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SMALL CATEGORIES OF HOMOLOGICAL DIMENSION ONE

KARIMAH SWEET AND CHARLES CHING-AN CHENG

ABSTRACT. We derive three equivalent necessary conditions for a small category to
have homological dimension one, generalizing a result of Novikov. As a consequence, any
small cancellative category of homological dimension one is embeddable in a groupoid.

Introduction

Throughout C will be a small category and R a ring with identity. We will denote the
category of left R-modules by M and the category of covariant functors C — M by MC.
The additive category (or ringoid) RC has objects those of C and morphisms from p to
q the free module on C(p, q) such that the composition is bilinear. It is not hard to see
that the category AbRC of additive functors (or RC-modules) RC — Ab is isomorphic
to MC. If M € AbR®, o € RC(p,q) and z € M(p) then we write ax for M(a)(z).

Let N denote the set of non-negative integers. The R-homological dimension of C is
defined by

hdzC = sup{k : colim® # 0}

where colim” is the kth left derived functor of the colimit functor colim : MC” — M and
the supremum is taken in the set {—1} UNU {co}. Since

colim M = M ® AR
RC

where AR : C — M is the constant R-valued functor, and the isomorphism is natural in
M € M®”, we have
hdrC = fd AR

where fd denotes the flat, or weak dimension. In case R = Z, we shall write hd C for
hdzC and refer to it as the homological dimension of C.

Isbell and Mitchell [6, Remark, P.296] have described all small categories of R-
homological dimension zero if R is commutative. (Actually, their description is true
even if R is not commutative.) For any ring R, there exist descriptions of R-homological
dimension one in case C is a poset [2], or an abelian monoid [3].
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In this paper, we obtain the following three equivalent necessary Conditions (I), (II)
and (III) for a small category C to have R-homological dimension at most one.

Condition (I) The augmentation module IC is full,
Condition (IT)  All n-crowns, n > 1, are supported,
Condition (IIT) C is strongly L.

All of these will be defined below. It is worth noting that Condition (I) is a statement
in homological algebra, Condition (II) in category theory and Condition (III) in semigroup
theory. When C is cancellative Condition (III) implies that C is embeddable in a groupoid.

In Section 1 we prove that hdgC < 1 implies condition (I) in Theorem A. In Section
2, we prove that conditions (I) and (II) are equivalent in Theorem B and in Section 3, we
prove that conditions (II) and (III) are equivalent in Theorem C. When C is cancellative
with one object, these Theorems give a slightly more general result than that of Novikov
[9]. In Section 4, we prove that if C is cancellative and hdgC < 1 then C is embeddable
in a groupoid.

The results in this paper are extracted from the dissertation of K. Sweet [11].

1. hdgC <1 = Condition (I)

Let M € M®. If B;,5 = 1,...,n, are morphisms of C with a common codomain g, it is
easy to see that
> ImM(a) CImM(8) N> ImM(3) (1)
j=2

where the first sum is indexed by all morphisms « in C factored through £, and 3; for
some j > 1. If the above is always an equality then we say that M is full.
Consider the exact sequence

0—=IC—>E= @ RC(p, )—=>AR——=0 (2)

p€|C]

in M. Here AR is the constant R-valued functor and ¢ is defined by e,(x) = 3" r, for
x = > rqa where r, € R, and « are morphisms in C with coda = q. Since E(q) is

the free R-module on all morphisms with codomain ¢, IC(q) consists of elements Y r,«
where r, € R, « is a morphism in C with coda = ¢, and > r, = 0. From (2) we see that
IC is flat if and only if hdgC < 1.

The following is a generalization of the well-known Cohn’s Criteria for flatness [10,
Theorem 3.2(4)] specialized to RC-modules.

