(T, V)-Cat IS EXTENSIVE

Dedicated to Bob Rosebrugh

MARIA MANUEL CLEMENTINO

Abstract

For a complete and cocomplete monoidal-closed category \mathbf{V} and a Setmonad T suitably extended to \mathbf{V}-Rel, we show that the category of (T, \mathbf{V})-categories and (T, \mathbf{V})-functors is infinitary extensive.

1. Introduction

The introduction of (T, \mathbf{V})-categories in [7] - as both a generalization of Eilenberg-Moore algebras and enriched categories - led mostly to the study of topological aspects of these structures in the particular case when \mathbf{V} is a thin category (see e.g. the monograph [10]). Much less is known in the case of a general monoidal-closed category V, although it includes as examples of (T, \mathbf{V})-categories Lambek's multicategories, Burroni's T-categories [3], and Hermida's generalized multicategories when $\mathbf{V}=\mathbf{S e t}[8,9]$ (as a bridge between the quantalic and the categorical examples see also [5]).

In this note, generalizing Mahmoudi-Schubert-Tholen's proof [12], we show that, for a complete, cocomplete, symmetric monoidal-closed category \mathbf{V}, the category (T, \mathbf{V})-Cat of (T, \mathbf{V})-categories and (T, \mathbf{V})-functors is infinitary extensive, proving that (T, \mathbf{V})-Cat has coproducts and pullbacks along coproduct injections, and that coproducts are universal and disjoint.

2. The setting

Throughout this paper we use essentially the setting of [7]; that is,
(1) \mathbf{V} is a (non-degenerate) complete, cocomplete, symmetric monoidal-closed category, with tensor product \otimes and unit I.

We make use of the bicategory V-Rel (or $\operatorname{Mat}(\mathbf{V})$: see [2], [13]), whose objects are sets, arrows (=1-cells) $r: X \longrightarrow Y$ are families of \mathbf{V}-objects $r(x, y)$, for $x \in X, y \in Y$,

[^0]i.e. functors $r: X \times Y \longrightarrow \mathbf{V}$ (where X and Y are considered as discrete categories), and 2-cells $\varphi: r \Longrightarrow r^{\prime}$ are families of \mathbf{V}-morphisms $\varphi_{x, y}: r(x, y) \longrightarrow r^{\prime}(x, y)$, i.e. natural transformations $\varphi: r \Longrightarrow r^{\prime}$.

Transposition of V-relations defines a pseudo-involution: the transpose $r^{\circ}: Y \longrightarrow X$ of $r: X \longrightarrow Y$ is defined by $r^{\circ}(y, x)=r(x, y)$. The category Set of sets embeds naturally into V-Rel: if $f: X \longrightarrow Y$ is a map, as a V-relation $f: X \longrightarrow Y$ is defined by $f(x, y)=I$ if $x=y$ and $f(x, y)=0$ otherwise. Its transpose f° is a right adjoint to f; we will denote the unit and the counit of this adjunction by $\lambda_{f}: 1_{X} \Longrightarrow f^{\circ} f$ and $\rho_{f}: f f^{\circ} \Longrightarrow 1_{Y}$, respectively.
(2) (T, m, e) is a Set-monad with an extension (T, m, e) to V-Rel.

More precisely, $T: \mathbf{V}$-Rel $\longrightarrow \mathbf{V}$-Rel is a lax functor which extends the given Set-functor, with given natural and coherent 2-cells $\kappa_{s, r}: \operatorname{Ts} \cdot \operatorname{Tr} \longrightarrow T(s \cdot r)$, for V-relations $r: X \longrightarrow Y$, $s: Y \longrightarrow Z$; the 2-cells $\kappa_{s, r}$ are isomorphisms whenever r is a Set-map (and therefore also when s° is a Set-map), and $(T f)^{\circ}=T\left(f^{\circ}\right)$. The functor T extends to 2-cells functorially, and m and e become oplax natural transformations, with given α_{r} and β_{r}, for $r: X \longrightarrow Y$ a V-relation, as in the diagrams:

such that

(For the pointwise version of these conditions see [7, Section 3].) We point out that here, as well as in the remaining text, no coherence issues occur since in each composition of V-relations at most two of them are not maps.

