Gysin functors, correspondences, and the Grothendieck-Witt category

Daniel Dugger

We introduce some general categorical machinery for studying Gysin functors (certain kinds of functors with transfers) and their associated categories of correspondences. These correspondence categories are closed, symmetric monoidal categories where all objects are self-dual. We also prove a limited reconstruction theorem: given such a closed, symmetric monoidal category (and some extra information) it is isomorphic to the correspondence category associated to a Gysin functor. Finally, if k is a field we use this technology to define and explore a new construction called the Grothendieck-Witt category of k.

Keywords: Burnside category, transfer map, Grothendieck-Witt ring, correspondences

2020 MSC: 18B10,55P91,12F10

Theory and Applications of Categories, Vol. 38, 2022, No. 6, pp 156-213.

Published 2022-01-19.

http://www.tac.mta.ca/tac/volumes/38/6/38-06.pdf

TAC Home