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EXTENSIONS AND GLUEING IN DOUBLE CATEGORIES

SUSAN NIEFIELD

Abstract. Let D be a double category with an initial object. Any cotabulator Γv of
a vertical morphism v:X0

//• X1 gives rise to an extension (i.e., short exact sequence)
X0

//• Γv //• X1 in the vertical bicategory VD. If D has “open cokernels,” then every
extension is equivalent in VD to one of this form. Examples include the double cate-
gories Loc, Topos, Pos, and Cat, whose objects are locales, toposes, posets, and small
categories, respectively, and Γv is given by glueing along v in the first two cases, and by
the collage of v in the others.

1. Introduction

In [FM20], Faul and Manuell characterize extensions in the category Frm∧ whose objects
are frames (i.e., locales) and morphisms are finite meet preserving maps. They show that

X1
π1∗ //Gl(v)

π∗0 //X0

is an extension of X0 by X1, where Gl(v) denotes the frame obtained by Artin-Wraith
glueing along v:X0

//X1 in Frm∧ with π0 and π1 the usual projections, and every extension
is isomorphic in Frm∧ to one of this form. Thus, Gl(v) plays the role for frames that the
semidirect product does for groups.

Frmco
∧ is the vertical bicategory of the double category Loc of locales (c.f., [N12a]),

Gl(v)

X1

66

i1mmmmmm

X0

Gl(v)

i0
((QQQQQQX0

X1

v

��

≥•

is a cotabulator (in the sense of [P11]), and the characterization in [FM20] essentially uses
the fact that Loc is a double category D satisfying

• D has a horizontal initial object (Definition 2.3)

• D has cotabulators which “restrict to the vertical bicategory” (Definition 3.5)

• D has “open” cokernels (Definition 4.1)
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With an appropriate definition of an extension in a bicategory, we will see that if D
is a pseudo double category satisfying the three bulleted conditions, then every extension
in the vertical bicategory VD is equivalent to one arising from a cotabulator of a vertical
morphism of D. Moreover, these three properties hold in our four main examples Loc,
Topos, Pos, and Cat; and cotabulators are given by Artin-Wraith glueing in the first two
and collages in the others. Thus, these constructions are analogous to the semidirect
product vis a vis extensions.

We begin, in Section 2, by recalling the relevant properties of double categories and the
four main examples of interest. The next two sections introduce the notion of extensions
in VD and give their characterization in terms of cotabulators in D. In Section 5, we show
that the set Ext(X0, X1) of extensions of X0 by X1 defines a bifunctor (VD)op×VD //Set.
We conclude, in Section 6, with the introduction and characterization of a category of
adjoint extensions of X0 by X1 in D.

This paper is dedicated to Bob Rosebrugh for his leadership in digital communica-
tion over the past thirty years, from the development of the category theory mailing list
and home page to the conception and implementation of Theory and Applications of
Categories, one of the first refereed electronic mathematics journals.

2. Double Categories and Cotabulators

Introduced by Ehresmann [E63] in the 1960’s, double categories provided a setting to
transfer results from one category to others that admit analogous structures. This section
is a review of the definitions and examples used in this paper. For details and more
information, we refer the reader to the work of Grandis and Paré [GP99, GP04, P11], as
well as Shulman [Sh08].

2.1. Definition. A double category is an internal pseudo category

D1 ×D0 D1
� // D1

oo id•
d0 //

d1
// D0

in the 2-category CAT of locally small categories.

The objects X and morphisms f :X // Y of D0 are called the objects and horizon-
tal morphisms of D. The objects of D1 are called vertical morphisms, and denoted by
v:X0

//• X1, and their morphisms

X1 Ytf1
//

X0

X1

v

��

X0 Y0
f0 // Y0

Yt

w

��
• •ϕ (2.1)

are called cells of D. Horizontal composition is denoted by ◦ and vertical composition by
�, both of which are sometimes elided. Note that when w is the vertical identity id•Y on
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Y , we often denote the cell (2.1) by

Y

X1

88

f1qqqqqq

X0

Y

f0

&&MMMMMMX0

X1

v

��
ϕ•

2.2. Definition. The objects, morphisms, and special cells

X1 X1idX1

//

X0

X1

v

��

X0 X0

idX0 // X0

X1

w

��
• •ϕ

form a bicategory VD, called the vertical bicategory of D. The horizontal 2-category HD
is defined dually.

2.3. Definition. A horizontal initial object of D is an object O such that there is a
unique horizontal morphism uX :O //X, for every object X, and a unique cell

O X1uX1

//

O

O

id•O
��

O X0

uX0 // X0

X1

v

��
• •uv (2.3)

for every vertical morphism v.

2.4. Definition. A companion for a horizontal morphism f :X // Y is a vertical mor-
phism f∗:X //• Y together with cells

X Y
f
//

X

X

id•X
��

X X
idX // X

Y

f∗

��

• •α

Y Y
idY

//

X

Y

f∗

��

X Y
f // Y

Y

id•Y
��

• •β

whose horizontal and vertical compositions are identity cells. A conjoint for f is a vertical
morphism f ∗:Y //• X together with cells

X X
idX

//

X

X

id•X
��

X Y
f // Y

X

f∗

��

• •ρ

X Y
f
//

Y

X

f∗

��

Y Y
idY // Y

Y

id•Y
��

• •σ

whose horizontal and vertical compositions are identity cells.
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2.5. Example. Loc has locales as objects, locale morphisms f :X // Y , in the sense of
[J82], as horizontal morphisms, and finite meet preserving maps v:X0

//• X1 as vertical
morphisms. There is a cell of the form (2.1) if and only if w�f0∗ ≤ f1∗�v or equivalently,
f ∗1 � w ≤ v � f ∗0 . The initial locale O is the horizontal initial object, and the companion
and conjoint of f are the direct and inverse images f∗ and f ∗, respectively. The vertical
bicategory VLoc is the partially ordered bicategory Frmco

∧ .

