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GRAY-CATEGORIES MODEL ALGEBRAIC TRICATEGORIES

GIOVANNI FERRER

Abstract. Lack described a Quillen model structure on the category GrayCat of
Gray-categories and Gray-functors, for which the weak equivalences are the weak 3-
equivalences. Restricted to Gray-groupoids, the resulting homotopy category is equiv-
alent to the homotopy category of 3-types. In this note, we adapt the technique of
Gurski, Johnson, and Osorno to show the localization of GrayCat at the weak equiva-
lences is equivalent to the category of algebraic tricategories and pseudo-natural equiva-
lence classes of weak 3-functors. This finishes establishing the homotopy hypothesis for
algebraic trigroupoids.
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1. Introduction

Let 2Cat be the category of strict 2-categories and strict 2-functors. The symmetric
monoidal category Gray is the category 2Cat equipped with the Gray monoidal structure
[Gurski, 2013]. A Gray-category is then a category enriched in Gray in the sense of [Kelly,
2005]. We denote the 1-category of Gray-categories and Gray-functors by GrayCat. A more
explicit definition of Gray-category can be found in Appendix A.

We now discuss the model category structure on GrayCat from [Lack, 2011].

1.1. Definition. A Gray-functor F : A → B between Gray-categories is called:

• a weak equivalence if it is a weak 3-equivalence of A and B as weak 3-categories,
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• a fibration if it is a fibration on each hom-2-category and satisfies a so-called
biadjoint-biequivalence-lifting property (from which one sees all Gray-categories are
fibrant),

• in particular, a trivial fibration if it is surjective on objects, full at all levels, and
faithful at the top level,

• a cofibration if it has the left lifting property against trivial fibrations. More specifi-
cally, F : A → B is a cofibration if and only if for every trivial fibration F ′ : A′ → B′

and Gray-functors a : A → A′ and b : B → B′ such that the following square com-
mutes,

A A′

B B′

a

F F ′

b

ℓ

there exists a Gray-functor lift ℓ : B → A′ such that the two triangles commute.

1.2. Definition. We denote by W the collection of weak equivalences in GrayCat. The
category GrayCat[W−1] is the localization of GrayCat at the weak equivalences, which is de-
termined (up to unique isomorphism) by the following universal property [Gabriel Zisman,
1967]:

• For any functor F : GrayCat → D of categories which maps weak equivalences to
isomorphisms, F uniquely factors through GrayCat[W−1], i.e., there exists a unique
Φ: GrayCat[W−1]→ D such that the following diagram commutes on the nose:

GrayCat D

GrayCat[W−1]

π

F

∃! Φ

1.3. Remark. In [Gabriel Zisman, 1967], an explicit construction is provided in which
an object of GrayCat[W−1] is simply a Gray-category and a morphism from A → B in
GrayCat[W−1] is a “zigzag”, i.e. a finite chain of Gray-categories and Gray-functors

A w1←− X1
f1−→ X2

w2←− X3
f2−→ · · · wn←− X2n−1

fn−→ B

where the ← and → alternate and each morphism wi “in the wrong direction” is a weak
equivalence. These zigzags are considered equal up to a certain equivalence relation. We
refer the reader to the previous citation for more details.
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1.4. Definition.We denote by hoTriCat the 1-category whose objects are Gray-categories
and morphisms are pseudo-natural equivalence classes of weak 3-functors. More specifi-
cally, we say two weak 3-functors F,G : A → B are pseudo-naturally equivalent and write
F ∼= G if they are (internally) biequivalent in the weak 3-category TriCat(A,B) of weak
3-functors. Since each weak 3-category (algebraic tricategory) is triequivalent to a Gray-
category [Gurski, 2013, §10.4], hoTriCat is equivalent to the 1-category of weak 3-categories
and pseudo-natural equivalence classes of weak 3-functors.

The main result of this note shows that Lack’s model structure models algebraic
tricategories in the following sense.

1.5. Theorem. [Theorem 3.3] The categories GrayCat[W−1] and hoTriCat are isomor-
phic.

The proof is a straightforward adaptation of [Gurski Johnson Osorno, 2019, Prop. 3.31]
using cofibrant replacement and path objects. When restricted to Gray-groupoids, we
obtain the following consequence of [Lack, 2011, Thm. 5.4].

1.6. Corollary. [Homotopy hypothesis for algebraic trigroupoids] The 1-category of
algebraic trigroupoids and natural equivalence classes of weak 3-functors is equivalent to
the category of homotopy 3-types and homotopy classes of continuous maps.

2. Constructions for Gray-categories

In this section we provide the two necessary constructions needed to adapt the technique
of [Gurski Johnson Osorno, 2019, Prop. 3.31] to show Theorem 3.3.

2.1. Proposition. [Cofibrant replacement in GrayCat] For every C ∈ GrayCat, there is

a cofibrant Ĉ ∈ GrayCat together with an “evaluation” Gray-functor evC : Ĉ → C which is
a trivial fibration. For every A,B ∈ GrayCat and weak 3-functor F : A → B, there is a
Gray-functor F̂ : Â → B̂ which satisfies the following properties:

(1̂) For every weak 3-functor F : A → B, the diagram
Â B̂

A B

evA

F̂

evB

F

weakly com-

mutes.

(2̂) When F : A → B is a Gray-functor, the diagram in (1̂) strictly commutes.

(3̂) îdA = idÂ.

(4̂) If F : A → B and G : B → C are weak 3-functors, then Ĝ ◦ F ∼= Ĝ ◦ F̂ .

(5̂) In (4̂), if either F or G is a Gray-functor, then Ĝ ◦ F = Ĝ ◦ F̂ .

