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(T,V)-Cat IS EXTENSIVE

Dedicated to Bob Rosebrugh

MARIA MANUEL CLEMENTINO

Abstract. For a complete and cocomplete monoidal-closed category V and a Set-
monad T suitably extended to V-Rel, we show that the category of (T,V)-categories
and (T,V)-functors is infinitary extensive.

1. Introduction

The introduction of (T,V)-categories in [7] – as both a generalization of Eilenberg-Moore
algebras and enriched categories – led mostly to the study of topological aspects of these
structures in the particular case when V is a thin category (see e.g. the monograph [10]).
Much less is known in the case of a general monoidal-closed category V, although it in-
cludes as examples of (T,V)-categories Lambek’s multicategories, Burroni’s T -categories
[3], and Hermida’s generalized multicategories when V = Set [8, 9] (as a bridge between
the quantalic and the categorical examples see also [5]).

In this note, generalizing Mahmoudi-Schubert-Tholen’s proof [12], we show that, for a
complete, cocomplete, symmetric monoidal-closed category V, the category (T,V)-Cat of
(T,V)-categories and (T,V)-functors is infinitary extensive, proving that (T,V)-Cat has
coproducts and pullbacks along coproduct injections, and that coproducts are universal
and disjoint.

2. The setting

Throughout this paper we use essentially the setting of [7]; that is,

(1) V is a (non-degenerate) complete, cocomplete, symmetric monoidal-closed category,
with tensor product ⊗ and unit I.

We make use of the bicategory V-Rel (or Mat(V): see [2], [13]), whose objects are
sets, arrows (=1-cells) r:X−→7 Y are families of V-objects r(x, y), for x ∈ X, y ∈ Y ,
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i.e. functors r:X × Y // V (where X and Y are considered as discrete categories),
and 2-cells ϕ: r =⇒ r′ are families of V-morphisms ϕx,y: r(x, y) // r′(x, y), i.e. natural
transformations ϕ: r =⇒ r′.

Transposition of V-relations defines a pseudo-involution: the transpose r◦:Y−→7 X of
r:X−→7 Y is defined by r◦(y, x) = r(x, y). The category Set of sets embeds naturally into
V-Rel: if f :X //Y is a map, as a V-relation f :X−→7 Y is defined by f(x, y) = I if x = y
and f(x, y) = 0 otherwise. Its transpose f ◦ is a right adjoint to f ; we will denote the unit
and the counit of this adjunction by λf : 1X =⇒ f ◦f and ρf : ff

◦ =⇒ 1Y , respectively.

(2) (T,m, e) is a Set-monad with an extension (T,m, e) to V-Rel.

More precisely, T :V-Rel //V-Rel is a lax functor which extends the given Set-functor,
with given natural and coherent 2-cells κs,r:Ts ·Tr //T (s ·r), for V-relations r:X−→7 Y ,
s:Y−→7 Z; the 2-cells κs,r are isomorphisms whenever r is a Set-map (and therefore also
when s◦ is a Set-map), and (Tf)◦ = T (f ◦). The functor T extends to 2-cells functorially,
and m and e become oplax natural transformations, with given αr and βr, for r:X−→7 Y
a V-relation, as in the diagrams:

X
eX //

_r
��

TX
_Tr
��

TTX
mX //

_TTr
��

TX
_Tr
��

Y eY
//

αr=⇒
TY TTY mY

//

βr
=⇒

TY

such that
X

eX //

_r
��

TX

`T (s·r)κs,r
=⇒

||

_Tr
��

X
eX //

_s·r

��

TX

_T (s·r)

��

Y

αr=⇒
eY //

_s
��

TY
_Ts
��

Z

αs=⇒
eZ
// TZ

=

Z

αs·r=⇒

eZ
// TZ

T 2X
mX //

_
T 2r
��

TX

`T (s·r)κs,r
=⇒

||

_Tr
��

T 2X

]
T 2s·T 2r

κ⇒

!!

mX //

_
T 2(s·r)

��

TX

_T (s·r)

