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EXPONENTIABILITY IN CATEGORIES OF RELATIONAL
STRUCTURES

JASON PARKER

Abstract. For a relational Horn theory T, we provide useful sufficient conditions
for the exponentiability of objects and morphisms in the category T-Mod of T-models;
well-known examples of such categories, which have found recent applications in the
study of programming language semantics, include the categories of preordered sets and
(extended) metric spaces. As a consequence, we obtain useful sufficient conditions for
T-Mod to be cartesian closed, locally cartesian closed, and even a quasitopos; in par-
ticular, we provide two different explanations for the cartesian closure of the categories
of preordered and partially ordered sets. Our results recover (the sufficiency of) certain
conditions that have been shown by Niefield and Clementino–Hofmann to characterize
exponentiability in the category of partially ordered sets and the category V -Cat of small
V -categories for certain commutative unital quantales V .

1. Introduction

An object X of a category C with finite products is exponentiable if the product functor
X × (−) : C → C has a right adjoint, while a morphism f : X → Y of a category C
with finite limits is exponentiable if the object f : X → Y of the slice category C /Y is
exponentiable, or equivalently if the pullback functor f ∗ : C /Y → C /X has a right ad-
joint (see [13, Corollary 1.2]). A category with finite products is cartesian closed if every
object is exponentiable, and a category with finite limits is locally cartesian closed if every
morphism is exponentiable. The exponentiable objects and morphisms of many different
categories have been studied and characterized in the literature. For example, the ex-
ponentiable objects in the category Top of topological spaces and continuous maps were
characterized by Day and Kelly in [7]. In [13], Niefield characterized the exponentiable
morphisms of Top and also of the categories Unif and Aff of respectively uniform spaces
and affine schemes, while in [14] Niefield characterized the exponentiable morphisms of
the category Pos of partially ordered sets and monotone maps. In [3, 4], Clementino and
Hofmann characterized the exponentiable objects and morphisms of the category V -Cat
of (small) V -categories and V -functors for a commutative unital quantale V whose un-
derlying complete lattice is a complete Heyting algebra. In particular, they characterized
the exponentiable objects and morphisms of many categories of (pseudo-)metric spaces.
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More generally, Clementino, Hofmann, and Stubbe characterized in [5] the exponentiable
objects and morphisms of the category Q-Cat of Q-enriched categories and functors for a
(small) quantaloid Q.

The present paper provides a further contribution to the study of exponentiability, in
the context of categories of relational structures, which have recently attracted interest in
the study of programming language semantics (see [9, 12]). Specifically, we provide useful
sufficient conditions for the exponentiability of objects and morphisms in the category
T-Mod of T-models for a relational Horn theory T. As we recall in Example 3.9, prominent
examples of such categories include: the categories Preord and Pos of preordered and
partially ordered sets (with monotone maps); for a commutative unital quantale V , the
categories V -Gph, V -RGph, V -Cat, PMetV , and MetV of respectively (small) V -graphs,
reflexive V -graphs, V -categories, pseudo-V -metric spaces, and V -metric spaces. Our
results recover (the sufficiency of) the conditions for exponentiability established for Pos
(by Niefield) and for V -Cat (by Clementino–Hofmann). We also provide useful sufficient
conditions for categories of relational structures to be cartesian closed, locally cartesian
closed, and even quasitoposes. In particular, we offer two different explanations for why
the categories Preord and Pos of preordered and partially ordered sets are cartesian closed.

We now outline the paper. After recalling some categorical background in §2 about
exponentiability (in particular, a useful characterization of exponentiability of morphisms
established by Dyckhoff and Tholen in [8]), in §3 we recall some relevant background on
relational Horn theories and categories of relational structures from [15] (and [9]). In §4
we first show that if Π is any relational signature, then the category Str(Π) of Π-structures
and Π-morphisms is always locally cartesian closed, and even a quasitopos (Theorem 4.5).

In §5 we begin to study exponentiability in T-Mod for a relational Horn theory T over
a relational signature Π; unlike the situation for Str(Π), in general T-Mod is not even
cartesian closed, let alone locally cartesian closed or a quasitopos (however, T-Mod is al-
ways symmetric monoidal closed ; see Remark 3.12). In many examples of relational Horn
theories, the relational signature Π carries a (pointwise) preorder that manifests in the
axioms of the theory, and so we consider preordered relational signatures (Definition 5.3).
We say that a preordered relational signature Π is discrete or a complete Heyting algebra
if the (pointwise) preorder on Π is respectively discrete or a complete Heyting algebra.

In §6 we identify a useful sufficient condition for objects and morphisms of T-Mod to
be exponentiable, which we call convexity (Definition 6.1), when T is a reflexive relational
Horn theory over a discrete relational signature Π. Central examples of such relational
Horn theories include the theories for preordered and partially ordered sets; in particular,
a morphism of preordered or partially ordered sets is convex iff it is an interpolation-lifting
map in the sense of Niefield [14, Definition 2.1] (see Example 6.2). When the axioms of
T have certain properties (see Definition 6.8), we can show that all morphisms (or at
least objects) of T-Mod are convex and hence exponentiable, thus allowing us to establish
useful sufficient conditions for the (local) cartesian closure of T-Mod, and for T-Mod to
be a quasitopos (Theorems 6.15 and 6.17). In Examples 6.16 and 6.21 we provide two
explanations for the cartesian closure of the categories Preord and Pos of preordered and



EXPONENTIABILITY IN CATEGORIES OF RELATIONAL STRUCTURES 495

partially ordered sets.
In §7 we identify a useful sufficient condition for objects and morphisms of T-Mod

to be exponentiable, which we again call convexity (Definition 7.3), when T is a certain
general kind of relational Horn theory over a preordered relational signature Π that is
(pointwise) a complete Heyting algebra. Again, when the axioms of T have certain prop-
erties (Definition 7.10), we can show that all morphisms (or at least objects) of T-Mod
are exponentiable, thus allowing us to provide useful sufficient conditions for the (local)
cartesian closure of T-Mod, and for T-Mod to be a quasitopos (Theorems 7.16 and 7.17).
Our results in §7 recover a known sufficient condition for a morphism of V -Cat (i.e. a
V -functor) to be exponentiable, where V is a commutative unital quantale whose under-
lying complete lattice is a complete Heyting algebra (see Example 7.4; this condition is
also necessary for exponentiability, as shown in [3, Theorem 3.4]). In Remark 7.18 we
discuss some further questions that could be pursued.

2. General categorical background

We first recall some general categorical background that we shall require.

2.1. An object C of a category C with finite products is exponentiable if the functor
C × (−) : C → C has a right adjoint (−)C : C → C . A morphism f : C → D of a
category C with finite limits is exponentiable if it is exponentiable as an object of the
slice category C /D; equivalently, if the pullback functor f ∗ : C /D → C /C has a right
adjoint (see [13, Corollary 1.2]). A category C is cartesian closed (resp. locally cartesian
closed) if it has finite products (resp. finite limits) and every object (resp. morphism) of C
is exponentiable. In particular, every locally cartesian closed category is cartesian closed
(since an object C is exponentiable iff the unique morphism !C : C → 1 is exponentiable).

2.2. Let C be a category with finite limits, let f : X → Z be a morphism of C , and let
Y be an object of C . A partial product of Y over f [8] is an object P = P (Y, f) equipped
with morphisms p : P → Z and ε : P ×Z X → Y satisfying the universal property that
for all morphisms q : Q→ Z and g : Q×ZX → Y , there is a unique morphism h : Q→ P
such that p ◦ h = q and ε ◦ (h×Z 1X) = g, as in the following commutative diagram:

Y P ×Z X X

Q×Z X

P Z

Q

π2

π1

p

f

ε

h q

h×Z1Xg
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We say that C has all partial products over f if every object of C has a partial product
over f . By [8, Lemma 2.1], a morphism f of C is exponentiable iff C has all partial
products over f .

2.3. A concrete category (over Set) is a category C equipped with a faithful functor
| − | : C → Set, and the fibre of a set S is the (preordered) class of objects X of C with
|X| = S (see [1, Definition 5.4]). A concrete category C is fibre-small if the fibre of each
set is small (see [1, Definition 5.4]), and it is well-fibred if it is fibre-small and every set
with at most one element has exactly one element in its fibre (see [1, Definition 27.20]).
A concrete category C admits constant morphisms if for all objects X and Y of C , every
constant function |X| → |Y | lifts to a C -morphism X → Y .

2.4. Recall from (e.g.) [1, Definition 28.7] that a category is a quasitopos if it is finitely
complete and finitely cocomplete, locally cartesian closed, and has a weak subobject
classifier (i.e. a classifier of strong subobjects; we shall not need an explicit definition).
In particular, if C is a concrete category that is topological over Set (see [1, §21] for an
explicit definition, which we also shall not need), then C is complete and cocomplete
and has a weak subobject classifier by [10, III.4.J], which is obtained by equipping the
subobject classifier of Set (i.e. any two-element set) with the indiscrete structure. So a
topological category over Set is a quasitopos iff it is locally cartesian closed.

3. Background on categories of relational structures

We now review relational Horn theories and their categories of models; much of the content
of this section is taken from the author’s work [15, §3 and §4]; see also [9, §3].

3.1. Definition. A relational signature is a set Π of relation symbols equipped
with an assignment to each relation symbol of a finite arity, i.e. a natural number n ≥ 1.
We shall usually write R for an arbitrary relation symbol.

We fix a relational signature Π for the rest of §3. Throughout the paper, we also fix
an infinite set of variables Var.

3.2. Definition. Let S be a set. A Π-edge in S is a pair (R, (s1, . . . , sn)) consisting of a
relation symbol R ∈ Π (of arity n ≥ 1) and an n-tuple (s1, . . . , sn) ∈ Sn. A Π-structure
X consists of a set |X| equipped with a subset RX ⊆ |X|n for each relation symbol R ∈ Π
(of arity n ≥ 1). We can also describe a Π-structure X as a set |X| equipped with a
set E(X) of Π-edges in |X|: if R ∈ Π of arity n ≥ 1, then (x1, . . . , xn) ∈ RX iff E(X)
contains the Π-edge (R, (x1, . . . , xn)). We shall often write X |= Rx1 . . . xn instead of
(x1, . . . , xn) ∈ RX .

