′X(m) ≤ c@(Fm). Thus
c′X(m) = δX(F (cX(m)) ≤ δX(c@FX(Fm)) = c@

F

X (m).

The closure operator in Proposition 5.10 was already obtained in [DT-1995] without
use of the methods of syntopogenous structures. The interested reader will, in this book,
find a number of examples for such closure.

5.11. Theorem. Let F a G : C −→ A be adjoint functors and B be a base for a
quasi-uniformity U ∈ QUnif(C,M). Assume that G and F preserve subobjects. Then
BηX = {Uη | U ∈ BFX} with Uη(m) = η−1X (GU(Fm)) for any X ∈ A is a base for a
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quasi-uniformity on A. Bη is a base for the coarsest quasi-uniformity for which F is
(Uη,U)-continuous.

Proof. Let us first note that (U1), (U2) and (U4) are easily seen to be satisfied by
adjointness. For (U5), let X −→ Y be a A-morphism and Uη ∈ Uη for any U ∈ UY . Then
there is V ∈ UX such that f(V (m)) ≤ U(f(m)).

Thus f(V η(m)) = f(η−1X (GV (Fm))))

≤ η−1Y (GFf)(GV (Fm))) Lemma 2.1

≤ η−1X (G(Ff)(V (Fm)))

≤ η−1Y (GU((Ff)(Fm))) U -continuity of Ff

= η−1Y (GU(Ff(m)))

= Uη(f(m)).

F is (Uη,U)-continuous, since for any U ∈ UFX , FUη(m) ≤ U(Fm) for any X ∈ C. Let
B′ be a base for another quasi-uniformity U on C such that F is (U ′,U)-continuous. Then
for any Uη ∈ BηX , there is U ′ ∈ B′X such that FU ′(m) ≤ U(Fm). Thus ηX(U ′(m)) ≤
GFU ′(m) ≤ GU(Fm) ⇒ ηX(U ′(m)) ≤ GU(Fm)) ⇔ U ′(m) ≤ η−1X (GU(Fm)) = Uη(m),
that is Uη ≤ U ′.

If A is a reflective subcategory of C, then BA and Bη are equivalent.

5.12. Proposition. Let F a G : C −→ A be adjoint functors and S ∈ CSYnt(C,M).
Assume that G and F preserves subobjects. Then Sη = {@η

X | @FX∈ SFX} with
m @η

X n ⇔ η−1X (GU@(Fm)) ≤ n is a coperfect syntopogenous structure on A. It is the
coarsest syntopogenous structure for which F is (Sη,S)-continuous.

5.13. Proposition. Under the assumptions of Proposition 5.12, if S ∈ CSYnt(C,M)
and simple i.e S = {@X} ∈

∧
−INTORD(C,M) ∼= ICL(C,M). Then c@

η

X (m) =
η−1X (Gc@FX(Fm)) is an idempotent closure operator on A. It is the largest closure op-
erator for which F is (c@

η
, c@)-continuous.

6. Examples

1. Let QUnifo be the category of To quasi-uniform spaces and quasi-uniformly con-
tinuous maps with (surjective, embeddings)-factorization system. It is known that
bQUnifo (see e.g [GB-1997]), the category of bicomplete quasi-uniform spaces and
quasi-uniformly continuous maps is an epi-reflective subcategory of QUnifo. Let
(F, η) be the bicompletion reflector into QUnifo. For any (X,U) ∈ QUnifo,

ηX : (X,U) −→ (X̃, Ũ) takes each x ∈ X to its neighbourhood filter in the
topology induced by the join of U and its inverse. It is known that ηX is a
quasi-uniform embedding. Details about this can be found in [FL-1982]. Now,
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BF,η = {UF,η | Ũ ∈ ŨX̃} where UF,η = {(x, y) ∈ X ×X | (ηX(x), ηX(y)) ∈ Ũ} is a
base for the quasi-uniform structure UF,η on X. Since ηX is quasi-uniform embed-
ding, UX is the initial quasi-uniformity for which ηX is quasi-uniformly continuous.
Thus UF,ηX = UX .