2.6. Example. Topos has (elementary) toposes X as objects, geometric morphisms
f :X // Y (in the sense of [J77]) as horizontal morphisms, finite limit preserving func-
tors v:X0

//• X1 as vertical morphisms, natural transformations ϕ:w � f0∗
+3 f1∗ � v or

equivalently, ϕ̂: f ∗1 �w +3 v� f ∗0 , as cells of the form (2.1). The horizontal initial object O
is the one object topos, and the companion and conjoint of f are the direct and inverse
images f∗ and f ∗, respectively.

2.7. Example. Pos has posets as objects, order-preserving maps f :X //Y as horizontal
morphisms and order ideals v:X0

//• X1 (i.e., upward closed sets v ⊆ Xop
0 × X1) as

vertical morphisms. There is a cell of the form (2.1) if and only if (f0(x0), f1(x1)) ∈ w, for
all (x0, x1) ∈ v. The empty poset O is the horizontal initial object, and the companion
f∗:X //• Y and conjoint f ∗:Y //• X of f :X // Y are defined by f∗ = {(x, y) | fx ≤ y}
and f ∗ = {(y, x) | y ≤ fx}, respectively. The vertical bicategory VPos is the partially
ordered bicategory of posets and ideals.

2.8. Example. Cat has small categories as objects, functors f :X //Y as horizontal mor-
phisms, profunctors v:X0

//• X1 (i.e., functors v:Xop
0 ×X1

//Set) as vertical morphisms,
and natural transformations ϕ: f1∗�v +3w�f0∗ or equivalently, ϕ̂: v�f ∗0 +3 f ∗1�w, as cells
of the form (2.1). The empty category O is the horizontal initial object, and the compan-
ion f∗:X //• Y and conjoint f ∗:Y //• X of f :X // Y are defined by f∗(x, y) = Y (fx, y)
and f ∗(y, x) = Y (y, fx), respectively. The vertical bicategory VCat is isomorphic to Prof.

2.9. Definition. A cotabulator of a vertical morphism v:X0
//• X1 consists of an object

Γv and a cell

Γv

X1

88

i1qqqqq

X0

Γv

i0
&&MMMMMX0

X1

v

��
ηv• (2.9)

such that for any cell

Y

X1

88

f1qqqqqq

X0

Y

f0

&&MMMMMMX0

X1

v

��
ϕ•

there exists a unique horizontal morphism f : Γv // Y such that fi0 = f0, fi1 = f1, and
id•fηv = ϕ.
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One can show that the cotabulator Γv exists, for all v, if and only if id•:D0
//D1 has

a left adjoint [P11].

2.10. Example. Cotabulators in Loc and Topos are given by the glueing construction
used in [N81] which is also know as Artin-Wraith glueing in the topos case [J77]. The
topos Gl(v) obtained by glueing along v:X0

//• X1 has objects (X0, X1, α:X1
// vX0),

where X0 ∈ |X0| and X1 ∈ |X1|, and morphisms pairs (f0, f1) such that

Y1 vY0β
//

X1

Y1

f1
��

X1 vX0
α // vX0

vY0

vf0
��

commutes, with i∗0(X0, X1, α) = X0, i∗1(X0, X1, α) = X1, i0∗(X0) = (X0, vX0, idvX0),
i1∗(X1) = (1, X1, !), and ηv: i0∗ +3 i1∗v at X0 given by (!, idvX0). The cotabulator in Loc
is defined similarly as Gl(v) = {(x0, x1)|x1 ≤ vx0} with i0∗(x0) = (x0, vx0) and i1∗(x1) =
(>, X1).

2.11. Example. Cotabulators in Cat are given by “collages.” Recall that the collage Γv
of a profunctor v:Xop

0 ×X1
// Set, also denoted by X0 tv X1, is constructed by taking

the disjoint union of the categories X0 and X1 together with a set Γv(x0, x1) = v(x0, x1)
of morphisms, for each x0 ∈ X0 and x1 ∈ X1. The functors i0 and i1 are given by the
inclusion. Collages in Pos are defined similarly.

3. Extensions as Cotabulators

In this section, we introduce the notion of an extension in a bicategory B and prove a
general theorem relating cotabulators in D to extensions in the vertical bicategory VD.
Thus, relating Artin-Wraith glueing in Topos and Loc, and collages in Cat and Pos, to
extensions in the corresponding vertical bicategories.

3.1. Definition. We say B has initial morphisms if each category B(X, Y ) has an initial
object, denoted by 0XY , and the unique cells 0WY

+3 0XY f and 0XZ +3 g 0XY are invertible,
for all f :W //X and g:Y // Z.

3.2. Proposition. If D has a horizontal initial object O and the unique morphism
uX :O // X has a companion uX∗ and conjoint u∗X , for all X, then B(X, Y ) has an
initial object, for all X, Y and 0XY is given by

X O
u∗X //• O Y

uY ∗ //•
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Proof. This follows from Definition 2.3, since for all v:X //• Y , there is a unique cell

O YuY
//

O

O

id•O
��

O X
uX // X

Y

v

��
• •uv

Note that for the double categories D in Examples 2.5–2.8, the unique cells 0WY
+30XY f

and 0XZ +3 g 0XY are invertible, for all f :W // X and g:Y // Z, and so VD has initial
morphisms.