Proof. Gurski’s Gr construction in [Gurski, 2013, §10.4] satisfies the properties required
of ·̂ . We recall this construction and go over its desired properties in Appendix B.
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2.2. Proposition. [Path objects exist in GrayCat] For every B ∈ GrayCat, there exists
a path object BI ∈ GrayCat in the sense of [Quillen, 1967, Ch. 1, Def. 4] such that:

(P1) There exist Gray-functors B BI BC

T

S

where C is a weak equivalence and(
S
T

)
: BI → B × B is a fibration such that S ◦ C = T ◦ C = idB.

(P2) If F : B1 → B2 is a Gray-functor, then there exists a Gray-functor F I : BI
1 → BI

2

which makes the corresponding C, S, and T squares commute:

B1 BI
1 B1

B2 BI
2 B2

C

F F I

S

T

F

C

S

T

(P3) Moreover, BI satisfies the property that for every two pseudo-naturally equivalent
Gray-functors F,G : A → B, there is a weak 3-functor ⟨F,G⟩ : A → BI such that
S ◦ ⟨F,G⟩ = F and T ◦ ⟨F,G⟩ = G.

Proof. Lack’s path space construction PB for B ∈ GrayCat in [Lack, 2011, Prop. 4.1] sat-
isfies the desired properties. As [Gurski Johnson Osorno, 2019] note in their Remark 3.33,
there have been some mistakes in the literature regarding path objects and transferred
model structures. We provide a careful treatment of this by recalling Lack’s construction
and showing it satisfies the properties of BI in Appendix C.

2.3. Remark.We note that the existence of such path objects in GrayCat satisfying (P3)
is crucial in proving our main result, as it relates (right) homotopies in the model theoretic
sense with pseudo-natural equivalences.

3. The main theorem

In this section we implement the technique of [Gurski Johnson Osorno, 2019]. There
is an obvious functor Q : GrayCat → hoTriCat which maps each Gray-category to itself
and maps F : A → B to its equivalence class [F ] in hoTriCat. Clearly this functor maps
equivalences to isomorphisms, and thus uniquely factors through GrayCat[W−1]. We will
denote this factorization by Φ: GrayCat[W−1]→ hoTriCat.

3.1. Definition. Define Ψ: hoTriCat→ GrayCat[W−1] to be the identity on objects and,
for a weak 3-functor F : A → B, define

Ψ([F ]) := A evA←−− Â F̂−→ B̂ evB−−→ B.

3.2. Lemma. Ψ is a well-defined functor.
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Proof. Suppose F,G : A → B are pseudo-naturally equivalent. Then

Ψ([F ]) = A evA←−− Â F̂−→ B̂ evB−−→ B

= A evA←−− Â
̂S◦⟨F,G⟩−−−−→ B̂ evB−−→ B (P3)

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I Ŝ−→ B̂ evB−−→ B (5̂)

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I
evBI−−→ BI S−→ B (2̂)

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I
evBI−−→ BI C←− B C−→ BI S−→ B

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I
evBI−−→ BI C←− B C−→ BI T−→ B (P1)

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I
evBI−−→ BI T−→ B

= A evA←−− Â ⟨̂F,G⟩−−−→ B̂I T̂−→ B̂ evB−−→ B (2̂)

= A evA←−− Â
̂T◦⟨F,G⟩−−−−→ B̂ evB−−→ B (5̂)

= A evA←−− Â Ĝ−→ B̂ evB−−→ B = Ψ([G]). (P3)

Hence Ψ is well-defined. Observe

Ψ([idA]) = A
evA←−− Â îdA−−→ Â evA−−→ A

= A evA←−− Â
idÂ−−→ Â evA−−→ A (3̂)

= A evA←−− Â evA−−→ A

= A idA−−→ A = idΨ(A).

Since Ψ is well-defined and for composable weak 3-functors A F−→ B G−→ C we have [Ĝ◦F̂ ] =

[Ĝ ◦ F ], it follows

Â F̂−→ B̂ Ĝ−→ Ĉ =
(2̂)
Â

evÂ←−− ̂̂A ̂̂
G◦F̂−−→ ̂̂C evĈ−−→ Ĉ = Ψ([Ĝ ◦ F̂ ]) (4̂)

= Ψ([Ĝ ◦ F ]) = Â
evÂ←−− ̂̂A ̂̂

G◦F−−→ ̂̂C evĈ−−→ Ĉ (2̂)

= Â Ĝ◦F−−→ Ĉ.

Hence

Ψ([G]) ◦Ψ([F ]) = A evA←−− Â F̂−→ B̂ evB−−→ B evB←−− B̂ Ĝ−→ Ĉ evC−−→ C

= A evA←−− Â F̂−→ B̂ Ĝ−→ Ĉ evC−−→ C

= A evA←−− Â Ĝ◦F−−→ Ĉ evC−−→ C = Ψ([G ◦ F ]),
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and we conclude Ψ is a functor.

We are now ready to prove the main result of this note.

3.3. Theorem. The functors Φ and Ψ exhibit an isomorphism of categories.

Proof. Since both functors are the identity on objects, it suffices to show that Φ and Ψ
are mutual inverses on hom sets. The fact that Φ is surjective on hom sets follows from
(1̂). We now show (Ψ ◦ Φ)([F ]) = [F ] and conclude Φ is an isomorphism with inverse Ψ.
Indeed, consider the following diagram:

GrayCat hoTriCat

GrayCat[W−1] GrayCat[W−1]

π

Q

Ψ

id

Φ

whose left triangle commutes by the universal property of GrayCat[W−1]. Note that for
every Gray-functor F : A → B,

(Ψ ◦Q)(F ) = Ψ([F ]) = A
evA←−− Â F̂−→ B̂ evB−−→ B (2̂)

= A evA←−− A evA−−→ A F−→ B = A F−→ B = π(F ).