1.1. PROPOSITION. A left RC-module M is flat if and only if, whenever )  f;x; = 0,
J

where B; € RC(p;,q) and x; € M(p;) for j = 1,...,n, there exist objects ¢; in C,
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w; € M(q;), and o;j € RC(q;,p;), for alli=1,...,m and all j, such that
T = Zazjwi for all j

and

Zﬁjaij =0 foralli.
J

1.2. PROPOSITION. If M € MC is flat then it is full.
PROOF. Let z be a nonzero element of the right side of (1). Then z = f12; = ) 5,25,
j=2
where z; € M(p;) and 8; € C(p;,q) for j=1,...,n. So
(—B1)z1 + Y Bjz; = 0.
=2

By Proposition 1.1, there exist objects ¢; in C, a;; € RC(g;, p;) and elements w; € M(qg;)
fore=1,...,mand j =1,...,n such that

T = Zaijwi, for all j (3)
i=1
and .
(=B1)aa + Z Bjau; = 0 for all 1. (4)
=2

By (3) x = fix1 = ) frayyw;. Since z is nonzero, iy # 0 for at least one i. For each
i=1
such i, a1 = > rigyir, where v, € C(g;, p1) and 1 € R for all k. Hence, for each such i,
k
we have, by (4),

Zﬁj@ij = fraq = Zﬂl(rik%k) = Zh‘k(ﬁl%k)-
j=2 k k

Since the above element is nonzero, without loss of generality, we may assume that each
rir 7 0 and By, are pairwise distinct in C. Thus each S, factors through g; for some
j > 2. Therefore

r =1 = Zﬁlailwi = Z Zﬁl(rik%k)wi = Z Z(ﬁl%k)(ﬁkwi)
i k ik

%

which is contained in the left side of (1). n
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The following theorem states that condition (I) is a necessary condition for hdgC < 1.

1.3. THEOREM. [Theorem A] If hdgC < 1 then IC is full.
PRrOOF. Since IC is flat, it is full by the above Proposition. [

The R-cohomological dimension of C can be defined by
cdrC = pd AR.

Hence if cdgC < 1 then IC is projective and, therefore, is flat implying that hdgC < 1.
Thus we have deduced from Theorem A the following.

1.4. COROLLARY. If cdrC < 1 then IC is full.

1.5. REMARK. When C is a poset, the Converse of Theorem A is true by Theorem B
(below) and [2, Corollary 11]. However, it is not true in general. Consider the following
graph G (all arrows downward) where the vertices are 0,1,... 00 and arrows from oo to
i are o; and of, from i toi—1 is B; for any positive integers i.

[eoly ]

asg : Qs

ag oy

B2

lm

0
Let Gq be the free category on G and let ~ be the least congruence relation on Gq containing

{(Broa, Briad) } U{(Biy10is1, 06), (Biv1aiy, a;) |1 > 1 € N} . Define C = Go/ ~. We will
show that 1C is full, but hdgC > 2.

l
l

3
2
1

Suppose
x €Im IC(y) N Zlm IC(;),
i=2
where z # 0 and cody; = q. If ¢ = oo then 7; = 1 for all i. So certainly z € >~ Im IC(«)

where coda = q. Assume g # oo and let v; € C(p;, 7). Since IC(00) = 0, we may assume
each p; is a positive integer greater than or equal to j. Thus,

Yi = Bjt1°* Bpss
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for each i. Let S be the set of morphisms in C that factor through v, and ~; for some
1> 1. If p; > p; for some ¢ > 1, then ~; factors through v, and ~;, and so

z € Im IC(y,) C Zlm IC(y).

yeS

If p; < p; for all © > 1, then each ~; factors through ~;, so

T € ilm IC(vy;) € Zlm IC(y).

yes

Next we will show that hdgC > 1. Suppose not. Then IC is flat. Since fiaq = 10,
61(061 - Oéll) =0.

