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SMALL CATEGORIES OF HOMOLOGICAL DIMENSION ONE

KARIMAH SWEET AND CHARLES CHING-AN CHENG

Abstract. We derive three equivalent necessary conditions for a small category to
have homological dimension one, generalizing a result of Novikov. As a consequence, any
small cancellative category of homological dimension one is embeddable in a groupoid.

Introduction

Throughout C will be a small category and R a ring with identity. We will denote the
category of left R-modules byM and the category of covariant functors C→M byMC.
The additive category (or ringoid) RC has objects those of C and morphisms from p to
q the free module on C(p, q) such that the composition is bilinear. It is not hard to see
that the category AbRC of additive functors (or RC-modules) RC → Ab is isomorphic
to MC. If M ∈ AbRC, α ∈ RC(p, q) and x ∈M(p) then we write αx for M(α)(x).

Let N denote the set of non-negative integers. The R-homological dimension of C is
defined by

hdRC = sup{k : colimk 6= 0}

where colimk is the kth left derived functor of the colimit functor colim :MCop →M and
the supremum is taken in the set {−1} ∪ N ∪ {∞}. Since

colim M ∼= M
⊗
RC

∆R

where ∆R : C→M is the constant R-valued functor, and the isomorphism is natural in
M ∈MCop

, we have
hdRC = fd ∆R

where fd denotes the flat, or weak dimension. In case R = Z, we shall write hdC for
hdRC and refer to it as the homological dimension of C.

Isbell and Mitchell [6, Remark, P. 296] have described all small categories of R-
homological dimension zero if R is commutative. (Actually, their description is true
even if R is not commutative.) For any ring R, there exist descriptions of R-homological
dimension one in case C is a poset [2], or an abelian monoid [3].
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In this paper, we obtain the following three equivalent necessary Conditions (I), (II)
and (III) for a small category C to have R-homological dimension at most one.

Condition (I) The augmentation module IC is full,

Condition (II) All n-crowns, n > 1, are supported,

Condition (III) C is strongly L∞.

All of these will be defined below. It is worth noting that Condition (I) is a statement
in homological algebra, Condition (II) in category theory and Condition (III) in semigroup
theory. When C is cancellative Condition (III) implies that C is embeddable in a groupoid.

In Section 1 we prove that hdRC ≤ 1 implies condition (I) in Theorem A. In Section
2, we prove that conditions (I) and (II) are equivalent in Theorem B and in Section 3, we
prove that conditions (II) and (III) are equivalent in Theorem C. When C is cancellative
with one object, these Theorems give a slightly more general result than that of Novikov
[9]. In Section 4, we prove that if C is cancellative and hdRC ≤ 1 then C is embeddable
in a groupoid.

The results in this paper are extracted from the dissertation of K. Sweet [11].

1. hdRC ≤ 1 =⇒ Condition (I)

Let M ∈ MC. If βj, j = 1, . . . , n, are morphisms of C with a common codomain q, it is
easy to see that ∑

Im M(α) ⊆ Im M(β1) ∩
n∑

j=2

Im M(βj) (1)

where the first sum is indexed by all morphisms α in C factored through β1 and βj for
some j > 1. If the above is always an equality then we say that M is full.

Consider the exact sequence

0 // IC // E =
⊕
p∈|C|

RC(p, ) ε // ∆R // 0 (2)

in MC. Here ∆R is the constant R-valued functor and ε is defined by εq(x) =
∑
α

rα for

x =
∑
α

rαα where rα ∈ R, and α are morphisms in C with codα = q. Since E(q) is

the free R-module on all morphisms with codomain q, IC(q) consists of elements
∑
rαα

where rα ∈ R,α is a morphism in C with codα = q, and
∑
rα = 0. From (2) we see that

IC is flat if and only if hdRC ≤ 1.
The following is a generalization of the well-known Cohn’s Criteria for flatness [10,

Theorem 3.2(4)] specialized to RC-modules.

1.1. Proposition. A left RC-module M is flat if and only if, whenever
∑
j

βjxj = 0,

where βj ∈ RC(pj, q) and xj ∈ M(pj) for j = 1, . . . , n, there exist objects qi in C,
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wi ∈M(qi), and αij ∈ RC(qi, pj), for all i = 1, . . . ,m and all j, such that

xj =
∑
i

αijwi for all j

and ∑
j

βjαij = 0 for all i.