Thus Ψ ◦Φ ◦ π = Ψ ◦Q = π. By the uniqueness of factorizations through GrayCat[W−1],
it is easy to see that π is epic. From this we conclude Ψ ◦ Φ = id.

4. Corollaries

We obtain the following two corollaries which correspond to the surjectivity and injectivity
/well-definedness respectively of the above bijection induced by Φ.

4.1. Corollary. If A is a cofibrant Gray-category and F : A → B is a weak 3-functor,
then F is pseudonaturally equivalent to a Gray-functor.

Proof. Since evA : Â → A is a trivial fibration, if ∅ → A is a cofibration, then there
exists a Gray-functor lift ℓ : A → Â which makes the following triangles commute

∅ Â

A A
!

!

evA

id

ℓ

Thus ℓ is a section of evA and F = F ◦ evA ◦ ℓ ∼=
(1̂)

evB ◦F̂ ◦ ℓ, a Gray-functor.
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4.2. Corollary. Suppose A is a cofibrant Gray-category and F,G : A → B are Gray-
functors. Then F is pseudonaturally equivalent to G if and only if F and G are homotopic
in Lack’s model structure.

Proof. First suppose F is pseudo-natually equivalent to G, i.e. Φ(F ) = [F ] = [G] =
Φ(G). By the injectivity of Φ, F = G in GrayCat[W−1]. Since evA, evB ∈ W , it follows by

(2̂) that F̂ = Ĝ in GrayCat[W−1]. By the general theory of model categories, GrayCat[W−1]
is equivalent to the category of fibrant-cofibrant Gray-categories together with homotopy
classes of Gray-functors (see [Hirschhorn, 2003, Thm. 8.3.9]). Through this equivalence we

obtain that F̂ is homotopic to Ĝ since Â and B̂ are fibrant-cofibrant. More specifically,
there exists a Gray-functor H : Â→ B̂I such that S ◦H = F̂ and T ◦H = Ĝ.

By (P2), there exists a map evIB : B̂
I → BI such that the following diagrams commute.

B̂I B̂

BI B

S

evIB evB

S

B̂I B̂

BI B

T

evIB evB

T

As before, since A is cofibrant, there exists a Gray-functor section ℓ : A → Â for evA. By
defining the Gray-functor H ′ : A → BI by H ′ := evIB ◦H ◦ ℓ we see that

S ◦H ′ = A ℓ−→ Â H−→ B̂I evIB−−→ BI S−→ B

= A ℓ−→ Â H−→ B̂I S−→ B̂ evB−−→ B

= A ℓ−→ Â F̂−→ B̂ evB−−→ B

=
(2̂)
A ℓ−→ Â evA−−→ A F−→ B = F

and similarly T ◦ H ′ = G. Thus F,G are homotopic. Conversely, suppose F,G are
homotopic so there exists a Gray-functor H : A → BI with S ◦ H = F and T ◦ H = G.
By (P1), (C : B → BI) ∈ W with S ◦C = T ◦C, so S = T in GrayCat[W−1]. This implies
F = S ◦H = T ◦H = G in GrayCat[W−1] and by the well-definedness of Φ we have that
[F ] = Φ(F ) = Φ(G) = [G]. Thus F is pseudo-naturally equivalent to G.

A. Gray-categories

We present the data and axioms of a Gray-category in order to fix notation for Appendix B
and Appendix C.

A.1. Notation. A Gray-category C consists of the following data:

(D0) a collection of objects C0, denoted by lower case letters a, b, c
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(D1) for a, b ∈ C0, a strict 2-category C(a, b) where we write f : a → b whenever f ∈
C(a, b), composition of 1-morphisms (called 2-morphisms in C) is denoted by ⊗, and
composition of 2-morphisms (called 3-morphisms in C) is denoted by ◦;

(D2) for each a ∈ C0, an identity ida : a→ a;

(D3) for objects a, b, c, d ∈ C0 and 1-morphisms g : c→ d, f : a→ b, strict covariant and
contravariant hom-2-functors g∗ = g ⊠− and f ∗ = −⊠ f :

g∗ : C(b, c)→ C(b, d) and f ∗ : C(b, c)→ C(a, c),

(D4) an interchanger 3-isomorphism Σγ,ξ for each pair of “horizontally composable” 2-
morphisms ξ : g ⇒ g′ with g, g′ : b→ c and γ : f ⇒ f ′ with f, f ′ : a→ b:

Σξ,γ : (ξ ⊠ idf ′)⊗ (idg ⊠ γ) ⇛ (idg′ ⊠ γ)⊗ (ξ ⊠ idf )

subject to the following conditions:

(C1) for composable 1-morphisms g : b→ c and f : a→ b,

g∗f = f ∗g = g ⊠ f ;

(C2) ⊠ is strictly unital and associative, i.e., the following hold whenever they make
sense:

(idb)∗ = idC(a,b) = (ida)
∗

g∗f∗ = (g ⊠ f)∗

f ∗g∗ = (g ⊠ f)∗

g∗f
∗ = f ∗g∗;

(C3) the interchanger Σ respects identities, i.e., for a 1-morphism f : b → c and 2-
morphisms ξ, γ, the following hold whenever they make sense:

Σξ,idf = idξ⊠f and Σidf ,γ = idf⊠γ

(C4) the interchanger Σ respects ⊗, i.e., for g
ξ
=⇒ g′

ξ′
=⇒ g′′ and f

γ
=⇒ f ′ γ′

=⇒ f ′′, the

following hold whenever they make sense:

Σξ′⊗ξ,γ = (Σξ′,γ ⊗ (ξ ⊠ f)) ◦ ((ξ′ ⊠ f ′)⊗ Σξ,γ)

