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LAX ORTHOGONAL FACTORISATIONS IN ORDERED
STRUCTURES

MARIA MANUEL CLEMENTINO AND IGNACIO LÓPEZ FRANCO

Abstract. We give an account of lax orthogonal factorisation systems on order-
enriched categories. Among them, we define and characterise the kz-reflective ones,
in a way that mirrors the characterisation of reflective orthogonal factorisation systems.
We use simple monads to construct lax orthogonal factorisation systems, such as one on
the category of T0 topological spaces closely related to continuous lattices.

1. Introduction
Weak factorisation systems (wfss) have been a feature of Homotopy Theory even before
Quillen’s definition of model categories and the recognition of their importance. Wfss can
be described as a pair of classes of morphisms pL,Rq that satisfy three properties. First,
each morphism of the category must be a composition of a morphism from L followed
by one of R, perhaps in a non-unique way. Secondly, each r P R must have the right
lifting property with respect to each ` P L; in other words, each commutative square, as
displayed, has a (not necessarily unique) diagonal filler.

� //

`
��

�

r

��
� //

@@

�

(1.1)

Thirdly, pL,Rq is, in a precise way, maximal. Each one of Quillen’s model categories
comes equipped with two wfs: (cofibrations, trivial fibrations) and (trivial cofibrations,
fibrations).

Orthogonal factorisations systems (ofs) can be described as wfss in which the diago-
nal filler (1.1) not only exists but it is unique. This makes the factorisation of a morphism
f as f � r � `, with ` P L and r P R, unique up to unique isomorphism. Two typical
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examples of ofss are the factorisation of a function as a surjection followed by an injec-
tion, and of a continuous map between topological spaces as a surjection followed by an
embedding (i.e., a homeomorphism onto its image). As far as we can discern, ofss are
coeval with wfss but arose independently, inspired by different examples.

When the ambient category has a terminal object, denoted by 1, there is a case of (1.1)
of special interest, namely:


 //

`

��

A

��

 //

??

1
(1.2)

If the unique morphism A Ñ 1 has the right (unique) lifting property with respect to `,
one says that A is injective with respect (resp., orthogonal to) `. Clearly each ofs pL,Rq
gives rise to a class of objects that are orthogonal to each member of L: those objects A
such that AÑ 1 belongs to R. The extent to which pL,Rq is determined by this class of
objects is the subject of study of [7]. The ofss so determined are called reflective.

In addition to their widespread use in homological algebra, injective objects play a
role in many other areas of mathematics. For example, hyperconvex spaces are the objects
injective with respect to isometries in the category of metric spaces and non-expansive
maps (see [2, 17]). Another example is provided by complete Boolean algebras, which are
injective with respect to injections in the categories of Boolean algebras, Heyting algebras
and distributive lattices [16, 4, 3].

There are examples, as those introduced by D. Scott [29], of squares (1.2) where the
diagonal filler is not unique but there exists a smallest one, with respect to an ordering
between morphisms. The main example from [29] consists of those topological spaces
that arise from endowing continuous lattices with the Scott topology. These spaces are
characterised by their injectivity with respect to topological embeddings. In fact, if ` is
a topological embedding and A is a continuous lattice in (1.2), there is a diagonal filler
that is the smallest with respect to the (opposite of) the pointwise specialisation order
(see §18 for more details).

Another example comes from complete lattices, which can be characterised as those
posets that are injective with respect to embeddings of posets. As in the previous example,
in the situation (1.2) where A is a complete lattice and ` is a poset embedding, there exists
a smallest diagonal filler.

Motivated by the above examples, one can generalise the existence of a smallest diag-
onal filler in the situation (1.2) to the situation of a commutative square (1.1). By doing
so, one arrives to the notion of lax orthogonal factorisation system.

The present paper gives an account, in the context of order-enriched categories, of lax
orthogonal factorisation systems (lofs), a notion that sits between ofss and wfss.

orthogonal lax orthogonal weak
factorisation � factorisation � factorisation

system system system
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Lofss were introduced and studied in the context of 2-categories by the authors in [8]. We
build on ibid. to prove new results on reflective lofss as well as to provide new examples.

In a lofs, the existence of a diagonal filler (1.1) is replaced by the existence of a
smallest diagonal filler. More precisely, there is a diagonal filler d with the property that
d ¤ d1 for any other diagonal filler d1.

� //

`
��

�

r

��
� //

d

22

d1

CC

¤

�

Since morphisms between two objects in an order-enriched category form a poset, the
above property uniquely defines the smallest diagonal filler. There are, however, advan-
tages in providing these diagonals by means of an algebraic structure, instead of postu-
lating the existence of a smallest diagonal filler. This algebraic structure is provided by
the algebraic weak factorisation systems (awfss), introduced with a different name in [15]
and slightly modified in [14]; we use the definition given in the latter.

An awfs on an order-enriched category C consists of a locally monotone comonad L
and a locally monotone monad R on C2 interrelated by axioms, and that define a locally
monotone functorial factorisation f � Rf � Lf . Inspired by the observation of [15] that
ofss correspond to awfss whose monad and comonad are idempotent, we defined in [8]
lofss as awfss whose monad and comonad are lax idempotent, or Kock-Zöberlein. We
reprise this definition in the context of order-enriched categories, which enables some
simplifications.

A fundamental example of lofs on the order-enriched category of posets factors each
morphism as a left adjoint right inverse (or lari) followed by a split opfibration. This
factorisation can be constructed on any order-enriched category with sufficient (finite)
limits, and plays a similar role for lofss as the factorisation isomorphism–morphism
(that factors f as 1dompfq followed by f) plays for ofss (§5).