In addition to the conditions of [7], we assume throughout that:
(3) the initial object 0 of \mathbf{V} is strict;
(4) the Set-functor T is taut, that is, it preserves pullbacks along monomorphisms (which is in fact weaker than the Beck-Chevalley condition usually assumed in this context);
(5) $\kappa_{s, r}: T s \cdot T r \longrightarrow T(s \cdot r)$ is an isomorphism when s is a Set-map.

3. The category (T, \mathbf{V})-Gph

A (T, \mathbf{V})-graph is a pair (X, a) where X is a set and $a: T X \rightarrow X$ a \mathbf{V}-relation. (For $\mathfrak{x} \in T X$ and $x \in X$, we will sometimes denote $a(\mathfrak{x}, x)$ by $X(\mathfrak{x}, x)$ à la Lawvere [11]). A morphism between two (T, \mathbf{V})-graphs $(X, a),(Y, b)$ is given by a map $f: X \longrightarrow Y$ and a 2-cell $\varphi_{f}: f \cdot a \Longrightarrow b \cdot T f:$

$$
\begin{gathered}
T X \xrightarrow{T f} T Y \\
a \underset{\downarrow}{\varphi_{f}} \neg_{b} \\
X \xrightarrow[f]{\Longrightarrow} Y
\end{gathered}
$$

Given a map $f: X \longrightarrow Y$, there are several different ways of defining the morphism structure on f; indeed, any of the 2 -cells
(Ф1) $\varphi_{f}: f \cdot a \Longrightarrow b \cdot T f$,
$(\Phi 2) \widetilde{\varphi}_{f}: a \Longrightarrow f^{\circ} \cdot b \cdot T f$,
$(\Phi 3) \widehat{\varphi}_{f}: a \cdot(T f)^{\circ} \Longrightarrow f^{\circ} \cdot b$,
defines a morphism $\left(f, \varphi_{f}\right)$. Each of these three descriptions can be stated pointwise. We present the one we will use mostly:
$(\Phi 4) \forall \mathfrak{x} \in T X, x \in X \quad X(\mathfrak{x}, x) \xrightarrow{\widetilde{\varphi}_{f}} Y(T f(\mathfrak{x}), f(x))$.

The following diagrams show how $\widetilde{\varphi}_{f}$ and $\widehat{\varphi}_{f}$ may be obtained from φ_{f}.

3.1. Definition. A morphism $\left(f, \varphi_{f}\right):(X, a) \longrightarrow(Y, b)$ is said to be

1. fully faithful if $\widetilde{\varphi}_{f}$ is pointwise an isomorphism;
2. an embedding if f is injective and fully faithful;
3. open if $\widehat{\varphi}_{f}$ is pointwise an isomorphism.
(Although not used throughout, we mention that f is said to be proper if φ_{f} is pointwise an isomorphism.)

The lax functor $T: \mathbf{V}$-Rel $\longrightarrow \mathbf{V}$-Rel induces an endofunctor

$$
\bar{T}:(T, \mathbf{V})-\mathbf{G p h} \longrightarrow(T, \mathbf{V})-\mathbf{G p h},
$$

with $\bar{T}\left((X, a) \longrightarrow\left(f, \varphi_{f}\right) \longrightarrow(Y, b)\right)=\left((T X, T a)-\left(T f, \bar{T}\left(\varphi_{f}\right)\right) \rightarrow(T Y, T b)\right)$, where

$$
\bar{T}\left(\varphi_{f}\right): T f \cdot T a \xrightarrow[\cong]{\cong} T(f \cdot a) \xrightarrow{\kappa_{f, a}} T \varphi_{f} \quad T(b \cdot T f) \xrightarrow[\cong]{\kappa_{b, T f}^{-1}} T b \cdot T^{2} f
$$

3.2. Lemma. The functor $\bar{T}:(T, \mathbf{V})-\mathbf{G p h} \longrightarrow(T, \mathbf{V})-\mathbf{G p h}$ preserves fully faithful morphisms, embeddings, open and proper morphisms.

Proof. Straightforward.
The following result was essentially proved in [6].