When R is a binary relation symbol (i.e. its arity is 2), we shall also sometimes write
X |= x1Rx2 rather than X |= Rx1x2.
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3.3. Definition. Let h : S → T be a function from a set S to a set T , and let e =
(R, (s1, . . . , sn)) be a Π-edge in S. We write h · e = h · (R, (s1, . . . , sn)) for the Π-edge
(R, (h(s1), . . . , h(sn))) in T . For a set E of Π-edges in S, we write h · E for the set of
Π-edges {h · e | e ∈ S} in T . A (Π-)morphism h : X → Y from a Π-structure X to a
Π-structure Y is a function h : |X| → |Y | satisfying h · E(X) ⊆ E(Y ). We then have the
concrete category Str(Π) of Π-structures and their morphisms.

We now turn to the syntax of relational Horn theories.

3.4. Definition. A relational Horn formula (over Π) is an expression Φ =⇒ ψ,
where Φ is a set of Π-edges in Var and ψ is a (Π ∪ {=})-edge in Var, for a binary relation
symbol = not in Π. If Φ = {φ1, . . . , φn} is finite, then we write φ1, . . . , φn =⇒ ψ, and if
Φ = ∅, then we write =⇒ ψ. A relational Horn formula without equality (over
Π) is a relational Horn formula Φ =⇒ ψ (over Π) such that ψ does not contain =.

We shall typically write Π-edges in Var as Rv1 . . . vn
1 rather than (R, (v1, . . . , vn)), and

when R ∈ Π has arity 2, we shall typically write v1Rv2 rather than Rv1v2.

3.5. Definition. For any (Π ∪ {=})-edge φ ≡ Rv1 . . . vn in Var, we define Var(φ) :=
{v1, . . . , vn}. If Φ is a set of (Π∪ {=})-edges in Var, then we set Var(Φ) :=

⋃
φ∈Φ Var(φ).

3.6. Definition. A relational Horn theory T (without equality) is a set of re-
lational Horn formulas (without equality) over Π, which we call the axioms of T. We
shall assume throughout that if Φ =⇒ v1 = v2 is an axiom of T with equality, then
Var(Φ) = {v1, v2}.2

3.7. Definition. Let X be a Π-structure. We define a (Π ∪ {=})-structure X by
∣∣X∣∣ :=

|X| and E
(
X
)
:= E(X) ∪ {(=, (x, x)) | x ∈ |X|}. A valuation in X is a function

κ : Var → |X|. We say that X satisfies a relational Horn formula Φ =⇒ ψ if X |= κ · ψ
for every valuation κ in X such that X |= κ · φ for each φ ∈ Φ. A model of a relational
Horn theory T (or T-model) is a Π-structure that satisfies all axioms of T. We let T-Mod
be the full subcategory of Str(Π) spanned by the T-models, so that T-Mod is a concrete
category.

3.8. Remark. Let X be a Π-structure, and let φ be a (Π ∪ {=})-edge in Var. It is
clear that if κ, κ′ : Var → |X| are valuations that agree on Var(φ) but may not agree on
variables in Var \ Var(φ), then X |= κ · φ iff X |= κ′ · φ. Hence, we shall often specify
valuations simply by defining their values on a specific subset of Var of interest, with the
understanding that the valuation is defined arbitrarily on variables outside of this specific
subset.

1We emphasize that the notation Rv1 . . . vn is not meant to suggest that the variables v1, . . . , vn are
pairwise distinct; i.e. we may have vi ≡ vj for distinct 1 ≤ i, j ≤ n.

2This mild but simplifying assumption (which is satisfied by all the examples of Example 3.9) is
explicitly invoked in the proofs of Theorems 6.4 and 7.7.
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3.9. Example. We have the following central examples of relational Horn theories:

1. If T is the empty relational Horn theory, then of course T-Mod = Str(Π). In particular,
if Π is empty, then T-Mod = Set.

2. Let Π have a single binary relation symbol ≤, and let T be the relational Horn theory
over Π that contains the axioms =⇒ x ≤ x and x ≤ y, y ≤ z =⇒ x ≤ z. Then T-Mod
is the concrete category Preord of preordered sets and monotone functions. If one adds
the additional axiom x ≤ y, y ≤ x =⇒ x = y, then the category of models of the
resulting relational Horn theory is the concrete category Pos of posets and monotone
functions.

3. The following examples derive from [11, 18]. Let (V ,≤,⊗, k) be a commutative unital
quantale [16], i.e. (V ,≤) is a complete lattice and (V ,⊗, k) is a commutative monoid
and ⊗ preserves all suprema in each variable. A V -graph or V -valued relation (X, d)
is a set X equipped with a function d : X × X → V . A reflexive V -graph is a V -
graph (X, d) satisfying d(x, x) ≥ k for all x ∈ X. A V -category is a reflexive V -graph
(X, d) satisfying d(x, z) ≥ d(x, y) ⊗ d(y, z) for all x, y, z ∈ X. A pseudo-V -metric
space is a V -category (X, d) satisfying d(x, y) = d(y, x) for all x, y ∈ X. Finally, a
V -metric space is a pseudo-V -metric space (X, d) satisfying d(x, y) ≥ k =⇒ x = y for
all x, y ∈ X. If (X, dX) and (Y, dY ) are V -graphs, then a V -functor or V -contraction
h : (X, dX) → (Y, dY ) is a function h : X → Y such that dX(x, x

′) ≤ dY (h(x), h(x
′)) for

all x, x′ ∈ X. We let V -Gph be the concrete category of V -graphs and V -functors, and
we let V -RGph (resp. V -Cat, PMetV , MetV ) be the full subcategory of V -Gph consisting
of the reflexive V -graphs (resp. the V -categories, the pseudo-V -metric spaces, the V -
metric spaces).

Let ΠV have binary relation symbols ∼v for all v ∈ V . We let TV -Gph be the relational
Horn theory over ΠV that consists of the axioms x ∼v y =⇒ x ∼v′ y for all v, v′ ∈ V
with v ≥ v′, together with the axioms {x ∼vi y | i ∈ I} =⇒ x ∼∨

i vi
y for all

small families (vi)i∈I of elements of V . We let TV -RGph be the relational Horn theory
over ΠV that extends TV -Gph by adding the single axiom =⇒ x ∼k x. We let TV -Cat

be the relational Horn theory over ΠV that extends TV -RGph by adding the axioms
x ∼v y, y ∼v′ z =⇒ x ∼v⊗v′ z for all v, v′ ∈ V . We let TPMetV be the relational Horn
theory over ΠV that extends TV -Cat by adding the axioms x ∼v y =⇒ y ∼v x for
all v ∈ V . Finally, we let TMetV be the relational Horn theory over ΠV that extends
TPMetV by adding the single axiom x ∼k y =⇒ x = y. It is shown in [15, Appendix] that
TV -Gph-Mod (resp. TV -RGph-Mod, TV -Cat-Mod, TPMetV -Mod, TMetV -Mod) is isomorphic
to V -Gph (resp. V -RGph, V -Cat, PMetV , MetV )

3.

3.10. Let T be a relational Horn theory. If T is without equality, then the concrete
category T-Mod is topological over Set (see [15, Proposition 4.4] or [17, Proposition 5.1].

3The first two isomorphisms are not explicitly established in [15, Appendix], but they immediately
follow from the proofs given there.
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In general, the concrete category T-Mod is monotopological over Set (in the sense of [1,
Definition 21.38]; see [17, Proposition 5.5]). Thus, given a small diagramD : A → T-Mod,
the limit cone of D is the initial lift of the limit cone of |− |◦D in Set (see e.g. [1, 21.15]).
In particular, the functor |−| : T-Mod → Set strictly preserves small limits. The category
T-Mod is also cocomplete, and moreover locally presentable (by [2, Proposition 5.30]).
Finally, the full subcategory T-Mod ↪→ Str(Π) is (epi-)reflective by [9, Proposition 3.6],
so that every Π-structure generates a free T-model.

3.11. Let T be a relational Horn theory. In view of 3.10, the product X × Y in T-Mod
of T-models X and Y is given by |X × Y | = |X| × |Y | with

RX×Y = {((x1, y1), . . . , (xn, yn)) ∈ (|X| × |Y |)n | X |= Rx1 . . . xn and Y |= Ry1 . . . yn}

for each R ∈ Π of arity n ≥ 1, with the product projections as in Set. The terminal object
1 of T-Mod is given by |1| = {∗} and 1 |= R ∗ . . . ∗ for each R ∈ Π.

The pullback A×C B in T-Mod of T-model morphisms f : A → C and g : B → C is
given by |A×C B| = |A| ×|C| |B| = {(a, b) ∈ |A| × |B| | f(a) = g(b)} with

RA×CB = {((a1, b1), . . . , (an, bn)) ∈ |A×C B|n | A |= Ra1 . . . an and B |= Rb1 . . . bn}

for each R ∈ Π of arity n ≥ 1, with the pullback projections as in Set.

3.12. Let T be a relational Horn theory. For the remainder of the paper we shall be
concerned with providing sufficient conditions for T-Mod to be (locally) cartesian closed,
but it is worth noting that T-Mod is always at least symmetric monoidal closed, which we
now recall from [9, Definition 3.11 and Corollary 3.13]. For T-modelsX and Y , the internal
hom [X, Y ] has underlying set |[X, Y ]| = T-Mod(X, Y ), and for R ∈ Π of arity n ≥ 1 and
Π-morphisms f1, . . . , fn : X → Y we have [X, Y ] |= Rf1 . . . fn iff Y |= Rf1(x) . . . fn(x)
for each x ∈ |X|. For T-models X and Y , the tensor product X ⊗ Y is the free T-model
(3.10) on the Π-structure A with |A| := |X| × |Y | and A |= R(x1, y1) . . . (xn, yn) iff (i)
x1 = . . . = xn and Y |= Ry1 . . . yn, or (ii) y1 = . . . = yn and X |= Rx1 . . . xn, for each
R ∈ Π of arity n ≥ 1. The tensor unit is the free T-model (3.10) on the Π-structure I
with |I| a singleton set and RI := ∅ for each R ∈ Π.

4. Exponentiability in Str(Π)

We fix a relational signature Π for the remainder of this section. We shall first consider
exponentiability in the category Str(Π) of Π-structures and Π-morphisms; in fact, we shall
prove in Theorem 4.5 that Str(Π) is always locally cartesian closed, and even a quasitopos.

4.1. Definition. Let f : X → Z be a morphism of Π-structures. For each z ∈ |Z|, we
define a Π-structure Xf,z as follows: we set |Xf,z| := f−1(z) ⊆ |X|, and for each R ∈ Π
of arity n ≥ 1, we set RXf,z := RX ∩ |Xf,z|n.
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4.2. Definition. Let f : X → Z be a morphism of Π-structures, and let Y be a Π-
structure. We define a Π-structure P = P (Y, f) as follows. We set

|P | := {(j, z) | z ∈ |Z| and j ∈ Set (|Xf,z|, |Y |)} .