1.2. Proposition. If M ∈MC is flat then it is full.

Proof. Let x be a nonzero element of the right side of (1). Then x = β1x1 =
n∑
j=2

βjxj,

where xj ∈M(pj) and βj ∈ C(pj, q) for j = 1, . . . , n. So

(−β1)x1 +
n∑
j=2

βjxj = 0.

By Proposition 1.1, there exist objects qi in C, αij ∈ RC(qi, pj) and elements wi ∈M(qi)
for i = 1, . . . ,m and j = 1, . . . , n such that

xj =
m∑
i=1

αijwi, for all j (3)

and

(−β1)αi1 +
n∑
j=2

βjαij = 0 for all i. (4)

By (3) x = β1x1 =
m∑
i=1

β1αi1wi. Since x is nonzero, β1αi1 6= 0 for at least one i. For each

such i, αi1 =
∑
k

rikγik, where γik ∈ C(qi, p1) and rik ∈ R for all k. Hence, for each such i,

we have, by (4),

n∑
j=2

βjαij = β1αi1 =
∑
k

β1(rikγik) =
∑
k

rik(β1γik).

Since the above element is nonzero, without loss of generality, we may assume that each
rik 6= 0 and β1γik are pairwise distinct in C. Thus each β1γik factors through βj for some
j ≥ 2. Therefore

x = β1x1 =
∑
i

β1αi1wi =
∑
i

∑
k

β1(rikγik)wi =
∑
i

∑
k

(β1γik)(rikwi)

which is contained in the left side of (1).



140 KARIMAH SWEET AND CHARLES CHING-AN CHENG

The following theorem states that condition (I) is a necessary condition for hdRC ≤ 1.

1.3. Theorem. [Theorem A] If hdRC ≤ 1 then IC is full.

Proof. Since IC is flat, it is full by the above Proposition.

The R-cohomological dimension of C can be defined by

cdRC = pd ∆R.

Hence if cdRC ≤ 1 then IC is projective and, therefore, is flat implying that hdRC ≤ 1.
Thus we have deduced from Theorem A the following.

1.4. Corollary. If cdRC ≤ 1 then IC is full.

1.5. Remark. When C is a poset, the Converse of Theorem A is true by Theorem B
(below) and [2, Corollary 11]. However, it is not true in general. Consider the following
graph G (all arrows downward) where the vertices are 0, 1, . . . ,∞ and arrows from ∞ to
i are αi and α′i, from i to i− 1 is βi for any positive integers i.

•∞

•
3

...

•
2

•
1

•
0

β3

α′1α1

α′2α2

α′3α3

β1

β2

Let G0 be the free category on G and let ∼ be the least congruence relation on G0 containing
{(β1α1, β1α

′
1)} ∪ {(βi+1αi+1, αi), (βi+1α

′
i+1, α

′
i) | i ≥ 1 ∈ N} . Define C = G0/ ∼. We will

show that IC is full, but hdRC ≥ 2.

Suppose

x ∈ Im IC(γ1) ∩
n∑
i=2

Im IC(γi),

where x 6= 0 and codγi = q. If q =∞ then γi = 1 for all i. So certainly x ∈
∑

α Im IC(α)
where codα = q. Assume q 6=∞ and let γi ∈ C(pi, j). Since IC(∞) = 0, we may assume
each pi is a positive integer greater than or equal to j. Thus,

γi = βj+1 · · · βpi ,
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for each i. Let S be the set of morphisms in C that factor through γ1 and γi for some
i > 1. If p1 ≥ pi for some i > 1, then γ1 factors through γ1 and γi, and so

x ∈ Im IC(γ1) ⊆
∑
y∈S

Im IC(y).

If p1 < pi for all i > 1, then each γi factors through γ1, so

x ∈
n∑
i=2

Im IC(γi) ⊆
∑
y∈S

Im IC(y).

Next we will show that hdRC > 1. Suppose not. Then IC is flat. Since β1α1 = β1α
′
1,

β1(α1 − α′1) = 0.

By Proposition 1.1,

α1 − α′1 =
∑
i

γiwi,

for some wi ∈ IC(qi), and γi ∈ RC(qi, 1), 1 ≤ i ≤ m, and

β1γi = 0 for all i. (5)

Since IC(∞) = 0, we may assume each qi is a positive integer, so γi = riβ2 · · · βqi for some
ri ∈ R. By (5), we have ri = 0, and consequently γi = 0, for all i, contradicting the fact
that α1 6= α′1. Therefore, hdRC ≥ 2.