3.3. Theorem. The category $(T, \mathbf{V})-\mathbf{G p h}$ is complete and cocomplete.

We point out that in [6] by (T, \mathbf{V})-graph we meant reflexive (T, \mathbf{V})-graph. Here we do not assume reflexivity a priori. It is important to recall that in (T, \mathbf{V}) - $\mathbf{G p h}$ limits and colimits are built as in Set, with a (T, \mathbf{V})-structure built pointwise as a limit in \mathbf{V}. That is, given a functor $J: \mathbf{D} \longrightarrow(T, \mathbf{V})$ - $\mathbf{G p h}$ (with \mathbf{D} small), where $J\left(D-f \rightarrow D^{\prime}\right)=$ $\left(\left(X_{D}, a_{D}\right)-\left(\breve{f}, \varphi_{\breve{f}}\right) \rightarrow\left(X_{D^{\prime}}, a_{D^{\prime}}\right)\right)$, one equips the limit in Set $\left(L-\pi_{D \rightarrow} X_{D}\right)_{D}$ with the structure defined, for each $\mathfrak{x} \in T L, x \in L$, by the limit in \mathbf{V} of $J_{\mathfrak{x}, x}: \mathbf{D} \longrightarrow \mathbf{V}$, where

$$
J_{\mathfrak{x}, x}\left(D \xrightarrow{f} D^{\prime}\right)=\left(\left(X_{D}\left(T \pi_{D}(\mathfrak{x}), \pi_{D}(x)\right) \xrightarrow{\tilde{\varphi}_{\tilde{f}}} X_{D^{\prime}}\left(T \pi_{D^{\prime}}(\mathfrak{x}), \pi_{D^{\prime}}(x)\right)\right)\right.
$$

Colimits are constructed analogously.
We recall the infinitary version of Proposition 2.14 of [4]:
3.4. Proposition. A category with coproducts and pullbacks along coproduct injections is infinitary extensive if, and only if, coproducts are universal and disjoint.

We recall that a coproduct $\left(\sigma_{D}: X \longrightarrow X_{D}\right)_{D \in \mathbf{D}}$ is said to be universal if, when pulling back along any morphism $f: Y \longrightarrow X$, the diagram

is a coproduct diagram, i.e. $\left(Y_{D} \xrightarrow{\sigma_{D}} Y\right)_{D}$ is a coproduct, for every $D \in \mathbf{D}$; the coproduct $\left(X \xrightarrow{\sigma_{D}} X_{D}\right)_{D}$ is disjoint if, for every $D, D^{\prime} \in \mathbf{D}$ with $D \neq D^{\prime}$, the pullback of $X_{D}-\sigma_{D \rightarrow} \rightarrow X<\sigma_{D^{\prime}-} X_{D^{\prime}}$ is the initial object.

In order to show that (T, \mathbf{V}) - $\mathbf{G p h}$ is infinitary extensive, we revisit in particular the construction of coproducts and pullbacks.

The coproduct of a family $\left(X_{D}, a_{D}\right)_{D \in \mathbf{D}}$ is given by (X, a) with X the disjoint union of the sets X_{D}, with inclusions $\sigma_{D}: X_{D} \longrightarrow X$, and

$$
X(\mathfrak{x}, x)= \begin{cases}X_{D}(\mathfrak{x}, x) & \text { if } \mathfrak{x} \in T X_{D}, x \in X_{D} \\ 0 & \text { otherwise }\end{cases}
$$

(where, for simplicity, we consider that the injective map $T \sigma_{D}$ is an inclusion). With $\varphi_{D}=\mathrm{id}: \sigma_{D} \cdot a_{D} \Longrightarrow a \cdot T \sigma_{D},\left(\sigma_{D}, \varphi_{D}\right):\left(X_{D}, a_{D}\right) \longrightarrow(X, a)$ are morphisms of (T, \mathbf{V}) graphs, and it is easily checked that they have the coproduct universal property. The coproduct of the empty family, that is, the initial object in (T, \mathbf{V})-Gph is the empty set with the trivial (T, \mathbf{V})-graph structure.

The description of the (T, \mathbf{V})-graph structure of the coproduct gives us immediately the following result:
3.5. Proposition. Let $\left(X_{D}, a_{D}\right)_{D}$ be a family of (T, \mathbf{V})-graphs and $\left(\sigma_{D}: X_{D} \longrightarrow X\right)_{D} a$ coproduct in $\mathbf{S e t}$. For $a(T, \mathbf{V})$-graph (X, a), the following assertions are equivalent.
(i) $\left(\sigma_{D}, \varphi_{D}\right):\left(X_{D}, a_{D}\right) \longrightarrow(X, a)$ is a coproduct in $(T, \mathbf{V})-\mathbf{G p h}$.
(ii) Each $\left(\sigma_{D}, \varphi_{D}\right)$ is an open embedding.

