
Theory and Applications of Categories, Vol. 37, No. 35, 2021, pp. 1176–1193.

ON SIFTED COLIMITS IN THE PRESENCE OF PULLBACKS

RUIYUAN CHEN

Abstract. We show that in a category with pullbacks, arbitrary sifted colimits may
be constructed as filtered colimits of reflexive coequalizers. This implies that “lex sifted
colimits”, in the sense of Garner–Lack, decompose as Barr-exactness plus filtered col-
imits commuting with finite limits. We also prove generalizations of these results for
κ-small sifted and filtered colimits, and their interaction with λ-small limits in place of
finite ones, generalizing Garner’s characterization of algebraic exactness in the sense of
Adámek–Lawvere–Rosický. Along the way, we prove a general result on classes of col-
imits, showing that the κ-small restriction of a saturated class of colimits is still “closed
under iteration”.

1. Introduction

A category is called sifted if the category of cocones over any finite discrete family of
objects in it is connected. The significance of this notion is that sifted colimits are
precisely those which commute with finite products in the category of sets. Thus, sifted
colimits exist in any finitary universal-algebraic variety and are computed on the level of
the underlying sets. For background on sifted colimits and their key role in categorical
universal algebra, see [AR01], [ARV11].

The main examples of sifted colimits are filtered colimits and reflexive coequalizers,
i.e., coequalizers of parallel pairs of morphisms X ⇒ Y with a common section Y → X.
It is well-known that these two types of colimits “almost” suffice to generate all sifted
colimits. To state this precisely, recall that by general principles [Kel82, 5.35], every
category C has a free cocompletion under any given class of colimits, which can be explicitly
constructed as the full subcategory of the presheaf category [Cop, Set] on the closure of
the representables under said colimits. Let

Sind(C) := free cocompletion of C under small sifted colimits,

Ind(C) := free cocompletion of C under small filtered colimits,

Rec(C) := free cocompletion of C under reflexive coequalizers.

Now Adámek–Rosický [AR01, 2.3(2)] (see also [ARV11, 7.3]) showed that for C with finite
coproducts,

Sind(C) ≃ Ind(Rec(C));
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the same equation was also shown for complete C by Adámek–Rosický–Vitale [ARV01,
5.1]. It follows from this equation that if C also has small sifted colimits, then those may be
constructed as filtered colimits of reflexive coequalizers. This then implies that a functor
F : C→ D preserving these latter types of colimits also preserves all sifted ones, as shown
by Joyal [Joy08, 33.24], Lack [LR11, 3.2], and Adámek–Rosický–Vitale [ARV10, 2.1].
However, some such assumption on C as completeness or existence of finite coproducts is
needed in all of these results: Adámek–Rosický–Vitale [ARV10, §1] give counterexamples
for a general C.

The main results of this paper show that sifted colimits may be constructed as filtered
colimits of reflexive coequalizers, in all the precise senses just described, assuming instead
that C has pullbacks. In fact, we prove a “relative” version of this, where all colimits are
bounded in size by some regular cardinal κ ≤ ∞. The precise statements are given by
Theorem 5.1 and Corollary 5.2. These results are ultimately based on some interactions
between pullbacks and sifted colimits of a purely combinatorial nature, that we consider
in Sections 2 and 3.

In Section 6, we apply our main results to the richer setting where not only pullbacks
but all λ-small limits exist (for some λ ≤ ∞ suitably related to κ), and these obey
all compatibility or “exactness” conditions with the κ-small sifted colimits as hold in
Set. When λ = ω, these conditions become “lex sifted colimits” in the sense of Garner–
Lack [GL12]; when λ =∞, they become Adámek–Lawvere–Rosický’s “algebraically exact
categories” [ALR01]. By combining our main Theorem 5.1 with known characterizations
of various “exactness” conditions, we obtain that “exactness” between λ-small limits
and κ-small sifted colimits may be reduced to four familiar conditions on quotients (i.e.,
Barr-exactness when λ = ω) and filtered colimits; see Corollary 6.4. This generalizes
Garner’s [Gar13] characterization of algebraic exactness in the case λ =∞.

In Section 4, which is largely independent from the rest of the paper, we prove a
general result on colimits, needed for our main results. For a class of colimits Φ (e.g.,
the sifted ones), the aforementioned abstract construction of the free Φ-cocompletion,
as iterated Φ-colimits of representable presheaves, can in certain cases be simplified by
removing the need for iteration. Such Φ are the saturated classes of Albert–Kelly [AK88];
sifted colimits were shown to form a saturated class in [AR01]. We show in Proposition 4.7
and Corollary 4.9 that, roughly speaking, for any saturated class Φ and regular cardinal
κ, the κ-small Φ-colimits are still saturated. This result, which boils down to a simple
accessibility argument, plays a key role in the proof of the κ-small version of our main
result, by providing an explicit description of the free κ-small sifted-cocompletion. We
also give one other application: we rederive, in Corollary 4.15, Makkai–Paré’s [MP89,
2.3.11] “retract-free” characterization of λ-presentable objects in κ-accessible categories.

Acknowledgments. I would like to thank Richard Garner for pointing out the close
connections of our work to [ARV01] and [Gar13], as well as the referee for several helpful
suggestions which improved the presentation of Section 4. Research partially supported
by NSF grant DMS-2054508.
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2. Reflexive coequalizers and pullbacks

Throughout this paper, “category” will mean locally small category by default, so that
we have a Yoneda embedding, denoted y = yC : C→ [Cop, Set]; we will sometimes treat y
as an inclusion.

We begin by describing the free reflexive-coequalizer cocompletion Rec(C) of a category
with pullbacks C. The construction is the same as that of Pitts (see [BC95, §2], [ARV11,
17.12]) for C with finite coproducts. Informally speaking, coproducts allow a coequalizer
of coequalizers to be reduced to a single coequalizer, by taking the “union” of the edge-
sets of the two graphs involved; when C instead has pullbacks, the “concatenation” graph
may be used instead of the “union”.