Σξ,γ′⊗γ = ((g′ ⊠ γ′)⊗ Σξ,γ) ◦ (Σξ,γ′ ⊗ (g ⊠ γ))

(C5) the interchanger Σ is natural, i.e., for g, g′ : b→ c, ξ, ξ′ : g ⇒ g′ and Ξ: ξ ⇛ ξ′; and
f, f ′ : a→ b, γ, γ′ : f ⇒ f ′ and Γ : γ ⇛ γ′:

Σξ′,γ ◦ ((Ξ⊠ f ′)⊗ idg⊠γ) = (idg′⊠γ ⊗ (Ξ⊠ f)) ◦ Σξ,γ

Σξ,γ′ ◦ (idξ⊠f ′ ⊗ (g ⊠ Γ)) = ((g′ ⊠ Γ)⊗ idξ⊠f ) ◦ Σξ,γ
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(C6) the interchanger Σ respects ⊠, i.e., for 1-morphisms f, g, h and 2-morphisms σ, ξ, γ,
the following hold whenever they make sense:

Σh⊠ξ,γ = h⊠ Σξ,γ Σσ⊠g,γ = Σσ,g⊠γ Σσ,ξ⊠f = Σσ,ξ ⊠ f

B. Gurski’s Gr construction

We recall [Gurski, 2013, Def. 10.7] specialized to the case of a Gray-category.

B.1. Construction. The Gray-category GrA of a Gray-category A is constructed as
follows.

(Gr0) GrA has the same objects as A, i.e. (GrA)0 = A0.

(Gr1) For a, b ∈ A0, the objects in the 2-category (GrA)(a, b) are (finite) strings {fi} of
composable 1-cells of A (starting at a and ending at b). In particular, such a string
{fi}ni=1 takes order and multiplicity into account, thereby representing a path in A:

a
f1−→ x1

f2−→ · · · fi−→ xi
fi+1−−→ · · · fn−→ b.

For composable lists {gj}n2
j=1 : b→ c and {fi}n1

i=1 : a→ b, we define {gj}⊠ {fi} to be
their concatenation {fi, gj}, which represents the following path:

a
f1−→ · · ·

fn1−−→ b
g1−→ · · ·

gn2−−→ c.

Notice the identity for an object a ∈ GrA will be the empty string ∅a starting and
ending in a.

(Gr2) A morphism α in (GrA)(a, b) consists of a composable string (αn, . . . , α1) of gener-
ator morphisms αk : {fi}n1

i=1 → {gj}
n2
j=1 which themselves consist of:

(a) Three numbers k, ℓ1, ℓ2 with k ≤ ℓi such that

• If m < k, then fm = gm and

• If m > 0, then fℓ1+m = gℓ2+m if either side exists. (so n1 − ℓ1 = n2 − ℓ2)

(b) A pair (σ, τ) where σ = (σ,D) and τ = (τ, E) are so-called associations for
{fi}ℓ1i=k and {gj}ℓ2j=k respectively. Since A ∈ GrayCat, the composition ⊠ of
1-morphisms in A is associative, so this data is superfluous and we will not
present more detail.

(c) A 2-morphism between the “evaluated associations” for {fi}ℓ1i=k and {gj}ℓ2j=k.
In our case, this amounts to a 2-morphisms α : fℓ1 ⊠ · · ·⊠ fk ⇒ gℓ2 ⊠ · · ·⊠ gk
in A.
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The composition ⊗ of 1-morphisms in (GrT )(a, b) is given by concatenation, so the
empty 1-morphism ∅{fi} is the identity on {fi}.
For a basic 2-morphism α and a 1-morphism {hk}n3

k=1 in GrA we define their com-
posites α ⊠ {hk} : {hk, fi} ⇒ {hk, gj} and {hk}⊠ α : {fi, hk} ⇒ {gj, hk} (whenever
they make sense) by

α⊠ {hk} := (k + n3, ℓ1 + n3, ℓ2 + n3, σ, τ, α).

{hk}⊠ α := (k, ℓ1, ℓ2, σ, τ, α).

We extend ⊠ for arbitrary 2-morphisms α = (αn, . . . , α1) by

α⊠ {hk} := (αn ⊠ {hk}, . . . , α1 ⊠ {hk}),
{hk}⊠ α := ({hk}⊠ αn, . . . , {hk}⊠ α1).

With the data presented thus far, GrA forms a sesquicategory which is free on a
computad. Once we finish constructing the Gray-category GrA, [Lack, 2011, Corol-
lary 9.4] will yield that GrA is cofibrant.

(Gr3) For generator 1-morphisms α, β in (GrA)(a, b), a 2-morphism Γ: α⇒ β in (GrA)(a, b)
is simply a 3-morphism Γ: [α] ⇛ [β] in A where [α], [β] : fn1⊠· · ·⊠f1 ⇒ gn2⊠· · ·⊠g1
are given by

[α] := fn1 ⊠ · · ·⊠ fℓ1+1 ⊠ α⊠ fk−1 ⊠ · · ·⊠ f1,

[β] := gn2 ⊠ · · ·⊠ gℓ2+1 ⊠ β ⊠ gk−1 ⊠ · · ·⊠ g1.

For general 1-morphisms α = αn ⊗ · · · ⊗ α1 and β = βn′ ⊗ · · · ⊗ β1 in GrA(a, b)1,
Γ : α⇒ β is simply a 3-morphism Γ: [αn]⊗ · · · ⊗ [α1] ⇛ [βn′ ]⊗ · · · ⊗ [β1] in A.
The vertical composition ◦ of 2-morphisms in (GrA)(a, b) is inherited from A and is
thus strictly associative and unital. The horizontal composition ⊗ of 2-morphisms
in (GrA)(a, b) is also inherited from T , so this composition satisfies the interchange
law and is strictly associative. Thus GrT (a, b) is actually a strict 2-category.