Now let R ∈ Π of arity n ≥ 1, and let (j1, z1), . . . , (jn, zn) ∈ |P |. Then we set

P |= R(j1, z1) . . . (jn, zn)

iff Z |= Rz1 . . . zn and for all x1 ∈ f−1(z1), . . . , xn ∈ f−1(zn) such that X |= Rx1 . . . xn, we
have Y |= Rj1(x1) . . . jn(xn). We then have a Π-morphism p : P → Z given by p(j, z) := z
for each (j, z) ∈ |P |, and a Π-morphism ε : P ×Z X → Y given by ε((j, z), x) := j(x) for
each ((j, z), x) ∈ |P ×Z X|.

4.3. Remark. In the definition of |P | in Definition 4.2, one might wonder why the first
component of an element (j, z) ∈ |P | is just a function j : |Xf,z| → |Y | rather than a Π-
morphism j : Xf,z → Y . The forgetful functor | − | : Str(Π) → Set is represented (not by
the terminal object 1 but) by the tensor unit Π-structure I defined in 3.12 by |I| := {∗}
and E(I) := ∅. In other words, for each Π-structure X we have a natural bijection
|X| ∼= Str(Π)(I,X). If we want P to be a partial product of Y over f (see 2.2), then by
setting Q := I in the definition of partial product, we see that |P | ∼= Str(Π)(I, P ) must be
isomorphic to the set given in Definition 4.2, since for each z ∈ |Z| and corresponding Π-
morphism z̄ : I → Z, the pullback I×ZX satisfies |I×ZX| ∼= |Xf,z| but E (I ×Z X) = ∅,
so that a Π-morphism I ×Z X → Y is just a function |Xf,z| → |Y |. However, when we
consider T-Mod for a (reflexive, 5.1) relational Horn theory T in §5 below, we shall need
to define |P | in (perhaps) the more expected way, with the first component of (j, z) ∈ |P |
being a Π-morphism j : Xf,z → Y (see Definition 5.6 and Remark 5.7).

4.4. Proposition. Let f : X → Z be a morphism of Π-structures, and let Y be a Π-
structure. Then the Π-structure P = P (Y, f) of (4.2) is a partial product of Y over f in
Str(Π).

Proof. We defined the required Π-morphisms p : P → Z and ε : P ×Z X → Y in
Definition 4.2. So let q : Q→ Z and g : Q×Z X → Y be morphisms of Str(Π). We must
show that there is a unique Π-morphism h : Q→ P satisfying p◦h = q and ε◦(h×Z 1X) =
g. So let a ∈ |Q|, and let us define h(a) := (ja, q(a)) ∈ |P |. We have q(a) ∈ |Z|, and
we must define a function ja : |Xf,q(a)| → |Y |. For each x ∈ |Xf,q(a)| = f−1(q(a)) we
have f(x) = q(a), so that (a, x) ∈ |Q ×Z X|, and we can then set ja(x) := g(a, x) ∈ |Y |.
We must now show that the function h : |Q| → |P | is a Π-morphism h : Q → P . So
let R ∈ Π of arity n ≥ 1, let a1, . . . , an ∈ |Q|, and suppose that Q |= Ra1 . . . an; we
must show that P |= Rh(a1) . . . h(an), i.e. that P |= R(ja1 , q(a1)) . . . (jan , q(an)). We first
have Z |= Rq(a1) . . . q(an) because Q |= Ra1 . . . an and q : Q → Z is a Π-morphism.
Now let xi ∈ f−1(q(ai)) for each 1 ≤ i ≤ n, suppose that X |= Rx1 . . . xn, and let
us show that Y |= Rja1(x1) . . . jan(xn), i.e. that Y |= Rg(a1, x1) . . . g(an, xn). But we
have Q |= Ra1 . . . an and thus Q ×Z X |= R(a1, x1) . . . (an, xn), and g : Q ×Z X → Y
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is a Π-morphism. So h : Q → P is a Π-morphism, and we clearly have p ◦ h = q and
ε ◦ (h×Z 1X) = g.

To show the uniqueness of h, let k : Q→ P be any Π-morphism satisfying p◦k = q and
ε ◦ (k ×Z 1X) = g, and let us show for each a ∈ |Q| that k(a) = h(a) = (ja, q(a)). Since
p◦k = q, we just need to show that π1(k(a)) = ja : |Xf,q(a)| → |Y |, i.e. that π1(k(a))(x) =
ja(x) = g(a, x) for each x ∈ |Xf,q(a)|; but this is true because ε ◦ (k ×Z 1X) = g.

If Π just contains a single binary relation symbol, then it is known that Str(Π) is a
quasitopos (see e.g. [1, Examples 28.9(2)]). We can now extend this result to Str(Π) for
an arbitrary relational signature Π.

4.5. Theorem. Str(Π) is a quasitopos for every relational signature Π.

Proof. Str(Π) is locally cartesian closed by 2.2 and Proposition 4.4. Since the concrete
category Str(Π) is topological over Set (by 3.10, in view of Example 3.9.1), we then deduce
from 2.4 that Str(Π) is a quasitopos.

5. Exponentiability in T-Mod for a relational Horn theory T
We now consider exponentiability in T-Mod for a relational Horn theory T. Unlike the
situation for Str(Π) (see Theorem 4.5), it is well known that T-Mod is in general not
even cartesian closed, let alone locally cartesian closed or a quasitopos. For example (see
Example 3.9), Preord and Pos are not locally cartesian closed, while the category Met of
(extended) metric spaces (which is MetV for the Lawvere quantale V , see [15, Example
3.7]) is not even cartesian closed.

5.1. Definition. Let Π be a relational signature. A Π-structure X is reflexive if for
each R ∈ Π the relation RX is reflexive, i.e. for each x ∈ |X| we have X |= Rx . . . x. A
relational Horn theory T is reflexive if every T-model is reflexive.

5.2. If T is a reflexive relational Horn theory, then T-Mod admits constant morphisms
(2.3). For if X and Y are T-models and h : |X| → |Y | is a constant function, then h is
a Π-morphism h : X → Y , because if R ∈ Π of arity n ≥ 1 and X |= Rx1 . . . xn, then
Y |= Rh(x1) . . . h(xn) because h(x1) = . . . = h(xn) and Y is reflexive. More generally,
any constant function from a Π-structure into a reflexive Π-structure is a Π-morphism. If
T is reflexive, then T-Mod is clearly well-fibred (2.3).

5.3. Definition. Let Π be a relational signature. We say that Π is a preordered
relational signature if for each n ≥ 1, the set Π(n) of relation symbols of arity n is
equipped with a preorder ≤ (i.e. a reflexive and transitive binary relation). We say that
a preordered relational signature Π is discrete if each preordered set Π(n) (n ≥ 1) is
discrete, and we say that a preordered relational signature Π is a complete Heyting
algebra if each preordered set Π(n) (n ≥ 1) is a complete Heyting algebra (i.e. a complete
lattice in which binary meets distribute in each variable over arbitrary joins).
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5.4. Example. We consider the relational signatures of Examples 3.9.1 and 3.9.2 to
be discrete, while if (V ,≤,⊗, k) is a commutative unital quantale with the associated
relational signature ΠV of Example 3.9.3, then we equip the set ΠV (2) with a preorder
that is generally not discrete: for v, v′ ∈ V , we set ∼v ≤ ∼v′ iff v ≤ v′. If (V ,≤)
is a complete Heyting algebra, then the relational signature ΠV is a complete Heyting
algebra.

We fix a preordered relational signature Π for the remainder of this section.

5.5. Definition.We let TΠ be the relational Horn theory (without equality) over Π that
consists of the axioms =⇒ Rv . . . v for all R ∈ Π, as well as the axioms Rv1 . . . vn =⇒
Sv1 . . . vn for all R, S ∈ Π(n) (n ≥ 1) such that R ≥ S, where v1, . . . , vn are pairwise
distinct variables. If Π is a complete Heyting algebra, then we also stipulate that TΠ

contains the axiom {Riv1 . . . vn | i ∈ I} =⇒ (
∨

iRi) v1 . . . vn for each n ≥ 1 and small
family (Ri)i∈I in Π(n), where v1, . . . , vn are again pairwise distinct variables.

In particular, the relational Horn theory TΠ is reflexive (5.1). A model of TΠ is a
reflexive Π-structure X such that RX ⊆ SX for all R, S ∈ Π(n) (n ≥ 1) with R ≥ S; if Π
is a complete Heyting algebra, then also

⋂
iR

X
i ⊆ (

∨
iRi)

X for each n ≥ 1 and (Ri)i∈I in
Π(n).

5.6. Definition. Let f : X → Z be a morphism of TΠ-models, and let Y be a TΠ-model.
We define a Π-structure P = P (Y, f) as follows. We set

|P | := {(j, z) | z ∈ |Z| and j ∈ Str(Π) (Xf,z, Y )} .

Now let R ∈ Π(n) (n ≥ 1) and let (j1, z1), . . . , (jn, zn) ∈ |P |. Then we set

P |= R(j1, z1) . . . (jn, zn)

iff Z |= Rz1 . . . zn and for all x1 ∈ f−1(z1), . . . , xn ∈ f−1(zn) and S ∈ Π(n) with R ≥ S and
X |= Sx1 . . . xn, we have Y |= Sj1(x1) . . . jn(xn). We then have a Π-morphism p : P → Z
defined by p(j, z) := z for each (j, z) ∈ |P |, and a Π-morphism ε : P ×Z X → Y defined
by ε((j, z), x) := j(x) for each ((j, z), x) ∈ |P ×Z X|.

5.7. Remark. Since TΠ is reflexive, it follows that the forgetful functor |−| : TΠ-Mod →
Set is represented by the terminal object 1 (3.11), so that for each TΠ-model X we have
a natural bijection |X| ∼= Str(Π)(1, X). If we want P (in Definition 5.6) to be a partial
product of Y over f , then by setting Q := 1 in the definition of partial product, we see
that |P | ∼= Str(Π)(1, P ) must be isomorphic to the set given in Definition 5.6 (compare
the situation for Str(Π) in Remark 4.3).

Without any assumption on f : X → Z, for each TΠ-model Y the Π-structure P (Y, f) of
Definition 5.6 is automatically a model of TΠ:

5.8. Proposition. Let f : X → Z be a morphism of TΠ-models, and let Y be a TΠ-
model. Then the Π-structure P = P (Y, f) of (5.6) is a model of TΠ.
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Proof. To verify that P is reflexive, let R ∈ Π(n) (n ≥ 1) and let (j, z) ∈ |P |; we must
show that P |= R(j, z) . . . (j, z). Since the TΠ-model Z is reflexive, we have Z |= Rz . . . z.
Now let x1, . . . , xn ∈ f−1(z), and let S ∈ Π(n) with R ≥ S and X |= Sx1 . . . xn. Because
j : Xf,z → Y is a Π-morphism and Xf,z |= Sx1 . . . xn, we then have Y |= Sj(x1) . . . j(xn).