Given morphisms $(X, a)-f \rightarrow(Y, b)<g-(Z, c)$ of (T, \mathbf{V})-graphs, their pullback is the pullback in Set

and, for each $\mathfrak{w} \in T\left(X \times_{Y} Z\right),(x, z) \in X \times_{Y} Z,\left(X \times_{Y} Z\right)(\mathfrak{w},(x, z))$ and $\widetilde{\varphi}_{\pi_{1}}$ and $\widetilde{\varphi}_{\pi_{2}}$ are given by the pullback in \mathbf{V}

3.6. Lemma.

1. Both fully faithful morphisms and embeddings are stable under pullback.
2. Open embeddings are pullback-stable.

Proof. 1. In diagrams (3.ii) and (3.iii) above, assume that f is fully faithful. If f is injective, then π_{2} is injective; pointwise $\widetilde{\varphi}_{\pi_{2}}$ is defined as the pullback of an isomorphism, therefore both fully faithful morphisms and embeddings are stable under pullback.
2. Now let $f:(X, a) \longrightarrow(Y, b)$ be an open embedding. Then, for each $\mathfrak{y} \in T Y, x \in X$, $\left(a \cdot(T f)^{\circ}\right)(\mathfrak{y}, x) \xrightarrow{\cong}\left(f^{\circ} \cdot b\right)(\mathfrak{y}, x)$, that is,

$$
\sum_{T f(\mathfrak{x})=\mathfrak{y}} X(\mathfrak{x}, x) \xrightarrow{\widehat{\varphi}_{f}} Y(\mathfrak{y}, f(x)) \text { is an isomorphism. }
$$

With f also $T f$ is injective, and therefore this isomorphism translates to

$$
Y(\mathfrak{y}, f(x))= \begin{cases}X(\mathfrak{x}, f(x)) & \text { if } \mathfrak{y}=T f(\mathfrak{x}) \\ 0 & \text { otherwise }\end{cases}
$$

To show that π_{2} is an open embedding, let $\mathfrak{z} \in T Z$ and $(x, z) \in X \times_{Y} Z$. If $\mathfrak{z}=T \pi_{2}(\mathfrak{w})$ for some $\mathfrak{w} \in T\left(X \times_{Y} Z\right)$, then we already know that $\left(X \times_{Y} Z\right)(\mathfrak{w},(x, z)) \cong Z(\mathfrak{z}, z)$; otherwise, since T preserves the pullback (3.ii), $T g(\mathfrak{z})$ is not in the image of $T f$, and therefore $Y(T g(\mathfrak{z}), g(z))=0$. Since 0 is a strict initial object of \mathbf{V}, we may conclude that $Z(\mathfrak{z}, z)=0$.
3.7. Theorem. The category (T, \mathbf{V}) - $\mathbf{G p h}$ is infinitary extensive.

Proof. $(T, \mathbf{V})-\mathbf{G p h}$ is complete, and so in particular it has finite limits.
Let $\left(\left(X_{D}, a_{D}\right) \xrightarrow{\sigma_{D}}(X, a)\right)_{D}$ be a coproduct in (T, \mathbf{V}) - $\mathbf{G p h}$. Given a morphism $f:(Y, b) \longrightarrow(X, a)$ in (T, \mathbf{V}) - $\mathbf{G p h}$, form the pullback of σ_{D} along f :

Then, due to extensivity of Set, $\left(Y_{D} \xrightarrow{\sigma_{D}^{\prime}} Y\right)_{D}$ is the coproduct in Set; together with pullback stability of open embeddings, using Proposition 3.5 one concludes that $\left(\left(Y_{D}, b_{D}\right) \xrightarrow{\sigma_{D}^{\prime}}(Y, b)\right)_{D}$ is a coproduct in $(T, \mathbf{V})-\mathbf{G p h}$, that is, coproducts are universal.

To check that they are also disjoint, let $X_{D}-\sigma_{D} \rightarrow X<\sigma_{D^{\prime}} X_{D^{\prime}}$ be distinct coproduct injections. Since coproducts in Set are disjoint, their pullback is the empty set with the only possible (T, \mathbf{V})-graph structure, that is, it is the initial object of (T, \mathbf{V}) - $\mathbf{G p h}$.