By a graph on an object X in a category C, we will mean an arbitrary parallel pair
p, q : G ⇒ X with codomain X; the graph is reflexive if p, q have a common section
r : X → G (i.e., pr = qr = 1X). By abuse of terminology, we will often refer to the graph
by G instead of p, q. For another graph s, t : H ⇒ X, we say that G is contained in H
if p, q jointly factor through s, t via some morphism f : G → H, i.e., sf = p and tf = q.
If C has pullbacks, the concatenation of graphs p, q : G ⇒ X and s, t : H ⇒ X is the
pullback

X X X

G H

K = G×X H

p q s t

v w

regarded as a graph via pv, tw : K ⇒ X.
We record the following easy facts about graphs, which we will freely use:

2.1. Lemma.

(a) A graph p, q : G⇒ X is reflexive iff it contains the identity graph 1X , 1X : X ⇒ X.

(b) If a graph G is contained in H, then a morphism coequalizing H also coequalizes G.

(c) For graphs G,H,K on X fitting into a diagram as above (without K necessarily
being the pullback), any morphism coequalizing both G,H also coequalizes K.

(d) If G,H are graphs on X, and G is reflexive, then H is contained in G ×X H and
H ×X G.

(e) Thus, if G,H are both reflexive, then so is G×XH, and for any functor F : C→ D,
a morphism coequalizes F (G×X H) ⇒ F (X) iff it coequalizes both F (G), F (H).

Proof. (d) If p, q have common section r : X → G, then s, t jointly factor through pv, tw
via (rs, 1H) : H → G×X H; similarly for H ×X G.

(e) The first claim follows from (a) and (d); the second follows from (b), (c), and (d).
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For an arbitrary category C, as noted in the Introduction, the free reflexive-coequalizer
cocompletion Rec(C) may be constructed as the full subcategory of [Cop, Set] obtained
by closing the representables under reflexive coequalizers, with the Yoneda embedding
y : C → Rec(C) ⊆ [Cop, Set] as unit. In particular, Rec(C) contains the coequalizers, in
[Cop, Set], of all reflexive graphs in C.

2.2. Proposition. For a category with pullbacks C, the full subcategory of [Cop, Set] on
the coequalizers of reflexive graphs in C is already closed under reflexive coequalizers, hence
is Rec(C).

Proof. Consider a reflexive parallel pair f, g, with common section h, between the co-
equalizers U, V in [Cop, Set] of two reflexive graphs p, q : G ⇒ X and s, t : H ⇒ Y in C:

(2.3)

yG yH

yX yY

U V

yp yq ys yt
yf̃

yg̃

yh̃

f

g
h

As in [BC95, §2], we may describe f, g, h explicitly as follows: f descends from a morphism
yX → V (coequalizing yp, yq), which corresponds by the Yoneda lemma to an element of

V (X), i.e., an equivalence class of morphisms f̃ : X → Y with respect to the equivalence
relation generated by the graph C(X, s),C(X, t) : C(X,H) ⇒ C(X, Y ). Similarly, g, h lift

to some g̃, h̃ as shown. To say that fh = 1V means that f̃ h̃ : Y → Y is equivalent to
1Y via the equivalence relation generated by C(Y, s),C(Y, t) : C(Y,H) ⇒ C(Y, Y ), which
means they are connected by a “homotopy in H”:

Y Y Y · · · Y

X H H

Y

f̃ s t t s

h̃

1Y

Similarly, gh = 1V means that 1Y is connected via a “homotopy” to g̃h̃. Pasting the latter
“homotopy” to the left of the former one shows that the concatenation graph

K := · · · ×Y H ×Y H
op ×Y X ×Y H ×Y H

op ×Y · · ·⇒ Y

(where Hop is H but with the roles of s, t swapped) is reflexive. Since H is reflexive,

K contains the graph f̃ , g̃ : X ⇒ Y . Now concatenating K once more with H yields
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a reflexive graph L on Y which contains both X and H and is also a concatenation of
copies of X,H,Hop, hence has the same coequalizer in [Cop, Set] as the joint coequalizer

of f̃ , g̃ : X ⇒ Y and s, t : H ⇒ Y , which is easily seen to be the same as the coequalizer
of f, g : U ⇒ V (see diagram (2.3) above).

3. Sifted categories with pullbacks

3.1. Lemma. In a sifted category with pullbacks C, every graph p, q : G⇒ X is contained
in a reflexive graph s, t : H ⇒ X.

Proof. Since C is sifted, there is a zigzag connecting the cospans G
p−→ X

1←− X and

G
q−→ X

1←− X:
X1 · · ·

X = X0 X2 X2n = X

G X

p

q 1

1

Repeatedly replace each “peak” Xi → Xi+1 ← Xi+2 by its pullback, to get a single
“valley”

X X
H

G X

s t

p

q 1

1

The following forms the combinatorial core of our main result (Theorem 5.1):

3.2. Proposition. For a sifted category with pullbacks C, Rec(C) is filtered.

Proof. Clearly Rec(C) is nonempty because C is. Now let U, V ∈ Rec(C); by Proposi-
tion 2.2, they are the coequalizers of (reflexive) graphs p, q : G ⇒ X and s, t : H ⇒ Y
in C. We may find a cospan over U, V by finding a cospan X → Z ← Y in C, finding
reflexive graphs on Z containing the composite graphs G ⇒ X → Z and H ⇒ Y → Z,
concatenating them, and taking the reflexive coequalizer in Rec(C). Given a parallel pair

f, g : U ⇒ V , as in the proof of Proposition 2.2, we may lift them to f̃ , g̃ : X ⇒ Y ; we
may find a morphism coequalizing f, g by finding a reflexive graph X ′ on Y containing
f̃ , g̃ : X ⇒ Y , concatenating it with H, and taking the reflexive coequalizer in Rec(C),
yielding the joint coequalizer of X ′, H (see diagram (2.3)).
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4. Saturated classes of κ-small colimits