Now let R, S ∈ Π(n) (n ≥ 1) with R ≥ S, and suppose that P |= R(j1, z1) . . . (jn, zn);
we must show that P |= S(j1, z1) . . . (jn, zn). We first have Z |= Sz1 . . . zn because Z is a
TΠ-model and Z |= Rz1 . . . zn. Now let xi ∈ f−1(zi) for each 1 ≤ i ≤ n, let T ∈ Π(n) with
S ≥ T and X |= Tx1 . . . xn, and let us show that Y |= Tj1(x1) . . . jn(xn). From R ≥ S and
S ≥ T we obtain R ≥ T by transitivity of Π(n), and then from P |= R(j1, z1) . . . (jn, zn)
we obtain Y |= Tj1(x1) . . . jn(xn), as desired.

Suppose finally that Π is a complete Heyting algebra, let n ≥ 1 and let (Ri)i∈I be
a small family in Π(n), and suppose that P |= Ri(j1, z1) . . . (jn, zn) for each i ∈ I. To
show that P |= (

∨
iRi) (j1, z1) . . . (jn, zn), we first have Z |= (

∨
iRi) z1 . . . zn because

Z |= Riz1 . . . zn for each i ∈ I and Z is a TΠ-model. Now let xi ∈ f−1(zi) for each
1 ≤ i ≤ n, let S ∈ Π(n) with

∨
iRi ≥ S and X |= Sx1 . . . xn, and let us show that

Y |= Sj1(x1) . . . jn(xn). We have S = S ∧
∨

iRi =
∨

i(S ∧Ri) because Π(n) is a complete
Heyting algebra. Because Y is a TΠ-model, it then suffices to show that Y |= (S ∧
Ri)j1(x1) . . . jn(xn) for each i ∈ I, which readily follows from P |= Ri(j1, z1) . . . (jn, zn)
and the fact that X is a TΠ-model.

We say that a relational Horn theory T is an extension of TΠ over Π if T is a relational
Horn theory over Π whose set of axioms contains the axioms of TΠ (so that each model
of T is a model of TΠ).

5.9. Proposition. Let T be any extension of TΠ over Π, let f : X → Z be a morphism
of T-Mod, let Y be a T-model, and suppose that the Π-structure P = P (Y, f) of (5.6) is
a T-model. Then P is a partial product of Y over f in T-Mod.

Proof. We defined the required Π-morphisms p : P → Z and ε : P ×Z X → Y in
Definition 5.6. The proof is now almost identical to that of Proposition 4.4. Using the
notation of that proof, given morphisms q : Q → Z and g : Q ×Z X → Y of T-Mod,
we must first show for each a ∈ |Q| that the function ja : |Xf,q(a)| → |Y | defined by
ja(x) := g(a, x) for each x ∈ f−1(q(a)) is a Π-morphism ja : Xf,q(a) → Y . So let
R ∈ Π of arity n ≥ 1, let x1, . . . , xn ∈ f−1(q(a)), and suppose that Xf,q(a) |= Rx1 . . . xn.
Then f(xi) = q(a) and hence (a, xi) ∈ |Q ×Z X| for each 1 ≤ i ≤ n, and moreover
X |= Rx1 . . . xn. Since Q |= Ra . . . a by reflexivity of TΠ, we then obtain Q ×Z X |=
R(a, x1) . . . (a, xn), and then because g : Q×Z X → Y is a Π-morphism, we deduce that
Y |= Rg(a, x1) . . . g(a, xn), i.e. that Y |= Rja(x1) . . . ja(xn), as desired.

We must also show that the function h : |Q| → |P | defined by h(a) := (ja, q(a)) for
each a ∈ |Q| is a Π-morphism h : Q→ P . So let R ∈ Π of arity n ≥ 1, let a1, . . . , an ∈ |Q|,
and suppose that Q |= Ra1 . . . an; we must show that P |= Rh(a1) . . . h(an), i.e. that P |=
R(ja1 , q(a1)) . . . (jan , q(an)). We first have Z |= Rq(a1) . . . q(an) because Q |= Ra1 . . . an
and q : Q→ Z is a Π-morphism. Now let xi ∈ f−1(q(ai)) for each 1 ≤ i ≤ n, let S ∈ Π(n)
satisfy R ≥ S and X |= Sx1 . . . xn, and let us show that Y |= Sja1(x1) . . . jan(xn), i.e. that



504 JASON PARKER

Y |= Sg(a1, x1) . . . g(an, xn). But we have Q |= Sa1 . . . an (because Q is a TΠ-model) and
thus Q ×Z X |= S(a1, x1) . . . (an, xn), and so the result follows because g : Q ×Z X → Y
is a Π-morphism.

For an extension T of TΠ over Π and a morphism f : X → Z of T-Mod, Proposition 5.9
entails (in view of 2.2) that f will be exponentiable if, for each T-model Y , the Π-structure
P (Y, f) of Definition 5.6 is a model of T (note that it is already a model of TΠ by
Proposition 5.8). In §6 and §7 we shall turn to identifying a sufficient condition on f ,
which we call convexity, that will entail this.

6. Convexity in the discrete case

We shall first suppose (throughout this section) that T is a reflexive relational Horn theory
(5.1) over a discrete relational signature Π. In §7 we shall consider the case where Π is
not necessarily discrete. Note that when Π is discrete, then we can just take the axioms
of TΠ to be =⇒ Rv . . . v for all R ∈ Π, since the axiom Rv1 . . . vn =⇒ Rv1 . . . vn (for
n ≥ 1 and R ∈ Π(n)) is (of course) automatically satisfied by every Π-structure. Thus, a
relational Horn theory T over Π is an extension of TΠ iff it is reflexive4.

For a reflexive relational Horn theory T over the discrete relational signature Π, we
now identify a useful sufficient condition for a morphism of T-Mod to be exponentiable
(see Theorem 6.5). We write T \ TΠ for the relational Horn theory over Π whose axioms
are the axioms of T that do not belong to TΠ, i.e. the axioms of T other than the reflexivity
axioms =⇒ Rv . . . v (R ∈ Π).

6.1. Definition. Let f : X → Z be a morphism of T-Mod, and let Φ =⇒ Rv1 . . . vn be
an axiom of T \ TΠ without equality. We say that f is convex with respect to (the
axiom) Φ =⇒ Rv1 . . . vn if f satisfies the following condition:

Let κZ : Var → |Z| be a valuation such that Z |= κZ · φ for each φ ∈ Φ. Let
xi ∈ f−1(κZ(vi)) for each 1 ≤ i ≤ n, and suppose that X |= Rx1 . . . xn. Then there is a
valuation κ : Var → |X| such that κ(vi) = xi for each 1 ≤ i ≤ n and κ(v) ∈ f−1(κZ(v))
for each v ∈ Var(Φ) \ {v1, . . . , vn} and X |= κ · φ for each φ ∈ Φ.

We say that f is convex if it is convex with respect to each axiom of T \ TΠ without
equality.

6.2. Example. Let T be the reflexive relational Horn theory for preordered (partially
ordered) sets (see Example 3.9.2), and let f : X → Z be a morphism of T-Mod = Preord
(T-Mod = Pos), i.e. a monotone function between preordered (partially ordered) sets. The
only axiom of T \ TΠ without equality is the transitivity axiom x ≤ y, y ≤ z =⇒ x ≤ z,
and one readily sees that f is convex (with respect to this axiom) iff whenever we have
x1, x3 ∈ |X| and z2 ∈ |Z| satisfying x1 ≤ x3 and f(x1) ≤ z2 ≤ f(x3), there is some

4Technically, if T is reflexive, then the relational Horn formulas =⇒ Rv . . . v for R ∈ Π need not be
axioms of T, so that T need not be an extension of TΠ as we have defined this concept; but we can clearly
assume w.l.o.g. that these relational Horn formulas are axioms of T.
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x2 ∈ f−1(z2) such that x1 ≤ x2 ≤ x3. So f is convex iff f is an interpolation-lifting map
in the sense of [14, Definition 2.1].

6.3. Remark. The notion of convexity can be understood in terms of certain lifting
properties as follows. Let Φ be a set of Π-edges in Var. We let ΦT be the free T-
model (3.10) on the Π-structure ΦΠ defined by |ΦΠ| := Var(Φ) and E (ΦΠ) := Φ, so that
ΦT |= φ for each φ ∈ Φ. For each T-model X, we have that Π-morphisms ΦT → X are
in natural bijective correspondence with Π-morphisms ΦΠ → X, which in turn are in
natural bijective correspondence with functions κ : Var(Φ) → |X| satisfying X |= κ · φ
for each φ ∈ Φ. In particular, for any relation symbol R ∈ Π(n) (n ≥ 1) and pairwise
distinct variables v1, . . . , vn ∈ Var, we write RT := {(R, (v1, . . . , vn))}T, and Π-morphisms
RT → X are then in natural bijective correspondence with n-tuples (x1, . . . , xn) ∈ |X|n
such that X |= Rx1 . . . xn.

Now let f : X → Z be a morphism of T-Mod, and let Φ =⇒ Rv1 . . . vn be an axiom
of T \ TΠ without equality. We write (Φ =⇒ Rv1 . . . vn)T for the T-model (Φ ∪ {(R,
(v1, . . . , vn))})T. Since (Φ =⇒ Rv1 . . . vn)T |= Rv1 . . . vn, there is a corresponding canonical
Π-morphism fΦ,R : RT → (Φ =⇒ Rv1 . . . vn)T. Then it readily follows that f is convex
with respect to the axiom Φ =⇒ Rv1 . . . vn iff for each outer commutative square of the
form

RT X

(Φ =⇒ Rv1 . . . vn)T Z,

ffΦ,R

there is a (not necessarily unique) diagonal filler (Φ =⇒ Rv1 . . . vn)T → X, which means
that f has the (weak) right lifting property with respect to fΦ,R : RT → (Φ =⇒ Rv1 . . . vn)T.
So f is convex iff for each axiom Φ =⇒ Rv1 . . . vn of T \ TΠ without equality, f has
the weak right lifting property with respect to the canonical Π-morphism fΦ,R : RT →
(Φ =⇒ Rv1 . . . vn)T.