What is new in this paper?
1. We introduce kz-reflective lofss as those lofss pL,Rq that are determined by the
restriction of the monad R on C2 to C (here C is viewed as the full subcategory of C2 with
objects of the form A Ñ 1). We characterise kz-reflective lofss as those satisfying the
following properties: i) each lari is an L-coalgebra and each morphism of the former is
a morphism of the latter; ii) if g � f and g are L-coalgebras, then so is f ; iii) a similar
requirement at the level of morphisms of C2 (see §12). For example, the lofs of lari–split
opfibration mentioned above will be reflective with our definition.
2. After recalling the simple monads of [8] (§15), we obtain lofss on the category of
T0 topological spaces as a consequence of the simplicity of a certain monad: the filter
monad, which associates to each topological space the space of filters of its open subsets
endowed with a natural topology (§18). The algebras for the filter monad are precisely
the continuous lattices (with the Scott topology). The induced lofs on (T0) topological
spaces has an associated wfs that was considered in [6]. We also provide easy-to-verify
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conditions guaranteeing that a submonad of a simple lax idempotent monad enjoys these
same properties (§16). When applied to the filter monad we obtain lofss closely related
to continuous Scott domains, stably compact spaces and sober spaces.
3. Another example that we obtain from a simple monad is a lofs on the order-
enriched category of (skeletal) generalised metric spaces §19. The restriction of this lofs
to the category of metric spaces yields an ofs whose left class of morphisms are the dense
inclusions. Further examples are explored in [9] in a very general framework that covers,
for example, R. Lowen’s approach spaces as well as the examples mentioned above.
4. A third example consists of a lofs on the category of distributive lattices, induced
by the monad that associates to each distributive lattice its frame of ideals. The left
morphisms consist of inclusions of full sub-lattices A � B with the property that, for all
a P A, if a ¤ b_ b1, then there are x, x1 P A with a ¤ x_x1 and x ¤ b, x1 ¤ b1. Frames are
characterised as the distributive lattices that are injective with respect to these inclusions.
5. We present some results on the structure of lofss. For example, we show that
the category of lofss and morphisms of awfss is a preorder (§6) and a morphism
pL,Rq Ñ pL1,R1q is the same as a morphism of comonads L Ñ L1 and the same as a
morphism of monads R1 Ñ R (§7). We improve on results from [8] to obtain a more
satisfactory characterisation of lofss in terms of kz-lifting operations (Theorem 9.2).
Furthermore, we show that, in our context of order-enriched categories, some axioms of
lofs are redundant. For example, the distributivity axiom, part of the definition of awfs,
can be omitted as long as the comonad and monad are lax idempotent (§10).

2. Lax idempotent monads
We shall denote the category of posets (sets with an order relation that is reflexive,
transitive and anti-symmetric) and order-preserving morphisms by Ord. A category
enriched in Ord, or Ord-category, amounts to a category whose homs are posets, and
whose composition preserves the order. An Ord-functor between Ord-categories is the
same as a functor that preserves the order of morphisms.

2.1. Definition. A monad T � pT, η, µq on an Ord-category C is lax idempotent, or
Kock–Zöberlein, if it satisfies any of the following equivalent conditions.

1. Tη � µ ¤ 1.

2. 1 ¤ ηT � µ.

3. For any T-algebra a : TAÑ A, the inequality 1TA ¤ ηA � a holds.

4. A morphism l : TA Ñ A defines a T-algebra structure pA, lq if and only if l % ηA
with l � ηA � 1A.

5. Tη ¤ ηT .
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6. For any pair of T-algebras pA, aq and pB, bq and all morphisms f : A Ñ B in C,
b � Tf ¤ f � a holds.

7. For any T-algebra pA, aq and any morphism f : X Ñ A in C, the equality a�Tf �ηX �
f exhibits a � Tf as a left extension of f along ηX : X Ñ TX.

The equivalences of the above conditions can be found, in the more general case of
2-categories, in [22]. Morphisms f satisfying condition (6) are called lax morphisms of
T-algebras, even for a monad T that is not lax idempotent; so condition (6) says that T is
lax idempotent if any morphism in C between T-algebras is a lax morphism of T-algebras.

2.2. Definition. The notion of a lax idempotent comonad G � pG, ε, δq is a dual one:
G is a lax idempotent comonad on C if pGop, εop, δopq, the corresponding monad on Cop, is
lax idempotent.

2.3. Example. Given an ordered set X, denote by P pXq the set of down-closed subsets
of X, ordered by the inclusion. The assignment X ÞÑ P pXq can be extended to a functor
whose value on a monotone function f : X Ñ Y is

P pXq
f�ÝÑ P pY q f�pZq � ty P Y : pDx P Zqpy ¤ fpxqqu �

¤
xPZ

Ófpxq.

Clearly, f� ¤ g� if f ¤ g, so P is an Ord-functor. It is well-known that X ÞÑ P pXq
defines a monad on Ord, with unit

ηX : X ÝÑ P pXq x ÞÑ Óx � ty P X : y ¤ xu

and multiplication µ : P 2pXq Ñ P pXq given by
�
U � P pXq

�
ÞÑ
�

U . This Ord-monad
on the Ord-category Ord is lax idempotent, since

PηXpZq �
¤
xPZ

ÓpÓxq � ÓZ � ηP pXqpZq.

The Ord-category P-Alg is the category of complete lattices with morphisms those mono-
tone maps that preserve arbitrary suprema.

2.4. Example. If X is a topological space, there is a preorder on the set X given by
x ¤ y when y P txu. This is the opposite of the so-called specialisation order, and makes
X into a poset precisely when X is a t0 topological space.

For Top0 the category of t0 topological spaces, Top0 is the associated Ord-category,
with ordering f ¤ g : X Ñ Y if fpxq ¤ gpxq for all x P X. There is an endo-Ord-functor
F : Top0 Ñ Top0 that sends X to the set F pXq of filters of open sets of X, with topology
generated by the subsets U# � tϕ P F pXq : U P ϕu, for U P OX. This is in fact
the functor part of the lax idempotent filter monad on Top0 that will be considered in
Section 18.

There is a well-known result about algebras for lax idempotent monads on Ord-
categories (see [24] and [13]) that can be summarised by saying that algebras are closed
under retracts. More precisely:
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2.5. Lemma. If T � pT, η, µq is a lax idempotent monad on an Ord-category, the follow-
ing conditions on an object A are equivalent.

1. A admits a (unique) T-algebra structure (we simply say that A is a T-algebra).

2. There is an adjunction a % ηA : AÑ TA with a � ηA � 1.

3. ηA : AÑ TA has a retract.