For a 1-morphism {hk} in GrA we define {hk}⊠Γ: {hk}⊠α ⇛ {hk}⊠β (whenever
it makes sense) by

(⊠khk)⊠ ([αn]⊗ · · · ⊗ [α1])
(⊠khk)⊠Γ

≡≡≡≡≡⇛ (⊠khk)⊠ ([βn′ ]⊗ · · · ⊗ [β1]).

We similarly define Γ⊠ {hk}.

(GrΣ) For basic 2-morphisms α and β in GrA we may define the interchanger Σα,β (when-
ever it makes sense) to be the interchanger Σ[α],[β] in A. One then extends Σ to
general 2-morphisms in GrA by the same formula in (C4).

By [Gurski, 2013, Thm. 10.8], this data serves to equip GrA with the structure of a Gray-
category. We continue recalling [Gurski, 2013, Def. 10.7] and [Gurski, 2013, Thm. 10.9]:
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B.2. Construction. We define the Gray-functor evA : GrA → A as

(ev0) On objects, evA is the identity.

(ev1) On 1-morphisms,
ev({fi}) = [fi] := fn ⊠ · · ·⊠ f1

where [ ] = Ia for the empty 1-cell ∅a : a → a. We will also use the notation
[bj, ai] := [bj]⊠ [ai].

(ev2) For a basic 2-morphism α : {fi} ⇒ {gj}, we define evA(α) = [α] where we are
using the same notation as in Construction B.1. We then extend evA to general
2-morphisms in A by

ev(αn ⊗ · · · ⊗ α1) := ev(αn)⊗ · · · ⊗ ev(α1).

and set ev(∅{fi}) := id[fi].

(ev3) On 3-morphisms, evA is the identity.

B.3. Remark.By construction evA is surjective at all levels and (fully) faithful at the top

level, i.e., evA is a trivial fibration in Lack’s model structure for GrayCat. So GrA evA−−→ A
is indeed a cofibrant replacement for A in GrayCat.

We now recall [Gurski, 2013, §10.6].

B.4. Construction. For a weak 3-functor F : A → B between Gray-categories, we
define the Gray-functor GrF : GrA → GrB together with an equivalence pseudo-icon
(φ,M,Π) where

GrA GrB

φ ⇓

A B

evA

GrF

evB

F

(GrF0) GrF (s) = F (s) for every object s ∈ S.

(GrF1) GrF ({fi}) = {Ffi} for a string {fi} ∈ GrS.

(φ1) Let {fi}ni=1 be a 1-morphism in GrA. If n = 0, so that {fi} = ∅a, we define the
equivalence φ{fi} : IF (a) ⇒ F (∅a) to be the unitor φ{fi} := F 0

a of F . When n = 1,
we define φ{fi} : F (f1)⇒ F (f1) to be the identity φ{fi} := idF (f1). When n > 2, we
define

φ{fi} : Ffn ⊠ · · ·⊠ Ff1 ⇒ F
(
fn ⊠ · · ·⊠ f1

)
to be the leftmost composition of tenso-

rators F 2 of F tensored with identities

F 2
fn⊠···⊠f2,f1

⊗· · ·⊗(F 2
fn⊠fn−1,fn−2

⊠Ffn−3⊠ · · ·⊠Ff1)⊗(F 2
fn,fn−1

⊠Ffn−2⊠ · · ·⊠Ff1).
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We also choose the obvious adjoint φ�, unit, and counit. For simplicity, we will
continue to denote this n-fold tensor by [ · ], so that

φ{fi} : [Ffi]⇒ F [fi].

(GrF2) For a basic α = (k, ℓ1, ℓ2, (σ,D), (τ, E), α), we define

GrF (α) = (k, ℓ1, ℓ2, (σ, FD), (τ, FE),GrFα).

where we recall the data of (σ, FD) and (τ, FE) is superfluous and define GrFα so
that the following diagram commutes.

[Ffi] [Fgj]

[Ffi>ℓ1 , F [fℓ1≥i≥k], Ffk>i] [Fgj>ℓ2 , F [gℓ2≥j≥k], Fgk>j]

GrFα

[φ{fℓ1≥i≥k}]

[Fα]

[φ�
{gℓ2≥j≥k}]

We extend this for general 2-morphisms by GrF (αn⊗ . . .⊗α1) := GrF (αn)⊗ . . .⊗
GrF (α1).

(φ2) For a basic 2-morphism α in GrA, we again denote fn1⊠ · · ·⊠fℓ1⊠α⊠fk−1⊠ · · ·⊠f1
by [α]. We then define the naturality isomorphism φα to be the following composite
of adjoint equivalence data from F

[Ffi] [Ffi>ℓ1 , F [fℓ1≥i≥k], Ffk>i]

∼=

F [fi] [Fgj>ℓ2 , F [gℓ2≥j≥k], Fgk>j]

∼=

F [gj] [Fgj]

φ{fi}

[φ{fℓ1≥i≥k}]

φ{ fi>ℓ1
,[fℓ1≥i≥k],fk>i }

[Fα]

F [α] φ{ gj>ℓ2
,[gℓ2≥j≥k],gk>j }

[φ�
{gℓ2≥j≥k}]

∼=

φ{gj}

We then extend this to general 2-morphisms in GrA as usual.

(M) For every object a ∈ GrA0 = A0, we define the invertible 3-cell Ma

idFa idFa

Ma

⇛

idFa F (∅a)

φ∅a

F 0
a
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to be the identity idF 0
a
.

(Π) We define the modification Π to be the unique coherence isomorphism given by F .

