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THREE EASY PIECES:
IMAGINARY SEMINAR TALKS IN HONOUR

OF BOB ROSEBRUGH

ROBERT PARÉ

Abstract. We first take a whimsical look at a couple of questions relating to categories
as generalized posets. Then we study the question of functorial choice of pullbacks.
Finally, we consider a simple question in basic category theory, with an elementary
solution which is surprisingly difficult to generalize to 2-categories.

Introduction

Most readers will know Bob as the instigator and moderator of the “categories” bulletin
board and the founder and managing editor of “Theory and Applications of Categories”,
the highly successful and pioneering electronic journal. These jobs he carried out efficiently
and diplomatically for almost 25 years. It is hard to overestimate his contribution to the
categorical community.

Readers will also know of his passion for theoretical computer science dating back
almost 50 years to his student days, long before it became fashionable amongst category
theorists. This evolved into his long lasting collaboration with Mike Johnson on database
management. Parallel to this was his career-long friendship with Richard Wood which
resulted in their collaboration on the categorical treatment of lattice theory.

Perhaps less well-known is his contribution to @CAT, the Atlantic Category Seminar.
From the day he arrived to start his PhD research until he took his retirement, he was
one of the pillars of the seminar (along with Richard Wood and Dietmar Schumacher).
He religiously attended all talks and, when he wasn’t presenting one himself, taking notes
in one of his black notebooks, familiar to anyone who knows him. When he was at Mount
Allison, he would drive down and back (≈ 500 km) almost every week during the term,
regardless of the weather (“Neither snow nor rain nor heat nor gloom of night...”). I
figure he must have driven about a quarter of a gigameter over the years. I wouldn’t be
surprised if he knew the exact number. He was also a licensed pilot and owned (half of)
a plane and, on occasion, he would fly down to the seminar. It was mainly to break the
monotony of driving and to get some airtime in, because it actually took longer, once you
added the time going back and forth between airports.
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I present here three “seminar talks” which were never physically given. In these days
of virtual seminars using Zoom, this goes one step further, thought seminars using ESP.
The following “notes” may be useful for those who don’t have “the gift”.

The first is a nod to his work on lattices. We ask to what extent the following results
for posets generalize to categories.

(a) Every distributive lattice is codistributive.

(b) A pair of functions between posets satisfying the adjointness bijections are auto-
matically order-preserving, and give a Galois connection.

In the second, we consider the question of whether there is a functorial choice of
pullbacks in Set. This has its roots in the theory of indexed categories, a recurrent theme
in the early days of the seminar.

The last thought seminar relates to our joint paper (with RJW) on idempotents in
bicategories [7]. We examine a simple question in basic category theory, whose general-
ization to 2-categories is surprisingly difficult (for me at least).

1. Ask a silly question

A distributive lattice, i.e. one satisfying x∧(y∨z) = (x∧y)∨(x∧z) is also codistributive,
i.e. satisfies the dual identity x∨ (y∧ z) = (x∨ y)∧ (x∨ z). The proof is easy, a one-liner,
as any lattice theorist will tell you. But for a non-lattice theorist this may seem a bit
surprising, and the one-line proof is not very illuminating, and certainly not in the spirit
of category theory. So one might ask:

1.1. Silly question 1. Is a distributive category also codistributive?
Well, of course the answer is “no”. It doesn’t hold for the most basic distributive

category, the category of finite sets. In fact it never holds unless the category is a lattice.
But, undaunted by this wave of negativity, we nonetheless propose the following.

Silly answer: A distributive category is 80% codistributive.
Let A be a distributive category, i.e. a category with finite products and finite coprod-

ucts, such that for all A, B, and C, the canonical morphism

A×B + A× C // A× (B + C)

is an isomorphism. (There’s also a nullary part, but let’s not worry about that now.)
For A to be codistributive we would need morphisms α and β

A+ (B × C)
α //oo
β

(A+B)× (A+ C)

such that αβ = 1 and βα = 1.
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In any category with finite sums and finite products, a morphism from a sum into a
product, like α, is a 2× 2 matrix, and for the case at hand we have

α =

[
j1 j1

j2π1 j2π2

]
where the ji are coproduct injections and the πi product projections. It’s this α that we
would like to be invertible.

If A is distributive, then we have

(A+B)× (A+ C) ∼= A× A+ A× C +B × A+B × C

and the α corresponds to

[j1∆, j4]:A+ (B × C) // A× A+ A× C +B × A+B × C.

B × C

�
�
�
�

A

A B

A

C

(A+B)× (A+ C)

For β we can take [j1π1, j1π1, j1π2, j2] and we have βα = 1A+(B×C). For codistributivity
we need two morphisms α and β and two equations αβ = 1 and βα = 1. We have α and
β and one equation, so that’s 75%.

We always have two morphisms, and one equation

A+ 1
! //oo
j2

1

in the nullary case, so I figure that’s another 5%, giving 80%.
Note that the above provides a “conceptual”, though admittedly complicated, proof

of the lattice case, as all endos are identities.
If a distributive category is codistributive, then taking B = C = 0 we get that α is

∆:A //A×A (now is the time to worry about nullary distributivity, A×0 ∼= 0 ∼= 0×A).
∆ is an isomorphism only for posets, so we’re reduced to the lattice case.

A less silly answer albeit to a different question.
Extensive categories are distributive but coproducts are nice. They are disjoint and

universal (see [2]). There is a kind of fiberwise codistributivity. For any object A we have
that A+ ( ) preserves pullbacks or, put differently, for objects B and C over D we have,
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A+B ×D C
∼= // (A+B)×(A+D) (A+ C) .

Indeed, not only is an extensive category A distributive but it is locally so, i.e. A/X
is distributive for every X. So the codomain of the above morphism is isomorphic to

(A×(A+D) A) + (A×(A+D) C) + (B ×(A+D) A) + (B ×(A+D) C)

which in turn is isomorphic to

A+ 0 + 0 +B ×D C.

Lattices are “never” extensive, but we nevertheless ask:
Question 1: Is there a general theorem here?

1.2. Silly question 2. Let A and B be categories and F : Ob(A) // Ob(B) and
U : Ob(B) // Ob(A) be object functions. Suppose that for every A in Ob(A) and B
in Ob(B) we are given isomorphisms

θA,B: B(FA,B) //A(A,UB).