��

T 2Y

βr
=⇒
mY //

_
T 2s
��

TY

_Ts
��

T 2Z

βs
=⇒
mZ

// TZ

=

T 2Z

βs·r
=⇒

mZ
// TZ

TX
eTX //

_Tr
��

T 2X
mX //

_
T 2r
��

TX

_Tr
��

TX 1 //

_Tr
��

TX

_Tr
��

TX
TeX //

_Tr
��

T 2X
mX //

_
T 2r
��

TX

_Tr
��

TY eTY
//

αTr=⇒
T 2Y mY

//

βr
=⇒

TY

=

TY

=

1
// TY

=

TY
TeY
//

Tαr=⇒
T 2Y mY

//

βr
=⇒

TY
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T 3X
mTX //

_
T 3r
��

T 2X
mX //

_
T 2r
��

TX

_Tr
��

T 3X
TmX //

_
T 3r
��

T 2X
mX //

_
T 2r
��

TX

_Tr
��

T 3Y mTY
//

βTr
=⇒

T 2Y mY
//

βr
=⇒

TY

=

T 3Y
TmY

//

Tβr
=⇒

T 2Y mY
//

βr
=⇒

TY

(For the pointwise version of these conditions see [7, Section 3].) We point out that here,
as well as in the remaining text, no coherence issues occur since in each composition of
V-relations at most two of them are not maps.

In addition to the conditions of [7], we assume throughout that:

(3) the initial object 0 of V is strict ;

(4) the Set-functor T is taut, that is, it preserves pullbacks along monomorphisms
(which is in fact weaker than the Beck-Chevalley condition usually assumed in this
context);

(5) κs,r:Ts · Tr // T (s · r) is an isomorphism when s is a Set-map.

3. The category (T,V)-Gph

A (T,V)-graph is a pair (X, a) where X is a set and a:TX−→7 X a V-relation. (For
x ∈ TX and x ∈ X, we will sometimes denote a(x, x) by X(x, x) à la Lawvere [11]). A
morphism between two (T,V)-graphs (X, a), (Y, b) is given by a map f :X // Y and a
2-cell ϕf : f · a =⇒ b · Tf :

TX
Tf //

_a
��

TY
_b
��

X
f
//

ϕf
=⇒

Y

Given a map f :X //Y , there are several different ways of defining the morphism structure
on f ; indeed, any of the 2-cells

(Φ1) ϕf : f · a =⇒ b · Tf ,

(Φ2) ϕ̃f : a =⇒ f ◦ · b · Tf ,

(Φ3) ϕ̂f : a · (Tf)◦ =⇒ f ◦ · b,

defines a morphism (f, ϕf ). Each of these three descriptions can be stated pointwise. We
present the one we will use mostly:

(Φ4) ∀x ∈ TX, x ∈ X X(x, x)
ϕ̃f // Y (Tf(x), f(x)) .
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The following diagrams show how ϕ̃f and ϕ̂f may be obtained from ϕf .

TY
1

""
_(Tf)◦

��
TX

Tf //

_a
��

TY
_b
��

TX

ρf⇒
Tf //

_a
��

TY
_b
��

ϕ̃f :

X

ϕf
=⇒
f //

1 ""

Y
_f◦
��

ϕ̂f :

X

ϕf
=⇒
f //

1 ""

Y
_f◦
��

λf⇒

X

λf⇒

X

3.1. Definition. A morphism (f, ϕf ): (X, a) // (Y, b) is said to be

1. fully faithful if ϕ̃f is pointwise an isomorphism;

2. an embedding if f is injective and fully faithful;

3. open if ϕ̂f is pointwise an isomorphism.

(Although not used throughout, we mention that f is said to be proper if ϕf is pointwise
an isomorphism.)

The lax functor T :V-Rel //V-Rel induces an endofunctor

T : (T,V)-Gph // (T,V)-Gph,

with T ( (X, a) (f,ϕf ) // (Y, b) ) = ((TX, Ta) (Tf,T (ϕf )) // (TY, Tb) ), where

T (ϕf ): Tf · Ta
κf,a

∼=
// T (f · a)

Tϕf // T (b · Tf)
κ−1
b,Tf

∼=
// Tb · T 2f.

3.2. Lemma. The functor T : (T,V)-Gph // (T,V)-Gph preserves fully faithful mor-
phisms, embeddings, open and proper morphisms.

Proof. Straightforward.

The following result was essentially proved in [6].

3.3. Theorem. The category (T,V)-Gph is complete and cocomplete.

We point out that in [6] by (T,V)-graph we meant reflexive (T,V)-graph. Here we
do not assume reflexivity a priori. It is important to recall that in (T,V)-Gph limits
and colimits are built as in Set, with a (T,V)-structure built pointwise as a limit in V.