3.3. Definition. Suppose B has initial morphisms. A kernel of a morphism f :X // Y
is an inverter (in the sense of [CJSV94]) of the unique cell uf : 0XY +3 f , i.e., a morphism
k:K // X such that, for all B, the functor B(B, k):B(B,K) // B(B,X) induces an
equivalence of categories between B(B,K) and the full subcategory of B(B,X) consisting
of morphisms b:B // X such that ufb: 0XY b +3 fb is invertible. The dual of a kernel is
called a cokernel.

Unpacking the definition of kernel, we see that ufk is an invertible cell satisfying the
following universal property. For all b:B // X such that ufb is invertible, there exists
b̄:B // K and an invertible cell θ: kb̄ +3 b, and for any β: b1

+3 b2 with ufb1 and ufb2

invertible and invertible cells θ1: kb̄1
+3 b1 and θ2: kb̄2

+3 b2, there exists a unique β̄: b̄1
+3̄b2

such that

kb̄2 b2θ2
+3

kb̄1

kb̄2

kβ̄
��

kb̄1 b1
θ1 +3 b1

b2

β

��

commutes. Moreover, the uniqueness of β̄ implies that for any b, the pair (b̄, θ) is unique
up to isomorphism.

Note that if D is flat, in the sense of [GP99], and the only invertible cells are identities,
then this agrees with the usual (strict) definition of kernel and cokernel in VD.

3.4. Definition. A diagram K
k //X

e //Q is called an extension of Q by K in a bicategory
B if k is a kernel of e and e is a cokernel of k.

To show that cotabulators in D give rise to extensions in VD, we use the following
property of cotabulators in our main examples.

3.5. Definition. A cotabulator

X

X1

88

i1qqqqqq

X0

X

i0
&&MMMMMMX0

X1

v

��
ηv•
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in D restricts to VD and VDco if i0 and i1 have companions and cotabulators, and

X

X1

88

i1∗qqqqqq

X0

X

i0∗
&&MMMMMMX0

X1

v

��
ηv

•

•

• and X

X1
i∗1
&&MMMMMM

X0

X

88i∗0
qqqqqq

X0

X1

v

��
η∗v

•

•

•

become a pseudo cotabulator and a pseudo tabulator in the bicategories VD and VDco,
respectively.

3.6. Example. Cotabulators in Loc restrict to VLoc and VLocco, as follows.
For VLoc, consider the diagram

Gl(v)

X1

88
i1∗

qqqq

X0

Gl(v)

i0∗
&&MMMMX0

X1

v

��
≥•

•

•

•

•

•

X0

Y

f0

$$

X1

Y

f1

::Gl(v) Y
f //___

where f0 ≤ f1v, and define f(x0, x1) = f0(x0) ∧ f1(x1). Then f is a finite meet preserv-
ing map making the diagram commute, since f0 ≤ f1v implies f(i0∗(x0)) = f(x0, vx0) =
f0(x0)∧f1(vx0) = f0(x0) and f(i1∗(x1)) = f(>, x1) = f0(>)∧f1(x1) = f1(x1). Functorial-
ity (and uniqueness) of f holds since (x0, x1) = (x0, vx0)∧ (>, x1), for all (x0, x1) ∈ Gl(v).

For VLocco, consider the diagram

Y Gl(v)
f //___ Gl(v)

X1
i∗1
&&MMMM

X0

Gl(v)

88i∗0
qqqq

X0

X1

v

��
≤Y

X1f1
00

Y

X0
f0 ..

•

•

•

•

•

•

where f1 ≤ vf0, and define f(y) = (f0(y), f1(y)). Then f(y) ∈ Gl(v), since f1 ≤ vf0, and
f is the unique finite meet preserving map making the diagram commute, since i∗0 and i∗1
are the projections onto X0 and X1, respectively.

3.7. Example. Cotabulators in Topos restrict to VTopos and VToposco, as follows.
Consider the diagram

Gl(v)

X1

88
i1∗

qqqq

X0

Gl(v)

i0∗
&&MMMMX0

X1

v

��
ηv•

•

•

•

•

•

X0

Y

f0

$$

X1

Y

f1

::Gl(v) Yf //___ (3.7)

and ϕ: f0
+3 f1v. Define f(X0, X1, α) by the pullback

f0X0 f1vX0ϕX0

//

f(X0, X1, α)

f0X0

��

f(X0, X1, α) f1X1
// f1X1

f1vX0

f1α

��
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Then f preserves finite limits since f0 and f1 do, a straightforward argument shows that
the diagram (3.7) commutes up to isomorphism, and functoriality of f follows since

(X0, vX0, id) (1, vX0, !)
(!,id)

//

(X0, X1, α)

(X0, vX0, id)

(id,α)
��

(X0, X1, α) (1, X1, !)
(!,id) // (1, X1, !)

(1, vX0, !)

(!,id)
��

is a pullback for all (X0, X1, α) in Gl(v).
The proof for VToposco is similar to that of VLocco.

3.8. Example. Cotabulators in Pos restrict to VPos and VPosco, as follows.
For VPos, consider the diagram

X0 tX1

X1

66

i1∗
mmmmmm

X0

X0 tX1

i0∗
((QQQQQQX0

X1

v

��
≤•

•

•

•

•

•

X0

Y

f0

%%

X1

Y

f1

99X0 tX1 Y
f //___

v

where f1v ≤ f0, and let f denote the disjoint union of f0 and f1. Then f is an ideal
making the diagram commute, since f0 and f1 are ideals, and f1v ≤ f0. Functoriality
(and uniqueness) easily follow.