In particular, Π has component invertible 3-cells Π{fi},{gj} for a
{fi}−−→ b

{gj}−−→ c in
GrA

[Fgj]⊠ [Ffi] [Ffi, Fgj]

Πf,g

⇛

F [gj]⊠ F [fi] F [fi, gj]

φ{gj}⊠φ{fi}
φ{gj}⊠{fi}

F 2
[fi],[gj ]

(GrF3) For a 3-morphism Γ: α ⇛ β in GrA we define GrF (Γ) : GrF (α) ⇛ GrF (β) so that
the following diagram commutes

[φ�
{fℓ2≥j≥k}]⊗ [Fα]⊗ [φ{fℓ1≥i≥k} ] [φ�

{fℓ2≥j≥k}]⊗ [Fβ]⊗ [φ{fℓ1≥i≥k} ]

φ�
{gj} ⊗ F [α]⊗ φ{fi} φ�

{gj} ⊗ F [β]⊗ φ{fi}

ϕα

GrF (Γ)

id⊗FΓ⊗id

ϕ�
β

where the 3-isomorphisms ϕα and ϕ�
β
are similar to φα and φ�

β
in (φ2).

B.5. Properties. We now review the properties outlined in Proposition 2.1.

(1̂) The fact that (φ,M,Π) forms a pseudo-icon follows from the coherence theorem for
weak 3-functors. We refer the interested reader to [Gurski, 2013, Thm. 10.13] and
its corollary [Gurski, 2013, Cor. 10.15].

(2̂) When F is Gray, F is strict so for every 1-morphism {fi} in GrA, φ{fi} = id by
construction. Now consider a generator 2-morphism α = (k, ℓ1, ℓ2, (σ,D), (τ, E), α)
from {fi} to {gj},

GrF (α) = (k, ℓ1, ℓ2, (σ, FD), (τ, FE), Fα).

Therefore, the following diagram strictly commutes

evB ◦GrF{fi} evB ◦GrF{gj} [Ffi] [Fgj]

F ◦ evA{fi} F ◦ evA{gj} F [fi] F [gi]

φ{fi}

evB ◦GrF (α)

φ{gj}

[Fα]

F◦ evA(α) F [α]
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In other words, evB ◦GrF (α) = F ◦ evA(α) and since both functors are strict, this
equality holds for general 2-morphisms. Finally, since GrF and evA are uniquely
determined on 3-morphisms by coherence, it is immediate that evB ◦GrF = F ◦ evA
at the level of 3-morphisms.

(3̂) Since idA is Gray, the result is immediate from our discussion in (2̂).

(4̂) From our discussion in (1̂) we see that

GrA GrB

φF ⇓

A B GrB

⇐ φG

GrA φGF

=⇒ C Gr C

Gr C

GrF

evA evB

F

GF
G

evB

GrG
evA

Gr(GF )

evC

evC

Therefore,

GrA Gr(GF )−−−−→ Gr C
∼= GrA evA−−→ A F−→ B G−→ C

ev�C−−→ Gr C
∼= GrA evA−−→ A

ev�A−−→ GrA GrF−−→ GrB
evB−−→ B

ev�B−−→ GrB GrG−−→ Gr C evC−−→ C
ev�C−−→ Gr C

∼= GrA GrF−−→ GrB GrG−−→ Gr C,

where ev�A, ev
�
B, ev

�
C are pseudo-inverse to evA, evB, evC respectively.

(5̂) Notice that Gr(G ◦ F ) and GrG ◦ GrF always agree on objects and 1-morphisms
in GrA. We now suppose F is a Gray-functor. Consider a generator 2-morphism
α = (k, ℓ1, ℓ2, (σ, F ), (τ, E), α) in GrA. We must show Gr(G)Gr(F )α = Gr(G ◦ F )α.
As we saw in (2̂), Gr(F )α = (k, ℓ1, ℓ2, (σ, FD), (τ, FE), Fα) and

Gr(G)Gr(F )α = (φG)
�
{Fgℓ2≥j≥k} ⊗GFα⊗ φG

{Ffℓ1≥i≥k}.
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This agrees with

Gr(G ◦ F )α = (φGF )
�
{gℓ2≥j≥k} ⊗GFα⊗ φGF

{fℓ1≥i≥k}.

because in this case the constraint data for GF is simply that of G restricted to the
image of F . Since Gr(G) ◦ Gr(F ) and Gr(G ◦ F ) are strict, we conclude that these
functors agree on general 2-morphisms in GrA. We conclude by a similar argument
that these functors agree on 3-morphisms as well. Thus Gr(G ◦F ) = Gr(G) ◦Gr(F ).

Now suppose G is Gray. We must again show Gr(F )Gr(G)α = Gr(G ◦ F )α for a
generator 2-morphism α in GrA. Recall that

Gr(F )α = (φF )
�
{gℓ2≥j≥k} ⊗ Fα⊗ φF

{fℓ1≥i≥k}.

Thus
Gr(G)Gr(F )α = G(φF )

�
{gℓ2≥j≥k} ⊗GFα⊗GφF

{fℓ1≥i≥k}.

This agrees with

Gr(G ◦ F )α = (φGF )
�
{gℓ2≥j≥k} ⊗GFα⊗ φGF

{fℓ1≥i≥k}.

because in this case, the constraint data for GF is that of F pushed through the
functor G. We then conclude that Gr(G ◦ F ) and Gr(G) ◦ Gr(F ) agree on arbitrary
2-morphisms in GrA as usual. A similar argument reveals that these functors also
agree on 3-morphisms, and we again conclude Gr(G ◦ F ) = Gr(G) ◦ Gr(F ).

C. Lack’s path object construction

To show (P1), we recall [Lack, 2011, Prop. 4.1] and include details which were originally
left to the reader.

C.1. Construction. The path Gray-category PB of a Gray-category B is constructed
as follows.

(P0) An object a ∈ PB is a biequivalence a⃗ : Sa→ Ta in B.