1.6. Remark. It should be pointed out that the description of C with hdRC = 0 in [6] is
true for all noncommutative rings R as well.

2. Condition (I) ⇐⇒ Condition (II)

2.1. Lemma. Suppose A is a set of morphisms of C with codomain q and suppose x, y
are distinct morphisms in A. Then

x− y ∈
∑
α∈A

Im IC(α)

if and only if there exists a commutative diagram

• • • • •

• • • •

•

α3

t1 s1 t2 s2 t3 tm sm

α1

α2

αmx y

(6)

where αi ∈ A.



142 KARIMAH SWEET AND CHARLES CHING-AN CHENG

Proof. (⇐) Since (x− α1t1) + (α1s1 − α2t2) + · · ·+ (αmsm − y) = 0, we have

x− y = (α1t1 − α1s1) + (α2t2 − α2s2) + · · ·+ (αmtm − αmsm)

= α1(t1 − s1) + α2(t2 − s2) + · · ·+ αm(tm − sm)

and the result follows.
(⇒) By assumption, x−y =

∑
i

αixi where αi ∈ A and xi ∈ IC(domαi) for each i ∈ I.

Hence xi =
∑
j

rijβij for some rij ∈ R, and morphisms βij in C with codβij = domαi,

where
∑
j

rij = 0. Therefore

x− y =
∑
i

αi
∑
j

rijβij =
∑
i

∑
j

rijαiβij. (7)

For each i, let Bi be the set of all morphisms βij. We say a morphism z in C is
reachable from αk via β if there exists a sequence of equalities

z = αi1ci1
αi1bi1 = αi2ci2

· · ·
αimbim = αkβ

(8)

for some m ≥ 0 where bi, ci ∈ Bi and β ∈ Bk. By adding the equality αkβkj = αkβkj to
(8), we see that z is reachable from αk via β if and only if z is reachable from αk via any
βkj ∈ Bk. We say that z is reachable from αk if it is reachable from αk via some β ∈ Bk.

Let I1 be the set of all i such that x is reachable from αi and I2 those i for which y is
reachable from αi. Since x 6= y, x and y must appear in the right side of (7), so I1 and I2
are both nonempty.

If I1 ∩ I2 6= ∅, then both x and y are reachable from some αk and we have (6).
Suppose I1 ∩ I2 = ∅. Let I3 = I \ (I1 ∪ I2), where I is the set of all i. Then

I1, I2, I3 are pairwise disjoint. Let Sk = {αiβi | i ∈ Ik, βi ∈ Bi} for k = 1, 2, 3. Suppose
αiβi = αjβj, βi ∈ Bi, βj ∈ Bj. If i ∈ I1 then j ∈ I1. Hence S1 ∩ S2 = φ and S1 ∩ S3 = φ.
Similarly S2 ∩ S3 = φ. Thus S1, S2, S3 are pairwise disjoint. Since I1, I2, I3 are pairwise
disjoint, we obtain from (7)

x− y =
∑
i∈I1

∑
j

rijαiβij +
∑
i∈I2

∑
j

rijαiβij +
∑
i∈I3

∑
j

rijαiβij. (9)

Since both sides are elements of E(q), a free R-module, and S1, S2, S3 are disjoint, using
the fact that x ∈ S1 and y ∈ S2, we have∑

i∈I1

∑
j

rijαiβij = x.
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So
∑
i∈I1

∑
j

rij = 1. But ∑
i∈I1

∑
j

rij =
∑
i∈I1

(
∑
j

rij) = 0,

a contradiction.

An n-crown Cn, n ≥ 1, in C is a subcategory of C generated by morphisms bi, xi and
yi, i = 1, . . . , n, satisfying the following

b1x1 = b2y2

b2x2 = b3y3

· · ·
bnxn = b1y1.

(10)

We sometimes will follow semigroup theory and call it a cyclic system in C. It gives
the following commutative diagram in C. (Here and elsewhere all arrows are downwards.)

• • • • •

• • • ••

•

x1
y2 y3

xn−1
y1

b1 b2
b3

xnx2 x3

bn−1

bn

yn

(11)

Therefore a 1-crown is simply a cyclic system bx = by, or a diagram

•

•

•

yx

b

(12)

It is supported if there is a commutative diagram

• • • • •

• • • •

•

α3

t1 s1 t2 s2 t3 tm sm

α1

α2

αmx y

(13)
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where if m = 0 then x = y.
If n ≥ 2 we say that Cn is supported between xj and yj if there is a commutative

diagram

• • • • •

• • • •

•

α3

t1 s1 t2 s2 t3 tm sm

α1

α2

αm
bjxj bjyj

(14)

in C where m ≥ 0 and each αi factors through bj and bk for some k 6= j. (When m = 0,
bjxj = bjyj.) If n ≥ 2 we say that Cn is supported if Cn is supported between xj and yj
for all j = 1, . . . , n.