6.4. Theorem. Let f : X → Z be a convex morphism of T-Mod, and let Y be a T-model.
Then the Π-structure P = P (Y, f) of (5.6) is a T-model, so that P is a partial product of
Y over f in T-Mod (5.9).

Proof. We already know from Proposition 5.8 that P is reflexive (i.e. a model of TΠ).
First let Φ =⇒ Rv1 . . . vn be an axiom of T \ TΠ without equality, let κ : Var → |P |
be a valuation, and suppose that P |= κ · φ for each φ ∈ Φ; we must show that P |=
Rκ(v1) . . . κ(vn). Let κ(vi) := (ji, zi) ∈ |P | for each 1 ≤ i ≤ n, so that we must show
P |= R(j1, z1) . . . (jn, zn). First, we must show that Z |= Rz1 . . . zn. We have the composite
valuation p ◦κ : Var → |Z| that satisfies Z |= (p ◦κ) ·φ for each φ ∈ Φ because p : P → Z
is a Π-morphism. Then because Z is a T-model, we deduce that Z |= (p ◦ κ) · Rv1 . . . vn,
i.e. that Z |= Rz1 . . . zn.
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Now let xi ∈ f−1(zi) = f−1(p(κ(vi))) for each 1 ≤ i ≤ n, suppose that X |= Rx1 . . . xn,
and let us show that Y |= Rj1(x1) . . . jn(xn). Since Z |= (p◦κ) ·φ for each φ ∈ Φ and f is
convex, there is some valuation κX : Var → |X| such that κX(vi) = xi for each 1 ≤ i ≤ n
and κX(v) ∈ f−1(p(κ(v))) for each v ∈ Var(Φ) \ {v1, . . . , vn} and X |= κX · φ for each
φ ∈ Φ. We then obtain a valuation κ′ : Var → |P ×Z X| given by κ′(v) := (κ(v), κX(v))
for each v ∈ Var(Φ)∪{v1, . . . , vn}. For each φ ∈ Φ, we then readily deduce from P |= κ ·φ
and X |= κX · φ that P ×Z X |= κ′ · φ. Then since ε : P ×Z X → Y is a Π-morphism,
we obtain Y |= (ε ◦ κ′) · φ for each φ ∈ Φ. Because Y is a T-model, we then deduce that
Y |= (ε ◦ κ′) ·Rv1 . . . vn, which means precisely that Y |= Rj1(x1) . . . jn(xn), as desired.

Now let Φ =⇒ x = y be an axiom of T \ TΠ with equality, let κ : Var → |P | be a
valuation, and suppose that P |= κ · φ for each φ ∈ Φ; we must show that κ(x) = κ(y) ∈
|P |. Let κ(x) := (j1, z1) and κ(y) := (j2, z2), so that we must show (j1, z1) = (j2, z2).
We have the composite valuation p ◦ κ : Var → |Z| with Z |= (p ◦ κ) · φ for each φ ∈ Φ,
since p : P → Z is a Π-morphism. Then because Z is a T-model, we deduce that
p(κ(x)) = p(κ(y)), i.e. that z1 = z2 = z. We must now show that j1 = j2 : Xf,z → Y .
So let a ∈ f−1(z). We have a valuation κa : Var → |Y | given by κa(x) := j1(a) and
κa(y) := j2(a). Since Var(Φ) = {x, y} (3.6), for each φ ∈ Φ it readily follows from
P |= κ · φ and a ∈ f−1(z) = f−1(z1) = f−1(z2) and the reflexivity of T that Y |= κa · φ.
Since Y is a T-model, we then deduce that κa(x) = κa(y), i.e. that j1(a) = j2(a), as
desired. This proves that P is a model of T.

From 2.2 and Theorem 6.4 we immediately deduce the following:

6.5. Theorem. Convex morphisms of T-Mod are exponentiable.

6.6. Remark. For certain examples of reflexive relational Horn theories T, it is known
that convexity of a morphism of T-Mod is not only sufficient but also necessary for its ex-
ponentiability. For example, when T is the reflexive relational Horn theory for preordered
(partially ordered) sets (see Example 3.9.2), then (in view of Example 6.2) it is known
that a morphism of T-Mod = Preord (T-Mod = Pos) is convex iff it is exponentiable; see
[14, Theorem 2.2] and [3, §4.1]. Despite our efforts, we do not know if convexity is also
necessary for exponentiability in general; the proofs of necessity in the special cases of
Preord and Pos do not readily generalize to T-Mod for an arbitrary reflexive relational
Horn theory T.

Morphisms of T-Mod are always convex with respect to axioms of T of a certain special
form, as we show next.

6.7. Definition. Let S be a relational Horn theory over a relational signature Σ. We
say that S entails5 a relational Horn formula Φ =⇒ ψ over Σ if it is satisfied by every
S-model.

5It is also possible to express entailment in terms of a syntactic deducibility relation based on the
axioms of S and certain inference rules for relational Horn formulas (cf. [9, Page 5]).
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6.8. Definition. An axiom Φ =⇒ Rv1 . . . vn without equality of T \ TΠ is safe if there
is some function κ : Var → {v1, . . . , vn} that fixes {v1, . . . , vn} (i.e. κ(vi) = vi for each 1 ≤
i ≤ n) such that T entails the relational Horn formula Rv1 . . . vn =⇒ κ ·φ for each φ ∈ Φ.
The axiom Φ =⇒ Rv1 . . . vn is very safe if it is safe and moreover Var(Φ) ⊆ {v1, . . . , vn}
(so that T entails the relational Horn formula Rv1 . . . vn =⇒ φ for each φ ∈ Φ).

6.9. Example. Let T be the reflexive relational Horn theory for preordered (partially
ordered) sets (see Example 3.9.2). The only axiom of T \ TΠ without equality is the
transitivity axiom x ≤ y, y ≤ z =⇒ x ≤ z. This axiom is safe, because if we define
κ : Var → {x, z} by κ(x) := x and κ(y) := x and κ(z) := z (and arbitrarily otherwise),
then κ fixes {x, z} and T entails the relational Horn formulas x ≤ z =⇒ x ≤ x and
x ≤ z =⇒ x ≤ z. For any reflexive relational Horn theory T and binary relation symbol
R ∈ Π, the symmetry axiom Rxy =⇒ Ryx is (evidently) very safe.

6.10. Proposition. Let f : X → Z be a morphism of T-Mod. Then f is convex with
respect to all very safe axioms of T \ TΠ.

Proof. Let Φ =⇒ Rv1 . . . vn be a very safe axiom of T \ TΠ, so that (in particular)
Var(Φ) ⊆ {v1, . . . , vn}. Let κZ : Var → |Z| be a valuation such that Z |= κZ · φ for each
φ ∈ Φ, let xi ∈ f−1(κZ(vi)) for each 1 ≤ i ≤ n, and suppose that X |= Rx1 . . . xn. We
then have a valuation κ : Var → |X| given by κ(vi) := xi for each 1 ≤ i ≤ n such that
X |= κ · φ for each φ ∈ Φ, because X |= Rκ(v1) . . . κ(vn) and T entails Rv1 . . . vn =⇒ φ
for each φ ∈ Φ.

We shall now specialize the preceding definitions and results to provide useful sufficient
conditions for the exponentiability of objects of T-Mod.

6.11. For a T-model X and the unique morphism !X : X → 1, we now simplify the
construction of the Π-structure P = P (Y, !X) = Y X of Definition 5.6 for a T-model Y .
We have

∣∣Y X
∣∣ = Str(Π)(X, Y ), the set of Π-morphisms X → Y . For each R ∈ Π of

arity n ≥ 1 and any Π-morphisms h1, . . . , hn : X → Y , we have Y X |= Rh1 . . . hn iff
X |= Rx1 . . . xn implies Y |= Rh1(x1) . . . hn(xn) for all x1, . . . , xn ∈ |X|. The evaluation
Π-morphism ε : Y X × X → Y is given by ε(h, x) := h(x) for h ∈ Str(Π)(X, Y ) and
x ∈ |X|.

Definition 6.1 now specializes as follows:

6.12. Definition. Let X be a T-model, and let Φ =⇒ Rv1 . . . vn be an axiom of T \TΠ

without equality. We say that X is convex with respect to (the axiom) Φ =⇒
Rv1 . . . vn if the unique morphism !X : X → 1 is convex with respect to Φ =⇒ Rv1 . . . vn,
i.e. if for all x1, . . . , xn ∈ |X| such that X |= Rx1 . . . xn, there is a valuation κ : Var → |X|
such that κ(vi) = xi for each 1 ≤ i ≤ n and X |= κ · φ for each φ ∈ Φ. We say that X is
convex if it is convex with respect to each axiom of T \ TΠ without equality.

Theorems 6.4 and 6.5 now specialize to yield the following:

6.13. Theorem. Convex T-models are exponentiable.
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6.14. Proposition. Let X be a T-model. Then X is convex with respect to all safe
axioms of T \ TΠ.

Proof. Let Φ =⇒ Rv1 . . . vn be a safe axiom of T \ TΠ. Then there is some function
κ : Var → {v1, . . . , vn} that fixes {v1, . . . , vn} and is such that T entails the relational
Horn formula Rv1 . . . vn =⇒ κ · φ for each φ ∈ Φ. Let x1, . . . , xn ∈ |X| and suppose that
X |= Rx1 . . . xn. Let ι : {v1, . . . , vn} → |X| be the function defined by ι(vi) := xi for each
1 ≤ i ≤ n. We then have a valuation κX := ι ◦ κ : Var → |X| satisfying κX(vi) = xi for
each 1 ≤ i ≤ n such that X |= κX · φ for each φ ∈ Φ, because X |= RκX(v1) . . . κX(vn)
and T entails Rv1 . . . vn =⇒ κ · φ.

From Theorem 6.5, Proposition 6.10, Theorem 6.13, and Proposition 6.14, we now
immediately deduce the following result:

6.15. Theorem. Let T be a reflexive relational Horn theory over a relational signature
Π, and suppose that all axioms of T \TΠ without equality are safe (resp. very safe). Then
T-Mod is cartesian closed (resp. locally cartesian closed).

6.16. Example. We saw in Example 6.9 that if T is the reflexive relational Horn theory
for preordered or partially ordered sets, then all axioms of T\TΠ without equality are safe.
So from Theorem 6.15 we recover the well-known facts that Preord and Pos are cartesian
closed categories. We also saw in Example 6.9 that if T is any reflexive relational Horn
theory, then for each binary relation symbol R ∈ Π, the symmetry axiom Rxy =⇒ Ryx
is very safe. So if Π consists of a single binary relation symbol R and T is the relational
Horn theory over Π consisting of the two axioms =⇒ Rxx and Rxy =⇒ Ryx, then from
Theorem 6.15 we also recover the well-known fact that T-Mod, which is the category of
sets equipped with a (binary) reflexive and symmetric relation, is locally cartesian closed.