As noted in the Introduction, the goal of this section is to prove a general result on colimits
(Proposition 4.7 and Corollary 4.9), which roughly states that for any “class of colimits
Φ closed under iteration”, the κ-small Φ-colimits are also “closed under iteration”. The
study of such “classes of colimits Φ” was initiated by Albert–Kelly [AK88], and our result
here is a generalization of a result from that paper, [AK88, 7.4], for κ = ∞. We will
use this to deduce (Corollary 4.11) that κ-small sifted colimits are closed under iteration,
from the known fact for κ = ∞ [AR01, 2.6]; this is needed for our main result on sifted
colimits. The reader interested only in our main result may wish to take Corollary 4.11
as a black box and skip to the next section.

We begin by recalling the precise notion of a “class of colimits Φ”; see [AK88], [KS05].
However, our presentation differs slightly from these references, in that we do not initially
restrict the weights in Φ to have small domain; we may therefore identify the saturation
Φ∗ with the free Φ-cocompletion monad. This is so that we may later discuss, in a uniform
manner for all κ ≤ ∞, the case where Φ is generated by κ-small weights, thereby making
clear the analogy between our results and [AK88]. We will elaborate on this difference in
viewpoint in Remark 4.5 below.

Recall [Kel82, §3.4] that given any category J and presheaf ϕ ∈ [Jop, Set], we may take
the ϕ-weighted colimit ϕ⋆F of a diagram F : J→ C, which is the same as the ordinary
colimit of

yJ↓ϕ→ J
F−→ C,

i.e., F applied to the canonical diagram over the category of elements yJ↓ϕ of ϕ. We will
call ϕ a small presheaf if J is small; in that case, yJ↓ϕ is small, so the weighted colimit
ϕ ⋆ F is a small colimit. More generally, we will call ϕ small-presented if it is a small
colimit of representables, in which case we can always take ϕ to be the ϕ|Kop-weighted
colimit of the inclusion of a small full subcategory K ⊆ J; then a ϕ-weighted colimit ϕ ⋆F
is the same as the small colimit ϕ|Kop ⋆ F |K.1

For any category C, let
Psh(C) ⊆ [Cop, Set]

denote the full subcategory of small-presented presheaves, which is the free cocompletion
of C under all small colimits by [Kel82, 5.35]. The universal property of Psh gives it the
structure of a lax-idempotent 2-(pseudo)monad on the 2-category of all (locally small)
categories, consisting of

(4.1) for each category C, the unit yC : C→ Psh(C);

(4.2) for each C, the multiplication LanyPsh(C)(1Psh(C)) : Psh(Psh(C)) → Psh(C), taking
ϕ 7→ ϕ ⋆ 1Psh(C);

1Our “small-presented” is called “accessible” in [Kel82], [AK88], [KS05], and “small” in many other
works. Our “small” is called such in [Kel82], but is called a “weight” (as opposed to general presheaf) in
[KS05] and other works.
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(4.3) for F : C→ D, the induced cocontinuous functor LanF op : Psh(C)→ Psh(D), taking
ϕ 7→ ϕ ⋆ yF ;

as usual for monads, given (4.1), we may combine (4.2) and (4.3) into

(4.4) for F : C → Psh(D), the Kleisli extension LanyC(F ) : Psh(C) → Psh(D), taking
ϕ 7→ ϕ ⋆ F .

If yC has a partial left adjoint defined at some ϕ ∈ Psh(C), the value must be the colimit
ϕ ⋆ 1C. Thus the algebras of the monad, i.e., those C for which yC has a total left adjoint,
are precisely the cocomplete categories. Similarly, the algebra homomorphisms are the
cocontinuous functors.

Let Φ be a class of small-presented presheaves ϕ ∈ Psh(C) on arbitrary categories C.
We identify such a Φ with the map taking each C to the full subcategory

Φ[C] := Psh(C) ∩ Φ ⊆ Psh(C).

We conversely use Psh to name the class of all small-presented presheaves (thus Psh(C)
could also be denoted Psh[C], in accord with Remark 4.5 below). A Φ-colimit means a
colimit weighted by some ϕ ∈ Φ; a category C is Φ-cocomplete if it has all Φ-colimits;
and a functor is Φ-cocontinuous if it preserves all Φ-colimits. The saturation Φ∗ of Φ
is given by

Φ∗[C] := closure of representables in [Cop, Set] under Φ-colimits.

Since every ϕ is the ϕ-weighted colimit of representables ϕ⋆y, we have Φ ⊆ Φ∗. By coconti-
nuity of ⋆ in the weight [Kel82, 3.23], the class of weights ψ for which a Φ-cocomplete cate-
gory is ψ-cocomplete, respectively, for which a Φ-cocontinuous functor is ψ-cocontinuous,
is closed under Φ-colimits; thus

Φ-cocomplete ⇐⇒ Φ∗-cocomplete, Φ-cocontinuous ⇐⇒ Φ∗-cocontinuous.

In particular, Φ∗[C], being by definition closed under Φ-colimits, is also closed under
Φ∗-colimits; that is, Φ∗∗ = Φ∗, so that Φ 7→ Φ∗ is a closure operation on the lattice of
subclasses of Psh. Note that an equivalent definition of this closure operation is

Φ∗ = closure of Φ under the monad unit (4.1) and Kleisli extension (4.4) of Psh.