Suppose F is a free R-module with basis B. So every nonzero element x of F is of the
unique form

∑
rbb, rb ∈ R, b ∈ B. If rb 6= 0 then b is said to be a term of x. If y ∈ F and

every term of y is a term of x then y is a subsum of x. Consider the exact sequence

0→ K → F
ε→ R→ 0

where ε(
∑
rbb) =

∑
rb. So every element of K is of form

∑
rbb where

∑
rb = 0.

2.2. Lemma. [Lemma 5, [2]] If
n∑
i=1

xi = 0 where each xi ∈ K is nonzero then, for each

i, there exists a subsum yi of xi, not all zero, such that
n∑
i=1

yi = 0. Moreover, after

rearranging subscripts, there exists an integer k, 2 ≤ k ≤ n such that

yi =

{
bi − bi+1, 1 ≤ i ≤ k

0, i > k
(15)

where each bi ∈ B and bk+1 = b1.

Proof. Since x1 6= 0, there exist distinct terms b1, b2 of x1. Since
n∑
i=1

xi = 0, b2 is a term

of some xi 6= x1, say, x2. Since x2 6= 0, it has a term b3 6= b2. If b3 is a term of x1 then
define y1 = b′1 − b2, y2 = b2 − b3 where b′1 = b3 and yi = 0 for i > 2 and the result follows.
If b3 is not a term of x1 then it must be a term of some x3 distinct from x1 and x2. Since
x3 6= 0, it must have a term b4 6= b3. Repeating this process, there exists s, such that,
for i ≤ s, bi, bi+1 are distinct terms of xi, where xi are distinct. Furthermore bj+1 is not
a term of x1, . . . , xj−1 for j < s but bs+1 is a term of xt for some t < s. In this case we
define yt = b′t − bt+1, yt+1 = bt+1 − bt+2, · · · , ys = bs − bs+1 where b′t = bs+1 and all other
yi = 0. Then the result follows.
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In the following we will apply the above Lemma to the case where F = E(q) and
K = IC(q) in (2) to prove that conditions (I) and (II) are equivalent.

2.3. Theorem. [Theorem B] IC is full if and only if every n-crown in C, n ≥ 2, is
supported.

Proof. (⇒) Suppose C contains an n-crown Cn of form (11), with n ≥ 2. We will prove
that it is supported between xj and yj. This is clear if bjxj = bjyj. Otherwise, since

b1(x1 − y1) + b2(x2 − y2) + · · ·+ bn(xn − yn) = 0,

bj(xj − yj) ∈ Im IC(bj) ∩
∑
k6=j

Im IC(bk). Since IC is full,

bj(xj − yj) ∈
∑

Im IC(α)

where the sum is indexed by α that factors through bj and bk for some k 6= j. Since
bj(xj − yj) 6= 0, by Lemma 2.1, Cn is supported between xj and yj, and hence, Cn is
supported in C.

(⇐) Suppose IC is not full. Then there is an element x1 in the right side of (1) but

not the left side. Therefore, −x1 =
n∑
i=2

xi where xi ∈ Im IC(βi), so
∑

i xi = 0. Consider

the exact sequence

0→ IC(q)→ E(q) =
⊕
p

RC(p, q)
εq→ R→ 0

where ε(
∑
rαα) =

∑
rα, rα ∈ R and α ∈ C(p, q). Because the middle term of the

exact sequence is a free R-module on morphisms with codomain q, we may assume that∑
i

#Terms(xi) is a minimum. By Lemma 2.2, for each i, there is a subsum yi of xi of

form (15) with
∑

i yi = 0. Let j be the smallest index such that yj 6= 0 and let α be the
term of yj with coefficient 1. If r is the coefficient of α in xj, then

∑
i(xi − ryi) = 0, and∑

i

# Terms(xi − ryi) <
∑
i

#Terms(xi).

If j > 1, then y1 = 0 so −x1 =
n∑
i=2

(xi − ryi), contradicting the minimality assumption.