A topological universe [1, Definition 28.21] is a well-fibred topological category over Set
that is also a quasitopos. It is remarked in [1, Example 28.23] that (using our notation)
when Π is the discrete signature consisting of a single binary relation symbol, the category
TΠ-Mod (whose objects are sets equipped with a (binary) reflexive relation) is a topological
universe. We now show that this result holds more generally.

6.17. Theorem. Let T be reflexive relational Horn theory without equality, and suppose
that all axioms of T \ TΠ are very safe. Then T-Mod is a topological universe.

Proof.We know from Theorem 6.15 that T-Mod is locally cartesian closed. Since T-Mod
is topological over Set (3.10) and well-fibred (5.2), we now deduce from 2.4 that T-Mod
is a quasitopos and hence a topological universe.

A topology P (see [10, V.4.1]) on a finitely complete category C is a class of morphisms
of C that contains all isomorphisms, is closed under composition, and is stable under
pullback. It is known (see e.g. [10, V.4.D] or [13, Corollaries 1.3 and 1.4]) that the
exponentiable morphisms of C form a topology Exp(C ) on C .
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6.18. Definition. We let Convex(T-Mod) be the class of convex morphisms of T-Mod.

Since we in general only know that Convex(T-Mod) ⊆ Exp(T-Mod) (see Theorem 6.5 and
Remark 6.6), we cannot directly deduce that Convex(T-Mod) is a topology on T-Mod from
the fact that Exp(T-Mod) is a topology on T-Mod; but the former claim is nevertheless
true:

6.19. Proposition. Convex(T-Mod) is a topology on T-Mod.

Proof. From Remark 6.3 we know that a morphism of T-Mod is convex iff it has the
weak right lifting property with respect to a certain set of morphisms of T-Mod, and it
is well known (and straightforward to prove) that this entails that Convex(T-Mod) is a
topology.

We conclude this section with a useful alternative sufficient condition for T-Mod to be
cartesian closed (cf. Theorem 6.15). An object Y of a category C with finite products is
sometimes said to be exponentiating if an exponential εX : Y X×X → Y (i.e. a coreflection
of Y along X×(−) : C → C ) exists for each X ∈ obC . If Π contains only binary relation
symbols, then we say that a Π-structure X is transitive if the binary relation RX on |X| is
transitive for each R ∈ Π, and we say that a relational Horn theory T over Π is transitive
if every T-model is transitive.

6.20. Theorem. Suppose that Π contains only binary relation symbols, and let T be a
reflexive relational Horn theory over Π. Then every transitive T-model is exponentiating.
So if T is a reflexive and transitive relational Horn theory over Π, then T-Mod is cartesian
closed.

Proof. Let Y be a transitive T-model and let X be a T-model. We will show that
the Π-structure Y X of 6.11 is a T-model, so that the desired result will then follow by
Proposition 5.9. We first claim that for each R ∈ Π and all h1, h2 ∈

∣∣Y X
∣∣ = Str(Π)(X, Y ),

we have Y X |= Rh1h2 (as in 6.11) iff Y |= Rh1(x)h2(x) for all x ∈ |X|. Suppose first
that Y X |= Rh1h2 as in 6.11, and let x ∈ |X|. Then since X |= Rxx, we deduce
that Y |= Rh1(x)h2(x), as desired. Conversely, suppose that Y |= Rh1(x)h2(x) for each
x ∈ |X|, and suppose that X |= Rx1x2; we must show that Y |= Rh1(x1)h2(x2). In
particular we have Y |= Rh1(x1)h2(x1). Since h2 : X → Y is a Π-morphism, we also
have Y |= Rh2(x1)h2(x2). Then from transitivity of Y we obtain Y |= Rh1(x1)h2(x2), as
desired.

We now show that Y X is a T-model. For any Π-edge (R, (h1, h2)) in
∣∣Y X

∣∣ = Str(Π)(X,
Y ) and any x ∈ |X|, we write (R, (h1, h2))(x) for the Π-edge (R, (h1(x), h2(x))) in |Y |.
Let Φ =⇒ ψ be an axiom of T \ TΠ, and let κ : Var →

∣∣Y X
∣∣ = Str(Π)(X, Y ) be a

valuation such that κ · φ ∈ E
(
Y X

)
for each φ ∈ Φ. Supposing first that Φ =⇒ ψ is

without equality, we must show that κ · ψ ∈ E
(
Y X

)
. By the previous paragraph, this

means showing for each x ∈ |X| that (κ · ψ)(x) ∈ E(Y ). Given x ∈ |X|, we have a
valuation κx : Var → |Y | defined by κx(v) := κ(v)(x) for each v ∈ Var. For each φ ∈ Φ
we have κx · φ = (κ · φ)(x) ∈ E(Y ) by hypothesis (and the previous paragraph), so
that (κ · ψ)(x) = κx · ψ ∈ E(Y ) because Y is a T-model, as desired. Now suppose that
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ψ ≡ v1 = v2, and let us show that κ(v1) = κ(v2), i.e. that κ(v1)(x) = κ(v2)(x) for all
x ∈ |X|. As above, we have the valuation κx : Var → |Y | with κx(v) = κ(v)(x) for each
v ∈ Var, and for each φ ∈ Φ we have Y |= κx · φ, so that κx(v1) = κx(v2) because Y is a
T-model, i.e. κ(v1)(x) = κ(v2)(x), as desired.

6.21. Example. In Example 6.16 we noted that one explanation for the cartesian clo-
sure of Preord and Pos is the fact that the axioms without equality of the corresponding
relational Horn theories are all safe. Since these relational Horn theories are reflexive and
transitive (and their relational signature contains only binary relation symbols), Theo-
rem 6.20 also provides another explanation for the cartesian closure of Preord and Pos.

6.22. Remark. The condition that T be (reflexive and) transitive is sufficient (by Theo-
rem 6.20) but certainly not necessary for T-Mod to be cartesian closed. For example, if Π
contains a single binary relation symbol R, then TΠ consists of the single axiom =⇒ Rxx,
and TΠ-Mod is (locally) cartesian closed by Theorem 6.15, even though there clearly exist
TΠ-models that are not transitive (i.e. sets equipped with a binary reflexive relation that
is not transitive).

7. Convexity in the non-discrete case

In §6 we considered reflexive relational Horn theories T over discrete preordered relational
signatures Π, and we provided sufficient conditions for objects and morphisms of T-Mod
to be exponentiable. In this final section we shall consider the case where the preordered
relational signature Π is not discrete. In fact, we shall suppose throughout this section that
the preordered relational signature Π is a complete Heyting algebra (5.3). For example, if
(V ,≤,⊗, k) is a commutative unital quantale such that (V ,≤) is a complete Heyting
algebra, then the preordered relational signature ΠV of Example 3.9.3 is a complete
Heyting algebra (see Example 5.4). Note that if k = ⊤ (the top element of V ), then
we may identify the relational Horn theory TΠV

of Definition 5.5 with the relational Horn
theory TV -RGph of Example 3.9.36.

We shall identify a useful sufficient condition for a morphism of T-Mod to be exponen-
tiable, where T is a schematic extension of TΠ (see Definition 7.5). As a result, we shall
recover a known sufficient condition for a morphism of V -Cat to be exponentiable, where
(V ,≤,⊗, k) is a commutative unital quantale such that (V ,≤) is a complete Heyting alge-
bra (see [3, Theorem 3.4] and [5, Theorem 1.1], where it is shown that this condition is also
necessary for exponentiability). In fact, our approach in this section is greatly influenced
by the characterization of exponentiable objects and morphisms in V -Cat ∼= TV -Cat-Mod
(see Example 3.9.3), as the reader can hopefully glean from Examples 7.2, 7.4, and 7.6
below.

6Technically TΠV contains the reflexivity axioms =⇒ x ∼v x for all v ∈ V , whereas the only reflexivity
axiom that TV -RGph contains is =⇒ x ∼k x; but since k = ⊤, it follows that TV -RGph entails the relational
Horn formulas =⇒ x ∼v x for all v ∈ V , so we can assume w.l.o.g. that they are axioms of TV -RGph.
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7.1. Definition. Let n ≥ 1, and let S be a relation symbol of arity n that is not in
Π. An n-ary axiom schema over Π is a triple (Φ, ψ, σ) consisting of a set Φ of {S}-
edges in Var, a {S}-edge ψ in Var, and a function σ : Π(n)Φ → Π(n). Given a {S}-edge
φ ≡ Sv1 . . . vn in Var and an element R ∈ Π(n), we let φR be the Π-edge Rv1 . . . vn in
Var. Given a set Φ of {S}-edges in Var and a tuple R = (Rφ)φ∈Φ ∈ Π(n)Φ, we define
the set of Π-edges ΦR := {φRφ | φ ∈ Φ} in Var. An instance of an n-ary axiom schema

(Φ, ψ, σ) over Π is a pair
(
R ∈ Π(n)Φ,ΦR =⇒ ψσ(R)

)
. An axiom schema over Π is an

n-ary axiom schema over Π for some n ≥ 1.

7.2. Example. Let (V ,≤,⊗,⊤) be a commutative unital quantale such that (V ,≤) is a
complete Heyting algebra. The generalized transitivity axiom schema is the binary axiom
schema ({xSy, ySz}, xSz, σ) over ΠV , where σ : ΠV (2)× ΠV (2) → ΠV (2) is given by
σ(∼v,∼v′) :=∼v⊗v′ for v, v

′ ∈ V . An instance of the generalized transitivity axiom schema
is thus (or may be identified with) a pair ((v, v′) ∈ V 2, {x ∼v y, y ∼v′ z} =⇒ x ∼v⊗v′ z).

The symmetry axiom schema is the binary axiom schema
(
{xSy}, ySx, 1ΠV (2)

)
over

ΠV , an instance of which is a pair (v ∈ V , x ∼v y =⇒ y ∼v x).

For any set Φ and n ≥ 1 and R, S ∈ Π(n)Φ, we define R ∧ S := (Rφ ∧ Sφ)φ∈Φ ∈ Π(n)Φ.

7.3. Definition. Let f : X → Z be a morphism of TΠ-models, let (Φ,Sv1 . . . vn, σ) be an
n-ary axiom schema over Π, and let

(
R ∈ Π(n)Φ,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
be an instance.