2. The category Unif of uniform spaces and quasi-uniformly continuous maps is core-
flective in QUnif . Let (G, ε) be the coreflector into Unif . For any (X,U) ∈ QUnif ,
εX : (X,U

∨
U−1) −→ (X,U) is an identity map. Since U

∨
U−1 is the finest quasi-

uniformity on X for which εX is quasi-uniformly continuous, UG,εX = U
∨
U−1

3. Consider TopGrp2 the category of Hausdorff topological groups and continuous
group homomorphisms with the (surjective, injective)-factorization structure. We
know from [NB-1998] that the category cTopGrp2 of complete Hausdorff topolog-
ical groups (those topological groups which are complete with respect to the two-
sided uniformity) is coreflective in TopGrp2. Let (F, η) be the completion reflector
into TopGrp2 and for any (X, ·) ∈ cTopGrp, let β(e) be the neighbourhood filter of
the identity element e. For all U ∈ β(e), put Uc = {(x, y) ∈ X×X : y ∈ xU ∩Ux}
so that BcX = {U c | U ∈ β(e)} is a base for the two-sided uniformity U c on
(X; ·; T }. Since ηX is again an embedding of (X, ·, T ) ∈ TopGrp2 into its comple-

tion (X̃; ·̃, T̃ ), we have that UF,η = Uc.

4. The forgetful functor
F : TopGrp −→ Grp

is a mono-fibration. Thus by Proposition 5.7, every syntopogenous structure on
Grp can be initially lifted to a syntopogenous structure on TopGrp.

5. Consider the functors G : QUnif −→ Top which sends every quasi-uniform space
(X,U) to the topological space (X,G(U)) with G(U), the topology induced by U ,
obtained by taking a base of neighbouhoods at a point x the filter {U [x] | U ∈ U}
where U [x] = {y ∈ X : (x, y) ∈ U} and F : Top −→ Qunif which sends every
topological space (X, T ) to the finest quasi-uniformity U on X with G(U) = T . It
is known (see e.g [DK-2000]) that F is left adjoint to G. For any (X, T ) ∈ Top,
the unit ηX : (X, T ) −→ (X,GF (T )) is a continuous map where (X,GF (T )) is the
set X endowed with the topology of the finest quasi-uniformity (X,F (T )). Now
S(X,U) = {@U

X | U ∈ U} where A @U B ⇔ U(A) ⊆ B for any A,B ⊆ X is a co-
perfect syntopogenous structure on Qunif for any (X,U) ∈ Qunif . Let (X, T ) ∈
Top, A @η

X B ⇔ η−1X (GU(FA)) ⊆ B for any U ∈ UX . But η−1X (GU(FA)) =
η−1X (GU(A)), η−1X (GU(A)) is a neighbourhood of A in T . Thus SX = {@η

X | X ∈
Top} with A @η

X B ⇔ V ⊆ B where V a is neighbourhood of A in T so that
A @η

X B ⇔ A ⊆ O ⊆ B for some O ∈ T .

6. Let Top be the category of topological spaces and continuous maps with its (surjec-
tions, emdeddings)-factorization structure. It is well known that Topo, the category
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of To-topological spaces and continuous maps is a epi-reflective subcategory of Top.
Define SX = {@Xo | Xo ∈ Topo} by A @Xo B ⇔ A ⊆ B for any Xo ⊆ Topo,
A,B ⊆ Xo. Let (F, η) be the reflector into Top. For any X ∈ Top, ηX : X −→
X/ ∼ takes each x ∈ X to its equivalence class [x] = {y ∈ X | {x} = {y}}. Thus
SX = {@F,η

X | X ∈ Top} with A @F,η
X B ⇔ η−1X (ηX(A)) ⊆ B A,B ⊆ X.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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