For VPosco, consider the diagram

Y X0 tX1
f //___

v
X0 tX1

X1
i∗1
&&MMMM

X0

X0 tX1

88i∗0
qqqq

X0

X1

v

��
≥Y

X1f1
11

Y

X0
f0 --

•

•

•

•

•

•

where vf0 ≤ f1, and let f denote the disjoint union of f0 and f1. Then f is an ideal
making the diagram commute, since f0 and f1 are ideals, and f1v ≤ f0. Functoriality
(and uniqueness) easily follow.

3.9. Example. Cotabulators in Cat restrict to VCat and VCatco, as follows.
For VCat, consider the diagram

X0 tX1

X1

66

i1∗
mmmmmm

X0

X0 tX1

i0∗
((QQQQQQX0

X1

v

�� v
ηv•

•

•

•

•

•

X0

Y

f0

%%

X1

Y

f1

99X0 tX1 Y
f //___

with ϕ: f1v +3 f0. Define f by

f(x, y) =

{
f0(x, y) if x ∈ X0

f1(x, y) if x ∈ X1
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Since there is a cell ϕ: f1v +3 f0, we know f is a profunctor making the diagram commute
up to an invertible cell, and functoriality (and uniqueness) easily follow.

For VCatco, consider the diagram

Y X0 tX1
f //___

v
X0 tX1

X1
i∗1
''OOOOO

X0

X0 tX1

77i∗0
ooooo X0

X1

v

��
η∗vY

X1f1
11

Y

X0
f0 --

•

•

•

•

•

•

with ϕ: vf0
+3 f1. Define f by

f(y, x) =

{
f0(y, x) if x ∈ X0

f1(y, x) if x ∈ X1

Then f is a profunctor making the diagram commute up to an invertible cell, since there
is a cell ϕ: vf0

+3 f1, and functoriality (and uniqueness) easily follow.

3.10. Proposition. If

X

X1

88

i1qqqqqq

X0

X

i0
&&MMMMMMX0

X1

v

��
ηv•

is a cotabulator in D which restricts to VD and VDco, and ui∗0i1∗ : 0X1X0
+3 i∗0i1∗ is invertible,

then

X1 X
i1∗ //• X X0

i∗0 //•

is an extension of X0 by X1 in VD.

Proof. To see that i∗0 is a cokernel of i1∗, given f :X //• Y and an invertible cell
0X1Y

+3 fi1∗, consider

X1 X
i1∗ //• X X0

i∗0 //X

Y

f

��

X0

Y
f̄���

�
�

�
•

• •

where f̄ = fi0∗. Both f̄ i∗0 and f complete the diagram

X

X1

88

i1∗qqqqqq

X0

X

i0∗
&&MMMMMMX0

X1

v

��
ηv•

X0

Y

f̄

&&

X1

Y

0X1Y

88X Y//_____
∼=

∼=

•

•

•

•

•

since (f̄ i∗0)i0∗ ∼= f̄ and (f̄ i∗0)i1∗ ∼= 0X1Y , and so there is an invertible cell f̄ i∗0
∼= f ,

compatible with the given cells.
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Given ϕ: f1
+3 f2 and invertible cells θ1: f̄1i

∗
0
+3 f1 and θ2: f̄2i

∗
0
+3 f2, define ϕ̄: f̄1

+3 f̄2 by
ϕ̄ = ϕi0∗. Then

f̄2i
∗
0 f2θ2

+3

f̄1i
∗
0

f̄2i
∗
0

ϕ̄i∗0
��

f̄1i
∗
0 f1

θ1 +3 f1

f2

ϕ

��

commutes by uniqueness of the cell α such that αi0∗ = ϕ̄ and αi1∗ = id•0X1Y
. Therefore,

i∗0 is the cokernel of i1∗.
The proof that i1∗ is the kernel of i∗0 is dual.

Applying Proposition 3.10 to the examples, we get:

3.11. Corollary. If v:X0
//• X1 is a profunctor (respectively, order ideal), then

X1 X0 tX1
i1∗ //

v
• X0 tX1 X0

i∗0 //•

is an extension in VCat (respectively,VPos).

3.12. Corollary. (Faul and Manuell [FM20]) If v:X0
//• X1 is a finite meet preserving

map of frames (i.e., locales), then

X1 Gl(v)
i1∗ //• Gl(v) X0

i∗0 //•

is an extension in Frm∧ (i.e., VLoc).

3.13. Corollary. If v:X0
//• X1 is a finite limit preserving map of toposes, then

X1 Gl(v)
i1∗ //• Gl(v) X0

i∗0 //•

is an extension in VTopos.

4. Extensions and Open Cokernels

In this section, we show that if cokernels exist in VD and satisfy a property shared by Loc,
Topos, Pos, and Cat, then every extension is equivalent to one arising from a cotabulator
as in Proposition 3.10.

To obtain such an equivalence in [FM20], the authors show that every morphism
f :X // Y in Frm∧ has a cokernel which they construct as i∗o:X // ↓u, where u = f(⊥)
and io is the inclusion of the open sublocale ↓u of X, in the sense of [J82]. Since X can
be reconstructed, up to isomorphism, from ↓u and its closed complement ic: ↑u //X via
Artin-Wraith glueing along i∗cio∗, they show that every extension is isomorphic to one of
the form

↑u Gl(i∗cio∗)
ic∗ //• Gl(i∗cio∗) ↓ui∗o //•
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The notion of open/closed sublocales and this reconstruction is generalized to dou-
ble categories called “glueing categories” in [N12a], [N12b] where examples include the
double categories of interest here. Moreover, the open/closed subobjects agree with the
definitions for Loc0 [J82], Topos0 [J77], Cat0 [BN00], and Pos0 [N01]. The assumption
that D is a glueing category is unnecessary here since we only use the following definition
of open morphism in VD.