Thus the saturated classes Φ = Φ∗ are precisely the full submonads of Psh (borrowing
terminology from [GL12, §3]), i.e., each Φ∗[C] ⊆ Psh(C) is a full (replete) subcategory,
and the monad operations of Psh restrict to Φ∗, making it into a lax-idempotent 2-monad
in its own right. The Φ∗-algebras are those C for which y : C → Φ∗[C] has a left adjoint,
which means that ϕ ⋆ 1C exists for each ϕ ∈ Φ∗[C]; since Φ∗ is closed under (4.3), this
implies that LanF op(ϕ) ⋆ 1C = ϕ ⋆ F exists for each F : J → C and ϕ ∈ Φ∗[J], i.e., that C
is Φ∗-cocomplete (= Φ-cocomplete). Similarly, Φ∗-algebra homomorphisms are precisely
the Φ-cocontinuous functors.
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4.5. Remark. The free Φ-cocompletion monad, which we denote Φ∗[−], is denoted Φ(−)
in [AK88], [KS05], and many other works on classes of colimits. These works always
consider a class Φ to consist only of (what we are calling) small presheaves; hence, they
define the saturation Φ∗ to consist of the presheaves in Φ(C) for small C only, which
is an instance of what we will call “κ-saturation” below (see above Corollary 4.9), for
κ =∞. With our more general classes of small-presented presheaves, we have no need to
distinguish between Φ∗[−] and Φ(−), and will hence never use the latter notation (except
for standard named classes like Psh, Sind).

Now let κ ≤ ∞ be an infinite regular cardinal (where ∞ is the bound on the fixed
universe of small sets). By κ-small, we will generally mean of size < κ. A κ-small
presheaf ϕ : Cop → Set is one where (i) C is κ-small, and (ii) ϕ takes values in the
full subcategory Setκ of κ-small sets; note that these imply that y↓ϕ is κ-small, hence a
ϕ-weighted colimit is a κ-small colimit.

4.6. Lemma. If Φ is a class of κ-small presheaves, and C is κ-small, then Φ∗[C] consists
of κ-small presheaves.

Proof. [Cop, Setκ] contains the representables and is closed under κ-small, hence Φ-,
colimits.

We now have the main result of this section, which extends [AK88, 7.4] to the case
κ <∞:

4.7. Proposition. Let κ ≤ ∞ be uncountable regular, and let Φ be a class of κ-small
presheaves. Then for any C and ϕ : Cop → Set, we have ϕ ∈ Φ∗[C] iff it is the left Kan
extension of some ψ ∈ Φ∗[D] (which is κ-small, by the preceding lemma) for some κ-small
subcategory D ⊆ C.

Informally speaking, the result holds because the free Φ-cocompletion monad Φ∗[−]
only adjoins operations of κ-small arity, hence ought to preserve κ-directed unions. The
first proof we give formalizes this idea, using 2-monad theory. However, since 2-categorical
machinery is not needed in the rest of the paper, we will also sketch for the reader’s
convenience a second, more direct proof.

Proof 1.As is well-known, the pseudomonad Φ∗[−] is equivalent, as a pseudomonad, to a
strict 2-monad Φs which freely adjoins specified Φ-colimits to a category; see e.g., [KL00].
Namely, pick a set J of representatives of all κ-small categories J up to isomorphism. We
may assume that Φ is already closed under transport along isomorphisms of categories. We
define Φs by declaring its (strict) algebras to be categories C equipped with the following
algebraic structure:

� for each J ∈ J and ϕ ∈ Φ[J], a J-ary operation Colimϕ : CJ → C;

� for each J ∈ J , ϕ ∈ Φ[J], J ∈ J, and j ∈ ϕ(J), a natural transformation

ιϕ,J,j : πJ −→ Colimϕ : CJ → C
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where πJ is the Jth projection, obeying equational axioms saying that the family
(ιϕ,J,j)J,j forms (componentwise) a ϕ-weighted cocone;

� for each J ∈ J and ϕ ∈ Φ[J], a natural transformation

γϕ : Colimϕ ◦ πJ −→ πϕ : CJ[ϕ] → C

where J[ϕ] denotes the union of J and the single object ϕ in [Jop, Set] (so that a J[ϕ]-
indexed diagram is a J-indexed diagram together with a ϕ-weighted cocone) and
πJ : C

J[ϕ] → CJ and πϕ : CJ[ϕ] → C are the projections, obeying axioms saying that
γϕ is a cocone morphism from (ιϕ,J,j)J,j to any other cocone, which is the identity
when said other cocone is also (ιϕ,J,j)J,j.

Thus a Φs-algebra is a category C equipped with, for each J ∈ J , ϕ ∈ Φ[J], and F : J→ C,
a choice Colimϕ(F ) of ϕ-weighted colimit ϕ⋆F equipped with colimiting cocone (ιϕ,J,j,F )J,j;
by our assumptions on Φ,J , such a C is then Φ-cocomplete.

Now the strict 2-monad Φs which freely adjoins the above-defined structure to a cate-
gory C has rank κ, i.e., preserves (strict) κ-filtered colimits of categories, since the above
structure is κ-ary. Thus Φs(C) is the colimit of Φs(D) over all κ-small D ⊆ C. We have a
pseudonatural equivalence Φs ≃ Φ∗, given by arbitrarily fixing Φ-colimits in each Φ∗[C].
Recall that a strict filtered colimit of categories is also a bicolimit (see e.g., [AGV72, Ex-
posé VI, §6]), hence is preserved under equivalence. Thus Φ∗[C] is the bicolimit of Φ∗[D]
over all κ-small D ⊆ C, along the functors Φ∗[IDC] = LanIopDC

induced by the inclusions
IDC : D→ C, which implies the result.