Are F and G automatically adjoint functors?
Why would we even ask such an outrageous question? It’s well-known that if A and

B are posets, this is true. And why is it outrageous? Well, if A and B are groups (one
object categories), then F and U are trivial and θ gives a bijection between the groups.
A homomorphism with an adjoint is an isomorphism of groups. So we’re asking whether
two groups with the same cardinality are isomorphic. Which is ridiculous. Nevertheless,
we propose the following.

Silly answer: It is 20% true.
Let’s see how far we can get.

(1) For every A,
θA,FA: B(FA, FA) //A(A,UFA)

and we let ηA:A // UFA be θA,FA(1FA).
(2) For every B,

θUB,B: B(FUB,B) //A(UB,UB)

and we let εB:FUB //B be θ−1
UB,B(1UB).

(3) For g:B //B′ we apply

θUB,B′ : B(FUB,B′) //A(UB,UB′)

to
FUB

εB //B
g //B′

and get
Ug: = θUB,B′(g · εB).
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(4) For f :A // A′, we have

θA,FA′ : B(FA, FA′) //A(A,UFA′)

so we can apply θ−1
A,FA′ to

A
f // A′

ηA′ // UFA′

to get
Ff : = θ−1

A,FA′(ηA
′ · f).

So we get all the data for functors F and U and for natural transformations η: 1A
//UF

and ε:FU // 1b, but the only equations we have are that F and U preserve identities,
F (1A) = 1FA and U(1B) = 1UB.

I figure that’s about 20% of what’s needed. (I chose 20% to be complementary to the
previous silly answer. Something wrong with this?)

Let’s dig a bit deeper. We know that if U is a functor and

θA,B: B(FA,B) //A(A,UB)

is natural in B, then F is automatically a functor, and ε and η are natural, and then F is
left adjoint to U . A dual result holds if instead F is a functor. So perhaps we could get
a more symmetric result generalizing both of these facts.

There’s something intriguing about the display for θA,B above. The domain is functo-
rial in B though not in A and the codomain is functorial in A though not in B, yet the
isomorphism θA,B is saying that they are “the same”.

Below and in the next section we will make use of the following, well-known result,
which we state explicitly for completeness.

1.3. Lemma. (Transport of functoriality)
Let Φ: X // Y be a functor and assume that for each object X in X we are given

an object ΘX in Y and an isomorphism θX: ΘX // ΦX. Then Θ can be made into a
functor in a unique way such that θX is a natural isomorphism.

Proof. For any x:X //X ′ we want Θx such that

ΘX ′ ΦX ′ .
θX′

//

ΘX

ΘX ′

Θx

��

ΘX ΦXθX // ΦX

ΦX ′ .

Φx

��

So take Θx = (θX ′)−1Φx(θX). It works.
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So let’s transport the functorial structure of A(A,UB) on the right to the left along
θ. Let

P (A,B): = B(FA,B).

P is clearly functorial in B. For f :A // A′, define P (f,B) to be the unique morphism
such that

P (A,B) = B(FA,B) A(A,UB)
θA,B

//

P (A′, B) = B(FA′, B)

P (A,B) = B(FA,B)

P (f,B)

��

P (A′, B) = B(FA′, B) A(A′, UB)
θA′,B //A(A′, UB)

A(A,UB)

A(f,UB)

��

commutes, i.e.
P (f,B) = θ−1

A,BA(f, UB)θA′,B .

For fixed B, P (A,B) is now functorial in A and θA,B natural in A.
To get a functor P : Aop×B //Set we need that the two functorialities commute: for

f :A // A′ and g:B //B′

P (A′, B′) P (A,B′) .
P (f,B′)

//

P (A′, B)

P (A′, B′)

P (A′,g)

��

P (A′, B) P (A,B)
P (f,B) // P (A,B)

P (A,B′) .

P (A,g)

��

When we put in the definition of P (f,−) we get the following octagon condition

B(FA′, B)

B(FA′, B′)

B(FA′,g)

��

B(FA′, B)

A(A′, UB)
θA′,B

::

B(FA′, B′)

A(A′, UB′)

θA′,B′ $$

A(A′, UB) A(A,UB)
A(f,UB) //A(A,UB)

B(FA,B)

θ−1
A,B

$$
B(FA,B)

B(FA,B′)

B(FA,g)

��
B(FA,B′)

A(A,UB′)

::

θ−1
A,B′

A(A′, UB′) A(A,UB′)
A(f,UB′)

//

(∗)

.

If the θ’s satisfy (∗) then we get a functor P : Aop×B //Set. For fixed A, P (A,−) is
representable, P (A,−) = B(FA,−), so F is a functor. And for fixed B, P (−, B) is also
representable: by construction

θ−,B:P (−, B) //A(−, UB)
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is a natural isomorphism, so U is also a functor. Finally,

θA,B: B(FA,B) //A(A,UB)

is a natural isomorphism, so F is left adjoint to U . We have the following.

1.4. Theorem. Let F : Ob(A) // Ob(B) and U : Ob(B) // Ob(A) be object functions
and

θA,B: B(FA,B) //A(A,UB)

be bijections satisfying the octagon condition (∗). Then F and U are functors, and F a U .

1.5. Remark. Instead of taking P (A,B) = B(FA,B) and using θ to make it functorial
in A, we could have taken Q(A,B) = A(A,UB) and made it functorial in B. The
octagon we get in this case looks different, not just (∗) with θ replaced with θ−1, which
seems strange. Do we get different functors this way? No, what we get is

B(FA′, B)

B(FA′, B′)

B(FA′,g)

��

B(FA′, B)

A(A′, UB)

zz

θ−1
A′,B

B(FA′, B′)

A(A′, UB′)

θA′,B′ $$

A(A′, UB) A(A,UB)
A(f,UB) //A(A,UB)

B(FA,B)

θ−1
A,B

$$
B(FA,B)

B(FA,B′)

B(FA,g)

��
B(FA,B′)

A(A,UB′)

θA,B′zz
A(A′, UB′) A(A,UB′)

A(f,UB′)
//

(∗∗)

.

But it can be seen to be equivalent to (∗) by pre-composing (∗∗) by θA′,B and postcom-
posing by θ−1

A,B′ .
Note in passing that

θ:P //Q

is a natural isomorphism now.

I should have known! I was quite surprised that something new could be said about
such a central concept as adjunction which has been around for over sixty years. I guess
I shouldn’t have been so surprised. The referee has pointed out that it’s not new at all.
It had all been done by Street in his 2012 TAC paper “The core of adjoint functors” [11].

