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A REMARKABLE ASPECT OF INTERNAL GROUPOIDS
IN REGULAR MAL’TSEV CATEGORIES

DOMINIQUE BOURN

Abstract. In any finitely cocomplete regular Mal’tsev category E, we characterize by
a very simple property in E the cocartesian functors in the category GrdE of internal
groupoids in E, provided that they are defined above regular epimorphisms.

Introduction

This note is devoted to showing that in a regular Mal’tsev category E with pushouts of split
monomorphisms, given any internal groupoid X•, the pushout of the split monomorphism
sX•

0 along f :

X1

dX•
0

��
dX•
1

��

f1 // // Y1

d0

��
d1

��
X0

sX•
0

OO

f
// // Y

s0

OO

produces on the right hand side a reflexive graph which is underlying a groupoid structure
as soon as the map f is a regular epimorphism. It is a consequence of the fact that, given
any regular Mal’tsev category E, the category GrdE of internal groupoids in E is a fully
faithful Birkhoff subcategory of the category RGhE of the internal reflexive graphs in E.
It is then clear that the previous diagram provides, in a very simple way, the cocartesian
internal functor above the regular epimorphism f with respect to the forgetful functor
( )0 : GrdE→ E.

1. Fibration of points and internal groupoids

1.1. The fibration of points. In this article, any category E will be supposed finitely
complete. Given any map f : X → Y , we use the following simplicial notations for its
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kernel equivalence relation R[f ]:

R2[f ]

df2 //
df1
//

df0

//
R[f ]

df1 //

df0

//
X

f
//sf0

oo Y

and more generally for any internal category as well:

X• : X1 ×0 X1

dX•
2 //
dX•
1

//

dX•
0

//
X1

dX•
1 //

dX•
0

//
X0sX•

0
oo

We denote by PtE the category whose objects are the split epimorphisms in E with a
given splitting and morphisms the commutative squares between these data, and by ¶E :
PtE→ E the functor associating its codomain with any split epimorphism. This functor
is left exact and a fibration whose cartesian maps are the pullbacks of split epimorphisms;
it is called the fibration of points [4]. More precisely it is a fibered reflection [3], in the
sense that it admits a fully faithful right adjoint I defined by I(Y ) = (1Y , 1Y ). The fibre
above an object Y ∈ E is thus pointed, and denoted by PtYE.

1.2. The groupoid monad. There is on PtE a left exact monad (T, λ, µ) defined by
the following diagram:

X // s1 //

f
��

R[f ]

df0
��

R2[f ]

df0 ��

df2oo

Y //
s

//

s

OO

X

sf0

OO

R[f ]

sf0

OO

df1

oo

(f, s) //
λ(f,s)

// T (f, s) T 2(f, s)µ(f,s)
oo

1.3. Theorem. [3] The category AlgT is the category GrdE of internal groupoids in E.
The forgetful functor ( )0 : AlgT = GrdE → E is a fibered reflection whose fully faithful
right adjoint ∇ : E → GrdE is given by the indiscrete equivalence relations. Accordingly
the cartesian map in GrdE above f : X → Y0 with codomain Y• is given by the following
pullback in E:

X1
f1 //

(dX•
0 ,dX•

1 )
��

Y1

(dY•0 ,dY•1 )
��

X ×X
f×f

// Y0 × Y0
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So, a groupoid structure on any right hand side reflexive graph:

R2[d0]

R(d2)

��
d
d0
2 //
d
d0
1
//

d
d0
0

//
R[d0]

d2

��
d
d0
1
//

d
d0
0

//
X1

d1 //

d0
//
X0s0oo

is given by a map d2 such that the previous diagram satisfies all the simplicial identities,
which, by the way, makes any commutative square in this diagram a pullback. In set-
theoretical terms, the map d2 is defined in the following way: starting with a pair (φ, ψ)
of arrows with same domain in a given groupoid:

•
ψ.φ−1

��
•

ψ
//

φ
??

•

the value of d2 is given by the dotted arrow. Warning: in a group (G, ◦, 1), the multipli-
cation (a, b) 7→ a◦b (written in the opposite way to the composition in a groupoid) makes
this map d2:

•
a−1◦b
��

•
b

//

a
??

•

be the opsubtraction ∂G associated with the multiplication ◦.