4.1. Definition. Suppose VD has initial morphisms. A vertical morphism e:X //• Q is
called open in D if e ∼= i∗0, for some cotabulator

X

X1

88

i1qqqqqq

Q

X

i0

&&MMMMMMQ

X1

v

��
ηv• (4.1)

in D which restricts to VD and VDco and satisfies ui∗0i1∗ : 0X1Q
+3 i∗0i1∗ and η̂v: v +3 i∗1i0∗ are

invertible. We say D has open cokernels if every vertical morphism has a cokernel which
is open in D.

From [FM20], we know Loc has open cokernels, and their construction generalizes to
Topos as follows.

4.2. Proposition. Topos has open cokernels.

Proof. Given f :W //• X , let U = f(0), and consider io:X/U //X , where i∗o = U∗ and
io∗ = ΠU . Then i∗of

∼= 0WX/U , the constant functor at the terminal object of X/U , since
f(W )× U = f(W )× f(0) ∼= f(W × 0) ∼= f(0) = U , and so i∗of(W ) ∼= idU .

Suppose g:X // Y satisfies gf ∼= 0WY , i.e., (gf)(W ) = 1, for all W in W ,

W Xf //• X X/Ui∗o //X

Y

g

��

X/U

Y
ḡ}}{

{
{

{
•

• •

and define ḡ = gio∗. To see that ḡi∗o
∼= g, it suffices to show that both morphisms make

the diagram

X

Xc

88

ic∗qqqqqq

X/U

X
io∗
&&MMMM

X/U

Xc

v

��

ηv•

X/U

Y

ḡ

$$

Xc

Y

0XcY

::X Y//_____
∼=

∼=

•

•

•

•

•

commute up to compatible isomorphisms, where v = i∗cio∗ and ic:Xc //X is the inclusion
of the closed complement of X/U in X . Since i∗oio∗

∼= idX/U , we know ḡi∗oio∗
∼= ḡ = gio∗.

Also, ḡi∗oic∗
∼= ḡ0XcX/U

∼= 0XcY . To see that gic∗ ∼= 0XcY , recall [J77] that X ∈ Xc,
i.e., is a jc-sheaf, if and only if X × U ∼= U . But, g(f(W )) = 1, for all W , and so
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g(X) ∼= g(X) × 1 ∼= g(X) × g(f(0)) ∼= g(X × f(0)) ∼= g(X × U) ∼= g(U) ∼= g(f(0)) ∼= 1,
and it follows that gic∗ ∼= 0XcY .

Given ϕ: g1
+3 g2 and invertible cells θ1: ḡ1i

∗
o
+3 g1 and θ2: ḡ2i

∗
o
+3 g2, define ϕ̄: ḡ1

+3 ḡ2 by
ϕ̄ = ϕio∗. Then

ḡ2i
∗
o g2θ2

+3

ḡ1i
∗
o

ḡ2i
∗
o

ϕ̄i∗o
��

ḡ1i
∗
o g1

θ1 +3 g1

g2

ϕ

��

commutes by uniqueness of the cell α such that αio∗ = ϕ̄ and αic∗ = id•0XcY .
Therefore, i∗o is the cokernel of ic∗.

By the description in [N12a] of cotabulators as collages in Cat (and Pos), we know
e:X //• X0 is open if and only if e ∼= i∗0, for some open inclusion i0:X0

//X, i.e., x0 ∈ X0

and α:x // x0 in X implies x ∈ X0.

4.3. Proposition. Cat and Pos have open cokernels.

Proof. Given f :W //• X, let i0:X0
// X denote the inclusion of the full subcategory

consisting of objects xo such that f(w, x0) = ∅, for all w ∈ W . Then X0 is open, for if
f(w, x0) = ∅ and α:x // x0, then so is f(w, x), since f(w, α): f(w, x) // f(w, x0).

Now, i∗0f = 0WX0 , since i∗0(x, x0) × f(w, x) // f(w, x0), for all x ∈ X, implies
i∗0f(w, x0) = ∅, for all w ∈ W and x0 ∈ X0. Thus, to see that i∗0 is a cokernel of f ,
suppose g:X // Y satisfies gf ∼= 0WY in

W X
f //• X X0

i∗0 //X

Y

g

��

X0

Y

ḡ
}}{

{
{

{
{

•

• •

and define ḡ = gi0∗. For ḡi∗0
∼= g, it suffices to show that both morphisms make the

diagram

X

X1

88

i1∗qqqqqq

X0

X

i0∗
&&MMMMMMX0

X1

i∗1i0∗

��
ηv•

X0

Y

ḡ

&&

X1

Y

0X1Y

88X Y//_____
∼=

∼=•

•

•

•

•

•

•

commute up to compatible isomorphisms, where i1:X1
//X is the inclusion of the closed

complement of X0 in X. Note that X1 = {x ∈ X|f(w, x) 6= ∅, for some w ∈ W}. Thus,
as in the proof of Proposition 4.2, we know that ḡi∗0i0∗

∼= gi0∗, so it remains to show that
(ḡi∗0)i1∗ ∼= gi1∗, or equivalently, gi1∗ ∼= 0X1Y , since (ḡi∗0)i1∗ ∼= ḡ(i∗0i1∗)

∼= ḡ0X1X0
∼= 0X1Y .