4. (T, \mathbf{V})-Cat is infinitary extensive

A (T, \mathbf{V})-category is a (T, \mathbf{V})-graph (X, a) equipped with two additional natural transformations

providing a generalized monad structure on a; that is,

and

Given two (T, \mathbf{V})-categories $(X, a),(Y, b)$, a (T, \mathbf{V})-functor $\left(f, \varphi_{f}\right):(X, a) \longrightarrow(Y, b)$ is a map $f: X \longrightarrow Y$ together with a natural transformation

$$
\begin{aligned}
& T X \xrightarrow{T f} T Y \\
& a \underset{\downarrow}{\varphi_{f}} T \dot{q}^{b} \\
& X \xrightarrow[f]{\Longrightarrow} Y
\end{aligned}
$$

- i.e. it is a morphism in (T,V)-Gph - preserving the generalized monad structures on a and b :

and

(For the pointwise version of these equalities see [7, Section 4].)
4.1. Examples. As shown in [7], when $\mathbf{V}=$ Set and T is the free-monoid Set-monad naturally extended to Set-Rel, (T, \mathbf{V})-Cat is the category of multicategories. Furthermore, when T is the ultrafilter monad on Set and $\mathbf{V}=\{0<1\}$ or \mathbf{V} is the half-real line à la Lawvere, then (T, \mathbf{V})-Cat is, respectively, the category of topological spaces (Barr [1]) and the category of Lowen's approach spaces. (For more examples see [7].)
4.2. Proposition. (T, \mathbf{V})-Cat has coproducts and they are preserved by the forgetful functor (T, \mathbf{V})-Cat $\longrightarrow(T, \mathbf{V})$ - $\mathbf{G p h}$.

Proof. Let $\left(X_{D}, a_{D}\right)_{D \in \mathbf{D}}$ be a family of (T, \mathbf{V})-categories, and (X, a) their coproduct in (T, \mathbf{V})-Gph as built in Section 3; that is, X is the disjoint union of the sets X_{D}, with inclusions $\sigma_{D}: X_{D} \longrightarrow X$, and, for each $\mathfrak{x} \in T X$ and $x \in X_{D}, X(\mathfrak{x}, x)=X_{D}\left(\mathfrak{x}_{D}, x\right)$ if there is $\mathfrak{x}_{D} \in T X_{D}$ such that $T \sigma_{D}\left(\mathfrak{x}_{D}\right)=\mathfrak{x}$, and $X(\mathfrak{x}, x)=0$ otherwise. Hence, we can define η_{a}, for each $x \in X_{D}$, as:

$$
\eta_{a}(x, x): I \xrightarrow{\eta_{a_{D}}} X_{D}\left(e_{X_{D}}(x), x\right)=X\left(e_{X}(x), x\right) .
$$

In order to define, for each $\mathfrak{X} \in T^{2} X, \mathfrak{x} \in T X, x \in X_{D}$,

$$
\mu_{a}: T X(\mathfrak{X}, \mathfrak{x}) \otimes X(\mathfrak{x}, x) \longrightarrow X\left(m_{X}(\mathfrak{X}), x\right)
$$

we observe that $T \sigma_{D}$ is also an open embedding. If $\mathfrak{x}=T \sigma_{D}\left(\mathfrak{x}_{D}\right)$ and $\mathfrak{X}=T^{2} \sigma_{D}\left(\mathfrak{X}_{D}\right)$, then
$\mu_{a}: T X(\mathfrak{X}, \mathfrak{x}) \otimes X(\mathfrak{x}, x)=T X_{D}\left(\mathfrak{X}_{D}, \mathfrak{x}_{D}\right) \otimes X_{D}\left(\mathfrak{x}_{D}, x\right) \xrightarrow{\mu_{a}} a_{D}\left(m_{X_{D}}\left(\mathfrak{X}_{D}\right), x\right)=a\left(m_{X}(\mathfrak{X}), x\right)$.
Otherwise, $T X(\mathfrak{X}, \mathfrak{x}) \otimes X(\mathfrak{x}, x)=0$ and μ_{a} is trivial. From the way η_{a} and μ_{a} were defined we conclude that:

- the equalities of diagrams (4.i) and (4.ii) follow from the corresponding equalities for $\eta_{a_{D}}$ and $\mu_{a_{D}}$;
- this way σ_{D} becomes a (T, \mathbf{V})-functor for every D, and, moreover, this is the only (T, \mathbf{V})-category structure on the (T, \mathbf{V})-graph (X, a) that makes σ_{D} a (T, \mathbf{V}) functor;
$-\left(\sigma_{D}:\left(X_{D}, a_{D}\right) \longrightarrow(X, a)\right)_{D}$ is a coproduct in (T, \mathbf{V})-Cat, and, as in ($\left.T, \mathbf{V}\right)$ - $\mathbf{G p h}$, the coproduct injections are open embeddings.
4.3. Lemma. If (Y, b) is a (T, \mathbf{V})-category and $\left(f, \varphi_{f}\right):(X, a) \longrightarrow(Y, b)$ is an embedding in (T, \mathbf{V})-Gph, then (X, a) has a (T, \mathbf{V})-category structure so that $\left(f, \varphi_{f}\right)$ is a (T, \mathbf{V}) functor.
Proof. With f, also $T f$ is an embedding in (T, \mathbf{V}) - Gph. Hence we may consider that both f and $T f$ are inclusions, and the isomorphisms of ($\Phi 4$) read, for every $\mathfrak{X} \in T^{2} X$, $\mathfrak{x} \in T X, x \in X$, as

$$
T X(\mathfrak{X}, \mathfrak{x}) \cong T Y(\mathfrak{X}, \mathfrak{x}), \text { and } X(\mathfrak{x}, x) \cong Y(\mathfrak{x}, x)
$$

Defining η_{a} and μ_{a} as (co)restrictions of η_{b} and μ_{b}, the equalities of diagrams (4.i) and (4.ii) for (X, a) follow immediately from the corresponding equalities for (Y, b).

The equalities of diagrams (4.iii) and (4.iv) follow by similar arguments, taking into account that both f and $T f$ are inclusions, and therefore $\left(f, \varphi_{f}\right)$ is a morphism in (T, \mathbf{V})-Cat as claimed.
4.4. Proposition. (T, \mathbf{V})-Cat has pullbacks along embeddings and they are preserved by the forgetful functor (T, \mathbf{V}) - $\mathbf{C a t} \longrightarrow(T, \mathbf{V})$ - $\mathbf{G p h}$.

Proof. Let $(X, a),(Y, b),(Z, c)$ be (T, \mathbf{V})-categories, and $\left(f, \varphi_{f}\right):(X, a) \longrightarrow(Y, b)$ and $g:(Z, c) \longrightarrow(Y, b)$ be (T, \mathbf{V})-functors, with f an embedding. Form their pullback (3.ii)(3.iii) in (T, \mathbf{V})-Gph. Since π_{2} is an embedding, by the lemma above $X \times_{Y} Z$ has a (T, \mathbf{V})-category structure induced by the one of (Z, c) which makes π_{2} a (T, \mathbf{V})-functor. Moreover, π_{1} is nothing but a restriction and a corestriction of the (T, \mathbf{V})-functor g, hence it is also a (T, \mathbf{V})-functor. The universal property of the pullback follows easily from the universal property of the diagram when considered in $(T, \mathbf{V})-\mathbf{G p h}$ and the fact that π_{2} is an embedding.
4.5. Theorem. The category (T, \mathbf{V})-Cat is infinitary extensive.

Proof. We make use again of Proposition 3.4. Propositions 4.2 and 4.4 assure that (T, \mathbf{V})-Cat has coproducts and pullbacks along coproduct injections. Given diagrams (3.i) in (T, \mathbf{V})-Cat, we know that $\left(Y_{D} \xrightarrow{\sigma_{D}^{\prime}} Y\right)$ is a coproduct in (T, \mathbf{V}) - $\mathbf{G p h}$ and that each σ_{D}^{\prime} is an open embedding in (T, \mathbf{V})-Cat. Hence, from Proposition 4.2 (and its
proof) we conclude that Y, as a (T, \mathbf{V})-category, must have the structure that makes $\left(Y_{D} \xrightarrow{\sigma_{D}^{\prime}} Y\right)$ a coproduct in (T, \mathbf{V})-Cat.

Finally, from Proposition 4.4 it follows that coproducts in (T, \mathbf{V})-Cat are disjoint.