Street’s motivation was the same as ours above and he gives the same definition
of ηA, εB, Ug and Ff , but his context is that of enriched categories. Not distracted
by the temptation to use elements he discovers simple conditions that insure that an
adjunction core, the family of isomorphisms θA,B, gives an actual adjunction. When
specialized to Set-enriched categories (i.e. ordinary, garden variety categories) his theorem
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3.2 is basically our theorem 1.4, though his conditions are different, being expressed as
commutative squares, rather than our octagons. His conditions are simple and the proof
of theorem 3.2 is “short and sweet”.

He goes on from there to study adjunction cores between monads in a bicategory, which
specialize to adjunction cores between internal categories (for the bicategory Span). Not
content with this level of generality, everything is extended to adjunction cores for lax
D-algebras, for a doctrine D (= pseudo-monad) on a bicategory.

It’s a nice paper and well worth reading. I guess it wasn’t such a silly question after
all.

About Street’s conditions (3.1) and (3.2) versus our (*) and (**). They are quite
different, though of necessity equivalent, but it’s not that trivial to see this. At least it’s
not transparent. In terms of elements (we’re only comparing them in the Set case, of
course) (*) says that for all morphisms

f :A // A′, x:FA′ //B, g:B //B′

we have
θ−1(θ(g · x) · f) = g · θ−1(θ(x) · f)

whereas in Street’s (3.1) (which is the one corresponding to (*)) we have for all x and g
as above

θ(g · x) = θ(g · θ−1(1UA)) · θ(x)

These conditions are quite different. Okay, the second one is simpler, but I still have a
soft spot for the octagons. They are my babies after all!

2. Dead horse

In his mini-course “Homotopy-theoretic models of type theory”, given at the Fields In-
stitute in May 2016, Peter Lumsdaine asked in passing, whether it might be possible to
choose pullbacks in sets in such a way that the pullback functors

f ∗: Set/I // Set/J,

which typically give a pseudo-functor

Set/( ): Setop // CAT ,

give an actual functor.
This was something I had thought about a long time ago in connection with indexed

categories, so after his talk I said it could be done by transferring the functorial change
of base for families of sets

f ∗: SetI // SetJ

along the equivalences Set/I ∼ // SetI . He was skeptical (and rightly so). After an
exchange of some vague ideas, he concluded with “it’s a frustrating problem”.
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At a later conference, I had refined my argument. I said the equivalences

SetI // Set/I

could be deformed to isomorphisms, and then the functorial change of base on Set( )

could be transported to a functorial one on Set/( ). He still seemed a bit skeptical. (I
hadn’t written anything down.) He wanted to know if the process respected the coherence
isomorphisms, a valid point. He concluded with “It’s a frustrating problem, and what
makes it even more frustrating is that if you do settle it, no one will be interested”.

“Added in press:” Peter has alerted me to the following exchange with Tim Cam-
pion on MathOverflow [5, 1] which mirrors pretty much my discussion below.

This is a set theoretical question, and the solution uses set theory in a way that the
seasoned category theorist won’t like at all. And the average set theorist won’t even care.

With this introduction, what’s left to be said? As they say in the movies “Damn the
torpedoes, full speed ahead!”

2.1. Local equivalence. First, let’s look at the equivalence

ΦI : SetI // Set/I.

An object on the left is an I-indexed family of sets 〈Ai〉i∈I , i.e. a function A( ), from I
into the class of all sets. And a morphism 〈fi〉: 〈Ai〉 // 〈Bi〉 is an I-indexed family of
functions fi:Ai //Bi. On the other side, an object is a function p:A //I and a morphism
a commutative triangle

A

I .
p ��

A B
f // B

I .
q��

I’m being precise here because we category theorists tend to identify the two.
ΦI takes a family 〈Ai〉 to its coproduct∑

i∈I Ai

I

p

��

where
∑

i∈I Ai = {(i, a)|i ∈ I, a ∈ Ai} and p(i, a) = i. For a morphism 〈fi〉: 〈Ai〉 // 〈Bi〉,
ΦI〈fi〉 is the function ∑

i∈I

Ai //
∑
i∈I

Bi

(i, a) 7−→ (i, fi(a)).

ΦI is easily seen to be a functor. We’ve chosen a very specific representation of the
coproduct, and it’s important that ΦI is one-to-one on objects.



180 ROBERT PARÉ

ΦI has a pseudo-inverse

ΨI : Set/I // SetI

A

I

p
��

〈p−‘{i}〉i∈I� //

and for a morphism

A

I
p ��

A B
f // B

I
q��

ΨI(f) = 〈f |p−1{i}〉.
ΨI is also easily seen to be a functor and one-to-one on objects.

ΨIΦI〈Ai〉 = 〈{i}×Ai〉 so ΨIΦI is not the identity but we have a natural isomorphism

αI : ΨIΦI
// 1SetI .

Similarly, ΦIΨI(A
p // I) = {(p(a), a)|a ∈ A} with projection onto first factor. And

we have another natural isomorphism

βI : ΦIΨI
// 1Set/I .

Thus we have our equivalence of categories

SetI ∼ // Set/I.

This is the usual equivalence. The only thing to emphasize is that, as we constructed
it, both ΦI and ΨI are one-to-one on objects.

2.2. Theorem. (Schröder-Bernstein for categories)
Suppose we have an equivalence of categories Φ: A //B with pseudo-inverse Ψ: B //A

and isomorphims α: ΨΦ // 1A and β: ΦΨ // 1B. Further assume that Φ and Ψ are both
one-to-one on objects. Then there is an isomorphism of categories

Θ: A
∼= //B

and a natural isomorphism γ: Φ // Θ. Furthermore, γA is either an identity or βB for
some B in B.
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Proof. We simply give an outline. It’s basically the standard proof as can be found in
any of the classic books on set theory, e.g. [3].

Define the sequence of subclasses of ObA to be the set differences

Cn = (ΨΦ)n(ObA)− (ΨΦ)nΨ(ObB), n ≥ 0.

So C0 = ObA−Ψ(ObB) consists of all objects of A that are not Ψ of any B in B. Define
Θ on an object A by

ΘA =

{
ΦA if A ∈ Cn for some n
Ψ−1A otherwise

Note that if A is not in any Cn, it’s not in C0 so is Ψ of some, necessarily unique B. And
the definition makes sense.

Also define γA in

γA =

{
1ΦA if A ∈ Cn for some n
βΨ−1A otherwise.