We say that f is convex with respect to the instance
(
R,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
of

the axiom schema (Φ,Sv1 . . . vn, σ) if f satisfies the following condition:
Let κZ : Var → |Z| be a valuation satisfying Z |= κZ · φRφ for each φ ∈ Φ, and let

xi ∈ f−1(κZ(vi)) for each 1 ≤ i ≤ n. We say that a valuation κ : Var → |X| is good if
κ(vi) = xi for each 1 ≤ i ≤ n and κ(v) ∈ f−1(κZ(v)) for all v ∈ Var(Φ) \ {v1, . . . , vn}. For
each good valuation κ : Var → |X|, we define

Rκ :=
∨{

σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
.

Then for each T ∈ Π(n) such that T ≤ σ
(
R
)
and X |= Tx1 . . . xn, we require that

T ≤
∨

{Rκ | κ : Var → |X| is good} .

We say that f is convex with respect to an axiom schema if f is convex with respect
to each instance of the axiom schema.

7.4. Example. Let (V ,≤,⊗,⊤) be a commutative unital quantale such that (V ,≤) is
a complete Heyting algebra. Let f : X → Z be a morphism of TΠV

-models (i.e. TV -RGph-
models), so that f : (|X|, dX) → (|Z|, dZ) is a V -functor between the corresponding
reflexive V -graphs; see Example 3.9.3. For any TΠV

-model (i.e. TV -RGph-model) Y and
y, y′ ∈ |Y |, we have dY (y, y

′) =
∨
{u ∈ V | Y |= y ∼u y

′} (see [15, Appendix]), so for
any v ∈ V it readily follows that v ≤ dY (y, y

′) iff Y |= y ∼v y
′. Consider the generalized

transitivity axiom schema ({xSy, ySz}, xSz, σ) over ΠV from Example 7.2.
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We now verify that f : X → Z is convex with respect to each instance of the gen-
eralized transitivity axiom schema iff f : (|X|, dX) → (|Z|, dZ) satisfies the condition
of [3, Theorem 3.4], namely that for all x1, x3 ∈ |X|, z2 ∈ |Z|, and v, v′ ∈ V with
v ≤ dZ(f(x1), z2) and v

′ ≤ dZ(z2, f(x2)), we have

dX(x1, x3) ∧ (v ⊗ v′) ≤
∨

x2∈f−1(z2)

(dX(x1, x2) ∧ v)⊗ (dX(x2, x3) ∧ v′) .

Suppose first that f is convex with respect to each instance of the generalized transitivity
axiom schema, and let x1, x3 ∈ |X|, z2 ∈ |Z|, and v, v′ ∈ V be as in the condition. Then
we have Z |= f(x1) ∼v z2 and Z |= z2 ∼v′ f(x2), and since dX(x1, x3) ∧ (v ⊗ v′) ≤ v ⊗ v′

and X |= x1 ∼dX(x1,x3)∧(v⊗v′) x3, we deduce from the hypothesis on f that

dX(x1, x3) ∧ (v ⊗ v′)

≤
∨

x2∈f−1(z2)

{(u ∧ v)⊗ (u′ ∧ v′) | u, u′ ∈ V and X |= x1 ∼u x2 and X |= x2 ∼u′ x3} .

Now for each x2 ∈ f−1(z2) we have

(dX(x1, x2) ∧ v)⊗ (dX(x2, x3) ∧ v′)

=
(∨

{u ∈ V | X |= x1 ∼u x2} ∧ v
)
⊗

(∨
{u′ ∈ V | X |= x2 ∼u′ x3} ∧ v′

)
=

∨
{u ∧ v | u ∈ V and X |= x1 ∼u x2} ⊗

∨
{u′ ∧ v′ | u′ ∈ V and X |= x2 ∼u′ x3}

= {(u ∧ v)⊗ (u′ ∧ v′) | u, u′ ∈ V and X |= x1 ∼u x2 and X |= x2 ∼u′ x3} ,

where the second equality holds because V is a Heyting algebra and the last because V
is a quantale. Thus, f satisfies the condition of [3, Theorem 3.4]. Conversely, suppose
that f satisfies this condition, let v, v′ ∈ V , and let x1, x3 ∈ |X| and z2 ∈ |Z| be such that
Z |= f(x1) ∼v z2 and Z |= z2 ∼v′ f(x3). For each w ≤ v ⊗ v′ such that X |= x1 ∼w x3,
we must show that

w ≤
∨

x2∈f−1(z2)

{(u ∧ v)⊗ (u′ ∧ v′) | u, u′ ∈ V and X |= x1 ∼u x2 and X |= x2 ∼u′ x3} ,

i.e. that w ≤
∨

x2∈f−1(z2)
(dX(x1, x2) ∧ v) ⊗ (dX(x2, x3) ∧ v′) (by the calculation above).

By hypothesis on Z we have v ≤ dZ(f(x1), z2) and v
′ ≤ dZ(z2, f(x3)), so we deduce from

the condition on f that

dX(x1, x3) ∧ (v ⊗ v′) ≤
∨

x2∈f−1(z2)

(dX(x1, x2) ∧ v)⊗ (dX(x2, x3) ∧ v′) ,

which yields the result because w ≤ dX(x1, x3) (since X |= x1 ∼w x3) and w ≤ v ⊗ v′.
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7.5. Definition. Let T be a relational Horn theory over Π. We say that T is a schematic
extension of TΠ given by a set S = {(Φs, ψs, σs) | s ∈ S } of axiom schemas over
Π if the axioms of T are those of TΠ, together with all instances of all axiom schemas
in S , together with (perhaps) some axioms with equality. We say that a morphism of
T-models is convex if it is convex with respect to each axiom schema in S .

7.6. Example. Let (V ,≤,⊗,⊤) be a commutative unital quantale such that (V ,≤) is a
complete Heyting algebra. The relational Horn theory TV -Cat over ΠV of Example 3.9.3 is
a schematic extension of TΠV

= TV -RGph given by the set consisting of just the generalized
transitivity axiom schema of Example 7.2. The relational Horn theory TPMetV over ΠV of
Example 3.9.3 is a schematic extension of TΠV

= TV -RGph given by the set consisting of the
generalized transitivity axiom schema and the symmetry axiom schema of Example 7.2.
The relational Horn theory TMetV over ΠV of Example 3.9.3 is a schematic extension of
TΠV

= TV -RGph given by the set consisting of the generalized transitivity axiom schema and
the symmetry axiom schema of Example 7.2, together with the axiom x ∼⊤ y =⇒ x = y.

7.7. Theorem. Let T be a schematic extension of TΠ given by a set S of axiom schemas
over Π, and let f : X → Z be a convex morphism of T-models. Then for every T-model
Y , the Π-structure P = P (Y, f) of (5.6) is a model of T.

Proof. In view of Proposition 5.8, it remains to show that P is a model of each instance
of each axiom schema in S , and of each axiom of T with equality. The latter assertion is
proved exactly as in the proof of Theorem 6.4. So let (Φ,Sv1 . . . vn, σ) be an axiom schema
in S , and let

(
R ∈ Π(n)Φ,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
be an instance. Let λ : Var → |P |

be a valuation such that P |= λ · φRφ for each φ ∈ Φ, and let us show that P |=
σ
(
R
)
λ(v1) . . . λ(vn). Let λ(vi) := (ji, zi) for each 1 ≤ i ≤ n, so that we must show

P |= σ
(
R
)
(j1, z1) . . . (jn, zn). The proof that Z |= σ

(
R
)
z1 . . . zn is exactly as in the proof

of Theorem 6.4; in particular, we have the valuation κZ := p ◦ λ : Var → |Z| satisfying
Z |= κZ · φRφ for each φ ∈ Φ. Now let xi ∈ f−1(zi) = f−1(κZ(vi)) for each 1 ≤ i ≤ n,

let T ≤ σ
(
R
)
be such that X |= Tx1 . . . xn, and let us show that Y |= Tj1(x1) . . . jn(xn).

Because f is convex and Y is a TΠ-model, this will be true if Y |= Rκj1(x1) . . . jn(xn) for
every good valuation κ : Var → |X|. Given a good valuation κ : Var → |X|, let S ∈ Π(n)Φ

satisfy X |= κ · φSφ for each φ ∈ Φ; since Y is a TΠ-model, it then suffices to show that

Y |= σ
(
R ∧ S

)
j1(x1) . . . jn(xn).

For each φ ∈ Φ, it follows from P |= λ · φRφ and the fact that P is a TΠ-model
that P |= λ · φ(Rφ∧Sφ). Similarly, for each φ ∈ Φ we have X |= κ · φSφ and hence
X |= κ ·φ(Rφ∧Sφ). We have a valuation κ′ : Var → |P ×Z X| given by κ′(v) := (λ(v), κ(v))
for each v ∈ Var that therefore satisfies P ×Z X |= κ′ · φ(Rφ∧Sφ) for each φ ∈ Φ. Since
ε : P ×Z X → Y is a Π-morphism, we then deduce that Y |= (ε ◦ κ′) · φ(Rφ∧Sφ) for

each φ ∈ Φ. Because Y is a T-model and
(
R ∧ S ∈ Π(n)Φ,ΦR∧S =⇒ σ

(
R ∧ S

)
v1 . . . vn

)
is an instance of the given axiom schema (Φ,Sv1 . . . vn, σ) of S , it then follows that
Y |= σ

(
R ∧ S

)
ε(κ′(v1)) . . . ε(κ

′(vn)), i.e. that Y |= σ
(
R ∧ S

)
j1(x1) . . . jn(xn), as desired.
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From 2.2, Proposition 5.9, and Theorem 7.7 we immediately obtain the following theorem:

7.8. Theorem. Let T be a schematic extension of TΠ. Then every convex morphism of
T-Mod is exponentiable.

7.9. Remark. For certain examples of schematic extensions T of TΠ, it is known that
convexity of a morphism of T-Mod is not only sufficient but also necessary for its expo-
nentiability. For example, when T = TV -Cat (see Example 7.6) for a commutative unital
quantale (V ,≤,⊗, k) such that (V ,≤) is a complete Heyting algebra, then (in view of
Example 7.4) it is known that a morphism of TV -Cat-Mod ∼= V -Cat is convex iff it is expo-
nentiable; see [3, Theorem 3.4] and [5, Theorem 1.1]. As in Remark 6.6, we do not know
if convexity is also necessary for exponentiability in general; the proof of necessity given
in [3, Theorem 3.4] for T = TV -Cat does not readily generalize to T-Mod for an arbitrary
schematic extension T of TΠ.