That is, given a functor J :D // (T,V)-Gph (with D small), where J( D f // D′ ) =

( (XD, aD) (f̆ ,ϕf̆ ) // (XD′ , aD′) ), one equips the limit in Set ( L πD // XD )D with the
structure defined, for each x ∈ TL, x ∈ L, by the limit in V of Jx,x:D //V, where

Jx,x( D
f // D′ ) = ( (XD(TπD(x), πD(x))

ϕ̃f̆ // XD′(TπD′(x), πD′(x)) ).

Colimits are constructed analogously.

We recall the infinitary version of Proposition 2.14 of [4]:
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3.4. Proposition. A category with coproducts and pullbacks along coproduct injections
is infinitary extensive if, and only if, coproducts are universal and disjoint.

We recall that a coproduct (σD:X //XD)D∈D is said to be universal if, when pulling
back along any morphism f :Y //X, the diagram

YD
σ′D //

fD
��

Y

f
��

XD σD
// X

(3.i)

is a coproduct diagram, i.e. (YD
σD // Y )D is a coproduct, for every D ∈ D; the co-

product (X
σD // XD)D is disjoint if, for every D,D′ ∈ D with D 6= D′, the pullback of

XD σD // X XD′
σD′oo is the initial object.

In order to show that (T,V)-Gph is infinitary extensive, we revisit in particular the
construction of coproducts and pullbacks.

The coproduct of a family (XD, aD)D∈D is given by (X, a) with X the disjoint union
of the sets XD, with inclusions σD:XD

//X, and

X(x, x) =

{
XD(x, x) if x ∈ TXD, x ∈ XD

0 otherwise

(where, for simplicity, we consider that the injective map TσD is an inclusion). With
ϕD = id:σD · aD =⇒ a · TσD, (σD, ϕD): (XD, aD) // (X, a) are morphisms of (T,V)-
graphs, and it is easily checked that they have the coproduct universal property. The
coproduct of the empty family, that is, the initial object in (T,V)-Gph is the empty set
with the trivial (T,V)-graph structure.

The description of the (T,V)-graph structure of the coproduct gives us immediately
the following result:

3.5. Proposition. Let (XD, aD)D be a family of (T,V)-graphs and (σD:XD
//X)D a

coproduct in Set. For a (T,V)-graph (X, a), the following assertions are equivalent.

(i) (σD, ϕD): (XD, aD) // (X, a) is a coproduct in (T,V)-Gph.

(ii) Each (σD, ϕD) is an open embedding.

Given morphisms (X, a) f // (Y, b) (Z, c)goo of (T,V)-graphs, their pullback is the
pullback in Set

X ×Y Z
π1

��

π2 // Z

g

��
X

f
// Y

(3.ii)
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and, for each w ∈ T (X ×Y Z), (x, z) ∈ X ×Y Z, (X ×Y Z)(w, (x, z)) and ϕ̃π1 and ϕ̃π2 are
given by the pullback in V

(X ×Y Z)(w, (x, z))
ϕ̃π2 //

ϕ̃π1

��

Z(Tπ2(w), z)

ϕ̃g
��

X(Tπ1(w), x)
ϕ̃f

// Y (T (f · π1)(w), f(x)).

(3.iii)

3.6. Lemma.

1. Both fully faithful morphisms and embeddings are stable under pullback.

2. Open embeddings are pullback-stable.

Proof. 1. In diagrams (3.ii) and (3.iii) above, assume that f is fully faithful. If f is
injective, then π2 is injective; pointwise ϕ̃π2 is defined as the pullback of an isomorphism,
therefore both fully faithful morphisms and embeddings are stable under pullback.

2. Now let f : (X, a) // (Y, b) be an open embedding. Then, for each y ∈ TY , x ∈ X,

( a · (Tf)◦)(y, x)
∼= // (f ◦ · b)(y, x) , that is,

∑
Tf(x)=yX(x, x)

ϕ̂f // Y (y, f(x)) is an isomorphism.

With f also Tf is injective, and therefore this isomorphism translates to

Y (y, f(x)) =

{
X(x, f(x)) if y = Tf(x)
0 otherwise.

To show that π2 is an open embedding, let z ∈ TZ and (x, z) ∈ X ×Y Z. If z = Tπ2(w)
for some w ∈ T (X ×Y Z), then we already know that (X ×Y Z)(w, (x, z)) ∼= Z(z, z);
otherwise, since T preserves the pullback (3.ii), Tg(z) is not in the image of Tf , and
therefore Y (Tg(z), g(z)) = 0. Since 0 is a strict initial object of V, we may conclude that
Z(z, z) = 0.