/
ap — O = E Vi W;,
7

for some w; € IC(¢;), and v; € RC(¢g;,1), 1 <7 <m, and

By Proposition 1.1,

B1y; =0  for all 4. (5)

Since IC(c0) = 0, we may assume each g¢; is a positive integer, so y; = ;02 - - - B,, for some
r; € R. By (5), we have r; = 0, and consequently ~; = 0, for all 4, contradicting the fact
that oy # o). Therefore, hdgC > 2.

1.6. REMARK. [t should be pointed out that the description of C with hdgC = 0 in [6] is
true for all noncommutative rings R as well.

2. Condition (I) <= Condition (II)

2.1. LEMMA. Suppose A is a set of morphisms of C with codomain q and suppose x,y
are distinct morphisms in A. Then

r—y € ZImI(C(a)

acA

if and only if there exists a commutative diagram

where o; € A.
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PROOF. (<) Since (z — aqty) + (181 — aota) + -+ - + (amSm — y) = 0, we have

r—y = (O{ltl — (){181) + (OéQtQ — OZQSQ) + -+ (amtm - O{msm)
= oty —s1) +ao(ta — s2) + -+ + a(tm — Sm)

and the result follows.
(=) By assumption, x —y = > oyz; where a; € A and x; € IC(domay) for each i € I.

(2
Hence z; = Y r;;f;; for some r;; € R, and morphisms J;; in C with codf; = domay,

J
where > r;; = 0. Therefore
J

rT—y= Z Q; Z rijﬁij = Z Z Tij%‘ﬁij- (7)

For each ¢, let B; be the set of all morphisms 3;;. We say a morphism z in C is
reachable from «y, via f if there exists a sequence of equalities

Z = 0 Cyy

Oéil bil = CYZ'Q Cl’2

(8)
(67 bim = aif

for some m > 0 where b;,¢; € B; and 8 € By. By adding the equality axfr; = Bk to
(8), we see that z is reachable from «y via § if and only if z is reachable from a4, via any
Brj € Br. We say that z is reachable from «y, if it is reachable from ay, via some 8 € By.

Let I; be the set of all 7 such that x is reachable from «; and I, those ¢ for which y is
reachable from ;. Since x # y, x and y must appear in the right side of (7), so I; and I,
are both nonempty.

If I N I3 # (0, then both x and y are reachable from some «y and we have (6).

Suppose Iy NI, = (. Let I3 = I\ ([; UI,), where I is the set of all . Then
I, I, I3 are pairwise disjoint. Let Sy = {«;0;|i € Iy, B; € B;} for k = 1,2,3. Suppose
;B = B, B € B, B; € B;. If it € I then j € I;. Hence 51N S = ¢ and S1 N S5 = ¢.
Similarly Ss N'S3 = ¢. Thus Sy, 53,53 are pairwise disjoint. Since Iy, I, I3 are pairwise
disjoint, we obtain from (7)

rT—y= Z Zrijaiﬁij + Z Z TijOéi/Bij + Z Z Tijaiﬁij- (9)
iel j i€l €l g

Since both sides are elements of E(q), a free R-module, and Sy, Sy, S3 are disjoint, using
the fact that z € S; and y € S, we have

Z Z rijifi = .

el j
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So > > r; =1. But

i€l J

DD mi =2 (3 ) =0,

i€l j el j
a contradiction. n

An n-crown C,,, n > 1, in C is a subcategory of C generated by morphisms b;, z; and
yi,© = 1,...,n, satisfying the following

biz1 = bays
bazy = b3ys (10)
bnxn = 513/1-

We sometimes will follow semigroup theory and call it a cyclic system in C. It gives
the following commutative diagram in C. (Here and elsewhere all arrows are downwards.)

° ° ° 'y (11)

Tl T2 xr3 L —""" Tn

Y2 Y.
b bn -1
b1 b2 3 bn

Therefore a 1-crown is simply a cyclic system bz = by, or a diagram

It is supported if there is a commutative diagram
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where if m = 0 then x = y.
If n > 2 we say that C, is supported between x; and y; if there is a commutative
diagram

(14)

in C where m > 0 and each «; factors through b; and by, for some k # j. (When m = 0,
bjz; = bjy;.) If n > 2 we say that C,, is supported if C,, is supported between z; and y;
forall j=1,...,n.