Thus, j = 1, so y1 6= 0. Since x1 is not on the left side of (1), the same is true for either
x1 − ry1 or ry1. In the former case, if x1 − ry1 6= 0, as #Terms(x1 − ry1) < #Terms(x1)
and #Terms(xi− ryi) ≤ #Terms(xi) for i > 1, it contradicts the minimality assumption.
Otherwise ry1, and hence, y1 is not on the left side of (1). Since

∑
i yi = 0, y1 is on the

right side of (1). After relabeling the indices beyond 1, we have
∑k

i=1 yi = 0 for some
k > 1 where

yi = βiwi − βizi,



146 KARIMAH SWEET AND CHARLES CHING-AN CHENG

for some morphisms wi, zi in C, where βizi = βi+1wi+1 for all 1 ≤ i ≤ k with subscripts
modulo k. Hence C contains the k-crown

β1z1 = β2w2

β2z2 = β3w3

...

βkzk = β1w1

for some k > 1. Since all crowns in C are supported and k ≥ 2, there is a commutative
diagram (14) with bjxj, bjyj replaced by β1z1, β1w1, and each αj factors through β1 and
βj for some j 6= 1. If β1z1 = β1w1 then y1 = 0, a contradiction. Otherwise,

y1 = β1w1 − β1z1 =
m∑
j=1

αj(tj − sj),

contradicting the fact that y1 is not on the left side of (1).

2.4. Corollary. If hdRC ≤ 1 then all n-crowns in C, n > 1, are supported in C.

Actually the above is true with n = 1 as well.

2.5. Proposition. If hdRC ≤ 1, then every 1-crown in C is supported in C.

Proof. Suppose C contains a 1-crown of the form (12) and q is the common codomain
of x and y. (For convenience we suppress the subscripts.) Since hdRC ≤ 1, IC is flat, so
by Proposition 1.1, b(x− y) = 0 implies that there exist objects qi in C, wi ∈ IC(qi), and
αi ∈ RC(qi, q), for all i = 1, . . . ,m such

x− y =
∑
i

αiwi ,

and
bαi = 0 for all i.

For each i, αi =
∑
j

rijαij, where rij ∈ R and αij are morphisms C, so

x− y =
∑
i

∑
j

rijαijwi =
∑
i

∑
j

αij(rijwi) ∈
∑
i

∑
j

Im IC(αij).

The result now follows from Lemma 2.1.
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2.6. Remark. From Corollary 6 and Proposition 7, we see that hdRC ≤ 1 implies all
n-crowns are supported. But the converse is not true. For, in the example of Remark 1
of the previous section, it is easy to see that every 1-crown is supported and that every
n-crown, n > 1, is supported by Theorem 6 and Remark 1. But hdRC > 1. However, it
is true if C is a DCC category.

2.7. Corollary. Suppose C is a DCC category. Then hdRC ≤ 1 if and only if all
crowns are supported.

Proof. Corollary 6 and Proposition 7 give the necessary direction. For the other direc-
tion, we have cdRC ≤ 1 by [2]. Since cdRC = pd ∆R, IC is projective. But projectives
are flat, so the result follows.

3. Condition (II) ⇐⇒ Condition (III)

If U and V are subsets of the morphisms of C, then x, y ∈ C are said to be connected via
U and V if there exists a commutative diagram

• • • •

• • • ••

•

• • •

• • • •
β0 α1 β1 αr γs δs−1

x

u1 u2

α0

ur vs

γ1 δ0 γ0δ1

y

v1v2

(16)

in C, where ui ∈ U , and vj ∈ V . They are strongly connected via U and V if, in addition,
α0 and γ0 are identities. When U = V we simply say that it is via U .

For each z in C, we shall denote by zC the set of all morphisms of the form zw, where
w is a morphism in C. A small category C is (strongly) L∞ if for every cyclic system
(10) in C, there exists an integer j, 1 ≤ j ≤ n, such that bjxj and bj+1xj+1 are (strongly)
connected via bjC ∩ bj+1C and bj+1C ∩ bj+2C (where indices are taken modulo n). It is
clear that if C is strongly L∞ then C is L∞. Note that Cn of form (11) is supported
between xi and yi if and only if bixi and biyi are strongly connected via biC ∩ U where U
is the set of all morphisms that factor through some bj, j 6= i.

A cyclic system (10) is said to be reducible if biC ∩ bjC 6= ∅ for some i 6= j where
i 6≡ j ± 1 (mod n).