4. A is a retract of TA.

5. A is a retract of a T-algebra.

In this case, a : TAÑ A is a T-algebra structure on A.

2.6. Remark. The lemma means that, if T is a lax idempotent monad on A, then the
Ord-category T-Alg may be regarded as a locally full sub-Ord-category of A. Part of
the proof consists in showing that if b : TB Ñ B is an algebra structure and r : B Ñ A
is a retract with section s, then r � b � Ts is an algebra structure for A, and s becomes a
morphism of algebras A Ñ B. One could say that T-Alg � A is a discrete S-fibration
where S is the class of sections in A.

Note that ηA may have at most one retract, which is a fortiori a T-algebra structure
for A (just set B � TA and b � µA in the previous paragraph). Furthermore, the inclusion
T-Alg � pT, ηq-Alg into the Ord-category of algebras for the pointed endo-Ord-functor
pT, ηq is an equality.

In the following lemma, the term monad morphism is used in strict sense of a natu-
ral transformation that is compatible with the multiplications and units, i.e., a monoid
morphism.

2.7. Lemma. Let T and S be monads on an Ord-category. Then there is at most one
monad morphism T Ñ S if T is lax idempotent.
Proof. Suppose that ϕX : TX Ñ SX are the components of a monad morphism. The
morphism

ψX : TSX ϕSXÝÝÑ S2X
µS

XÝÝÑ SX

is a T-algebra structure on SX, and therefore it is uniquely defined as the left adjoint to
the unit SX Ñ TSX. Therefore, ϕX � ψX � T pη

S
Xq is uniquely determined.

3. Orthogonal factorisations and simple reflections, revisited
In this section we revisit some of the material of Cassidy–Hébert–Kelly work on simple
reflections [7] from a slightly different perspective, more amenable to generalisation.

Suppose that T : A Ñ A is a reflection, with unit ηA : A Ñ TA, on the category A,
which we assume to admit pullbacks. The corresponding reflective subcategory will be



LAX ORTHOGONAL FACTORISATIONS IN ORDERED STRUCTURES 1385

denoted by T-Alg, as it consists of the algebras for the idempotent monad T associated
to T , whose invertible multiplication we denote by µ : T 2 ñ T .

We say that a morphism f in A is a T -isomorphism, or is T -invertible, if Tf is an
isomorphism.

Each morphism f : AÑ B can be factorised through a pullback square, as displayed.

f � Rf � Lf

A

Lf   

ηA

!!

f

!!

Kf

pb

qf //

Rf
��

TA

Tf
��

B
ηB // TB

3.1. Remark. The factorisation f � Rf �Lf is functorial, in the sense that, if ph, kq : f Ñ
g is a morphism in the arrow category A2, then there is a morphism Kph, kq : Kf Ñ Kg

�

f

��

h // �

g

��
� k // �

ÞÝÑ

� h //

Lf
��

�

Lg
��

Kf
Kph,kq//

Rf

��

Kg

Rg

��
� k // �

yielding a functor K : A2 Ñ A.

3.2. Remark. The assignment that sends a morphism f ÞÑ Lf is part of an endofunctor
on A2, given on morphisms by

f
ph,kq
ÝÝÝÑ g ÞÝÑ Lf

ph,Kph,kqq
ÝÝÝÝÝÝÑ Lg.

Furthermore, there is a natural transformation Φ: Lñ 1 with components

Φf �

�

Lf

��

�

f

��
�

Rf // �

.

3.3. Remark. The assignment f ÞÑ Rf underlies a monad on the arrow category A2.
Its unit and multiplication are given by

Λf �
�

f

��

Lf // �

Rf

��
� �

Πf �
�

R2f
��

πf // �

Rf

��
� �

where the morphism πf : KRf Ñ Kf is the unique morphism into the pullback Kf such
that qf � πf � µdompfq � Tqf � qRf and Rf � πf � RRf .
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3.4. Definition. [7] The reflection T � pT, ηq is simple if Lf is a T -isomorphism.
As pointed out in [7], if T is simple then the factorisation f � Rf � Lf defines an

orthogonal factorisation system, with left class of morphisms that of T -isomorphisms. To
say only a few words about this fact, any morphism of the form Tf is orthogonal to
T -isomorphisms, and so Rf , as a pullback of Tf , is also orthogonal to T -isomorphisms;
together with the simplicity hypothesis that Lf be a T -isomorphism, we obtain an or-
thogonal factorisation.

We recall that a copointed endofunctor Γ: Gñ 1 is well-copointed ifGΓ � ΓG (see [19,
p. 4] for the definition in the pointed context). For example, the copointed endofunctor of
an idempotent comonad is well-copointed. The category of coalgebras for a well-copointed
endofunctor pG,Γq on a category C is the full subcategory defined by those objects C P C
for which ΓC is invertible [19, Prop. 5.2].

A well-copointed endofunctor pG,Γq underlies a comonad precisely when each GpCq
is a pG,Γq-coalgebra, i.e., when ΓG � GΓ is invertible. In this case, the comultiplication
has components Γ�1

GpCq : GpCq Ñ G2pCq. The category of coalgebras for the comonad
coincides with that of pG,Γq.

An example we shall use is given by the full subcategory C2 consisting of isomorphisms.
It is isomorphic to pI,Υq-Coalg, where Υ: I ñ 1C2 is the well-copointed endofunctor
given by Ipfq � 1dompfq and Υf � p1, fq : 1dompfq Ñ f . Furthermore, pI,Υq underlies an
idempotent comonad I on C2.

If we denote by F T : A Ñ T-Alg the left adjoint of the inclusion T-Alg � A, then we
can consider the full subcategory T-Iso � A2 whose objects are those morphisms of A that
are T -isomorphisms (equivalently, those morphisms f such that F T pfq is an isomorphism)
as a pullback.

T-Iso //

��
pb

Iso

��
A2 pFT q2 // T-Alg2

L

Φ
��

//

pb

pUT q2IpF T q2

pUT q2ΥpFT q2

��
1A2

pFT q2 // T 2

The pullback diagram on the right above defines the well-copointed endofunctor pL,Φq
on A2, and pL,Φq-Coalg is isomorphic to T-Iso over A2 (see [19, Prop. 9.2]).