Suppose F'is a free R-module with basis B. So every nonzero element x of I is of the
unique form b, 7, € R,b € B. If r, # 0 then b is said to be a term of z. If y € F and
every term of y is a term of = then y is a subsum of z. Consider the exact sequence

0-K—>FS3R—=0
where €(> mb) = > rp. So every element of K is of form Y r,b where > r, = 0.

2.2. LEMMA. [Lemma 5, [2]] If > x; = 0 where each x; € K is nonzero then, for each
i=1

n

i, there exists a subsum y; of x;, not all zero, such that > y; = 0. Moreover, after
i=1

rearranging subscripts, there exists an integer k, 2 < k < n such that

(15)

_)bi=biy, 1<i<k
"o, P>k

where each b; € B and by 1 = by.

n

PROOF. Since z7 # 0, there exist distinct terms by, by of 1. Since > z; = 0, by is a term
i=1

of some x; # w1, say, xo. Since x9 # 0, it has a term bg # by. If bs is a term of z; then

define y; = 0] — by, yo = by — by where 0] = b3 and y; = 0 for ¢ > 2 and the result follows.
If b5 is not a term of z; then it must be a term of some z3 distinct from z; and 9. Since
x3 # 0, it must have a term by # b3. Repeating this process, there exists s, such that,
for ¢ <'s, b;, by are distinct terms of x;, where z; are distinct. Furthermore b, is not
a term of xq,...,2;_; for j < s but bs;; is a term of z; for some ¢t < s. In this case we
define vy = b, — i1, Yr41 = biy1 — bryo, - -+, ys = by — b1 where b, = bs1; and all other
y; = 0. Then the result follows. n
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In the following we will apply the above Lemma to the case where F' = E(q) and
K =1C(q) in (2) to prove that conditions (I) and (II) are equivalent.

2.3. THEOREM. [Theorem B| IC is full if and only if every n-crown in C, n > 2, is
supported.

PROOF. (=) Suppose C contains an n-crown C,, of form (11), with n > 2. We will prove
that it is supported between x; and y;. This is clear if b;x; = b;y;. Otherwise, since

bi(xy — 1) +ba(x2 —y2) + - 4+ bp(@n — yn) = 0,

bj(z; —y;) € ImIC(b;) N> ImIC(by). Since IC is full,

k#j
yj) € ZImI(C(oz)

where the sum is indexed by o that factors through b; and b; for some k # j. Since
bj(z; —y;) # 0, by Lemma 2.1, C,, is supported between z; and y;, and hence, C, is
supported in C.

(<) Suppose IC is not full. Then there is an element z; in the right side of (1) but

not the left side. Therefore, —z1 = ) z; where z; € ImIC(f;), so Y, z; = 0. Consider
i=2

the exact sequence

0— IC(q @ch, Y R0

where €(> roa) = > ra, 7o € R and o € C(p,q). Because the middle term of the
exact sequence is a free R-module on morphisms with codomain ¢, we may assume that
> #Terms(z;) is a minimum. By Lemma 2.2, for each 4, there is a subsum y; of z; of

form (15) with > .y; = 0. Let j be the smallest index such that y; # 0 and let « be the
term of y; with coefficient 1. If r is the coefficient of « in z;, then > (z; — ry;) = 0, and

Z # Terms(z; — ry;) < Z #Terms(z;).

[ i

n

If j > 1, then y; = 0 so —x; = > (x; — ry;), contradicting the minimality assumption.
i=2

Thus, j = 1, so y; # 0. Since x; is not on the left side of (1), the same is true for either

x1 — ryp or ry;. In the former case, if z7 — ry; # 0, as #Terms(z; — ry;) < #Terms(x;)

and #Terms(x; — ry;) < #Terms(x;) for i > 1, it contradicts the minimality assumption.