7.10. Definition. Let T be a schematic extension of TΠ given by a set S of axiom
schemas over Π, and let (Φ,Sv1 . . . vn, σ) be an axiom schema in S . This axiom schema
is safe if σ

(
R ∧ S

)
= σ

(
R
)
∧ S for all R ∈ Π(n)Φ and S ∈ Π(n) (where R ∧ S :=

(Rφ ∧ S)φ∈Φ) and there is some function κ : Var → {v1, . . . , vn} that fixes {v1, . . . , vn}
such that T entails σ

(
R
)
v1 . . . vn =⇒ κ · φRφ for all R ∈ Π(n)Φ and φ ∈ Φ. The axiom

schema is very safe if it is safe and moreover Var(Φ) ⊆ {v1, . . . , vn} (so that T entails
σ
(
R
)
v1 . . . vn =⇒ φRφ for all R ∈ Π(n)Φ and φ ∈ Φ).

7.11. Example. Let (V ,≤,⊗,⊤) be a commutative unital quantale such that (V ,≤)
is a complete Heyting algebra. Consider the relational Horn theory TV -Cat over ΠV of
Example 3.9.3, which is a schematic extension of TΠV

= TV -RGph given by the set consisting
of just the generalized transitivity axiom schema of Example 7.2. This axiom schema is
not safe in general, for otherwise TV -Cat-Mod ∼= V -Cat would be cartesian closed by
Theorem 7.16 below, which is not true in general. However, the generalized transitivity
axiom schema is safe when (V ,≤) is totally ordered and ⊗ = ∧ is the binary meet
operation of (V ,≤): for we of course have (v1 ∧ v2) ∧ v = (v1 ∧ v) ∧ (v2 ∧ v) for all
v, v1, v2 ∈ V ; and for any v, v′ ∈ V , we have w.l.o.g. v ≤ v′ and thus v ∧ v′ = v, so
the function κ : Var → {x, z} defined by κ(x) := x, κ(y) := x, κ(z) := z (and arbitrarily
otherwise) is such that TV -Cat entails x ∼v∧v′ z =⇒ x ∼v x and x ∼v∧v′ z =⇒ x ∼v′ z.

Consider also the relational Horn theory TPMetV over ΠV of Example 3.9.3, which is
a schematic extension of TΠV

= TV -RGph given by the set consisting of the generalized
transitivity axiom schema and the symmetry axiom schema of Example 7.2. Again, the
former axiom schema is not safe in general (because otherwise TPMetV -Mod ∼= PMetV
would be cartesian closed by Theorem 7.16 below, which is not true in general). But the
symmetry axiom schema is (evidently) very safe.

7.12. Proposition. Let T be a schematic extension of TΠ given by a set S of axiom
schemas over Π, and let f : X → Z be a morphism of T-models. Then f is convex with
respect to all very safe axiom schemas in S .



EXPONENTIABILITY IN CATEGORIES OF RELATIONAL STRUCTURES 515

Proof. Let (Φ,Sv1 . . . vn, σ) be a very safe axiom schema in S , and let R ∈ Π(n)Φ. Let
κZ : Var → |Z| be a valuation satisfying Z |= κZ ·φRφ for each φ ∈ Φ, let xi ∈ f−1(κZ(vi))

for each 1 ≤ i ≤ n, let T ∈ Π(n) be such that T ≤ σ
(
R
)
and X |= Tx1 . . . xn, and let

us show that T ≤
∨
{Rκ | κ : Var → |X| is good}. The valuation κ : Var → |X| given by

κ(vi) := xi for each 1 ≤ i ≤ n is good (since Var(Φ) ⊆ {v1, . . . , vn}), so it suffices to show
that T ≤ Rκ, i.e. that

T ≤
∨{

σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
.

From X |= Tx1 . . . xn we obtain X |=
(
σ
(
R
)
∧ T

)
x1 . . . xn (since X is a model of TΠ) and

then X |= σ
(
R ∧ T

)
x1 . . . xn, since σ

(
R
)
∧T = σ

(
R ∧ T

)
. Since (Φ,Sv1 . . . vn, σ) is very

safe, it follows that T entails σ
(
R ∧ T

)
v1 . . . vn =⇒ φRφ∧T for each φ ∈ Φ. Since X is a T-

model, we then deduce that X |= κ·φRφ∧T for each φ ∈ Φ. We then have T = σ
(
R
)
∧T =

σ
(
R ∧ T

)
= σ

(
R ∧

(
R ∧ T

))
≤

∨{
σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
, as

desired.

Definition 7.3 now specializes to TΠ-models as follows:

7.13. Definition. Let X be a TΠ-model, let (Φ,Sv1 . . . vn, σ) be an axiom schema over
Π, and let

(
R ∈ Π(n)Φ,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
be an instance. We say that X is con-

vex with respect to the instance
(
R,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
of the axiom schema

(Φ,Sv1 . . . vn, σ) if X satisfies the following condition:
Let x1, . . . , xn ∈ |X|, and let us say that a valuation κ : Var → |X| is good if κ(vi) = xi

for each 1 ≤ i ≤ n. For each good valuation κ : Var → |X|, we define

Rκ :=
∨{

σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
.

Then for each T ∈ Π(n) such that T ≤ σ
(
R
)
and X |= Tx1 . . . xn, we require that

T ≤
∨

{Rκ | κ : Var → |X| is good}.

We say that X is convex with respect to an axiom schema if X is convex with
respect to each instance of the axiom schema.

Theorem 7.8 now specializes to yield the following:

7.14. Theorem. Let T be a schematic extension of TΠ. Then every convex T-model is
an exponentiable object of T-Mod.

7.15. Proposition. Let T be a schematic extension of TΠ given by a set S of axiom
schemas over Π, and let X be a T-model. Then X is convex with respect to all safe axiom
schemas in S .
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Proof. Let (Φ,Sv1 . . . vn, σ) be a safe axiom schema in S . Then there is some function
λ : Var → {v1, . . . , vn} that fixes {v1, . . . , vn} such that T entails σ

(
R
)
v1 . . . vn =⇒

λ · φRφ for all R ∈ Π(n)ϕ and φ ∈ Φ. To show that X is convex with respect to

an instance
(
R,ΦR =⇒ σ

(
R
)
v1 . . . vn

)
, let x1, . . . , xn ∈ |X|, let T ≤ σ

(
R
)
be such

that X |= Tx1 . . . xn, and let us show that T ≤
∨
{Rκ | κ : Var → |X| is good}. Let

ι : {v1, . . . , vn} → |X| be the function defined by ι(vi) := xi for each 1 ≤ i ≤ n.
We then have a good valuation κ := ι ◦ λ : Var → |X|, so it suffices to show that
T ≤ Rκ, i.e. that T ≤

∨{
σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
. From X |=

Tx1 . . . xn we obtain X |=
(
σ
(
R
)
∧ T

)
x1 . . . xn (because X is a model of TΠ) and then

X |= σ
(
R ∧ T

)
x1 . . . xn (since σ

(
R
)
∧ T = σ

(
R ∧ T

)
). We then deduce (from the

hypothesis on λ) that X |= κ·φRφ∧T for each φ ∈ Φ, so that T = σ
(
R
)
∧T = σ

(
R ∧ T

)
=

σ
(
R ∧

(
R ∧ T

))
≤

∨{
σ
(
R ∧ S

)
| S ∈ Π(n)Φ and X |= κ · φSφ ∀φ ∈ Φ

}
, as desired.

From Theorem 7.8, Proposition 7.12, Theorem 7.14, and Proposition 7.15 we immediately
deduce the following result:

7.16. Theorem. Let T be a schematic extension of TΠ given by a set S of axiom schemas
over Π. If each axiom schema in S is safe, then T-Mod is cartesian closed. If each axiom
schema in S is very safe, then T-Mod is moreover locally cartesian closed.

We also have the following analogue of Theorem 6.17, whose proof is identical to that of
Theorem 6.17 after using Theorem 7.16 in place of Theorem 6.15; the result that V -RGph
is a topological universe (and in particular a quasitopos) recovers [3, Theorem 2.5] (see
also [6, Theorem 5.6]).

7.17. Theorem. Let T be a schematic extension of TΠ given by a set S of axiom schemas
over Π, and suppose that T is without equality and that each axiom schema in S is very
safe. Then T-Mod is a quasitopos, and moreover a topological universe. In particular,
if (V ,≤,⊗,⊤) is a commutative unital quantale such that (V ,≤) is a complete Heyting
algebra, then TΠV

-Mod = TV -RGph-Mod ∼= V -RGph is a topological universe.

7.18. Remark. [Further directions] We conclude the paper by discussing two further
questions that could be pursued. As we explained in Remarks 6.6 and 7.9, our results only
establish the sufficiency of convexity for the exponentiability of objects and morphisms in
various categories of relational structures, but for certain (classes of) examples it has been
established (in [3] and [14]) that convexity is also necessary for exponentiability. It would
therefore be interesting and useful to try to characterize the relational Horn theories T
such that convexity is not only sufficient but also necessary for exponentiability in T-Mod.

Another further question is the following. We have studied convexity when T is a
(certain kind of) relational Horn theory over a preordered relational signature Π that is
discrete (in §6) or a complete Heyting algebra (in §7). It would be interesting and useful
to try to develop an approach to convexity that generalizes both cases and can be applied
when Π is an arbitrary preordered relational signature. The two definitions of convexity
in Definitions 6.1 and 7.3 are rather different; in particular, the definition of convexity in
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Definition 7.3 (when Π is a complete Heyting algebra) makes explicit and significant use
of the complete lattice structure of Π, which is not available when Π is discrete.
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[2] Jǐŕı Adámek and Jǐŕı Rosický, Locally presentable and accessible categories, London Mathematical
Society Lecture Note Series, vol. 189, Cambridge University Press, Cambridge, 1994.

[3] Maria Manuel Clementino and Dirk Hofmann, Exponentiation in V -categories, Topology Appl.
153 (2006), no. 16, 3113–3128.

[4] Maria Manuel Clementino and Dirk Hofmann, The rise and fall of V -functors, Fuzzy Sets and
Systems 321 (2017), 29–49.

[5] Maria Manuel Clementino, Dirk Hofmann, and Isar Stubbe, Exponentiable functors between
quantaloid-enriched categories, Appl. Categ. Structures 17 (2009), 91–101.

[6] Maria Manuel Clementino, Dirk Hofmann, and Walter Tholen, Exponentiability in categories of
lax algebras, Theory Appl. Categ. 11 (2003), No. 15, 337–352.

[7] B. J. Day and G. M. Kelly, On topological quotient maps preserved by pullbacks or products, Proc.
Cambridge Philos. Soc. 67 (1970), 553–558.

[8] Roy Dyckhoff and Walter Tholen, Exponentiable morphisms, partial products and pullback com-
plements, J. Pure Appl. Algebra 49 (1987), no. 1-2, 103–116.
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