3.5. Lemma. The following assertions are equivalent.

1. The monad T is simple.

2. The copointed endofunctor pL,Φq underlies a comonad whose category of coalgebras
is T-Iso ãÑ A2.

3. The copointed endofunctor pL,Φq can be extended to a comonad.
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Proof. (1)ñ(2) The simplicity of T means that Lpfq is a T-isomorphism, that is, it is an
pL,Φq-coalgebra. By the well-copointeness of pL,Φq this means that each ΦLpfq is invert-
ible. pL,Φq underlies an idempotent comonad whose coalgebras are the T-isomorphisms.
See the comments on well-copointed endofunctors before this lemma.

(2)ñ(3) is obvious. Finally, if pL,Φq can be extended to a comonad, as we have
already mentioned, this comonad has the same coalgebras as pL,Φq. Then, Lpfq P T-Iso,
and we have (3)ñ(1).

3.6. Remark. The full subcategory T-Iso � A2 may be coreflective when T is not simple.
See [7, Thm. 3.3].

4. Algebraic weak factorisation systems
Algebraic weak factorisation systems (awfss) where first introduced by M. Grandis and
W. Tholen in [15], with an extra distributivity condition later added by R. Garner in [14].
In this section we shall give the definition of awfss on order-enriched categories, which
is the case we will need, even though the definitions remain virtually unchanged.

4.1. Definition. An Ord-functorial factorisation on an Ord-category C consists of a
factorisation

dom λ
ùñ E

ρ
ùñ cod

in the category of locally monotone functors C2 Ñ C of the natural transformation dom ñ
cod with component at f P C2 equal to f : dompfq Ñ codpfq. It is important that in this
factorisation E should be a locally monotone functor.

As in the case of functorial factorisations on ordinary categories, an Ord-functorial
factorisation as the one described in the previous paragraph can be equivalently described
as:

• A copointed endo-Ord-functor Φ: Lñ 1C2 on C2 with dompΦq � 1.

• A pointed endo-Ord-functor Λ: 1C2 ñ R on C2 with codpΛq � 1.

The three descriptions of an Ord-functorial factorisation are related by:

dompΛf q � Lf � λf codpΦf q � Rf � ρf . (4.1)

4.2. Definition. An algebraic weak factorisation system, abbreviated awfs, on an Ord-
category C consists of a pair pL,Rq, where L � pL,Φ,Σq is an Ord-comonad and R �
pR,Λ,Πq is an Ord-monad on C2, such that pL,Φq and pR,Λq represent the same Ord-
functorial factorisation on C (i.e., the equalities (4.1) hold), plus a distributivity condition
that we proceed to explain.
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The unit axiom Π � pΛRq � 1 of the monad R implies, since codpΛq � 1, that codpΠq �
1; dually dompΣq � 1, so these transformations have components that look like:

Σf �

�

Lf

��

�

L2f
��

�
σf // �

and Πf �
�

R2f
��

πf // �

Rf

��
� �

(4.2)

One can form a transformation

∆: LR ùñ RL ∆f �

Kf
1

##
LRf

��

σf //

��

KLf

RLf
��

KRf
πf // Kf

The distributivity axiom requires ∆ to be a mixed distributive law between the comonad
L and the monad R; this amounts to the commutativity of the following diagrams.

LR2 ∆R //

LΠ
��

RLR
R∆ // R2L

ΠL
��

LR
∆ // RL

LR

ΣR
��

∆ // RL

RΣ
��

L2R
L∆ // LRL

∆L // RL2

(4.3)

(The two axioms of a mixed distributive law that involve the unit of the monad and the
counit of the comonad automatically hold.)

4.3. Example. Each ofs pE ,M q on C gives rise (upon choosing an pE ,M q-factorisation
for each morphism) to an awfs pL,Rq, where L is the idempotent comonad associated to
the coreflective subcategory E � C2 and R is the idempotent monad associated to the
reflective inclusion M � C2. Conversely, an awfs pL,Rq with both L and R idempotent
induces an ofs. This was first shown in [15, Thm. 3.2], and [5, Prop. 3] further shows
that it suffices that either L or R be idempotent.

If pL,Rq is an awfs on C, an L-coalgebra structure on f and an R-algebra structure
on g can be depicted by commutative squares

�

f

��

�

Lf

��
� s // �

�

Rg

��

p // �

g

��
� �

and the (co)algebra axioms can be written in the following way (where the morphisms σf
and πg are those described in Definition 4.2).

Rf � s � 1 Kp1, sq � s � σf � s

p � Lg � 1 p �Kpp, 1q � p � πg
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A morphism of L-coalgebras pf, sq Ñ pf 1, s1q is a morphism ph, kq : f Ñ f 1 in C2 that is
compatible with the coalgebra structures in the usual way:

Kph, kq � s � s1 � k.

Similarly, a morphism of R-algebras pg, pq Ñ pg1, p1q is a morphism pu, vq : g Ñ g1 such
that

p1 �Kpu, vq � u � p.

With the obvious composition and identities we obtain categories L-Coalg and R-Alg,
equipped with forgetful functors into C2. These are Ord-categories by stipulating that
the ordering of morphisms of (co)algebras is inherited from the ordering of morphisms
in C2; as a consequence, the forgetful functors from L-Coalg and R-Alg to C2 become
Ord-enriched.

4.4. Remark. Each awfs pL,Rq (enriched or not) has an underlying wfs pL,Rq. The
class L consists of all those morphisms that admit a structure of coalgebra over the
copointed endofunctor pL,Φq that underlies L; similarly, R consists of all those morphisms
that admit a structure of an algebra over the pointed endofunctor pR,Λq that underlies
R.

5. Laris and awfss
One of the most important examples of awfss for us will be provided by the so-called
laris.

5.1. Definition. A left adjoint right inverse, or lari, in an Ord-category is a morphism
f that is part of an adjunction f % g with 1 � g � f . In the same situation, we say that g
is a right adjoint left inverse, or rali.