(P1) A 1-morphism f : a→ b in PB consists a tuple f = (Sf, Tf, f⃗ ) where Sf : Sa→ Sb

and Tf : Ta→ Tb are 1-morphisms in B, and f⃗ is an equivalence in B with:

Sa Sb

⇓ f⃗

Ta Tb

a⃗

Sf

b⃗

Tf
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(P2) A 2-morphism θ : f ⇒ g in PB consists of a tuple (Sθ, Tθ, θ⃗ ) where Sθ : Sf ⇒ Sg

and Tθ : Tf ⇒ Tg are 2-morphisms in B, and θ⃗ is an invertible 3-morphisms in B
with:

Sa Sb Sa Sb

⇓ g⃗
θ⃗

≡⇛ ⇓ f⃗

Ta Tb Ta Tb

a⃗

Sg

Sf

b⃗ a⃗

Sf

bα

Tg

Tf

Tg

Tθ

Sθ

(P3) A 3-morphism Γ: θ ⇛ σ in PB consists of a tuple (SΓ, TΓ) where SΓ: Sθ ⇛ Sσ

and TΓ: Tθ ⇛ Tσ are 3-morphisms in B that commute with θ⃗ and σ⃗ in the obvious
way:

g⃗ ⊗ (⃗b⊠ Sθ) (Tθ ⊠ a⃗)⊗ f⃗

g⃗ ⊗ (⃗b⊠ Sσ) (Tσ ⊠ a⃗)⊗ f⃗

g⃗⊗(⃗b⊠SΓ)

θ⃗

(TΓ⊠a⃗)⊗f⃗

σ⃗

There is an organic way of equipping PB with the structure of a Gray-category by inheriting
composites and interchangers from the Gray-category B. We now define the “source” and
“target” Gray-functors S, T : PB → B.

(ST0) For an object a ∈ PB0, we set S(a) := Sa and T (a) := Ta,

(ST1) For a 1-morphism f ∈ PB1, we set S(f) := Sf and T (f) := Tf ,

(ST2) For a 2-morphism θ ∈ PB2, we set S(θ) := Sθ and T (θ) := Tθ,

(ST3) For a 3-morphism Γ ∈ PB3, we set S(Γ) := SΓ and T (Γ) := TΓ

The fact that S and T are Gray-functors is due to the fact that composites in PB are
inherited from those in B. We now define the “constant” Gray-functor C : B → PB.

(C0) For an object b ∈ B0, we set C(b) to be the trivial biequivalence of b with itself, i.e.
C(b) := idb,

(C1) For a 1-morphism f ∈ B1, we set C(f) := (f, f, idf ),

(C2) For a 2-morphism θ ∈ B2, we set C(θ) := (θ, θ, idθ),

(C3) For a 3-morphism Γ ∈ B3, we set C(Γ) := (Γ,Γ).
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The fact that C : B → PB is a Gray-functor is also due to the fact that composites
in PB are inherited from those in B. Furthermore, we have S ◦ C = T ◦ C = idB by
construction.

From this we also see that S and T are surjective on objects and full at all levels.
To show that S and T are trivial fibrations, it thus suffices to show these are faithful on
3-morphisms. Consider when SΓ = SΓ′ or TΓ = TΓ′ for 3-morphisms Γ,Γ′ : θ ⇛ σ :
f ⇒ g : a→ b in PB. Using the fact that θ⃗, σ⃗ are invertible, f⃗ , g⃗ are equivalences, and a⃗,
b⃗ are bi-equivalences in B, the axiom which 3-morphisms in PB must satisfy reveals that
Γ = Γ′. Hence S and T are trivial fibrations and, by the 2-out-of-3 property, it follows
that C is a weak equivalence.

The fact that
(
S
T

)
: BI → B × B is a fibration follows from a simple characterization

of isomorphisms, equivalences, and bi-equivalences in BI . As we have not provided much
treatment for fibrations in Lack’s model structure, we refer the interested reader to [Lack,
2011] for more details.

C.2. Remark. It is easy to show (P2) from our previous construction. Indeed, for a
Gray-functor F : B1 → B2, notice there is an organic Gray-functor PF : PB1 → PB2 which
is obtained by passing the data of a k-morphism (0 ≤ k ≤ 3) in PB1 through F.

C.3. Remark. When F,G : A → B are pseudo-naturally equivalent Gray-functors, there
exists a tritransformation α : F → G consisting of:

(α0) for each object a ∈ A, a biequivalence αa : Fa→ Ga and a 3-isomorphism

Ma : αida ⇛ idαa

in B, where

(α1) for each 1-morphism f ∈ A these is an equivalence αf : αb ⊠ Ff ⇒ Gf ⊠ αa in B
and for each composable pair f, g of 1-morphisms, a 3-isomorphism

Πgf : (Gg ⊠ αf )(αg ⊠ Ff) ⇛ αg⊠f

in B, and

(α2) for each 2-morphism θ : f ⇒ g with f, g : a→ b, a 3-isomorphism

αθ : αg ⊗ (αb ⊠ Fθ) ⇛ (Gθ ⊠ αa)⊗ αf

in B.

This data is subject to various axioms, including naturality conditions for α, M , and Π;
an associativity condition Π; and left and right unitality conditions relating M and Π.
We refer the interested reader to [Gurski, 2013, Def. 4.16] for more details. We now prove
(P3).
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C.4. Construction. Suppose F,G : A → B are pseudo-naturally equivalent Gray-functors,
so that we have data as in Remark C.3. We define the weak 3-functor ⟨F,G⟩ : A → PB
as follows.