2. Mal’tsev and unital categories

Mimicking what happened in Universal Algebra for the Mal’tsev varieties [16], the Mal’tsev
categories were introduced in [10] and [11] as those categories in which any reflexive re-
lation is necessarily an equivalence relation. One of the main properties of this kind of
category is that it fits perfectly with the notion of centralization of equivalence relations as
it is the case for the Mal’tsev varieties, see [19]. For that we need the notion of connector,
see [7] (and also [18] and [11]):

2.1. Definition. Let R and S be two equivalence relations on a same object X in E, a
connector between R and S is a morphism p : R ×X S → X where R ×X S is defined by
the following pullback:

R×X S
pS1 //

pR0
��

S

dS0
��

R
dR1

// X

satisfying the following axioms:
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1. xSp(xRySz) and p(xRySz)Rz;

x
R

S

y
S

p(xRySz)
R

z

2. p is a partial Mal’tsev operation, i.e. p(xRxSy) = y and p(xRySy) = x;

3. p is left associative, i.e. p(p(xRySz)RzSw) = p(xRySw) and right associative, i.e.
p(xRySp(yRzSw)) = p(xRzSw).

Now, another possible definition of an internal groupoid structure on a given reflexive
graph is the data of a connector p between R[d0] and R[d1], see [13]. The fundamental
fact for the Mal’tsev categories is the following:

2.2. Proposition. [7] In a Mal’tsev category E, given any pair (R, S) of equivalence
relations, there is at most one connector between them, and the axiom 2 implies the two
others. In this case, the equivalence relations R and S are said to centralize each other
and this situation is denoted by [R, S] = 0. An equivalence relation R is said to be abelian
when [R,R] = 0.

This observation implies in particular that:
1) on any reflexive graph there is at most one groupoid structure and the forgetful functor
GrdE→ GrhE is actually fully faithful;
2) on any object X, there is at most one internal Mal’tsev operation which is then neces-
sarily autonomous; when such an operation does exist, the object X is said to be affine.
A collateral effect is that, in a Mal’tsev category, there are no other internal categories
but the groupoids [11].

Similarly, mimicking what happened in Universal Algebra for the Jónsson-Tarski va-
rieties [15], the unital categories where introduced in [5] as those pointed categories in
which, given any pair (X, Y ) of objects, the following associated pair of inclusions:

X // (1X ,0) // X × Y Yoo
(0,1Y )oo

is jointly strongly epic, which means that any commutative diagram of split epimorphisms

W

f

��

g //
Y

τY

��

t
oo

X
τX //

s

OO

1

0Y

OO

0X
oo

determines a strongly epic factorization W → X × Y . Here, the fundamental fact is the
following:
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2.3. Proposition. In a unital category E, given any pair (f, g) of morphisms with same
codomain, there is at most one map φ making the following triangle commute:

X × Y
φ

##

Y

g

��

(0,1Y )oo

X
f

//

(1X ,0)

OO

Z

This map φ is called the cooperator of the pair which is then said to commute when
this φ does exist. An object X in E is said to be commutative when the pair (1X , 1X)
commutes.

2.4. Recalls about characterizations. In [5], the two following characterizations
were asserted:

2.5. Proposition. A category E is a Mal’tsev one if and only any fiber PtYE of the
fibration of points is unital.

Then two equivalence relations (R, S) on X centralize each other if and only the two
following subobjects commute in the unital fiber PtXE:

R //
(dR0 ,d

R
1 )
//

dR0

##

X ×X

pX0

��

S
dS0

{{

oo
(dS0 ,d

S
1 )

oo

X

sX0

OO
sR0

cc

sS0

;;

2.6. Proposition. A category E is a Mal’tsev one if and only if any subreflexive graph
of an internal groupoid Y•:

W

d0

��
d1

��

// w // Y1

dY•0
��

dY•1
��

U //
u

//

s0

OO

Y0

sY•0

OO

is necessarily a groupoid.

3. The theorem

From now on, we shall suppose that E is a regular Mal’tsev category.