Suppose given another adjunction f 1 % g1 with 1 � g1 � f 1, and morphisms h and k as
in the displayed diagram.

X

f
��
%

OO

g

h // X 1

f 1

��
%

OO

g1

Y
k

// Y 1

We say that ph, kq is a morphism of laris f Ñ f 1, and that ph, kq is a morphism of ralis
g Ñ g1, if f 1 �h � k �f and g1 �k � h �g. With the obvious notion of composition, laris and
ralis form categories that come equipped with forgetful functors into C2. Furthermore,
if C is an Ord-category, there are Ord-categories LaripCq and RalipCq with objects and
morphisms described above, and ordering between morphisms those of C2.

Since laris are dual to the lalis described in some detail in [5, §4.3], we feel free to
give only a summary description of the associated awfs, which is in fact a lofs.
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The inclusion Ord-functor LaripCq � C2 is comonadic if C admits certain Ord-enriched
limits: the so-called limits of morphisms, or in other words, comma-objects of the form
f Ó 1B, where f : A Ñ B. This allows the construction of the free (split) opfibration
monad M on C given by Mpfq � f Ó 1B. The unit of the monad M is given by the
morphism Epfq : AÑ Kf such that rf � Epfq � 1A and Mpfq � Epfq � f .

Kf
rf //

Mf
��

¥

A

f
��

B B

A
Epfq //

f
��

Kf

Mpfq
��

B B

A

ΣfEpfq
��

1
A

E2pfq
��

Kf
σf // KEpfq

The endofunctor E has a copoint with components ΦE
f : p1,Mpfqq : Epfq Ñ f , and a

comultiplication Σf as depicted above, where σf : Kpfq Ñ KEpfq is the unique morphism
defined by the conditions MpEpfqq � σf � 1Kf and rEpfq � σf � rf .

It is not hard to show that Epfq % rf and this will be the lari structure that makes
Epfq the cofree lari on f , so LaripCq is isomorphic to E-Coalg. See [5, §4.2] for the dual
construction for lalis. If p1, sq : f Ñ Epfq is an E-coalgebra structure, the right adjoint
of f is obtained as rf � s : codpfq Ñ Kpfq Ñ dompfq.

5.2. Lemma. The comonad E is lax idempotent.
Proof. Suppose that f : A Ñ B and g : C Ñ D are E-coalgebras with structures p1, sq
and p1, tq. A morphism ph, kq : f Ñ g in C2 is a lax morphism of coalgebras if Eph, kq �
p1, sq ¤ p1, tq � ph, kq, or, equivalently, if

Kph, kq � s ¤ t � k : D Ñ Kpgq (5.1)

since the domain component of the inequality is trivially an equality h � h. The re-
quired inequality will hold precisely when it does after composing with the projections
Mpgq : Kpgq Ñ D and rg : Kpgq Ñ C. Composition with Mpgq yields in fact an equality,
as Mpgq �Kph, kq � s � k �Mpfq � s � k �Mpgq � t �k. Composition with rg of the left hand
side of (5.1) equals rg �Kph, kq � s � h � rf � s, while the right hand side equals rg � t � k.
From the comments above this lemma, f % prf � sq and g % prg � tq. Taking mates in
g � h � k � f we obtain h � rf � s ¤ rg � t � k, and we deduce that (5.1) holds. We have shown
that any morphism f Ñ g in C2 is a lax morphism of coalgebras, which is to say that E
is lax idempotent.

Remark 2.6 immediately yields the following corollary.

5.3. Corollary. The inclusion E-Coalg � pE,ΦEq-Coalg is an equality.

6. Lax orthogonal factorisation systems
6.1. Definition. An awfs pL,Rq on an Ord-category C is a lax orthogonal factorisation
system (abbreviated lofs) if either of the following equivalent conditions holds:
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• The comonad L is lax idempotent.

• The monad R is lax idempotent.

The equivalence of the two conditions was established in [8].
According to our notation, the unit and multiplication of R and the counit and comul-

tiplication of L are depicted as morphisms in C2 as follows.

�

Λf

Lf //

f

��

�

Rf

��
� �

�

Πf

πf //

R2f
��

�

Rf

��
� �

�

ΦfLf

��

�

f

��
�

Rf
// �

�

ΣfLf

��

�

L2f
��

� σf

// �

Then, pL,Rq is lax orthogonal if and only if any of the following conditions hold:

KpLf, 1q � πf ¤ 1 1 ¤ LRf � πf 1 ¤ σf �RLf σf �Kp1, Rfq ¤ 1. (6.1)

In terms of R-algebras and L-coalgebras, the lax idempotency of pL,Rq is described as
follows. If pf, sq is an L-coalgebra and pg, pq is an R-algebra, as displayed below,

�

pf,sqf

��

�

Lf

��
� s

// �

�

pg,pq

p //

Rg

��

�

g

��
� �

then the awfs is lax orthogonal if and only if any of the following two equivalent conditions
hold, for all pf, sq and pg, pq:

1 ¤ s �Rf and 1 ¤ Lg � p.

6.2. Example. The awfs pE,Mq of §5, for which M-algebras are opfibrations and E-
coalgebras are laris, is lax orthogonal. Indeed, the monad M is well-known to be lax
idempotent.

There is a category AWFSpCq whose objects are awfss on the Ord-category C. A
morphism pL,Rq ÝÑ pL1,R1q is a natural family of morphisms ϕf that make the following
diagrams commute.

�

Lf
��

�

L1f
��

Kf
ϕf //

Rf

��

K 1f

R1f

��
� �

(6.2)

Furthermore, the morphisms p1, ϕf q : Lf Ñ L1f must form a comonad morphism L Ñ L1,
and the morphisms pϕf , 1q : Rf Ñ R1f must form a monad morphism R Ñ R1.

There is a full subcategory LOFSpCq of AWFSpCq consisting of the lofss.
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6.3. Lemma. LOFSpCq is a preorder.
Proof. If the morphisms ϕf as in (6.2) form a morphism from pL,Rq to pL1,R1q, then the
morphisms pϕf , 1q : Rf Ñ R1f define a morphism of monads. By Lemma 2.7, there can
be only one morphism of monads from a lax idempotent monad.