(0) For objects a ∈ A, we set ⟨F,G⟩(a) := (Fa
αa−→ Ga),

(1) For 1-morphisms f ∈ A, we set ⟨F,G⟩(f) := (Ff, Fg, αf ),

(2) For 2-morphisms θ ∈ A, we set ⟨F,G⟩(θ) := (Fθ,Gθ, αθ),

(3) For 3-morphism Γ ∈ A, we set ⟨F,G⟩(Γ) := (FΓ, GΓ).

For a 3-morphism Γ : θ ⇛ σ : f ⇒ g : a→ b in B, the fact that ⟨F,G⟩(Γ) is a 3-morphism
in PB follows by the naturality axiom α satisfies, i.e. the following diagram commutes:

αg ⊗ (αb ⊠ Fθ) (Gθ ⊠ αa)⊗ αf

αg ⊗ (αb ⊠ Fσ) (Gσ ⊠ αa)⊗ αf

αg⊗(αb⊠FΓ)

αθ

(GΓ⊠αa)⊗αf

ασ

We now equip this map with the structure of a weak 3-functor.

(χ) For a
f−→ b

g−→ c in A, we define an adjoint equivalence (χgf , χ
�
gf , ϵχgf

, ηχgf
) where

χgf : ⟨F,G⟩(g)⊠ ⟨F,G⟩(f) ⇛ ⟨F,G⟩(g ⊠ f),

by χgf := (id, id,Πgf ), χ
�
gf := (id, id,Π−1

gf ), and ϵχgf
= ηχgf

:= (id, id). Notice ϵχgf

and ηχgf
immediately satisfy the axioms for 3-morphisms in PB.

For a b c

f

f ′

g

g′

θ σ in A, we define the invertible 3-morphisms

⟨F,G⟩(g)⊠ ⟨F,G⟩(f) ⟨F,G⟩(g ⊠ f)

⟨F,G⟩(g′)⊠ ⟨F,G⟩(f ′) ⟨F,G⟩(g′ ⊠ f ′)

χgf

⟨F,G⟩(σ)⊠⟨F,G⟩(θ) ⟨F,G⟩(σ⊠θ)

χg′f ′

⇛χσθ

⟨F,G⟩(g ⊠ f) ⟨F,G⟩(g)⊠ ⟨F,G⟩(f)

⟨F,G⟩(g′ ⊠ f ′) ⟨F,G⟩(g′)⊠ ⟨F,G⟩(f ′)

χ�
gf

⟨F,G⟩(σ⊠θ) ⟨F,G⟩(σ)⊠⟨F,G⟩(θ)

χ�
g′f ′

⇛χ
�
σθ

simply by χσθ = χ�
σθ := (id, id). The fact that χσθ and χ�

σθ satisfy the axioms for
3-morphisms in PB follows from the naturality of Π.
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(ι) For each object a ∈ A, we define an adjoint equivalence (ιa, ι
�
a, ϵιa , ηιa) where

ιa : id⟨F,G⟩(a) ⇒ ⟨F,G⟩(ida),

by ιa := (id, id,M−1
a ), ι�a := (id, id,Ma), and ϵιa = ηιa := (id, id). Notice ϵιa and

ηιa immediately satisfy the axioms for 3-morphisms in PB. We must also choose
invertible 3-morphisms

ιida : ιa ⊗ idid⟨F,G⟩(a)

∼
≡⇛ ⟨F,G⟩(idida)⊗ ιa

ι
�
ida : ι

�
a ⊗ ⟨F,G⟩(idida)

∼
≡⇛ idid⟨F,G⟩a ⊗ ι

�
a

which we will simply take to be ιida := (id, id) and ι�ida := (id, id). The fact that ιida
and ι�ida are 3-isomorphisms in PB follows from the naturality condition M satisfies.

(ω) For a
f−→ b

g−→ c
h−→ d in A, we define the invertible 3-morphism

⟨F,G⟩(h)⊠ ⟨F,G⟩(g)⊠ ⟨F,G⟩(f) ⟨F,G⟩(h⊠ g)⊠ ⟨F,G⟩(f)

⟨F,G⟩(h)⊠ ⟨F,G⟩(g ⊠ f) ⟨F,G⟩(h⊠ g ⊠ f)

χhg⊠⟨F,G⟩(f)

⟨F,G⟩(h)⊠χgf χhg,f

⇛ ωhgf

χh,gf

simply by ωhgf = (id, id). In this case, the axiom for 3-morphisms in PB translates
to the associativity of Π.

(γ) For a
f−→ b in A, we define the invertible 3-morphism

id⟨F,G⟩(b) ⊠ ⟨F,G⟩(f) ⟨F,G⟩(idb)⊠ ⟨F,G⟩(f)

⟨F,G⟩(f)

ιb⊠⟨F,G⟩(f)

⇛ γf
χidb,f

simply by γf = (id, id). In this case, the axiom for 3-morphisms in PB translates to
the left unitality axiom relating Π and M .

(δ) For a
f−→ b in A, we define the invertible 3-morphism δf : id⟨F,G⟩(f)

∼
≡⇛ χf,ida

⟨F,G⟩(f)⊠ id⟨F,G⟩(a) ⟨F,G⟩(f)⊠ ⟨F,G⟩(ida)

⟨F,G⟩(f)

⟨F,G⟩(f)⊠ ιa

⇛ δf χf,ida
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by δf = (id, id). In this case, the axiom for 3-morphisms in PB translates to the
right unitality axiom relating Π and M .

These collections of morphisms in PB assemble themselves into pseudonatural transfor-
mations or modifications due to the naturality conditions Π and M satisfy. Furthermore,
these pseudonatural transformations and modifications trivially satisfy the two axioms of
weak 3-functors. Thus ⟨F,G⟩ is a weak 3-functor and it is clear that S ◦ ⟨F,G⟩ = F and
T ◦ ⟨F,G⟩ = G by construction.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
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