Note that βΨ−1A: ΦΨΨ−1A //Ψ−1A, i.e. ΦA //ΘA.
Now we extend Θ to a functor in the unique way that makes

γ: Φ //Θ

natural.
That Θ is a bijection on objects is the standard Schröder-Bernstein argument. Since

Θ is isomorphic to Φ which is full and faithful, then Θ is also, and thus an isomorphism
of categories.

Apply this to our equivalences ΦI , ΨI to get an isomorphism of categories

ΘI : SetI // Set/I

and a natural isomorphism γI : ΦI
//ΘI .

Now we use the ΘI to transport the functorial change of base for SetI to a functorial
one for Set/I, i.e. for f : J // I we define

f • := (Set/I
Θ−1
f // SetI

f∗ // SetJ
ΘJ // Set/J).

( )• is definitely functorial, (fg)• = g•f • and 1•J = 1Set/I , but is it change of base? This
was Peter’s question. And my answer was, yes because it’s isomorphic to f ∗, a good
example of fuzzy thinking. Trying to make this clear is not that easy, so we take a more
global approach, using fibrations (pace Bénabou).
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2.3. Global equivalence. All of the categories SetI with their change of base functors
fit into one category of families, given by the Grothendieck semi-direct product construc-
tion

Fam.

An object is a pair (I, 〈Ai〉i∈I) consisting of a set I and an I-indexed family of sets 〈Ai〉.
A morphism (I, 〈Ai〉) // (J, 〈Bj〉) is a pair (α, 〈fi〉) where α: I // J is a function, and
〈fi〉 is a family of functions 〈fi:Ai //Bαi〉i∈I . Projection onto the first factor

Fam

Set

P

��

is a fibration, with the cartesian morphisms being those (α, 〈fi〉) with all fi isomorphisms.
The Grothendieck construction applied to the categories Set/I with their change of

base gives the arrow category

Set2

Set .

D1

��

where D1 is the codomain functor. It’s also a fibration (of course) and the cartesian
morphisms

I Jα
//

A

I

x

��

A Ba // B

J

q

��

are pullback squares (aha!).
The functors ΦI and ΨI fit together to give an equivalence pair over Set

Fam

Set

P

��

Fam Set2Set2

Set

D1

��

Φ //oo
Ψ

with the isomorphisms α: ΨΦ // 1Fam and β: ΦΨ // 1Set2 given fiberwise by the αI and
βI .

Now, Φ and Ψ are both one-to-one on objects so by Theorem 2.2 there is an isomor-
phism of categories

Θ: Fam // Set2
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and a natural isomorphism γ: Φ // Θ with γ either an identity or an instance of β. It
follows that D1γ = idP

Fam Set2

Φ

))
Fam Set2

Θ

55γ��Fam

Set

P

��

Set2

Set

D1

��

that is, Θ is an isomorphism over Set. As such it preserves cartesian morphisms (as they
are defined by a universal property).

Fam has a functorial choice of cartesian morphisms, namely those for which the fi
are identities: for α: I // J and (J, 〈Bj〉),

(I, 〈Bα(i)〉i)
(α,〈1Bα(i) 〉) // (J, 〈Bj〉j).

Then Θ takes them to a functorial choice of cartesian morphisms in Set2, i.e. pullbacks.
We summarize.

2.4. Theorem. Set has a functorial choice of pullbacks.

One can use this to get a functorial choice of pullbacks for any category where pull-
backs are constructed in Set, for example any Grothendieck topos, algebraic category, or
more generally any locally presentable category. However, a good case can be made that
this is not the right way to go, and dealing with pseudo-functors or fibrations is. There
is something inherently pseudo with large categories like Set or Grothendieck toposes.
However, on occasion it may be convenient, or even necessary, to be dealing with actual
functors rather than mere pseudo-functors. Instead of going through set theoretical con-
tortions to get functorial pullbacks, it would be more natural to replace the pseudo-functor
by a canonically constructed pseudo-equivalent functor, work with that, and afterwards
“descend” the results to the original pseudo-functor. Fortunately, there has been a ready-
made theorem for this, around for forty years, namely Street’s strictification theorem
([10], Theorem 7.5). But that’s a whole different story.

2.5. Counterexample. On the other hand small categories, like Lawvere theories for
example, are inherently strict and some of them have pullbacks. So there it might make
more sense to look for a functorial choice of pullbacks, or for a counterexample there.

The initial Lawvere theory, the category of finite cardinals with all functions has
pullbacks, because it’s equivalent to the category of finite sets. Does it have a functorial
choice of pullbacks?

For a natural number n ∈ N, let

[n] = {1, 2, ..., n}
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(with [0] = ∅), and FinCard the full subcategory of Set determined by the [n], n ∈ N.
Our Schröder-Bernstein argument doesn’t work here, at least not in any obvious way.
For example, the number of morphisms [3] // [2] is 8 whereas the number of [2]-indexed
families of cardinals summing to 3 is 4. In fact we have:

2.6. Theorem. FinCard does not have a functorial choice of pullbacks.

Proof. Suppose it did. Then for any function f : [m] // [n] and any bijection σ: [n] // [n]
we would have a chosen pullback

[m] [n]
f

//

[m]

[m]

f∗(σ)

��

[m] [n]
fσ // [n]

[n]

σ

��

which gives a function f ∗:Sn // Sm on the symmetric groups. Just a function, not a
homomorphism. But this gives a functor

FinCardop // Set0

whose value on objects is Sn of cardinality n!. By the second last paragraph of [9], no
such functor exists.

The argument of [9] is quite involved and the last step involving n! uses a Maple
calculation. I checked again, using Excel this time, and it’s still true, 21 years later. It’s
remarkable that you have to go to the 12th “difference” before a negative number appears,
showing that there is indeed no functor. The argument is less than transparent, so we
pose:

Problem 1: Find a simple proof that FinCard doesn’t have a functorial choice of
pullbacks.

Now that it’s known that there isn’t a functorial choice, the work is cut down by (at
least) half. It may be instructive to look a bit deeper.