Proof 2.⇐= is because Φ∗ is closed under (4.3). For =⇒, since the conclusion is clearly
satisfied by the representables, it suffices to check that if θ ∈ Φ[J] and F : J → [Cop, Set]
such that each F (J) is the left Kan extension of ψJ ∈ Φ∗[DJ ] for some κ-small DJ ⊆ C,
then the conclusion also holds for θ⋆F . Since J is κ-small, the union of the DJ ’s generates
a κ-small D ⊆ C; by replacing each ψJ with its extension to D, we may assume each
DJ = D to begin with. Let IDC : D → C be the inclusion, and let Σ be the κ-directed
poset of all κ-small D ⊆ E ⊆ C. For J,K ∈ J, we have

[Cop, Set](F (J), F (K)) = [Cop, Set](LanIopDC
(ψJ),LanIopDC

(ψK))

∼= [Dop, Set](ψJ ,LanIopDC
(ψK) ◦ IopDC)

∼= [Dop, Set](ψJ , lim−→E∈Σ LanIopDE
(ψK) ◦ IopDE)(∗)

∼= lim−→E∈Σ[D
op, Set](ψJ ,LanIopDE

(ψK) ◦ IopDE)(†)
∼= lim−→E∈Σ[E

op, Set](LanIopDE
(ψJ),LanIopDE

(ψK)),

where step (†) is by κ-presentability of ψJ , and step (∗) is because for each D ∈ D we
have

LanIopDC
(ψK)(D) = C(D, IDC−) ⋆ ψK

∼= lim−→E∈Σ E(D, IDE−) ⋆ ψK = lim−→E∈Σ LanIopDE
(ψK)(D).
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Moreover, chasing through the above chain of isomorphisms, one sees that each colimit
injection

[Eop, Set](LanIopDE
(ψJ),LanIopDE

(ψK)) −→ [Cop, Set](LanIopDC
(ψJ),LanIopDC

(ψK))

is given by LanIopEC
, hence is compatible with the composition and identity operations

between different hom-sets on either side. Using this and κ-smallness of J, we may lift
the entire diagram F to a diagram G : J → [Eop, Set] for some E ∈ Σ, taking values
G(J) = LanIopDE

(ψJ) on objects J ∈ J (whence G : J → Φ∗[E]), such that F ∼= LanIopEC
◦ G.

Then θ ⋆ F ∼= θ ⋆ LanIopEC
(G(−)) ∼= LanIopEC

(θ ⋆ G), with θ ⋆ G ∈ Φ∗[E].

Let us also record the following generalization of Proposition 4.7 (by taking J to be a
singleton), needed for Proposition 6.1 below, which follows from either of the two proofs
above:

4.8. Corollary. Let κ ≤ ∞ be uncountable regular, and let Φ be a class of κ-small
presheaves. Then for any C and F : J → Φ∗[C] with J κ-small, F lifts to some G : J →
Φ∗[D] for some κ-small subcategory D ⊆ C such that, letting I : D → C be the inclusion,
we have F ∼= LanIop ◦G.

We now give an equivalent reformulation of Proposition 4.7. For any class Φ ⊆ Psh,
let Φκ ⊆ Φ consist of the κ-small presheaves in Φ. We have an adjunction (−)∗ ⊣ (−)κ
between classes of κ-small presheaves and saturated classes of small-presented presheaves;
call the induced closure operation ((−)∗)κ κ-saturation. Explicitly, for a class of κ-small
presheaves Φ, by Lemma 4.6,

(Φ∗)κ[C] =

{
Φ∗[C] if C is κ-small,

∅ otherwise.

Thus Φ is κ-saturated iff it consists of the κ-small presheaves Φ = Ψκ in some saturated
class Ψ, iff (it consists only of κ-small presheaves and) for all κ-small C, Φ[C] contains
the representables and is closed under Φ-colimits. (Taking κ = ∞ recovers the “small”
notion of saturation used in [AK88].)

4.9. Corollary. Let κ ≤ ∞ be uncountable regular, and let Φ = Ψκ be a κ-saturated
class of κ-small presheaves, consisting of the κ-small presheaves in some saturated class
Ψ. Then for any C and ϕ : Cop → Set, the following are equivalent:

(i) ϕ ∈ Φ∗[C] = (Ψκ)
∗[C], i.e., ϕ is an iterated κ-small Ψ-colimit of representables;

(ii) ϕ is the left Kan extension of some ψ ∈ Φ[D] = Ψκ[D] for some κ-small D ⊆ C,
whence in particular, ϕ is a single κ-small Ψ-colimit of representables, namely of
the diagram

yD↓ψ → D ⊆ C
yC−→ [Cop, Set].

Proof.This follows from Proposition 4.7, since Φ∗[D] = (Φ∗)κ[D] = Φ[D] by κ-saturation.
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4.10. Example. Consider the sifted colimits. For small C, it is known by [AR01, 2.6]
that the free sifted-cocompletion Sind(C) ⊆ [Cop, Set] consists of exactly those presheaves
ϕ whose category of elements y↓ϕ is sifted. Thus the saturated class Sind ⊆ Psh, with
Sind[C] := Sind(C), has Sindκ consisting of those presheaves on a κ-small category with
κ-small sifted category of elements, and so

(Sindκ)
∗[C] = Sindκ(C) := free cocompletion of C under κ-small sifted colimits.

Applying Corollary 4.9 with Ψ := Sind yields

4.11. Corollary. For uncountable regular κ ≤ ∞ and any category C, the following
are equivalent for a presheaf ϕ : Cop → Set:

(i) ϕ ∈ Sindκ(C), i.e., ϕ is an iterated κ-small sifted colimit of representables;

(ii) ϕ is the left Kan extension of some ψ : Dop → Setκ with sifted category of elements,
for some κ-small D ⊆ C (hence ϕ is a single κ-small sifted colimit of representables
over yD↓ψ).