Otherwise 7y;, and hence, y; is not on the left side of (1). Since ) . vy; = 0, y; is on the

right side of (1). After relabeling the indices beyond 1, we have Zle y; = 0 for some
k > 1 where

Y = Biw; — Biz,



146 KARIMAH SWEET AND CHARLES CHING-AN CHENG

for some morphisms w;, z; in C, where §;2; = [;11w;11 for all 1 < ¢ < k with subscripts
modulo k. Hence C contains the k-crown

5121 = 5211)2

Baze = B3ws

ﬁkzk = ﬂlwl

for some k£ > 1. Since all crowns in C are supported and k& > 2, there is a commutative
diagram (14) with b;x;, bjy; replaced by f121, 1wy, and each o factors through f; and
B; for some j # 1. If 8121 = Biw, then y; = 0, a contradiction. Otherwise,

Y1 = frwy — Prz = Z%’(tj — 55),
j=1

contradicting the fact that y; is not on the left side of (1). n

2.4. COROLLARY. If hdgC < 1 then all n-crowns in C, n > 1, are supported in C.
Actually the above is true with n = 1 as well.

2.5. PROPOSITION. If hdgrC < 1, then every 1-crown in C is supported in C.

PROOF. Suppose C contains a 1-crown of the form (12) and ¢ is the common codomain
of z and y. (For convenience we suppress the subscripts.) Since hdgC < 1, IC is flat, so
by Proposition 1.1, b(x — y) = 0 implies that there exist objects ¢; in C, w; € 1C(g;), and
a; € RC(q;,q), for alli=1,... m such

x—yzg Qiw;
i

and
ba; =0  for all 7.

For each i, oy = > ri;a5, where r;; € R and «;; are morphisms C, so
J

r—y= Z Zrijaijwi = Z Zaij<rijwi) € Z Zlm IC(ay).
i g i g i g

The result now follows from Lemma 2.1. m
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2.6. REMARK. From Corollary 6 and Proposition 7, we see that hdgC < 1 implies all
n-crowns are supported. But the converse is not true. For, in the example of Remark 1
of the previous section, it is easy to see that every 1-crown is supported and that every
n-crown, n > 1, is supported by Theorem 6 and Remark 1. But hdgC > 1. However, it
1s true if C 1s a DCC category.

2.7. COROLLARY. Suppose C is a DCC category. Then hdrC < 1 if and only if all
crowns are supported.

ProoF. Corollary 6 and Proposition 7 give the necessary direction. For the other direc-
tion, we have cdgC < 1 by [2]. Since cdgC = pd AR, IC is projective. But projectives
are flat, so the result follows. [

3. Condition (II) <= Condition (III)

If U and V' are subsets of the morphisms of C, then z,y € C are said to be connected via
U and V if there exists a commutative diagram

NN NN

[ J L}
ul u2 Up v2 v1
T Us Yy

in C, where u; € U, and v; € V. They are strongly connected via U and V' if, in addition,
ap and 7, are identities. When U =V we simply say that it is via U.

For each z in C, we shall denote by zC the set of all morphisms of the form zw, where
w is a morphism in C. A small category C is (strongly) L, if for every cyclic system
(10) in C, there exists an integer j, 1 < j < n, such that b;z; and b; 12,41 are (strongly)
connected via b;C N b;+1C and b;11C N b;;2C (where indices are taken modulo n). It is
clear that if C is strongly L. then C is L. Note that C, of form (11) is supported
between x; and y; if and only if b;z; and b;y; are strongly connected via b;C N U where U
is the set of all morphisms that factor through some b;, j # 1.

A cyclic system (10) is said to be reducible if b;C N b;C # () for some i # j where
i#j+£1 (mod n).