7. Lifting operations
In this section we introduce kz-lifting operations and explain the motivation behind the
definition of lax orthogonal factorisation systems. Before all that, we must say something
about how lifting operations work in relation to awfss on Ord-categories.

Suppose that U : A Ñ C2 Ð B : V are locally monotone functors between Ord-
categories. A lifting operation from U to V can be described as a choice of a diagonal
filler φa,bph, kq for each morphism ph, kq : UaÑ V b in C2.

� h //

Ua
��

�

V b
��

�
k

//

φa,bph,kq

88

�

These diagonal fillers must satisfy a naturality condition with respect to morphisms in A
and B. If α : a1 Ñ a and β : bÑ b1 are morphisms in A and B respectively, then

φa1,b1
�

dom V β � h � domUα, codV β � k � codUα
�
� pdom V βq � φa,bph, kq � pcodUαq

as depicted in the following diagram.

� domUα //

Ua1

��

� h //

Ua
��

�

V b
��

domV β // �

V b1

��
� codUα

//

22

�
k

//

88

�
codV β

// �

So far, the definition of lifting operation is the one given in [14], but our categories are
enriched in Ord and the functors U and V are locally monotone, so we require that the
diagonal filler satisfies: if ph, kq and ph1, k1q : UaÑ V b are commutative squares in C with
ph, kq ¤ ph1, k1q (i.e., h ¤ h1 and k ¤ k1) then

φa,bph, kq ¤ φa,bph
1, k1q.

The idea of a functorial factorisation dom ñ E ñ cod, as defined in Definition 4.1, is
that it induces a canonical lifting operation between the forgetful Ord-functors U and V

U : pL,Φq-Coalg ÝÑ C2 ÐÝ pR,Λq-Alg : V.

Here Φ: Lñ 1C2 and Λ: 1C2 ñ R are, respectively, the copointed endo-Ord-functor and
the pointed endo-Ord-functor on C2 associated to the given Ord-functorial factorisation.
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A coalgebra for pL,Φq can be depicted as the commutative square on the left below,
while an algebra for pR,Λq is a commutative square on the right

pf, sq �

�

f

��

�

Lf

��
� s // �

pg, pq �

�
p //

Rg

��

�

g

��
� �

satisfying Rf � s � 1 and p � Lg � 1. Given a commutative square ph, kq : f Ñ g, there is
a canonical diagonal filler

φpf,sq,pg,pqph, kq � p �Kph, kq � s. (7.1)

It is immediate to see that these diagonal fillers form a lifting operation from U to V .
This is a good point to include the following result, which will be useful in the proof

of Theorem 10.1.

7.1. Lemma. For any awfs pL,Rq, the diagonals φLf,Rf pLf,Rfq are identity morphisms.

�
Lf //

Lf

��

�

Rf

��
�

Rf
//

1
@@

�

Proof. For f : A Ñ B, the L-coalgebra structure of Lf is given by the comultiplication
p1A, σf q : Lf Ñ L2f , while the R-algebra structure of Rf is given by the multiplica-
tion pπf , 1Bq : R2f Ñ Rf . See (4.2) for a depiction of the comultiplication Σ and the
multiplication Π. According to (7.1), the diagonal filler of the square of the statement is
πf �KpLf,Rfq�σf . Factorise the morphism pLf,Rfq : Lf Ñ Rf in C2 as p1A, Rfq : Lf Ñ f
followed by pLf, 1Bq : f Ñ Rf . Thus, the diagonal filler is πf �KpLf, 1Bq �Kp1A, Rfq � σf .
Applying the domain functor to the monad axiom Πf �RΛf � 1f we obtain πf �KpLf, 1Bq �
1. Similarly, applying the codomain functor to the comonad axiom LΦf �Σf � 1f we ob-
tain Kp1A, Rfq � σf � 1.

7.2. Remark. As pointed out in [5, §2.5], the commutativity of the two diagrams (4.3)
that express the fact that ∆: LR ñ RL is a mixed distributive law is equivalent to the
requirement that the diagonal filler of the displayed square should be σf � πf .

Kf

LRf

��

σf // KLf

RLf

��
KRf πf

//

σf �πf

;;

Kf
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8. KZ-lifting operations
In the previous section we saw that each functorial factorisation canonically induces a
lifting operation. It is logical to expect that lifting operations that arise from lofss
should have an extra property. In this section we identify this property.

8.1. Definition. Suppose given a lifting operation φ from U : A Ñ C2 to V : B Ñ C2

on an Ord-category C as defined in §7. We say that φ is a kz-lifting operation if, for all
a P A, b P B and each commutative diagram as on the left, the inequality on the right
holds.

�

Ua
��

h // �

V b
��

�
k
//

d

@@

�

ùñ φa,bph, kq ¤ d

In other words, the diagonal filler given by the lifting operation φ is a lower bound of all
possible diagonal fillers.

8.2. Example. Consider the monotone map 0: 1 Ñ 2 that includes the terminal ordered
set as the initial element of the ordered set 2 � p0 ¤ 1q. There is a bijection between
opfibration structures on a morphism g : X Ñ Y in Ord and kz-lifting operations on g
against the morphism 0. To see this, first notice that a commutative square

1 //

0
��

X

g
��

2 //

??

Y

is equally well given by an element x P X and an element y P Y such that gpxq ¤ y.
The existence of a diagonal filler is the existence of an element xy P X with x ¤ xy and
gpxyq � y. This diagonal filler is a lower bound if for any other x ¤ x̄ with gpx̄q � y there
is an inequality xy ¤ x̄. The element xy is unique and the assignment px, yq ÞÑ xy defines
a split opfibration structure on g.

8.3. Theorem. [8, Thm. 9.10] The following conditions are equivalent for an awfs pL,Rq
on an Ord-category C.

1. The awfs is a lofs.

2. The lifting operation from the forgetful functor U : L-Coalg Ñ C2 to the forgetful
functor V : R-Alg Ñ C2 is a kz-lifting operation.