4.12. Example. We may of course similarly consider (κ-)filtered colimits. For any infi-
nite regular κ < λ ≤ ∞ and category C, let

κIndλ(C) := free cocompletion of C under λ-small κ-filtered colimits

(omitting λ when λ = ∞ and κ when κ = ω). For small C, it is well-known (see e.g.,
[AR97, 2.24]) that κInd(C) ⊆ [Cop, Set] consists of those ϕ with y↓ϕ κ-filtered. Arguing
exactly as above, we get

4.13. Corollary. For regular κ < λ ≤ ∞ and any C, the following are equivalent for
ϕ : Cop → Set:

(i) ϕ ∈ κIndλ(C), i.e., ϕ is an iterated λ-small κ-filtered colimit of representables;

(ii) ϕ is the left Kan extension of some ψ : Dop → Setλ with κ-filtered category of
elements, for some λ-small D ⊆ C (hence ϕ is a λ-small κ-filtered colimit of repre-
sentables over yD↓ψ).

4.14. Remark. The preceding result can also be proved using accessible category theory,
in the special case where the “sharply smaller” relation κ ◁ λ holds (see [AR97, 2.12],
[MP89, 2.3]). Indeed, every ϕ ∈ κIndλ(C) ⊆ κInd(C), being an iterated λ-small colimit of
representables, is λ-presentable in κInd(C), hence by [MP89, 2.3.11] a λ-small κ-filtered
colimit of κ-presentable objects in κInd(C), i.e., of representables (at least assuming C
is Cauchy-complete).2 Similar results on “relatively accessible” categories of the form
κIndλ(C) can be found in [Low16].

2The proof of [MP89, 2.3.11] does not depend on the assumption that C is (essentially) small, i.e.,
that κInd(C) is κ-accessible instead of “class-κ-accessible” [CR12]. Cauchy-completeness of C is not
needed either, since the proof of [MP89, 2.3.10] really shows that (in our notation) every λ-presentable
ϕ ∈ κInd(C) can be written as a retract of a λ-small κ-filtered colimit of (not just κ-presentables but)
representables.
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However, the argument given above works for all κ < λ, and avoids the combinatorial
proof of [MP89, 2.3.11]. In fact, we can deduce [MP89, 2.3.11] from the above:

4.15. Corollary. [Makkai–Paré] For regular κ◁λ <∞ and any C, every λ-presentable
ϕ ∈ κInd(C) is a λ-small κ-filtered colimit of representables.

Proof. As in [MP89, proof of 2.3.10 and following remark], use κ ◁ λ to write ϕ as a
retract of a λ-small κ-filtered colimit of representables, which is in κIndλ(C) since split-
ting an idempotent is a λ-small κ-filtered colimit, hence a λ-small κ-filtered colimit of
representables by Corollary 4.13.

5. Sifted colimits in the presence of pullbacks

Recall from [Kel82, 5.62] (see also [KS05, 4.2]) the following characterization of categories
which are the free cocompletion of a subcategory under some given class of small colimits
Φ. (Here Φ could be a class of weights as in the previous section; but we will only need one
case, where the colimits are of diagrams of certain shapes.) For a category C cocomplete
under Φ-colimits, an object X ∈ C is Φ-atomic if C(X,−) : C→ Set preserves Φ-colimits.
Now such C is equivalent, via the restricted Yoneda embedding C→ [Dop, Set], to the free
Φ-cocompletion of a full subcategory D ⊆ C iff

(i) every object in D is Φ-atomic in C, and

(ii) the (replete) closure of D under Φ-colimits is all of C.

This generalizes the standard characterization, for Φ = “filtered colimits”, of finitely
(class-)accessible categories D = Ind(C) as those generated under filtered colimits by
finitely presentable objects.

We now have the main result of the paper. As in the previous section, we write Sindκ
(resp., Indκ) to denote free cocompletion under κ-small sifted (resp., filtered) colimits.

5.1. Theorem. For uncountable regular κ ≤ ∞ and a category with pullbacks C, we have

Sindκ(C) ≃ Indκ(Rec(C))

via the restricted Yoneda embedding Sindκ(C)→ [Rec(C)op, Set].

Proof. Since objects of Rec(C) ⊆ [Cop, Set], being finite colimits of representables,
are finitely presentable, hence also atomic with respect to κ-small filtered colimits (in
[Cop, Set], hence also in the full subcategory Sindκ(C) closed under κ-small filtered colim-
its), it suffices to show that every ϕ ∈ Sindκ(C) is a κ-small filtered colimit of objects in
Rec(C). By Corollary 4.11, there is a κ-small subcategory D ⊆ C, which we may assume
closed under pullbacks, and ψ ∈ [Dop, Setκ] with sifted category of elements and left Kan
extension ϕ, so that ϕ is the κ-small sifted colimit of

yD↓ψ → D ⊆ C
yC−→ [Cop, Set].
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In other words, ϕ is the left Kan extension of this diagram along the unique functor
yD↓ψ → 1, hence is also the colimit of its reflexive-coequalizer-preserving left Kan exten-
sion to a diagram

Rec(yD↓ψ)→ Rec(C) ⊆ [Cop, Set],

which is filtered by Proposition 3.2 since yD↓ψ inherits pullbacks from D, and is essentially
κ-small since yD↓ψ is κ-small.

5.2. Corollary. For uncountable regular κ ≤ ∞, if a category with pullbacks C has
reflexive coequalizers and κ-small filtered colimits, then it has κ-small sifted colimits, and
these are preserved by any functor F : C→ D preserving reflexive coequalizers and κ-small
filtered colimits.