Consider g(x, y)×i1∗(x1, x) //g(x1, y). Now, gf ∼= 0WY implies g(x1, y)×f(w, x1) = ∅,
for all w ∈ W . Since f(w, x1) 6= ∅, for some w ∈ W , by definition of X1, it follows that
g(x1, y) = ∅. Thus, g(x, y)× i1∗(x1, x) = ∅, and so gi1∗ ∼= 0X1Y , as desired.
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Given ϕ: g1
+3 g2 and invertible cells θ1: ḡ1i

∗
0
+3 g1 and θ2: ḡ2i

∗
0
+3 g2, define ϕ̄: ḡ1

+3 ḡ2 by
ϕ̄ = ϕi0∗. Then

ḡ2i
∗
0 g2θ2

+3

ḡ1i
∗
0

ḡ2i
∗
0

ϕ̄i∗0
��

ḡ1i
∗
0 g1

θ1 +3 g1

g2

ϕ

��

commutes by uniqueness of the cell α such that αi0∗ = ϕ̄ and αi1∗ = id•0X1Y
. Therefore,

i∗0 is the cokernel of ic∗.
The proof for Pos is analogous with ideals in place of profunctors.

4.4. Definition. A morphism of extensions in a bicategory B is a diagram

K2 X2k2
//

K1

K2

f

��

K1 X1
k1 // X1

X2

g

��
X2 Q2e2

//

X1

X2

��

X1 Q1
e1 // Q1

Q2

h
��

∼= ∼=

It is an equivalence of extensions if f , g, and h are equivalences in B. The set of equiva-
lence classes of extensions of Q by K is denoted by Ext(Q,K).

4.5. Theorem. Suppose D has open cokernels. Then every extension K Xk //• X Qe //•

is equivalent to:

(1) one of the form X1 X
j1∗ //• X Q

j∗0 //• , for some cotabulator

X

X1

88

j1qqqqqq

Q

X

j0

&&MMMMMMQ

X1

v

��
ηv• (4.5)

(2) one of the form K Γ(k∗e∗)
i1∗ //• Γ(k∗e∗) Q

i∗0 //• , where k∗ and e∗ are right and left adjoint

to k and e.

Proof. Since D has open cokernels, there is a cotabulator of the form (4.5) in D which
restricts to VD and VDco and satisfies uj∗0 j1∗ : 0X1Q

+3 j∗0j1∗ and η̂v: v +3 j∗1j0∗ are invertible.
Consider the diagram

X1 X
j1∗

//

K

X1

f1

��

K Xk // X

X

id•X

��
X Q

j∗0

//

X

X
��

X Qe // Q

Q

f0

��
ϕ1 ϕ0

• •

• •

• • •
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where (f0, ϕ0) exists and is an equivalence since both e and j∗0 are kernels of k, and then
we get (f1, ϕ1), since j∗0k

∼= 0KQ. Now, f0ej1∗
∼= j∗0j1∗

∼= 0X1Q and f0 is an equivalence,
and so ej1∗

∼= 0X1Q and we get a pseudo inverse of (f1, ϕ1), as desired, proving (1).
For (2), let g0 and g1 denote pseudo inverses of f0 and f1, respectively, and consider

X1 X//

K

X1

f1

��

K X
k // X

X
��
X Q//

X

X
��

X Q
e // Q

Q

f0

��

∼= ∼=

• •

• •

• • •

K Γ(k∗e∗)i1∗
//

X1

K

g1

��

X1 X
j1∗ // X

Γ(k∗e∗)

h

���
�
�
�

Γ(k∗e∗) Q
i∗0

//

X

Γ(k∗e∗)
���
�
�
�X Q

j∗0 // Q

Q

g0

��

• • •

• •

K

K

id•K

!!

Q

Q

id•Q

}}

• •∼= ∼=

∼= ∼=

where k∗ = g1j
∗
1 and e∗ = j0∗f0, Now, k∗ is a right pseudo adjoint for k, since kk∗ ∼=

(j1∗f1)(g1j
∗
1) ∼= j1∗(f1g1)j∗1

∼= j1∗j
∗
1
+3 id•X and id•K

∼= g1f1
+3 g1(j∗1j1∗)f1

∼= (g1j
∗
1)(j1∗f1) ∼=

k∗k; and e∗ is a left pseudo adjoint for e via e∗e ∼= (j0∗f0)(g0j
∗
0) ∼= j0∗(f0g0)j∗0

∼=
j0∗j

∗
0
+3 id•X and id•Q

∼= g0f0
+3 g0(j∗0j0∗)f0

∼= (g0j
∗
0)(j0∗f0) ∼= ee∗. One can show that

there is an equivalence h:X //• Γ(k∗e∗) making the bottom two squares commute up to
invertible cells, since k∗e∗ ∼= (g1j

∗
1)(j0∗f0) ∼= g1(j∗1j0∗)f0, X ' Γ(j∗1j0∗), and g1 and f0 are

equivalences, and so (2) follows.

Thus, we get:

4.6. Corollary. Every extension K Xk //• X Qe //• in VTopos is equivalent to one of

the form K Gl(k∗e∗)
i1∗ //• Gl(k∗e∗) Q

i∗0 //• , for some left adjoint k∗ of k and right adjoint e∗ of e.