8.4. Theorem. Let pL,Rq be a lofs on an Ord-category C. Then, the following state-
ments about a morphism f of C are equivalent:

1. f is an R-algebra.
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2. f is injective with respect to L-coalgebras, in the sense that any commutative square

�
`
��

// �
f
��

� // �

with ` P L-Coalg has a diagonal filler.

3. f admits a (necessarily unique) pR,Λq-algebra structure.

4. f is a retract in C2 of an R-algebra.

The wfs that underlies pL,Rq has as left part the L-coalgebras and as right part the R-
algebras.
Proof. We have seen in §7 that (1) implies (2). To prove that (2) implies (3), consider
the diagonal filler below, which shows that pp, 1q : Rf Ñ f is an pR,Λq-algebra structure.

�

Lf

��

�

f

��
�

p
@@

Rf
// �

The implications (3)ñ(4)ñ(1) are particular instances of part of Lemma 2.5 and Re-
mark 2.6, since R is lax idempotent.

As mentioned in Remark 4.4, the underlying wfs pL,Rq of pL,Rq has as right class
the algebras for the pointed endofunctor pR,Λq. Then, f P R (or, by duality, f P L)
precisely when f is an R-algebra (an L-coalgebra).

9. Categories of lifting operations
If U : J Ñ C2 is an Ord-functor, there is a sub-Ord-category J &kz of C2 whose objects
are those morphisms f of C that admit a kz-lifting operation against U , i.e., those for
which the following Ord-natural transformation between Ord-functors J op Ñ Ord is a
rali.

φ�,f : CpcodUp�q, dom fq ÝÑ C2pUp�q, fq.

A morphism is a morphism in C2 that is compatible with the left adjoints of the φj,f and
the counits of these adjunctions in the obvious way. The subcategory J &kz � C2 is replete
and the inclusion is full on isomorphisms.

The construction pJ , Uq ÞÑ J &kz is part of a functor

p�q&kz : pOrd-Cat{C2qop ÝÑ SubpC2q

whose codomain is the poset of replete sub-Ord-categories of C2 that are full on isomor-
phisms, denoted here simply by SubpC2q. Explicitly, if S : J Ñ I is an Ord-functor over
C2, then I&kz � J &kz .
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Given an Ord-functor U : J Ñ C2, there is another subcategory &kzJ � C2 that is
constructed dually to J &kz . More explicitly, &kzJ has objects pf, φf,�q where f P C2 and
φ is a kz-lifting operation from f to U .

�

f

��

h // �

Uj

��
�

k
//

φf,jph,kq

::

�

The kz-lifting operation φf,� is a rali structure on the Ord-natural transformation
morphisms Cpcodpfq, domUp�qq Ñ C2pf, Up�qq.

9.1. Theorem. Suppose given Ord-functors

J U
ÝÝÝÑ C2 V

ÐÝÝÝ I.

There is a bijection between:

• kz-lifting operations from U to V ;

• Factorisations of V through J &kz;

• Factorisations of U through &kzI.

These correspondences yield a Galois connection on the poset SubpC2q.
Suppose that pL,Rq is a lofs on the Ord-category C. There is an Ord-enriched

inclusion of subcategories of C2

R-Alg � L-Coalg&kz (9.1)

introduced in [8], that equips each R-algebra with its canonical kz-lifting operation against
L-coalgebras (see Theorem 8.3). Using [5, §6.3] one could deduce that (9.1) is an isomor-
phism. Since we can treat L-Coalg and R-Alg are subcategories of C2, one has the following
simpler proof.

9.2. Theorem. The inclusion (9.1) induced by a lofs pL,Rq is an equality.
Proof. Supposing that pg, φ�,gq is a kz-lifting operation against the forgetful Ord-
functor U : L-Coalg Ñ C2, we want to construct an R-algebra structure on g : A Ñ B. It
suffices to exhibit g as a retract in C2 of Rg, by Theorem 8.4, and this can be done by
means of the kz-diagonal filler p � φLg,gp1, Rgq as depicted below.

A

Lg
��

A

g

��
Kg

Rg
//

p
>>

B
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Now that we know that (9.1) is an equality on objects, it remains to prove that it is
fully faithful, in the Ord-enriched sense. Suppose that ph, kq : pf, φ�,f q Ñ pg, φ�,gq is a
morphism in L-Coalg&kz , and let pf : Rf Ñ f and pg : Rg Ñ g be the associated algebra
structures. We have the following string of equalities

h � pf � h � φLf,f p1, Rfq � φLf,gph, k �Rfq � φLg,gp1, Rgq �Kph, kq � pg �Kph, kq,

which are a result of the definition of lifting operations.

�

Lf

��

� h //

f

��

�

g

��
�

Rf
//

pf

@@

�
k
// �

�

�

Lf

��

h // �

g

��
�

k�Rf
//

φLf,gph,k�Rfq

77

�

�

�

Lf

��

h // �

Lg

��

�

g

��
�
Kph,kq

// �

pg

@@

Rg
// �

This shows that (9.1) is full on morphisms.
We conclude the section with a result on morphisms of lofss.

9.3. Proposition. Suppose that pL,Rq and pL1,R1q are lofss on the Ord-category C.
There is a bijection between the following sets, which, moreover, can have at most one
element.

(a) Morphisms of lofss pL,Rq ÝÑ pL1,R1q.

(b) Comonad morphisms L Ñ L1.

(c) Monad morphisms R Ñ R1.

Proof. First, there is at most one morphism of the kind in (a), (b) and (c) by Lemma 6.3,
Lemma 2.7 and its dual form (i.e., the version for comonads). Clearly, if there is a
morphism as in (a), then there are morphisms as in (b) and (c), just by definition of
morphism of awfss (§6).

Suppose there is a morphism of comonads Q from L to L1. It induces an inclusion
L-Coalg � L1-Coalg of subcategories of C2. Applying the functor p�q&kz and employing
Theorem 9.2 we obtain an inclusion

R1-Alg � L1-Coalg&kz � L-Coalg&kz � R-Alg,

which is necessarily induced by an Ord-monad morphism R Ñ R1.
We have seen that (c) has a member if (b) has a member. By a duality argument, i.e.,

by taking the opposite Ord-category of C, we deduce the converse: (b) has a member if
(c) does.