Proof. Given a κ-small sifted diagram G : J→ C, a colimit of G is the same thing as a
colimit of 1C weighted by ϕ := lim−→(yCG) ∈ Sindκ(C); by writing ϕ as a κ-filtered colimit
of reflexive coequalizers of representables (and using cocontinuity of weighted colimit ⋆ in
the weight [Kel82, 3.23]), we get the colimit of G as the corresponding κ-filtered colimit
of reflexive coequalizers in C, which is hence preserved by any F : C→ D preserving these
latter colimits.

6. Lex sifted colimits and algebraic exactness

The statement of Corollary 5.2 is somewhat peculiar in that the pullbacks required to
exist in C are not required to be compatible with the colimits in any way, nor are they
required to be preserved by F . Under such compatibility conditions, more can be said.
Garner–Lack [GL12] have developed a general theory of what it means for a category
to have finite limits and a given class of colimits Φ that obey all compatibility or “ex-
actness” conditions between each other as hold in Set (with an enriched generalization),
known as Φ-exactness. Such “exactness” conditions have also been considered for infinite
limits and certain classes of colimits Φ, including for sifted colimits by Adámek–Lawvere–
Rosický [ALR01] under the name of algebraically exact categories. In this final section,
we use our main results above to simplify, as well as extend with cardinality bounds, some
of the known characterizations of “exactness” for sifted and related colimits.

A general form of “exactness” condition holding in Set is that “limits distribute over
colimits”. Distributivity of all small limits over colimits in a complete and cocomplete
category C means that the weighted-colimit functor −⋆1C : Psh(C)→ C, which is the Psh-
algebra structure map on C, also preserves limits. When considering limits and colimits
of bounded size, the bounds need to be suitably chosen for the analogous distributivity
condition to make sense. For regular λ, κ ≤ ∞, following [Lur09, A.2.6.3], we write

λ≪ κ

to mean that for every λ0 < λ and κ0 < κ, we have κλ0
0 < κ. This ensures that a λ-small

product of κ-small diagrams or presheaves is still κ-small, hence we may speak of λ-small
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limits distributing over κ-small colimits. The following result says that we may likewise
speak of λ-small limits distributing over κ-small sifted colimits:

6.1. Proposition. For regular λ ≪ κ ≤ ∞ with κ uncountable, for a λ-complete cat-
egory C, Sindκ(C) ⊆ [Cop, Set] is closed under λ-small limits; and for a λ-continuous
F : C → D between two λ-complete categories, LanF op : Sindκ(C) → Sindκ(D) is λ-
continuous.

Proof. The second claim follows once we know the first, since for a λ-continuous F :
C→ D, it is well-known that LanF op : Psh(C)→ Psh(D) is λ-continuous; see [DL07, 6.6].

The case λ = κ =∞ is [ALR01, 3.11]. More generally, if λ = κ, then since λ≪ κ, κ
is inaccessible, and so we may reduce to all of the cases λ < κ.

Consider the case λ < κ =∞ with C small. If C has finite coproducts, then Sind(C) ⊆
[Cop, Set] consists of the finite-product-preserving functors [AR01, 2.8], which are closed
under limits. For a general small C, let I : C→ D be a λ-continuous full embedding into
a small λ-complete category with finite coproducts, e.g., the closure of the representables
in [Cop, Set] under λ-small limits and finite coproducts. Since I is λ-continuous, as noted
above, so is LanIop . Now for a λ-small diagram F : J→ Sind(C), we have LanIop(lim←−F )

∼=
lim←−(LanIop ◦ F ) ∈ Sind(D) since LanIop ◦ F : J → Sind(D) and D has finite coproducts.
This implies lim←−F ∈ Sind(C), by the following general fact:

6.2. Lemma. For any full and faithful I : C→ D between small categories, ϕ ∈ [Cop, Set]
is in Sind(C) iff LanIop(ϕ) is in Sind(D).

Proof. =⇒ is by pseudofunctoriality of Sind. For the converse, recall the following
characterization of Sind from [AR01, 2.6]: ϕ ∈ Sind(C) iff LanyCop (ϕ) : [C, Set] → Set
preserves finite products. So LanIop(ϕ) ∈ Sind(D) means that the left Kan extension of ϕ
along the left-bottom composite

Cop [C, Set]

Dop [D, Set]

Iop

yCop

LanI

yDop

preserves finite products. Since the square commutes up to isomorphism, this is also
the left Kan extension along the top-right composite. Further left Kan extending along
(−) ◦ I : [D, Set] → [C, Set] recovers LanyCop (ϕ), since I is full and faithful. But since
(−) ◦ I ⊣ RanI , this further extension is the composite with the limit-preserving RanI ,
whence LanyCop (ϕ) preserves finite products.

Finally, consider the case λ < κ, λ ≪ κ ≤ ∞, and C possibly large. Let F : J →
Sindκ(C) be a λ-small diagram. Since J is κ-small, by Corollary 4.8, we may lift F to a G :
J→ Sindκ(D) for some κ-small D ⊆ C, which we may assume to be closed under λ-small
limits since λ < κ and λ≪ κ, such that F ∼= LanIop ◦G where I : D→ C is the inclusion.
Since D is small, we have lim←−G ∈ Sind(D) by the previous case, and also lim←−G is a κ-small
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presheaf since each G(J) was and λ≪ κ, whence lim←−G ∈ Sindκ(D). Again since LanIop is
λ-continuous because I is, we get lim←−F

∼= lim←−(LanIop ◦G) ∼= LanIop(lim←−G) ∈ Sindκ(C).

6.3. Remark. The preceding argument is not specific to Sind, and can be applied to any
class of colimits Φ = Ψ+ which is the class of “Ψ-flat” weights, in the sense of [KS05],
for a suitable “sound” class of limits Ψ in the sense of [ABLR02] or [KS05, §8], yielding
a generalization of [ABLR02, 6.3] to λ-small limits. As our focus is on Sind, we leave the
details to the interested reader.