Pullbacks in FinCard are constructed as follows. For f and g as below, take the
pullback P in Set0

[n] [r] .g
//

P

[n]

π1

��

P [m]
π2 // [m]

[r] .

f

��

To be precise, take P = {(x, y)|1 ≤ x ≤ n, 1 ≤ y ≤ m, and g(x) = f(y)}, and π1, π2 the
projections. P will have

p =
r∑
i=1

|f−1(i)‖g−1(i)|
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elements. (We don’t need the actual number but it’s a nice formula.) We choose a
bijection φ: [p] // P , a counting function. Then

[n] [r]g
//

[p]

[n]

π1φ

��

[p] [m]
π2φ // [m]

[r]

f

��

is a pullback in FinCard. Where we have some elbow room is in the choice of φ, which
comes down to totally ordering P . The first thing that comes to mind is the lexicographic
ordering

(x, y) < (x′, y′)⇐⇒ (x < x′) ∨ (x = x′ ∧ y < y′)

and there, something interesting happens.

2.7. Proposition. With the lexicographic ordering, pullbacks in FinCard are semi-
functorial, i.e. lexicographic pullbacks paste horizontally, but pulling back along the identity
is not the identity.

Proof. The lexicographic pullback is characterized by the following
(a)

[m] [r]
φ

//

[p]

[m]

g

��

[p] [n]
ψ // [n]

[r]

f

��
is a pullback, and

(b) for every 1 ≤ i < j ≤ p,

g(i) < g(j)

or

g(i) = g(j) and ψ(i) < ψ(j).

It’s clear that the lexicographic pullback satisfies these conditions. Suppose we have
another diagram

[m] [r]
φ

//

[p]

[m]

g′

��

[p] [n]
ψ′ // [n]

[r]

f

��
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satisfying (a) and (b). Then there exists an isomorphism γ: [p] // [p] such that

[m] [r] .
φ

//

[p]

[m]

g′

��

[p] [n]
ψ′ // [n]

[r] .

f

��

[p]

[n]

ψ

��

[p]

[p]
γ ��

[p]

[m]

g

��

We claim that γ is order-preserving. Suppose not. Then there are 1 ≤ i < j ≤ p such
that γ(i) 6< γ(j), so γ(j) < γ(i) (they can’t be equal because γ is a bijection). Then we
have

g(i) < g(j) or (g(i) = g(j) and ψ(i) < ψ(j))

but we also have

g′(γ(j)) < g′(γ(i)) or (g′(γ(j)) = g′(γ(i)) and ψ′(γ(j)) < ψ′(γ(i))

i.e.
g(j) < g(i) or (g(j) = g(i) and ψ(j) < ψ(i)).

There are four possibilities for the conjunction of both disjunctions and inspection readily
shows none of them can hold. We conclude that γ is order-preserving and so is the identity.

It’s now easy enough to show that lexicographic pullbacks paste horizontally. If we
have two, as in

[s] [m]
θ

//

[q]

[s]

h

��

[q] [p]σ // [p]

[m][m] [r]
φ

//

[p]

[m]

g

��

[p] [n]
ψ // [n]

[r]

f

��

then for 1 ≤ i < j ≤ q we have

(h(i) < h(j)) ∨ (h(i) = h(j) ∧ (σ(i) < σ(j)))

and σ(i) < σ(j) implies

(gσ(i) < gσ(j)) ∨ ((gσ(i) = gσ(j)) ∧ (ψσ(i) < ψσ(j))

which gives us three possibilities

(i) h(i) < h(j)

(ii) h(i) = h(j) and gσ(i) < gσ(j)
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(iii) h(i) = h(j) and gσ(i) = gσ(j) and ψσ(i) < ψσ(j).

Now, (ii) is impossible because gσ(i) = θh(i) = θh(j) = gσ(j). In (iii), gσ(i) = gσ(j) is
redundant also because gσ(i) = θh(i) = θh(j) = gσ(j). So we’re left with

h(i) < h(j) or (h(i) = h(j) and ψσ(i) < ψσ(j))

which is exactly what we want, i.e. the pasted sequence is a lexicographic pullback.
Note that, in a lexicographic pullback as above, the g is order-preserving, so if f isn’t

then pulling back along the identity can’t give f back again.

2.8. Remark. Lexicographic pullbacks don’t paste vertically. Another way of saying this
is that taking lexicographic ordering from the right (rexicographic?) doesn’t work.

2.9. Remark. There’s a strange interplay between order-preserving and arbitrary func-
tions. If we take a lexicographic pullback of an arbitrary f along the identity

[r] [r]
1[r]

//

[n]

[r]

g

��

[n] [n]
ψ // [n]

[r]

f

��

then g is order-preserving and ψ is invertible, so we get a canonical factorization of f as
a bijection followed by an order-preserving map

f = gψ−1.

The two theorems of this section may not be of any practical use but may provide
closure for those who worry about such things. We can now bury the horse!

3. The square root of adjoints

Question: Let F : A // B be a functor such that F × F : A × A // B × B has a left
adjoint. Does F itself have a left adjoint?

The answer is “yes”, but it’s not as easy to prove as one might imagine. Well, of
course it is, once you see the solution.

3.1. Start of a 2-categorical proof. Let G be left adjoint to F × F . If F had a
left adjoint H, then G would be isomorphic to H ×H, so we could construct an adjoint
hopeful as

H = (B ∆ //B×B G //A×A
P1 //A)
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where P1 is projecting onto the first factor. Let ε:G·F×F //1A×A and η: 1B×B //F×F ·G
be the adjunction transformations for G a F × F . Now we can define transformations
e:HF // 1A and h: 1B

// FH as

e = (HF = P1G∆F = P1G(F × F )∆
P1ε∆ // P1∆ = 1A)

and

h = (1B = P1∆
P1η∆ // P1(F × F )G∆ = FP1G∆ = FH)

both pictured below.
Now for the triangle equalities. Consider:

B B×B
∆

//

A

B

F

��

A A×A∆ //A×A

B×B

F×F

��
B×B A×A

G
//

A×A

B×B

A×A

A×AB×B A×AB×B

B×B

A×A

B×B
��

B×B B .
P1

//

A×A

B×B

F×F

��

A×A A
P1 //A

B .

F

��

ε ;C

η ;C

The parallelogram in the middle is the identity by one of the triangle equations for G a
F × F , and since P1∆ = 1, we immediately get the corresponding triangle equation for
H a F .

This is going swimmingly well, just a “follow your nose” argument. One might expect
the other triangle identity to be harder as it involves more arrows but straightforward
nonetheless. But in fact it’s much harder. It took me several weeks of trying to prove/or
disprove it (it may be just me, of course). At the risk of annoying the impatient reader
(should he or she have gotten this far), I will delay the proof for a while, to give the
competitive reader a chance to have a go at it.