3.1. Proposition. If every n-crown, n ≥ 2, contained in C is supported in C, then every
cyclic system in C of length n > 3 is reducible.

Proof. Suppose to the contrary that the system (10), i.e. Cn, with n > 3 is irreducible.
Then b2C ∩ bnC = ∅ as n > 3. Since Cn is supported in C, it is so between x1 and y1.
Therefore we have commutative diagram (14) with j = 1 and each αi factors through
β1 and βi for some i 6= 1. If m = 0, then b1x1 = b1y1. So b2y2 = b1x1 = b1y1 =
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bnxn contradicting b2C ∩ bnC = ∅. Therefore, m > 0. Since the system is irreducible,
b1C ∩ bjC = ∅ for j 6= 2, n. If αi−1 factors through b2 and αi factors through bn then
αi−1 = b2γ1 and αi = bnγ2 for some morphisms γ1, γ2 in C. Hence

b2γ1si−1 = αi−1si−1 = αiti = bnγ2ti.

This contracts b2C∩ bnC = ∅. Similarly, if αi−1 factors through bn and αi factors through
b2 we also get a contradiction. Therefore all αi factor through b2, or all αi factors through
bn. In the first case, αm = b2γ for some morphism γ in C, so bnxn = b1y1 = αmsm =
b2γsm, a contradiction. In the second case α1 = bnγ for some morphism γ in C, so,
b2y2 = b1x1 = α1t1 = bnγt1, another contradiction. Therefore, the system is reducible.

3.2. Corollary. If every n-crown, n ≥ 2, contained in C is supported in C, then for
every cyclic system (10) of length n ≥ 3, there is an index j such that bjC ∩ bj+2C 6= ∅.
Proof. If n = 3, the statement clearly holds. If n > 3, by Proposition 3.1, the system is
reducible, so there exist indices i, j, 2 ≤ |j − i| ≤ n − 2, so that biC ∩ bjC 6= ∅. Among
all such pairs i, j, choose i and j so that |j− i| is minimal. Without loss of generality, we
may assume i = 1 and 3 ≤ j ≤ n− 1. Let s, t ∈ C be such that b1s = bjt. Then we have
the cyclic system

b1x1 = b2y2

b2x2 = b3y3

· · ·
bjt = b1s

of length j. By Proposition 3.1, this system is reducible, so there exists indices k, l, where
2 ≤ |l−k| ≤ j−2, such that bkC∩ blC 6= ∅. If j > 3, then |l−k| ≤ j−2 < j−1 = |j− i|,
contradicting the minimality of |j − i|. Therefore j = 3, and the proof is complete.

3.3. Proposition. If every 3-crown contained in C is supported in C, then for a cyclic
system (10) of length three in C, there exist morphisms z1, z2, z3 in C such that

b1z1 = b2z2 = b3z3.

Proof. Since every C3 is supported in C, it is so between x1 and y1. Consequently, there
exists a commutative diagram (14) where j=1 and each αi factors through b1 and bk for
some k 6= 1. If m = 0, then b1x1 = b1y1, so b2y2 = b1x1 = b1y1 = b3x3. Hence we
may assume that m > 0. Suppose αi−1 factors through b2 and αi factors through b3. So
αi−1 = b2γ2 for some morphism γ2 in C and αi = b3γ3 for some morphism γ3 in C. By
(14), we have

b2γ2si = αi−1si−1 = αiti = b3γ3ti

and this morphism factors through b1 as αi does. Hence the result follows. Similarly, if
αi−1 factors through b3 and αi factors through b2 the result also follows. Therefore we
may assume either all αi factor through b2 or all αi factor through b3. In the earlier case,
αm = b2γ for some morphism γ in C, so b3x3 = b1y1 = αmsm = b2γsm. In the latter case,
α1 = b3γ for some morphism γ in C, so b2y2 = b1x1 = α1t1 = b3γt1.
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3.4. Proposition. If every 2-crown contained in C is supported in C, then, in any cyclic
system of form (10) of length two, b1x and b2x2 are strongly connected via b1C ∩ b2C.

Proof. Since C2 is supported between x1 and y1 in C, there exists a commutative diagram
(14) where each αi factors through both b1 and b2 with j = 1. Thus, b1x1 and b2x2 = b1y1
are strongly connected via b1C ∩ b2C.

The next Theorem shows that conditions (II) and (III) are equivalent.