For regular λ≪ κ ≤ ∞, we define a category C to be (λ, κ)-algebraically exact if it

� is λ-complete;

� has κ-small sifted colimits, or equivalently, yC : C → Sindκ(C) has a left adjoint,
which is then necessarily − ⋆ 1C : Sindκ(C)→ C; and

� − ⋆ 1C is λ-continuous, i.e., “λ-small limits distribute over κ-small sifted colimits”.

Informally, these conditions mean that C is a “quotient”, via − ⋆ 1C which preserves λ-
small limits and (κ-small sifted) colimits, of the “subalgebra” Sindκ(C) ⊆ [Cop, Set] of a
“power” of Set, closed under those same operations. It easily follows that all of the usual
concrete “exactness” conditions relating specific types of limits and colimits are inherited
from Set, such as those in the following characterization, which shows that a few familiar
such conditions imply all others:

6.4. Corollary. For regular λ≪ κ ≤ ∞ with κ uncountable, a λ-complete category C
is (λ, κ)-algebraically exact iff it obeys the following four conditions:

(i) Barr-exactness;

(ii) κ-small filtered colimits exist and commute with finite limits;

(iii) a λ-small product of regular epimorphisms is still a regular epimorphism;

(iv) λ-small products distribute over κ-small filtered colimits, in the sense that for any λ-
small family of κ-small filtered diagrams (Fi : Ji → C)i∈I , the canonical comparison
morphism

lim−→
(Ji)i∈

∏
iJi

∏
i∈I

F (Ji) −→
∏
i∈I

lim−→
J∈Ji

F (J)

is an isomorphism.

Moreover, a finitely continuous functor between two such categories preserves κ-small
sifted colimits iff it is regular and preserves κ-small filtered colimits.

This result follows from combining the known characterizations of previous notions of
“exactness” from [GL12], [ALR01], and [Gar13] with our Theorem 5.1. We now discuss
the precise relation between our definition of “(λ, κ)-algebraic exactness” and previous
notions, and simultaneously indicate how to derive the various cases of Corollary 6.4 from
what is known:
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(a) When λ = ω, we recover Φ-exactness in the sense of [GL12, 3.4(3)] for Φ = Sindκ,
the class of (weights for) κ-small sifted colimits.

In this case, Corollary 6.4 follows from combining Theorem 5.1 with the character-
izations of Φ-exactness from [GL12] for various Φ. Indeed, by the proof of [GL12,
5.10], C is Φ-exact for Φ = the class of κ-small filtered colimits iff (ii) above holds.
By [GL12, 5.12], C is exact for reflexive coequalizers iff it is (i) Barr-exact, and also
admits pullback-stable colimits of certain countable sequences R0 → R1 → · · · . It
is well-known and easily verified that this last condition is implied by (ii), and also
that when λ = ω, the conditions (i), (ii) imply (iii), (iv) respectively. Thus, the
conditions (i)–(iv) are together equivalent to exactness for the union of the classes
of κ-small filtered colimits and reflexive coequalizers. By Theorem 5.1, this union
has saturation Sindκ, hence they determine the same exactness notion by [GL12,
3.4, 4.4].

(b) When λ = κ = ∞, we recover algebraic exactness in the sense of [ALR01]. This
case of Corollary 6.4 was conjectured by [ALR01] and proved by Garner [Gar13],
and also follows from all of the cases λ < κ =∞.

(c) Likewise, each case λ < κ = ∞ follows from all cases λ ≪ κ < ∞, here using that
there are arbitrarily large such κ (see [MP89, 2.3.5]), and that Sind(C) is the union
of Sindκ(C), whence (λ,∞)-algebraic exactness is the conjunction of (λ, κ)-algebraic
exactness, over all such κ.

(d) For λ≪ κ <∞, a notion of “λ-algebraic exactness” was also defined in [Gar13, 2.1],
to mean that the Yoneda embedding into a certain full subcategory Sκ(C) ⊆ [Cop, Set]
has a λ-continuous left adjoint. It is then proved in [Gar13, 2.2] that Corollary 6.4
holds with this notion in place of our “(λ, κ)-algebraic exactness”.

In fact, for uncountable κ, Sκ(C) ⊆ [Cop, Set], which is defined to be the closure of
the representables under λ-small limits, reflexive coequalizers, and κ-small filtered
colimits, is the same as Sindκ(C) by Theorem 5.1 and Proposition 6.1. So Garner’s
notion of algebraic exactness is the same as ours, and we get Corollary 6.4 as stated.

(Garner [Gar13, second paragraph of §2] always takes κ to be the least cardinal
≫ λ, which is why his notations only involve a single cardinal parameter. However,
everything in [Gar13] works just as well for λ ≪ κ. The case of least κ ≫ λ was
enough to derive the case λ = κ =∞ of Corollary 6.4 as the main result of [Gar13],
since Theorem 5.1 was known for complete C and κ = ∞ by [ARV01, 5.1], as was
Proposition 6.1 for λ = κ =∞ by [ALR01, 3.11].)

(e) In all cases, we may unravel the above arguments to arrive at the following concrete
description of how a κ-small sifted colimit is computed using only the structure in
(i) and (ii) above: first, use Theorem 5.1 to reduce to a κ-small filtered colimit
of reflexive coequalizers; then (as in the proof of [GL12, 5.12]) reduce each such
reflexive coequalizer of a graph G ⇒ X to the quotient of X by the equivalence
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relation generated by the image reflexive relation R ⊆ X2 of G, which is the colimit
of the countable sequence R ⊆ R ◦ Rop ◦ R ⊆ · · · of composites of binary relations
computed (as in any regular category) using pullback and image.

Each step of this procedure is preserved by a regular F : C→ D preserving κ-small
filtered colimits, which proves the last claim of Corollary 6.4.
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