Here is an argument which may or may not lead to a proof. It uses a result from my
thesis [8], and given as an exercise in Mac Lane’s book [6], page 84. If

H
Hh //HFH

eH //H

doesn’t turn out to be an identity as we had hoped, it is at least an idempotent, and if
A has split idempotents, we can split it

H

K
�� ��

H H
eH·Hh // H

K

??

??
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and then K is left adjoint to F . But then K ×K is left adjoint to F ×F , so K ×K ∼= G,
and then

K = P1(K ×K)∆
∼= P1G∆
= H.

So H turns out to be left adjoint to F after all. And H doesn’t use split idempotents at
all...

3.2. A proof in Cat. We give an elementary proof in terms of universal arrows.
G: B×B //A×A is given by two functors B×B //A, G1 = P1G and G2 = P2G.

The universal property of η is then that, for every (b1, b2): (B1, B2) // (FA1, FA2) there
exists a unique (a1, a2): (G1(B1, B2), G2(B1, B2)) // (A1, A2) such that

(FA1, FA2)

(B1, B2)

55

∀(b1,b2)

(FG1(B1, B2), FG2(B1, B2))

(FA1, FA2)

(Fa1,Fa2)

))

(FG1(B1, B2), FG2(B1, B2))

(B1, B2)

OO

(η1(B1,B2),η2(B1,B2))

(A1, A2)

∃!(a1,a2)

''

(G1(B1, B2), G2(B1, B2))

(∗)

commutes. We’ll show that η1(B,B):B // FG1(B,B) is a universal arrow for F . Let
b:B // FA. Specialize (∗) to the case B1 = B2 = B, A1 = A2 = A, b1 = b2 = b. Then
we get a1 and a2 satisfying (∗) in that special case, and so we have

FA

B

66

b

FG1(B1B)

FA

Fa1

((

FG1(B1B)

B

OO

η1(B1B)

G1(B1B)

A

a1

((

which gives existence. If we had another a′1 satisfying this, then (a1, a2) and (a′1, a2) both
satisfy (∗) so a1 = a′1.

This gives a proof in the case of Cat , but a diagramatic proof as we started giving
would hold in a 2-category with 2-products, a better result. Regardless of whether we are
interested in this more general result, we are faced with an identity which holds in that
situation, and as 2-category theorists, we should be able to prove it (a challenge for the
2-categoricians). Perhaps the above proof can be leveraged into this more general one.
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To be clear, what we’re trying to prove is that the composite 2-cell

B B ×B∆ // B ×B B ×BB ×B B
p1 // B B ×B∆ // B ×B

A× A

g

��
A× A Ap1

//

B ×B

A× A

g

��
A× A

B ×B

f×f

GG

A× A Ap1
// A

B

f

GG

A A× A
∆
// A× A

B ×B

f×f

GG

A× A A× A

η��
ε��

is the identity on p1g∆.

3.3. A result for 2-monads. What we’ll do is generalize and thus get a better result.
Of course it could be harder to prove (it isn’t) but it’s also harder to make mistakes. Note
that the functor TA = A× A is part of a 2-monad A, whose unit is ∆:A // A× A and
multiplication p1 × p2: (A× A)× (A× A) // A× A, which looks promising .

3.4. Theorem. Let T = (T, η, µ) be a 2-monad on a 2-category A. If f :A // B is a
morphism of A, then the following are equivalent:

(1) Tf has a left adjoint in A,

(2) Tf has a left adjoint in EM(T), the Eilenberg-Moore 2-category of T,

(3) f∗ = [ηB · f ]:A • //B has a left adjoint in Kl(T), the Kleisli 2-category of T.

Before we give the proof, let’s recall what the 2-categories EM(T) and Kl(T) are (see
for example [4]). We are referring to the strict versions given by the theory of monads
enriched in the cartesian category Cat. The objects and morphisms of EM(T) are those
of the underlying monad T0 on the category A0 (forget the 2-cells). So associativity
and unit laws hold on the nose, and morphisms preserve the structures strictly. A 2-cell
α: f // g between homomorphisms f , g: (A, a) // (B, b) is a 2-cell α: f // g in A such
that

TA TB

Tf

))
TA TB

Tg

55Tα��TA

A

a

��
A B

f

((
A B

g

66

TB

B

b

��
α��

commutes, i.e. b · Tα = αa. There’s the obvious forgetful 2-functor EM(T) //A, which
has a left 2-adjoint given by

A 7−→ (TA, µA).
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The objects of Kl(T) are those of A and a morphism [f ]:A • //B in Kl(T) is given
by a morphism f :A // TB. A 2-cell [α]: [f ] // [g] is given by a 2-cell α: f // g in A

A B

[f ]

((
A B

[g]

66[α]��

A TB

f

))
A TB

g

55α��
.

The usual embedding
Kl(T) // EM(T)

A B

[f ]

''
A B

[g]

77[α]�� 7−→ TA T 2B

Tf
))

TA T 2B

Tg

77Tα�� T 2B TB
µB //

is of course full and faithful on arrows, but also on 2-cells, i.e. it is a 2-fully faithful
2-functor. That’s all we need.

Proof. (Of theorem) Precisely because we have a 2-fully faithful embedding of Kl(T) ↪→
EM(T), (2) and (3) are equivalent.

We have a forgetful 2-functor, so an adjunction in EM(T) has an underlying one in
A, so (2) ⇒ (1).

The hard part is (1) ⇒ (3). Assume Tf :TA // TB has a left adjoint g:TB // TA
in A, with adjunction transformations e: gTf // 1TA and h: 1TB // Tf · g. We’ll show
that ḡ = [g · ηB] is left adjoint to f∗ = [ηB · f ] = [Tf · ηA].

An easy calculation will show that

ḡ · f∗ = [g · ηB · f ] = [g · Tf · ηA]

and
f∗ · ḡ = [Tf · g · ηB].

Now let ē: ḡ · f∗ // idA be

[e · ηA]: [g · Tf · ηA] // [ηA]

A TA
ηA // TA TA

TB

TA

99
Tf

TB

TA

g

%%e��

and let h̄: idB // f∗ · ḡ be

[h · ηB]: [ηB] // [Tf · g · ηB]
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B TB
ηB // TB

TA
g %%

TB TBTB

TA

99

Tf
�� h

.