(16)

3.1. PROPOSITION. If every n-crown, n > 2, contained in C is supported in C, then every
cyclic system in C of length n > 3 is reducible.

PROOF. Suppose to the contrary that the system (10), i.e. C,, with n > 3 is irreducible.
Then b,CNb,C = 0 as n > 3. Since C, is supported in C, it is so between z; and y;.
Therefore we have commutative diagram (14) with j = 1 and each «; factors through
ﬁl and ﬂz for some 1 7& 1. If m = O, then blxl = blyl- So b2y2 = bll’l = b1y1 =
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b,x, contradicting boC N b,C = (. Therefore, m > 0. Since the system is irreducible,
biCNb,C = 0 for j # 2,n. If oy factors through by and «; factors through b, then
;1 = byy; and «; = b7y, for some morphisms 71, v, in C. Hence

bavisi1 = ai—18i—1 = aut; = by et

This contracts boCNb,C = (). Similarly, if a;_; factors through b,, and «; factors through
by we also get a contradiction. Therefore all «; factor through by, or all «; factors through
b,. In the first case, oy, = byy for some morphism ~v in C, so b,z, = biy; = @nsSm =
bovSm, a contradiction. In the second case a; = b,v for some morphism v in C, so,
boys = bixy = agty = b,tq, another contradiction. Therefore, the system is reducible. =

3.2. COROLLARY. If every n-crown, n > 2, contained in C is supported in C, then for
every cyclic system (10) of length n > 3, there is an index j such that b;C N b;1oC # 0.

ProoOF. If n = 3, the statement clearly holds. If n > 3, by Proposition 3.1, the system is
reducible, so there exist indices 4, j, 2 < |j —i| < n — 2, so that b,C N b,;C # . Among
all such pairs 4, j, choose i and j so that |j — 4| is minimal. Without loss of generality, we
may assume ¢ = 1 and 3 < j <n —1. Let s,t € C be such that b;s = b;t. Then we have
the cyclic system

biz1 = bays
baxy = b3ys
bjt = blS

of length j. By Proposition 3.1, this system is reducible, so there exists indices k, [, where
2 < |[l—k| < j—2,such that bCNHC £ 0. If j > 3, then || —-k| <j—2<j—1=|j—il,
contradicting the minimality of |j — i|. Therefore j = 3, and the proof is complete. m

3.3. PROPOSITION. [If every 3-crown contained in C is supported in C, then for a cyclic
system (10) of length three in C, there exist morphisms zy, z2, z3 in C such that

b1z1 = bQZQ = b3253.

PROOF. Since every (5 is supported in C, it is so between x; and y;. Consequently, there
exists a commutative diagram (14) where j=1 and each «; factors through b; and b, for
some k # 1. If m = 0, then byjx; = by, so boys = bixy = byy; = bzrs. Hence we
may assume that m > 0. Suppose «;_; factors through b, and «; factors through b3. So
;1 = byys for some morphism v, in C and «; = bsys for some morphism 73 in C. By
(14), we have

byy2s; = i—18i-1 = at; = byst;

and this morphism factors through b; as a; does. Hence the result follows. Similarly, if
a;_1 factors through b3 and «; factors through b, the result also follows. Therefore we
may assume either all «; factor through by or all o; factor through b3. In the earlier case,
Q= by for some morphism v in C, so bsxrs = biy1 = QnSm = baysm,. In the latter case,
a1 = by for some morphism ~ in C, so boys = byx1 = ayt; = byyt;. n
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3.4. PROPOSITION. If every 2-crown contained in C is supported in C, then, in any cyclic
system of form (10) of length two, byz and bexy are strongly connected via byC N byC.

PROOF. Since Cs is supported between 1 and y; in C, there exists a commutative diagram
(14) where each «; factors through both b; and by with j = 1. Thus, by and byzy = biy;
are strongly connected via b;C N byC. [

The next Theorem shows that conditions (II) and (III) are equivalent.