3.7. Theorem. The category (T,V)-Gph is infinitary extensive.

Proof. (T,V)-Gph is complete, and so in particular it has finite limits.

Let ( (XD, aD)
σD // (X, a) )D be a coproduct in (T,V)-Gph. Given a morphism

f : (Y, b) // (X, a) in (T,V)-Gph, form the pullback of σD along f :

(YD, bD)
σ′D //

f ′D
��

(Y, b)

f
��

(XD, aD) σD
// (X, a).
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Then, due to extensivity of Set, ( YD
σ′D // Y )D is the coproduct in Set; together with

pullback stability of open embeddings, using Proposition 3.5 one concludes that

( (YD, bD)
σ′D // (Y, b) )D is a coproduct in (T,V)-Gph, that is, coproducts are univer-

sal.
To check that they are also disjoint, let XD σD // X XD′

σD′oo be distinct coproduct
injections. Since coproducts in Set are disjoint, their pullback is the empty set with the
only possible (T,V)-graph structure, that is, it is the initial object of (T,V)-Gph.

4. (T,V)-Cat is infinitary extensive

A (T,V)-category is a (T,V)-graph (X, a) equipped with two additional natural trans-
formations

X
eX //

1 !!

TX

_a
��

TX

_a
��

T 2X

mX
��

�Taoo
ηa⇒

X X

µa
=⇒

TX�aoo

providing a generalized monad structure on a; that is,

TX
eTX //

_a
��

T 2X

_Ta
��

mX

##

TX
1 //

_a

��

TX

_a

��

TX

_1 Tη⇒
**

T(aeX)
��

TeX

##
X

αa=⇒
eX //

1 ##

TX µa
=⇒

_a
��

TX =
7
a

{{

= TX

∼=

_a
��

T 2X�
Ta
oo

mX
��

ηa⇒

X X

=

1
// X X

µa
=⇒

TX�
a

oo

(4.i)
and

T 3X

_
T 2a
��

mTX // T 2X

_Ta
��

mX

##

T 3X
6T 2a

{{

TmX

##
_

T(a·Ta)

��

`

T(a·mX)

Tµ⇒

��

T 2X

βa
=⇒
mX //

_Ta
��

TX µa
=⇒

_a
��

TX =
7
a

{{

T 2X κ
=⇒

�
Ta ##

∼= T 2X
mX //

6
Ta{{

TX

_a
��

TX

µa
=⇒

�
a

// X TX

µa
=⇒

�
a

// X

(4.ii)

Given two (T,V)-categories (X, a), (Y, b), a (T,V)-functor (f, ϕf ): (X, a) // (Y, b) is
a map f :X // Y together with a natural transformation

TX
Tf //

_a
��

TY

_b
��

X
f
//

ϕf
=⇒

Y
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– i.e. it is a morphism in (T,V)-Gph – preserving the generalized monad structures on a
and b:

X
eX //

1 !!

TX
Tf //

_a
��

TY
_b
��

X
f // Y

1 !!

eY // TY
_b
��

ηa⇒

X

ϕf
=⇒
f
// Y

=
ηb⇒

Y

(4.iii)

and

T 2X
=Ta

~~

T 2f //

mX

  

T 2Y
mY

  

T 2X
=Ta

~~

T 2f // T 2Y
=Tb

~~

mY

  
TX µa

=⇒
�
a   

TX

=

<
a~~

Tf // TY
<
b~~

= TX

Tϕf
=⇒

Tf //

�
a   

TY µb
=⇒

�
b   

TY
<b

~~
X

ϕf
=⇒

f
// Y X

ϕf
=⇒

f
// Y

(4.iv)
(For the pointwise version of these equalities see [7, Section 4].)

4.1. Examples. As shown in [7], when V = Set and T is the free-monoid Set-monad
naturally extended to Set-Rel, (T,V)-Cat is the category of multicategories. Further-
more, when T is the ultrafilter monad on Set and V = {0 < 1} or V is the half-real line
à la Lawvere, then (T,V)-Cat is, respectively, the category of topological spaces (Barr
[1]) and the category of Lowen’s approach spaces. (For more examples see [7].)