We first prove the triangle identity

f∗ f∗ .

f∗ · ḡ · f∗

f∗

99
h̄·f∗

f∗ · ḡ · f∗

f∗ .

f∗·ē

%%

We can compute, first of all that

f∗ · ḡ · f∗ = [Tf · g · Tf · ηA],

and then that
f∗ · ē = [Tf · e · ηA],

A TA
ηA // TA TA

TB

TA

99
Tf

TB

TA

g

%%
e��

TA TB
Tf //

h̄ · f∗ = [h · Tf · ηA],

A TA
ηA // TA TB

Tf // TB

TA
g %%

TB TBTB

TA

99

Tf
�� h

.

The first is straightforward but the second uses 2-naturality of η. Indeed, h̄ · f∗ is, by
definition, the composite

A TA
ηA // TA TB

Tf // TB T 2B
TηB // T 2B

T 2A
Tg %%

T 2B T 2BT 2B

T 2A

99

T 2f
�� Th

T 2B TB
µB //

which, just using naturality of η, is equal to

A TA
ηA // TA TB

Tf // TB T 2B
ηTB // T 2B

T 2A
Tg %%

T 2B T 2BT 2B

T 2A

99

T 2f
�� Th

T 2B TB
µB //
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and now we can use the 2-naturality of η to rewrite it as

A TA
ηA // TA TB

Tf // TB

TA
g %%

TB TBTB

TA

99

Tf
�� h

TB T 2B
ηTB // T 2B TB

µB //

and µB · ηTB = 1TB. Now the composite (f∗ · ē)(h̄ · f∗) is given by

A TA
ηA // TA TA

TB

TA

99
Tf

TB

TA
%%

e��

TB

TA
%%

TB TBTB

TA

99

Tf�� h

which is the identity on Tf · ηA or idf∗ .
The other triangle identity

ḡ ḡ

ḡ · f∗ · ḡ

ḡ

99
ḡ·h̄

ḡ · f∗ · ḡ

ḡ

ē·ḡ

%%

is harder as it involves mostly ḡ’s which are not as nice as the f∗. It’s what makes the
hard part of the theorem “hard”, and corresponds to the identity we couldn’t prove at
the start of the section.

A calculation like the one we just did shows that our triangle identity comes down to
showing that the following composite 2-cell is idg·ηB:

B TB
ηB // TB

TA

g
��

TB TBTB

TA

??

Tf

TB T 2B
TηB //

T 2A T 2A

T 2B

T 2A

??
T 2f

T 2B

T 2A

Tg

��
TA T 2A

TηA
// T 2A TA .

µA
//

�� h
�� Te

Tack a piece onto it (the two triangles and parallelogram on the right below) to get

B TB
ηB // TB

TA

g
��

TB TBTB

TA

??

Tf

TB T 2B
TηB //

T 2A T 2A

T 2B

T 2A

??
T 2f

T 2B

T 2A

Tg

��
TA T 2A

TηA
// T 2A TA

µA
//

�� h
�� Te

T 2B

T 2A
��

T 2B T 2BT 2B

T 2A

??

T 2f�� Th

TA TA

TB

TA

??

Tf

TB

TA

g

��
�� e

T 2B TB
µB //

which by simple inspection we see is the identity idg·ηB. Indeed, the Th and Te in the
middle cancel, then the µ and Tη cancel, and finally the h and e cancel. But the thing
we tacked on (including the tail TηB · ηB) is also idg·ηB. That tail TηB · ηB is equal to
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ηTB · ηB so our add-on is

B TB
ηB // TB T 2B

ηTB // T 2B

T 2A

Tg
��

T 2B T 2BT 2B

T 2A

??

T 2f
�� Th

T 2B TB
TµB //

TA TA

TB

TA

??
Tf

TB

TA

g

��
�� e

T 2A TA
µA

//

and now we can use the 2-naturality of η to rewrite it as

B TB
ηB // TB

TA

g
��

TB TBTB

TA

??

Tf�� h

TB T 2B
ηTB // T 2B TB

µB //

TA TA

TB

TA

??

Tf

TB

TA
��

�� e

TA T 2A
ηTA

// T 2A TA
µA

//T 2A

T 2B

T 2f

??

and then, the parallelograms cancel leaving e next to h to also cancel. That completes
the proof.

3.5. Back to the original question. So how does this relate to our original question?
As mentioned above, if A is a 2-category with binary 2-products, the functor T :A //A
given by TA = A × A supports a 2-monad structure, with ηA = ∆:A // A × A and
µA = p1 × p2: (A× A)× (A× A) // A× A. In fact T is induced by the 2-adjunction

A
∆ //oo
×

A×A .

The Kleisli 2-category Kl(T) is the 2-category with the same objects as A (of course)
but with morphisms A • //B, pairs f1, f2:A // B of morphisms with coordinate-wise
composition. The 2-cells are pairs of natural transformations, with everything coordinate-
wise as well. It is the 2-full sub-2-category of A×A determined by the diagonal objects
(A,A).

An adjoint pair in Kl(T), (g1, g2) a (f1, f2), is simply a pair of adjoints g1 a f1 and
g2 a f2. Since f∗ is (f, f), then the equivalence (1) ⇔ (3) from Theorem 3.4 says that
f × f :A × A // B × B has a left adjoint if and only if f has one, which is where the
whole story started.

Getting back to the original question, of whether f×f having a left adjoint implies that
f does, we can now run the proof of Theorem 3.4, in that special case, and hope for some
simplifications. I wasn’t able to simplify it, but give it anyway lest the reader not believe
the monad proof. We write it out in terms of quintets which makes things clearer, for me
at least. Also we write them vertically, because of line-width considerations. Viewed this
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way, what we are trying to prove is that the composite 2-cell

A A

A× A

A

p1

��

A× A A× AA× A

A

p1

��

ε
{�

A× A A× A

A× A

A× A

A× A B ×Bf×f // B ×B

A× A

g

��

A× A B ×B

A

A× A

∆

��

A B
f // B

B ×B

∆

��

A B

A× A

A

p1

��

A× A B ×BB ×B

B

p1

��

η
{�

A× A B ×B
f×f

//

B ×B

A× A

g

��

B ×B B ×BB ×B

B ×B

B ×B B ×B

B

B ×B

∆

��

B BB

B ×B

∆

��

(∗)

is idp1g∆. It’s clear from the proof of Theorem 3.4, and also the universal arrow proof in
Cat , that we have to involve the other candidate for left adjoint, viz. (∗) with p1 replaced
by p2. We use 2-products in A to combine them into the column on the left below. After
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we show that that’s the identity we’ll project out. Consider

A× A A× A

A× A

A× A

A× A A× AA× A

A× AA× A A× A .