3.5. THEOREM. [Theorem C| Every n-crown, n > 2, in C is supported if and only if C
18 strongly L.

PROOF. (=) Consider the cyclic system (10). If n = 2, then the result follows from
Proposition 3.4. Suppose n > 3. By Corollary 3.2, there is an index j such that 6;C N
bjoC # 0. Without loss of generality, we may assume that j = 1. Then there exist
morphisms s, t in C such that b;s = bst, so we have the cyclic system

biz1 = bays
baxy = b3ys
b3t = b18

in C. We will show that byx; and byxy are connected via b;C N b,C and b,C N b3C. By
Proposition 3.3, there are morphisms 21, 2o, 23 in C such that

blZl = b222 = b323.
Applying Proposition 3.4 to the systems

biz1 = bays bozg = b323
and
bazo = b1 21 b3ys = bay
we get that bixy and byzo are strongly connected via byC N byC; byzo and bsys = boxo
are strongly connected via b,C N b3C. Thus, byz; and byxs are strongly connected via
b1C N b,C and byC N b3C. Therefore, C is strongly L.
(<) Let C,, be of the form (11). Suppose n = 2. Since C is strongly L., bjx; and
boxo are strongly connected via b;C N byC. Because byxy = biy, the result follows.
Suppose n = 3. Since C is strongly L, there is an index j such that b;x; and bj 112,41
are strongly connected via b;C N b;11;C and b;11C N b;42C (indices modulo n). Without
loss of generality, we may assume that j = 1. That is, there is a commutative diagram

NN

° (17)
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in C, where u; € b1C N by,C for all 7 and v; € byC N b3C for all [. Since by = by, the
crown is supported between xy and 5. Since u, = byw and v, = b3z for some morphisms
w, z in C, we have

biwa, = Uy, = VY = bg27s.

So we have the cyclic system

b (wa,.) = bs(27s)
bszs = biy1.

Since C is strongly L., there is a commutative diagram
[ ] [ ] [ ]
'\/\/\/"-/X@/° (18)

az as
al
biwar=ura;,

where each a; € b;C N b3C. Hence, together with the left half of (17), we obtain the
commutative diagram

NN N

3T3=b1Y1

Since each u;, a; factor through b; and either by or bs, Cs is supported between z; and y;.
Similarly, since bsys = byxs and vsys = uyc. = agty, (18) together with the right half of
(17) gives the commutative diagram

NVAVEAA VARV

Since each a;, v; factor through b3 and either by or by, Cf5 is supported between 3 and ys.
Therefore, C), is supported when n = 3.

Now suppose the result holds for all ¢ < m for some m > 3, and suppose n = m + 1.
Since C is strongly L., without loss of generality, we may assume that b;z; and byxs are
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strongly connected via b;C N b,C and byC N b3C. Hence there is a commutative diagram
(17) with u; € bjCNbyC for all i, and v; € byCNb3C for all [. Therefore u, = byw', vy = by2’
for some w’, 2/ € C. Hence u,a, = vyy, implies byw'a, = b3z'v,. Taking w = w'a, and
z = Z'7y,, we have byw = b3z. So we have two cyclic systems

b1y = by b33 = byyy
bao = b3ys byry = bsxs
b3z = byw e (19)
bpx, = b1y
biw = b3z

By induction, the 3-crown and (n — 1)-crown in (19) are supported in C. Hence C,, is
supported between x; and y; for all 7, except perhaps when ¢ = 1 or 3. Let U; be the
set of all morphisms that factor through some b;,7 # 1. Since the 3-crown on the left is
supported in C, byz1 and byw are strongly connected via byCNU;. Since the (n— 1)-crown
on the right is supported in C, byw and byy; are also strongly connected via b;C N Uj.
Thus b2z, and byy; are strongly connected via b;C N Uy, i.e. C), is supported between x;
and y;. Similarly, let Us be the set of all morphisms factoring through some b;,7 # 3.
Since bsxs and bsz are strongly connected via b3C N Us, b3z and bsys are also strongly
connected via b3CNU;s, we see that b3xs and bsys are also. Hence C, is supported between
xr3 and ys. n

A small category is cancellative if ab = ac or ba = ca = b = ¢ for all morphisms
a,b,c. When C is cancellative having only one object, using the fact that hdgC < c¢dgrC
and Theorems A, B and C we derive the following.