4.2. Proposition. (T,V)-Cat has coproducts and they are preserved by the forgetful
functor (T,V)-Cat // (T,V)-Gph.

Proof. Let (XD, aD)D∈D be a family of (T,V)-categories, and (X, a) their coproduct in
(T,V)-Gph as built in Section 3; that is, X is the disjoint union of the sets XD, with
inclusions σD:XD

//X, and, for each x ∈ TX and x ∈ XD, X(x, x) = XD(xD, x) if there
is xD ∈ TXD such that TσD(xD) = x, and X(x, x) = 0 otherwise. Hence, we can define ηa,
for each x ∈ XD, as:

ηa(x, x): I
ηaD // XD(eXD(x), x) = X(eX(x), x) .

In order to define, for each X ∈ T 2X, x ∈ TX, x ∈ XD,

µa:TX(X, x)⊗X(x, x) // X(mX(X), x) ,

we observe that TσD is also an open embedding. If x = TσD(xD) and X = T 2σD(XD),
then

µa:TX(X, x)⊗X(x, x) = TXD(XD, xD)⊗XD(xD, x)
µaD−→ aD(mXD(XD), x) = a(mX(X), x).

Otherwise, TX(X, x)⊗X(x, x) = 0 and µa is trivial. From the way ηa and µa were defined
we conclude that:
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– the equalities of diagrams (4.i) and (4.ii) follow from the corresponding equalities
for ηaD and µaD ;

– this way σD becomes a (T,V)-functor for every D, and, moreover, this is the
only (T,V)-category structure on the (T,V)-graph (X, a) that makes σD a (T,V)-
functor;

– (σD: (XD, aD) // (X, a))D is a coproduct in (T,V)-Cat, and, as in (T,V)-Gph,
the coproduct injections are open embeddings.

4.3. Lemma. If (Y, b) is a (T,V)-category and (f, ϕf ): (X, a) // (Y, b) is an embedding
in (T,V)-Gph, then (X, a) has a (T,V)-category structure so that (f, ϕf ) is a (T,V)-
functor.

Proof. With f , also Tf is an embedding in (T,V)-Gph. Hence we may consider that
both f and Tf are inclusions, and the isomorphisms of (Φ4) read, for every X ∈ T 2X,
x ∈ TX, x ∈ X, as

TX(X, x) ∼= TY (X, x), and X(x, x) ∼= Y (x, x).

Defining ηa and µa as (co)restrictions of ηb and µb, the equalities of diagrams (4.i) and
(4.ii) for (X, a) follow immediately from the corresponding equalities for (Y, b).

The equalities of diagrams (4.iii) and (4.iv) follow by similar arguments, taking into ac-
count that both f and Tf are inclusions, and therefore (f, ϕf ) is a morphism in (T,V)-Cat
as claimed.

4.4. Proposition. (T,V)-Cat has pullbacks along embeddings and they are preserved
by the forgetful functor (T,V)-Cat // (T,V)-Gph.

Proof. Let (X, a), (Y, b), (Z, c) be (T,V)-categories, and (f, ϕf ): (X, a) // (Y, b) and
g: (Z, c) // (Y, b) be (T,V)-functors, with f an embedding. Form their pullback (3.ii)-
(3.iii) in (T,V)-Gph. Since π2 is an embedding, by the lemma above X ×Y Z has a
(T,V)-category structure induced by the one of (Z, c) which makes π2 a (T,V)-functor.
Moreover, π1 is nothing but a restriction and a corestriction of the (T,V)-functor g, hence
it is also a (T,V)-functor. The universal property of the pullback follows easily from the
universal property of the diagram when considered in (T,V)-Gph and the fact that π2 is
an embedding.

4.5. Theorem. The category (T,V)-Cat is infinitary extensive.

Proof. We make use again of Proposition 3.4. Propositions 4.2 and 4.4 assure that
(T,V)-Cat has coproducts and pullbacks along coproduct injections. Given diagrams

(3.i) in (T,V)-Cat, we know that ( YD
σ′D // Y ) is a coproduct in (T,V)-Gph and that

each σ′D is an open embedding in (T,V)-Cat. Hence, from Proposition 4.2 (and its
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proof) we conclude that Y , as a (T,V)-category, must have the structure that makes

( YD
σ′D // Y ) a coproduct in (T,V)-Cat.

Finally, from Proposition 4.4 it follows that coproducts in (T,V)-Cat are disjoint.
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Joachim Kock, Universitat Autònoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk
Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl
Susan Niefield, Union College: niefiels@union.edu
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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