3.1. Lemma. Let E be a regular Mal’tsev category. Then the category GrdE of internal
groupoids in E is a fully faithful Birkhoff subcategory of the category RGhE of internal
reflexive graphs in E.
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Proof. As defined for instance in [17], a Birkhoff subcategory is a subcategory which
is stable under subobjects, products and homomorphic images. The category GrdE is
clearly stable under products in RGhE, and stable under monomorphisms following the
characterization given by Proposition 2.6. It remains to show it is stable under homo-
morphic images inside RGhE which is a regular category as soon as so is E. The regular
epimorphisms in RGhE are the levelwise regular epimorphisms in E. So, consider the fol-
lowing diagram depicting a regular epimorphism in RGhE and suppose that the vertical
left hand side reflexive graph is underlying a groupoid:

X1

dX•
0

��
dX•
1

��

f1 // // Y1

dY•0
��

dY•1
��

X0

sX•
0

OO

f
// // Y0

sY•0

OO

First observe that, since the Mal’tsev category is regular, the downward square indexed
by 0 has, by Proposition 2.5, a regular epic factorization towards the pullback of d0 along
f . Accordingly, the map f1 produces a regular epic factorization R(f1) : R[dX•

0 ] � R[dY•0 ].
Then complete the diagram by the horizontal kernel equivalence relations of the two

lower levels:

R2[f ]

d0

��
d1

��
d2

zz

R[dX•
0 ]

R(d
f1
0 )

//

R(d
f1
1 )

//

d0

��
d1

��

R[dX•
0 ]oooo

dX•
0

��
dX•
2

��
dX•
1

��

R(f1) // // R[dY•0 ]

d2

ss

dY•0

��
dY•1

��
R1[f ]

�� �� ��

R[f1]

R(dX•
0 )

��
R(dX•

1 )

��

d
f1
0

//

d
f1
1 //

X1

dX•
0

��
dX•
1

��

oo f1 // // Y1

dY•1

��
dY•0

��
R[f ]

OO

R[f ]
df0

//

df1 //

OO

X0 f
// //oo

sX•
0

OO

Y0

sY•0

OO

So, we get the vertical left and side reflexive graph R[f1] which is a subreflexive graph of
the internal groupoid X•×X•. According to Proposition 2.6, it is actually underlying an
internal groupoid R1[f ] since E is a Mal’tsev category; whence the map d2 which produces
the groupoid structure on the left hand side. Now complete the diagram by the kernel
relations of the vertical maps indexed by 0. Since the factorization R(f1) is a regular
epimorphism, namely the quotient map of the upper middle horizontal kernel relation,
it produces a factorization d2 on the vertical right hand side which, in turn, makes the
vertical right hand side reflexive graph Y1 an internal groupoid according to Theorem
1.3.

This is essentially the same idea as in Theorem 3.1 of [12], but, here, with a sharper
formulation and a more structural proof. We shall suppose now that, in addition, the
category E has pushouts of split monomorphisms along any regular epimorphism f :
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X � Y or, equivalently, is such that the base-change functor f ∗ : PtYE → PtXE along
any map of this kind has a left adjoint, see [4].

3.2. Theorem. Let E be a regular Mal’tsev category having pushouts of split monomor-
phisms along any regular epimorphism. Given any internal groupoid X• and any regular
epimorphism f : X0 � Y , the reflexive graph determined by the pushout of sX•

0 along f :

X1

dX•
0

��
dX•
1

��

f1 // // Y1

d0
��

d1
��

X0

sX•
0

OO

f
// // Y

s0

OO

is underlying an internal groupoid which, accordingly, is the codomain of the cocartesian
internal functor above the regular epimorphism f with respect to the forgetful functor
( )0 : GrdE→ E.

Proof. It is a straightforward consequence of the previous lemma once observed that f
being a regular epimorphism, so is f1 as the pushout of a regular epimorphism.

This theorem has two meaningful corollaries:

3.3. Corollary. Under the assumptions of the previous theorem, given any regular epi-
morphism f : X � Y , the pushout of sf0 along f produces a split epimorphism (ψf , 0f )
underlying an internal abelian group in the slice category E/Y :

R[f ]

df0
��

df1
��

χf // // ~Af

ψf
��

X

sf0

OO

f
// // Y

0f

OO

which makes the pair (f, χf ) an internal functor in E. The regular epimorphism f has
an abelian kernel equivalence relation R[f ] as soon as the above downward square indexed
by 0 is a pullback. When, in addition, E is exact, this condition becomes characteristic
of the regular epimorphisms with abelian kernel equivalence relations. In particular, an
object X is affine if and only if the following downward square is a pullback:

X ×X
pX0
��

pX1
��

χX // // ~AX

ψX
��

X

sX0

OO

τX
// // 1

0

OO

Proof. Since f coequalizes df0 and df1 , the groupoid structure on Y has his two legs d0

and d1 equal to ψf , namely it produces an internal (abelian) group on the object ψf in the
slice category E/Y , which implies that R[ψf ] is an abelian equivalence relation. So, when
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the square in question is a pullback, the map df0 has itself an abelian kernel equivalence
relation which is equivalent to saying that R[f ] is an abelian equivalence relation.