3.6. COROLLARY. [Novikov [9]] Suppose M is a cancellative monoid such that cdgC < 1.
Then M is L.

4. Embeddability

Since a small category can be thought of as a monoid with a “partial” binary operation,
many results in semigroup theory can be generalized to small categories. In this section
we shall state two such generalizations and use them to derive another necessary condition
for hdgC < 1. For details, we refer the readers to [5, Chapter 12|, [14] and [11].

Let Ly,--- , Ly, Ly,--- , L}, Ro,- -+ , Ry, R, -+, R}, be aset of 2(h+k+ 1) symbols. A
Malcev sequence, or M-sequence, denoted I(h,k,n) is a sequence of these symbols, each
occurring exactly once, so that

(1) Ry and Ry are respectively the first and last symbols;
(2) the L’s and R’s occur in their natural order;

(3) Lj occurs after L; and if L; occurs between L; and L}, then so does L}; and similarly
for R};
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(4) n symbols occur between Lj and Lj.

To each M-sequence, we can associate a system of equations called an M -system. This
is done by associating products of variables with the symbols of I(h,k,n) using the fol-
lowing table where each symbol of the table represents an unknown in the M-system. An
adjacent pair of symbols in I(h, k,n) determines an equation as follows: the left (right)
member of the equation is the top (bottom) entry of the column in the table associated
with the first (second) symbol of the pair. The adjacent pairs of symbols (from left to
right) of I(h, k,n) determine an ordered set of 2(h + k) + 1 equations, which we call the
M-system associated with I(h,k,n).

Suppose the M-system of equations associated with an M-sequence I(h,k,n) holds
for some set X = {a;,b;,¢;,di, A;, Bj,C;,D; |0 <i < h,0<j <k} of morphisms of C.
Then the 2(h + k) + 1 equations, with the elements of X substituted in for the variables,
form an M-chain I(h,k,n,X) in C with locked morphisms Ao, By. We say I(h,k,n,X)
is a closed M -chain if Ag = By.

4.1. THEOREM. [Bouleau [1]] If C is a cancellative Lo, category, then every M-chain in
C s closed.

Malcev’s Theorem, as proved in [5, Theorem 12.17], can also be generalized.

4.2. THEOREM. [Malcev| Let C be a small category. Then C is embeddable in a groupoid
if and only if every M-chain in C is closed.

Using the above two Theorems, which are proved in [11], together with Theorems A,
B and C, we have the following.

4.3. COROLLARY. If C is cancellative and hdgC < 1, then C is embeddable in a groupoid.

4.4. REMARK. The converse of the above is not true. For it can easily be shown that
any poset is embeddable in a groupoid but a poset can have arbitrarily large homological
dimensions. Bouleau has supplied a one-object counterexample in [1].

4.5. COROLLARY. If C is cancellative connected, and cdC < 1 then C is embeddable in
a groupoid which is equivalent to a free group.
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PRrROOF. By [4, Corollary 3.3], cdC < 1 implies ¢d S(C) < 1 where S(C) is the groupoid
reflection of C. Since C is connected, S(C) is connected and, therefore, is equivalent to a
group G. Hence c¢d S(C) = c¢d G. By Stallings [12] and Swan [13], cd G < 1 implies that
G is free. Since hdgC < c¢dgrC the result follows from Corollary 4.5.
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