References

[1] M. Barr, Relational algebras. In: Lecture Notes in Mathematics, Vol. 137, Springer, Berlin, pp. 39-55 (1970).
[2] R. Betti, A. Carboni, R. Street, R. Walters, Variation through enrichment. J. Pure Appl. Algebra 29, 109-127 (1983).
[3] A. Burroni, T-categories. Cahiers Topologie Géom. Différentielle 12, 215-321 (1971).
[4] A. Carboni, S. Lack, R.F.C. Walters, Introduction to extensive and distributive categories. J. Pure Appl. Algebra 84, 145-158 (1993).
[5] D. Chikhladze, M.M. Clementino, D. Hofmann, Representable (T,V)-categories. Appl. Categ. Structures 23, 829-858 (2015).
[6] M.M. Clementino, D. Hofmann, W. Tholen, Exponentiability in categories of lax algebras. Theory Appl. Categ. 11, 337-352 (2003).
[7] M.M. Clementino, W. Tholen, Metric, Topology and Multicategory - A Common Approach. J. Pure Appl. Algebra 179, 13-47 (2003).
[8] C. Hermida, Representable multicategories. Adv. Math. 151, 164-225 (2000).
[9] C. Hermida, From coherent structures to universal properties. J. Pure Appl. Algebra 165 (1), 7-61 (2001).
[10] D. Hofmann, G. Seal, W. Tholen (eds), Monoidal Topology. A Categorical Approach to Order, Metric and Topology. Encyclopedia Math. Appl. 153, Cambridge Univ. Press (2014).
[11] F.W. Lawvere. Metric spaces, generalized logic, and closed categories. Rend. Semin. Mat. Fis. Milano, 43:135-166, 1973. Republished in: Reprints in Theory and Applications of Categories, No. 1, 1-37 (2002).
[12] M. Mahmoudi, C. Schubert, W. Tholen, Universality of coproducts in categories of lax algebras. Appl. Categ. Structures 14, 243-249 (2006).
[13] R.D. Rosebrugh, R.J. Wood, Distributive laws and factorizations. J. Pure Appl. Algebra 175, 327-353 (2002).

University of Coimbra, CMUC, Department of Mathematics, 3001-501 Coimbra, Portugal Email: mmc@mat.uc.pt

This article may be accessed at http://www.tac.mta.ca/tac/

THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance the study of categorical algebra or methods, or that make significant new contributions to mathematical science using categorical methods. The scope of the journal includes: all areas of pure category theory, including higher dimensional categories; applications of category theory to algebra, geometry and topology and other areas of mathematics; applications of category theory to computer science, physics and other mathematical sciences; contributions to scientific knowledge that make use of categorical methods. Articles appearing in the journal have been carefully and critically refereed under the responsibility of members of the Editorial Board. Only papers judged to be both significant and excellent are accepted for publication.
SUBSCRIPTION INFORMATION Individual subscribers receive abstracts of articles by e-mail as they are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full text of the journal is freely available at http://www.tac.mta.ca/tac/.
INFORMATION FOR AUTHORS $\mathrm{ET}_{\mathrm{E}} \mathrm{X} 2 \mathrm{e}$ is required. Articles may be submitted in PDF by email directly to a Transmitting Editor following the author instructions at http://www.tac.mta.ca/tac/authinfo.html.
Managing Editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: michael.barr@mcgill.ca
Assistant $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm
Transmitting editors.
Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
Julie Bergner, University of Virginia: jeb2md (at) virginia.edu
Richard Blute, Université d' Ottawa: rblute@uottawa.ca
Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu
Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epf1.ch
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
Pieter Hofstra, Université d' Ottawa: phofstra (at) uottawa.ca
Anders Kock, University of Aarhus: kock@math.au.dk
Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat
Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu
Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-lj.si
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: ross.street@mq.edu.au
Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be

[^0]: Partially supported by the Centre for Mathematics of the University of Coimbra - UIDB/00324/2020, funded by the Portuguese Government through FCT/MCTES.

 Received by the editors 2021-01-31 and, in final form, 2021-06-07.
 Published on 2021-06-15 in the Rosebrugh Festschrift.
 2020 Mathematics Subject Classification: 18B50, 18D20, 18D15, 18C15, 18M65.
 Key words and phrases: extensive category, (T, \mathbf{V})-category, (T, \mathbf{V})-graph.
 (C) Maria Manuel Clementino, 2021. Permission to copy for private use granted.