4.7. Corollary. Every extension K Xk //• X Qe //• in VCat is equivalent to one of the

form K Q tKi1∗ //
k∗e∗

• Q tK Q
i∗0 //• , for some right adjoint k∗ of k and left adjoint e∗ of e.

Note that equivalences in VLoc and VPos are isomorphisms in Loc and Pos, since both
double categories are flat and the only invertible cells are identities.

4.8. Corollary. If K X
k //• X Q

e //• is an extension in Frm∧, then k has a left adjoint

k∗ and e has a right adjoint e∗ such that the diagram

K Gl(k∗e∗)i1∗
//

K

K

id•K

��

K X
k // X

Gl(k∗e∗)

f∗

��
Gl(k∗e∗) Q

i∗0

//

X

Gl(k∗e∗)
��

X Q
e // Q

Q

id•Q

��

• •

• •

• • •

commutes in Frm∧, for some isomorphism f in Frm.
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Proof. Since cells in Loc are of the form

X1 Y1f1
//

X0

X1

v

��

X0 Y0
f0 // Y0

Y1

w

��
≥

•

•

• •

this follows from Theorem 4.5.

4.9. Corollary. If K X
k //• X Q

e //• is an extension in VPos, then k has a right adjoint

k∗ and e has a left adjoint e∗ such that the diagram

K Q tK
i1∗
//

K

K

id•K

��

K X
k // X

Q tK

f∗

��
Q tK Q

i∗0

//

X

Q tK
��

X Q
e // Q

Q

id•Q

��

• •

• •

• • •

k∗e∗

commutes in VPos, for some isomorphism f in Pos.

Proof. Since cells in Pos are of the form

X1 Y1f1
//

X0

X1

v

��

X0 Y0
f0 // Y0

Y1

w

��
≤

•

•

• •

this follows from Theorem 4.5.

For the other two examples, one can ask whether the equivalences in VTopos and VCat
are equivalences in the 2-categories HTopos and HCat. We will see that they are in the
first case but not necessarily in the second.

4.10. Proposition. If f :X //• Y is an equivalence in VTopos, then it is the right ad-
joint of an equivalence in VTopos, and so the equivalence X ' Gl(k∗e∗) in Corollary 4.6
is an equivalence in HTopos.

Proof. It suffices to show that f has a finite limit preserving left adjoint. Suppose
g:Y //• X is a pseudo inverse of f in VTopos, and consider f ∗ = gfg. Then f ∗ is a left
adjoint pseudoinverse of f [M71], and f ∗ preserves finite limits, since f ∼= g and g does.



EXTENSIONS AND GLUEING IN DOUBLE CATEGORIES 363

The following example shows that there is not an analogous proposition for Cat.

4.11. Example. Suppose Y is a non-Cauchy complete category, in the sense of [W81],
and f :X // Y is its Cauchy completion (for example, a one object category Y with a
single non-identity morphism e such that e2 = e and its two object Cauchy completion
X). Then there is an equivalence of extensions

Y Y × 2
〈id,1〉∗

//

X

Y

f∗

��

X X × 2〈id,1〉∗ // X × 2

Y × 2

(f×id)∗

��
Y × 2 Y

〈id,0〉∗
//

X × 2

Y × 2
��

X × 2 X
〈id,0〉∗ // X

Y

f∗

��

• •

• •

• • •∼= ∼=

but X and Y are not equivalent in HCat.

5. Functoriality

In [FM20], they show that (X0, X1) 7→ Ext(X0, X1) defines a functor Frmop
∧ ×Frm∧ //Set

defined by pullback inX0 and pushout inX1. To do so, they show thatW0
u //X0

v //X1
w //Y1

gives rise to pushout and pullback diagrams

Gl(v) X0i∗0

//

Gl(vu)

Gl(v)
��

Gl(vu) W0

j∗0 //W0

X0

u

��
Y1 Gl(wv)

j1∗

//

X1

Y1

w

��

X1 Gl(v)
i1∗ // Gl(v)

Gl(wv)
��

in Frm∧. We will see that the latter extends to Pos, Cat, and Topos for pseudo pushouts
and pullbacks, and so we get a pseudo functor VDop × VD // Set.

5.1. Lemma. Suppose D has cotabulators that restrict to VD and VDco.

(1) Given X0 X1
v //• X1 Y1

w //• in D, the diagram

Y1 Γ(wv)
j1∗

//

X1

Y1

w

��

X1 Γ(v)
i1∗ // Γ(v)

Γ(wv)

w̄
��
•• •

•

•

∼=

is a pseudo pushout in VD, where w̄ is induced by ηwv: j1∗(wv) +3 j0∗.

(2) Given W0 X0
u //• X0 X1

v //• in D, the diagram

Γ(v) X0i∗0

//

Γ(vu)

Γ(v)

ū
��

Γ(vu) W0

j∗0 //W0

X0

u

��

••

•

•

∼=
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is a pseudo pullback in VD, where ū is induced by ηvu: (vu)j∗0 +3 j∗1 .