3.5. Theorem. [Theorem C] Every n-crown, n ≥ 2, in C is supported if and only if C
is strongly L∞.

Proof. (⇒) Consider the cyclic system (10). If n = 2, then the result follows from
Proposition 3.4. Suppose n ≥ 3. By Corollary 3.2, there is an index j such that bjC ∩
bj+2C 6= ∅. Without loss of generality, we may assume that j = 1. Then there exist
morphisms s, t in C such that b1s = b3t, so we have the cyclic system

b1x1 = b2y2

b2x2 = b3y3

b3t = b1s

in C. We will show that b1x1 and b2x2 are connected via b1C ∩ b2C and b2C ∩ b3C. By
Proposition 3.3, there are morphisms z1, z2, z3 in C such that

b1z1 = b2z2 = b3z3.

Applying Proposition 3.4 to the systems

b1x1 = b2y2

b2z2 = b1z1
and

b2z2 = b3z3

b3y3 = b2x2

we get that b1x1 and b2z2 are strongly connected via b1C ∩ b2C; b2z2 and b3y3 = b2x2
are strongly connected via b2C ∩ b3C. Thus, b1x1 and b2x2 are strongly connected via
b1C ∩ b2C and b2C ∩ b3C. Therefore, C is strongly L∞.

(⇐) Let Cn be of the form (11). Suppose n = 2. Since C is strongly L∞, b1x1 and
b2x2 are strongly connected via b1C ∩ b2C. Because b2x2 = b1y1, the result follows.

Suppose n = 3. Since C is strongly L∞, there is an index j such that bjxj and bj+1xj+1

are strongly connected via bjC ∩ bj+1C and bj+1C ∩ bj+2C (indices modulo n). Without
loss of generality, we may assume that j = 1. That is, there is a commutative diagram

• • • •

• • ••

•

• • •

• • •

β0 α1 β1 αr γs δs−1

b1x1

u1 u2 ur vs

γ1 δ0δ1

b2x2

v1v2

(17)
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in C, where ui ∈ b1C ∩ b2C for all i and vl ∈ b2C ∩ b3C for all l. Since b2y2 = b1x1, the
crown is supported between x2 and y2. Since ur = b1w and vs = b3z for some morphisms
w, z in C, we have

b1wαr = urαr = vsγs = b3zγs.

So we have the cyclic system

b1(wαr) = b3(zγs)

b3x3 = b1y1.

Since C is strongly L∞, there is a commutative diagram

• • • • •

• • • •

•

a3

t1 s1 t2 s2 t3 tm sm

a1

a2
am

b1wαr=urαr b3x3=b1y1

(18)

where each aj ∈ b1C ∩ b3C. Hence, together with the left half of (17), we obtain the
commutative diagram

• • • •

• • ••

•

• • •

• • •

β0 α1 β1 αr t1 s1

b1x1
u1 u2

ur a1

tm smsm−1

b1y1
amam−1

Since each ui, aj factor through b1 and either b2 or b3, C3 is supported between x1 and y1.
Similarly, since b3y3 = b2x2 and vsγs = urαr = a1t1, (18) together with the right half of
(17) gives the commutative diagram

• • • •

• • ••

•

• • •

• • •

sm tm sm−1 t1 γs δs−1

b3x3

am am−1 a1 vs

γ1 δ0δ1

b3y3

v1v2

Since each aj, vl factor through b3 and either b1 or b2, C3 is supported between x3 and y3.
Therefore, Cn is supported when n = 3.

Now suppose the result holds for all t ≤ m for some m ≥ 3, and suppose n = m + 1.
Since C is strongly L∞, without loss of generality, we may assume that b1x1 and b2x2 are
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strongly connected via b1C ∩ b2C and b2C ∩ b3C. Hence there is a commutative diagram
(17) with ui ∈ b1C∩b2C for all i, and vl ∈ b2C∩b3C for all l. Therefore ur = b1w