When E is exact the converse is true thanks to the construction of the direction of
an affine object with global support (see [6]) in the Mal’tsev slice category E/Y which
produces the desired pullback.

3.4. Corollary. Under the assumptions of the last theorem, when (f, s) is a split epi-
morphism, the split epimorphism (ψf , 0f ) is the universal abelian object associated with
(f, s) in the pointed unital fiber PtYE:

X // s1 //

f

��

R[f ]

df0
��

χf // // ~Af

ψf

��
Y // s //

s

OO

X

sf0

OO

f // // Y

0f

OO

with the above universal comparison map which is a regular epimorphism in PtYE, and
thus makes χf .s1 a regular epimorphism in E.

Proof. The fact that the pair (f, χf ) is underlying an internal functor means the following
identity (∗) which implies the three others:

(∗) χf (a, b) + χf (b, c) = χf (a, c); (1) − χf (a, b) + χf (a, c) = χf (b, c)

(2) χf (0, b) = −χf (b, 0); (3) χf (a, b) = χf (a, 0)− χf (b, 0)

Let us show that χf .s1 : X → ~Af is the universal comparison with the free abelian object
in PtYE. So, let (α, ω) : A� Y be an abelian object in PtYE and g : X → A be any map
in PtYE between (f, s) and (α, ω). Consider the following diagram where ∂α : R[α]→ A
is the internal opsubtraction of the abelian group structure on α:

R[α]
∂α // A

R[f ]
χf // //

R(g) ??

~Af

ḡ
@@

X

OOsf0

OO

f
// // Y

OO0f
OO
GG

ω

GG

Then ∂α(g(a), g(a)) = g(a) − g(a) = ωf(a) and the universal property of ~Af produces a

map ḡ : ~Af → A such that ḡχf (a, b) = ∂α(g(a), g(b)) = g(b) − g(a). Thus ḡχf (0, a) =
g(a) which means: (∗∗) : g = ḡ.(χf .s1). It remains to show the uniqueness of such a

factorization satisfying (∗∗). Let φ : ~Af → A be another group homomorphism such that
g = φ.χf .s1. Then:

φ(χf (a, b)) = φ(χf (0, b)− χf (0, a)) = φ(χf (0, b))− φ(χf (0, a))

= g(b)− g(a) = ḡ(χf (a, b))
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Now, since χf is a regular epimorphism, we get the desired uniqueness φ = ḡ. Finally the

universal comparison χf .s1 : X → ~Af is a regular epimorphism in PtYE, since, by the
previous lemma, Ab(PtYE) appears as a Birkhoff subcategory of PtYE.

Two final remarks about this last corollary.
1) From [2] (by Theorem 2.2.9, Corollary 1.8.20 and Proposition 1.7.5), we knew how to
associate with any split epimorphism (f, s) : X � Y a universal abelian object in the
fiber PtYE, but it was in a less straightforward way, namely via the following coequalizer
in PtYE:

X
// (1,sf) //
//

(sf,1)
//

f

!!

R[f ]

df0 .f

��

qf // // ~Af
ψf

}}
X

sf0 .s

OOaa

0f

==

2) This corollary enlarges an observation made in the context of subtractive categories in
[9]. First, in [14], Mal’tsev categories are also characterized in the following way:

3.5. Proposition. A category E is a Mal’tsev one if and only if any fiber PtYE is a
subtractive category.

This time, the notion of subtractive category is inspired by the notion of subtractive
varieties [20]: a pointed category is said to be subtractive when, for any relation (d0, d1) :
R � X × X on X, if sX0 and (1X , 0) : X � X × X factors through (d0, d1), then
(0, 1X) : X � X ×X factors through (d0, d1) as well. A major fact in this context is the
following:

3.6. Proposition. [8] In a subtractive category, on any object X, there is at most one
abelian group structure.

Later on, in [9], the abelianization functor for regular subtractive categories was de-
scribed in the following way:

3.7. Proposition. In a regular subtractive category E, the abelianization of any object
X, when it exists, is given by the cokernel of the diagonal sX0 : X → X ×X.

Clearly, via Proposition 3.5, our last corollary appears as the natural extension of the
previous proposition to the context of Mal’tsev categories.
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