Proof. For (1), note that the cell ηwv: j1∗(wv) +3 j0∗ factors as

Γv

X1

88

i1∗qqqqq

X0

Γv

i0∗
&&MMMMMX0

X1

v

��
ηv•

•

•

X0

Γ(wv)

j0∗

''
Γv Γ(wv)w̄ //
∼=

X1 Y1w
// Y1

Γ(wv)

j1∗

88qqqq
∼=

•

•

•

•

Given f an g such that gw ∼= fi1∗,

Y1 Γ(wv)
j1∗

//

X1

Y1

w

��

X1 Γ(v)
i1∗ // Γ(v)

Γ(wv)

w̄
��
•• •

•

•

∼=

Y1

Z
g

22

Γ(v)

Z

f

��
Γ(wv)

Z

h
((QQQ

•

•

•∼=

∼=

Since fηv: f(i1∗v) +3 fi0∗ and g(wv) ∼= (gw)v ∼= (fi1∗)v ∼= f(i1∗v), we get a cell
g(wv) +3 fi0∗, and so for the universal property of Γ(wv), there exists h: Γ(wv) //• Z
with invertible cells hj1∗

∼= g and hj0∗
∼= fi0∗. Since fi0∗ ∼= hj0∗

∼= h(w̄i0∗) ∼= (hw̄)i0∗
and fi1∗ ∼= gw ∼= (hj1∗)w

∼= h(j1∗w) ∼= h(w̄i1∗) ∼= (hw̄)i1∗, the universal property of Γv
implies that f ∼= hw̄. Moreover, these are all compatible cells since they arise from the
universal property of cotabulators.

As in Proposition 3.10, given cells from a pair of f ’s to g’s, there exists a cell from the
induced h’s which is compatible with the invertible cells.

The proof of (2) is dual.

Recall that Ext(Q,K) denotes the set of equivalence classes of extensions of Q by K,
introduced in Definition 4.4.

5.2. Theorem. Suppose D has open cokernels and cotabulators which restrict to VD and
VDco. If u:Y0

//• X0 and w:X1
//• Y1 are vertical morphisms in D, then pseudo pushout

along w and pseudo pullback along v induce a function Ext(X0, X1) // Ext(Y0, Y1), and
hence, a functor Ext:VDop × VD // Set.

Proof. By Theorem 4.5, every extension of X0 by X1 in VD is equivalent to one of the

form X0 Γ(v)k //• Γ(v) X1
e //• , for some v:X0

//• X1.

Given w:X1
//• Y1, consider the diagram

Y1 Γ(wv)
i1∗
//

X1

Y1

w

��

X1 Γ(v)k // Γ(v)

Γ(wv)

w̄

��
Γ(wv) X0i∗0

//

Γ(v)

Γ(wv)
��

Γ(v) X0
e // X0

X0

id•X0

��

• •

• •

• • •∼= ∼=
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where the left square is a pseudo pushout by Lemma 5.1, and there is an invertible cell in
the right square, since e is a cokernel of k and (i∗0w̄)k ∼= 0X1X0 . Thus, we get a function
Ext(X0, w): Ext(X0, X1) //Ext(X0, Y1), and hence, a functor Ext(X0,−):VD //Set, since
this Ext(X0, w) is defined by universal properties.

Dually, pseudo pullback in the first variable induces a functor Ext(−, X1):VDop //Set.

5.3. Examples. There is a functor Ext:VDop × VD // Set defined by pullback in the
first variable and pushout in the second, for D = Loc,Topos,Pos,Cat.

6. Adjoint Extensions

We conclude with a characterization of a category of adjoint extension analogous to that
of Adj in [FM20].

6.1. Definition. An adjoint extension of Q by K is one of the form K X
k∗ //• X Qe∗ //•

for some cotabulator of the form

X

K

88

kqqqqqq

Q

X

e

&&MMMMMMQ

K

k∗e∗

��
ηk∗e∗

•

in D. Let Adj(Q,K) denote the category whose objects are adjoint extensions of Q by K
and morphisms are diagrams of the form

K X̄
k̄∗

//

K

K

id•K
��

K X
k∗ // X

X̄

f∗
��
X̄ Q

ē∗
//

X

X̄
��

X Qe∗ // Q

Q

id•Q
��

∼= ∼=

• •

• •

• • • (6.1)

for some f :X // X̄ in D0 such that fe = ē

Every morphism f∗: (k∗, e
∗) // (k̄∗, ē

∗) induces a cell ϕ: k∗e∗ +3 k̄∗ē∗ via

X X̄//

Q

X

e∗
��

Q Q
id•Q // Q

X̄

ē∗
��

∼=• •

•

•

K K
id•K

//

X

K

k∗

��

X X̄
f∗ // X̄

K

k̄∗
��

ϕ̂1
• •

•
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where ϕ̂1 is the transpose of the invertible cell ϕ1: k̄∗ +3 f∗k∗. Conversely, every special
cell ϕ: k∗e∗ +3 k̄∗ē∗ induces f :X // X̄

X

K

88

kqqqqqq

Q

X

e

&&MMMMMMQ

K

k∗e∗

��

ηk∗e∗•

Q

X̄

ē

""

K

X̄

k̄

==X X̄
f //____

such that fe = ē, fk = k̄, and fηk∗e∗ = ϕ, and hence, a morphism (k∗, e
∗) // (k̄∗, ē

∗) in
Adj(Q,K). Moreover, this correspondence is a bijection by the universal property of the
cotabulator. Thus, we get:

6.2. Proposition. Adj(Q,K) is equivalent to a full subcategory of VD(Q,K), for all
objects Q,K in D.

6.3. Corollary. If D has cotabulators whose cells η̂v: v +3 i∗1i0∗ (as in 4.1) are invertible,
then Adj(Q,K) is equivalent to VD(Q,K), for all Q,K in D.

6.4. Examples. For D equal Loc,Topos,Pos and Cat, the requisite cells are invertible,
and so Adj(Q,K) is equivalent to VD(Q,K), for all Q,K in D.
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[FM20] Peter F. Faul and Graham R.Manuell, Artin glueings of frames as semidirect products, J. Pure
Appl. Algebra 224 (2020).
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt
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