′, vs = b3z
′

for some w′, z′ ∈ C. Hence urαr = vsγs implies b1w
′αr = b3z

′γs. Taking w = w′αr and
z = z′γs, we have b1w = b3z. So we have two cyclic systems

b1x1 = b2y2 b3x3 = b4y4

b2x2 = b3y3 b4x4 = b5x5

b3z = b1w · · · (19)

bnxn = b1y1

b1w = b3z

By induction, the 3-crown and (n − 1)-crown in (19) are supported in C. Hence Cn is
supported between xi and yi for all i, except perhaps when i = 1 or 3. Let U1 be the
set of all morphisms that factor through some bi, i 6= 1. Since the 3-crown on the left is
supported in C, b1x1 and b1w are strongly connected via b1C∩U1. Since the (n−1)-crown
on the right is supported in C, b1w and b1y1 are also strongly connected via b1C ∩ U1.
Thus b1x1 and b1y1 are strongly connected via b1C ∩ U1, i.e. Cn is supported between x1
and y1. Similarly, let U3 be the set of all morphisms factoring through some bi, i 6= 3.
Since b3x3 and b3z are strongly connected via b3C ∩ U3, b3z and b3y3 are also strongly
connected via b3C∩U3, we see that b3x3 and b3y3 are also. Hence Cn is supported between
x3 and y3.

A small category is cancellative if ab = ac or ba = ca =⇒ b = c for all morphisms
a, b, c. When C is cancellative having only one object, using the fact that hdRC ≤ cdRC
and Theorems A, B and C we derive the following.

3.6. Corollary. [Novikov [9]] Suppose M is a cancellative monoid such that cdRC ≤ 1.
Then M is L∞.

4. Embeddability

Since a small category can be thought of as a monoid with a “partial” binary operation,
many results in semigroup theory can be generalized to small categories. In this section
we shall state two such generalizations and use them to derive another necessary condition
for hdRC ≤ 1. For details, we refer the readers to [5, Chapter 12], [14] and [11].

Let L1, · · · , Lh, L∗1, · · · , L∗h, R0, · · · , Rk, R
∗
0, · · · , R∗k be a set of 2(h+k+1) symbols. A

Malcev sequence, or M-sequence, denoted I(h, k, n) is a sequence of these symbols, each
occurring exactly once, so that

(1) R0 and R∗0 are respectively the first and last symbols;

(2) the L’s and R’s occur in their natural order;

(3) L∗i occurs after Li and if Lj occurs between Li and L∗i , then so does L∗j ; and similarly
for R∗i ;
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(4) n symbols occur between Lh and L∗h.

To each M -sequence, we can associate a system of equations called an M-system. This
is done by associating products of variables with the symbols of I(h, k, n) using the fol-
lowing table where each symbol of the table represents an unknown in the M -system. An
adjacent pair of symbols in I(h, k, n) determines an equation as follows: the left (right)
member of the equation is the top (bottom) entry of the column in the table associated
with the first (second) symbol of the pair. The adjacent pairs of symbols (from left to
right) of I(h, k, n) determine an ordered set of 2(h + k) + 1 equations, which we call the
M -system associated with I(h, k, n).

Li L∗i Ri R∗i

diai cibi AiDi BiCi

ciai dibi AiCi BiDi

Suppose the M -system of equations associated with an M -sequence I(h, k, n) holds
for some set X = {ai, bi, ci, di, Aj, Bj, Cj, Dj | 0 < i ≤ h, 0 ≤ j ≤ k} of morphisms of C.
Then the 2(h+ k) + 1 equations, with the elements of X substituted in for the variables,
form an M-chain I(h, k, n,X) in C with locked morphisms A0, B0. We say I(h, k, n,X)
is a closed M-chain if A0 = B0.

4.1. Theorem. [Bouleau [1]] If C is a cancellative L∞ category, then every M-chain in
C is closed.

Malcev’s Theorem, as proved in [5, Theorem 12.17], can also be generalized.

4.2. Theorem. [Malcev] Let C be a small category. Then C is embeddable in a groupoid
if and only if every M-chain in C is closed.

Using the above two Theorems, which are proved in [11], together with Theorems A,
B and C, we have the following.

4.3. Corollary. If C is cancellative and hdRC ≤ 1, then C is embeddable in a groupoid.

4.4. Remark. The converse of the above is not true. For it can easily be shown that
any poset is embeddable in a groupoid but a poset can have arbitrarily large homological
dimensions. Bouleau has supplied a one-object counterexample in [1].

4.5. Corollary. If C is cancellative connected, and cdC ≤ 1 then C is embeddable in
a groupoid which is equivalent to a free group.
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Proof. By [4, Corollary 3.3], cdC ≤ 1 implies cd S(C) ≤ 1 where S(C) is the groupoid
reflection of C. Since C is connected, S(C) is connected and, therefore, is equivalent to a
group G. Hence cd S(C) = cd G. By Stallings [12] and Swan [13], cd G ≤ 1 implies that
G is free. Since hdRC ≤ cdRC the result follows from Corollary 4.5.
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