A× A

A× A

A× A B ×Bf×f // B ×B

A× A .

g

��

ε
{�

A× A A× A

A× A× A× A

A× A

p1×p2

��

A× A× A× A A× A× A× AA× A× A× A

A× A

p1×p2

��
A× A B ×B

A× A× A× A

A× A

A× A× A× A B ×B ×B ×BB ×B ×B ×B

B ×B

p1×p2

��

A× A× A× A A× A× A× A

A× A× A× A

A× A× A× A

A× A× A× A B ×B ×B ×Bf×f×f×f // B ×B ×B ×B

A× A× A× A

g×g

��

ε×ε
{�

A× A× A× A B ×B ×B ×B
f×f×f×f

//

B ×B ×B ×B

A× A× A× A

B ×B ×B ×B B ×B ×B ×BB ×B ×B ×B

B ×B ×B ×B

η×η
{�

A× A× A× A B ×B ×B ×B

A× A

A× A× A× A

∆×∆

��

A× A B ×BB ×B

B ×B ×B ×B

∆×∆

��
B ×B ×B ×B B ×B ×B ×B

B ×B

B ×B ×B ×B

B ×B B ×BB ×B

B ×B ×B ×B

∆×∆

��

A× A B ×B
f×f

//

B ×B

A× A

g

��

B ×B B ×BB ×B

B ×B

η
{�

B ×B B ×B

B ×B

B ×B

B ×B B ×BB ×B

B ×B

B ×B B ×B

B

B ×B

∆

��

B BB

B ×B

∆

��
B ×B B ×B

B

B ×B

B BB

B ×B

∆

��

(∗∗)

If we first compose horizontally, then the ε× ε and η × η cancel, then p1 × p2 and ∆×∆
cancel, leaving η and ε to cancel too. So the whole composite is the identity. But the
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right column is also an identity. Indeed, ∆B ×∆B ·∆B is equal to ∆B×B ·∆B and

A× A A× A

A× A

A× A

A× A B ×BB ×B

A× A

g

��

ε
{�

A× A B ×B
f×f

//

A× A× A× A

A× A

p1×p2

��

A× A× A× A B ×B ×B ×BB ×B ×B ×B

B ×B

p1×p2

��

A× A× A× A B ×B ×B ×B
f×f×f×f

//

B ×B ×B ×B

A× A× A× A

g×g

��

B ×B ×B ×B B ×B ×B ×BB ×B ×B ×B

B ×B ×B ×B

η×η
{�

B ×B ×B ×B B ×B ×B ×B

B ×B

B ×B ×B ×B

∆B×B

��

B ×B B ×BB ×B

B ×B ×B ×B

∆B×B

��

B ×B B ×B

B

B ×B

∆B

��

B BB

B ×B

∆B

��

=

A× A A× A ,

A× A

A× A

A× A B ×BB ×B

A× A ,
��

ε
{�

A× A B ×B
f×f

//

A× A× A× A

A× A

p1×p2

��

A× A× A× A B ×B ×B ×B// B ×B ×B ×B

B ×B

p1×p2

��

A× A× A× A B ×B ×B ×B//

A× A

A× A× A× A

∆A×A

��

A× A B ×BB ×B

B ×B ×B ×B

∆B×B

��

A× A B ×B
f×f

//

B ×B

A× A

g

��

B ×B B ×BB ×B

B ×B

η
{�

B ×B B ×B

B

B ×B

∆B

��

B BB

B ×B

∆B

��

and then the p1 × p2 cancel with ∆ and ε with η.
From this we get that the left column of (∗∗) is an identity, and if we post compose it

by p, we get (∗).

3.6. A problem. This is related to our joint paper (Paré, Rosebrugh, Wood) [7] on
idempotents in bicategories, where we answer in the affirmative the following question of
Lawvere’s (posed orally): Is the category of fixed points of a left exact idempotent functor
on a topos again a topos?

We now might ask the following, more elementary, question.
Question: Does taking fixed points preserve adjointness?
To be precise, let A and B be categories, E and F idempotent functors on A and B

respectively and let Φ: A //B be such that ΦE = FΦ. Then Φ restricts to a functor

Fix(Φ): Fix(E) // Fix(F ).

If Φ has a left adjoint, does Fix(Φ) also have a left adjoint?
At first glance, it doesn’t seem likely, but the splitting of idempotents is a lot better

than one might imagine.
To simplify things, let’s introduce some more notation. Let Fix(E), Fix(F ), Fix(Φ)

be C, D and Ψ respectively. Split E and F as

E = MS , SM = 1C



198 ROBERT PARÉ

F = NT , TN = 1D

so we have a commutative diagram

A B .
Φ

//

C

A

M

��

C DΨ //D

B .

N

��

C D

A

C

S

��

A BΦ // B

D

T

��

Now assume Φ has a left adjoint Λ with unit η: 1B
// ΦΛ and counit ε: ΛΦ // 1A.

Based on what we’ve done above (note that ∆P1 was an idempotent), let’s define

Θ: D //C

to be the composite

D N //B Λ //A S //C

and natural transformations h: 1D
// ΦΘ

h = (1D = TN
TηN // TΦΛN = ΨSΛN = ΨΘ)

and e: ΘΦ // 1C

e = (ΘΨ = SΛNΨ = SΛΦM SεM // SM = 1C).

Then we have Ψe · hΨ = idΨ:

D BN //

C

D

Ψ

��

C AM //A

B

Φ

��
B A//

A

B

A

A

ε ;C

B AΛ //B

B

A

B

Φ

��

η ;C

B D ,
T

//

A

B

A CS // C

D ,

Ψ

��
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where the parallelogram is the identity because Λ a Φ. The other triangle identity,
eΘ ·Θh = idΘ,

D BN // B AΛ //B

B

A

B

Φ

��

η ;C

B D
T

//

A

B

A CS // C

D

Ψ

��
D B

N
//

C

D

C AM //A

B

Φ

��
B A

Λ
//

A

B
��

A

A

ε ;C

A C ,
S

//

I have no idea how to deal with this.
However, using the same result as before ([8] or [6], p. 84), eΘ ·Θh is an idempotent

Θ // Θ and if it splits, the splitting will give a left adjoint to Ψ, so Ψ almost has a left
adjoint. If, e.g. C has split idempotents, a rather weak condition, then the answer to our
question is “yes”.
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