To complete the proof, it suffices to produce a morphism of lofss from a comonad
morphism Q as above. Even tough this can be achieved by means of double categories
and [5, Prop. 2], we prefer to avoid introducing double categories at this point, giving
instead an elementary proof.
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Due to the counit axiom, p1, R1fq �Qf � p1, Rfq, we have that Qf is of the form p1, ϕf q
for a morphism ϕf : Kf Ñ K 1f . Using the construction in the proof of Theorem 9.2, one
can describe the R-algebra structure on an R1-algebra pp, 1q : R1f Ñ f . Its associated
kz-lifting operation φ�,f defines a diagonal filler for each commutative square

�

`
��

h // �

f

��
�

k
//

φ`,f ph,kq

::

�

φ`,f ph, kq � p �Kph, kq � s

for any L1-coalgebra p1, sq : `Ñ L`. Upon applying L1-Coalg&kz � L-Coalg&kz we obtain a
kz-lifting operation ψ�,f of f against all L-coalgebras. If p1, tq : g Ñ Lg is an L-coalgebra,
its L1-coalgebra structure is

g
p1,tq
ÝÝÑ Lg

p1,ϕgq
ÝÝÝÑ L1g

and therefore ψg,f ph, kq is the form

ψg,f ph, kq � p �K 1ph, kq � ϕg � t � p � ϕf �Kph, kq � t.

We now obtain the R-algebra structure on f by ψLf,f p1, Rfq,

ψLf,f p1, Rfq � p � ϕf �Kp1, Rfq � σf � p � ϕf .

In conclusion, (9.1) sends an R1-algebra pp, 1q : R1f Ñ f to the R-algebra pp �ϕf , 1q : Rf Ñ
f . This implies that the monad morphism R Ñ R1 (whose existence we showed above) has
components of the form pϕf , 1q : Rf Ñ R1f . Therefore, the morphisms ϕf : Kf Ñ K 1f
form a morphism of lofss as in (a), completing the proof.

The above proposition is a reminder of the differences that exist between general
awfss and lofss. In the general case, the proposition does not hold; see [28, Lemma 6.9]
or [5, Prop. 2].

10. The definition of LOFS revisited
Lax orthogonal factorisation systems on Ord-categories were defined in §6 as Ord-
enriched awfss pL,Rq whose comonad L is lax idempotent, or equivalently, whose monad R
is lax idempotent. The definition of awfs includes a mixed distributive law ∆: LRñ RL,
with components pσf , πf q : LRf Ñ RLf . The axioms of a mixed distributive law in this
case amount to the commutativity of the diagrams in (4.3), and they are equivalent, as
mentioned in Remark 7.2, to the requirement that the diagonal filler of the square below
should be σf � πf .

Kf

LRf

��

σf // KLf

RLf

��
KRf πf

//

σf �πf

;;

Kf

(10.1)

The main result of the section is the following.
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10.1. Theorem. The distributive law axiom in the definition of lofs is redundant. More
precisely, given a domain-preserving Ord-comonad L and a codomain-preserving Ord-
monad R on C2 that induce the same Ord-functorial factorisation f � Rf � Lf , the
following two statements are equivalent, and when they hold we are in the presence of a
lofs.

• One of L,R is lax idempotent and the distributive law axiom holds.

• Both L and R are lax idempotent.

Proof. All we need to show is that σf � πf is the diagonal filler of the square (10.1). The
existence of a kz-lifting operation for R-algebras against L-coalgebras does not depend on
the distributivity axiom but it suffices that both L and R be lax idempotent. Then, we
only need to show that

σf � πf ¤ d (10.2)
for the kz-diagonal filler d of the square (10.1), for, in this case, the inequality is necessarily
an equality. There are adjunctions σf % Kp1, Rfq and KpLf, 1q % πf since L and R are
lax idempotent. Thus, the inequality (10.2) is equivalent to 1 ¤ Kp1, Rfq�d�KpLf, 1q, due
to the inequalities (6.1) of §6. Consider the following diagram, where pLf,KpLf, 1qq �
LpLf, 1q is a morphism of L-coalgebras and pKp1, Rfq, Rfq � Rp1, Rfq is a morphism of
R-algebras.

�
Lf //

Lf

��

�
σf //

LRf

��

�

RLf

��

Kp1,Rfq // �

Rf

��
�
KpLf,1q

// � πf

//

d

<<

�
Rf

// �

�
Lf //

Lf

��

�

Rf

��
�

Rf
//

1
<<

�

By the naturality of the diagonal fillers with respect to morphisms of L-coalgebras and
morphism of R-algebras, we deduce that Kp1, Rfq �d �KpLf, 1q is the diagonal filler of the
square on the right hand side, and hence equal to the identity morphism (see Lemma 7.1).
Therefore the inequality (10.2) holds, completing the proof.

11. Embeddings with respect to a monad
Embeddings with respect to a lax idempotent monad were extensively exploited in [12, 13]
and in [11], where topological embeddings were exhibited as an example (more on this in
§18). In this section we begin our analysis of the interplay between these embeddings and
lofss.

11.1. Definition. If S : C Ñ B is an Ord-functor between Ord-categories, a morphism
f in C is an S-embedding if Sf is a lari in B. A morphism of S-embeddings f Ñ g is a
morphism ph, kq : f Ñ g in C2 that is compatible with the right adjoints of Sf and Sg:
if Sf % r and Sg % t, then Sh � r � t � Sk must hold. This defines a sub-Ord-category
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S-Emb of C2, which is locally full and fits in a pullback square of Ord-functors.

S-Emb //� _

�
pb

LaripBq� _

�
C2

S2
// B2

(11.1)

11.2. Lemma. The forgetful Ord-functor S-Emb Ñ C2 creates colimits, provided that C
has and S preserves colimits.
Proof. In the pullback diagram (11.1), the leftmost vertical Ord-functor creates any
colimit that is preserved by S (and thus by S2), since the rightmost vertical Ord-functor
creates colimits.

11.3. Definition. If T is an Ord-monad on C, we shall call FT-embeddings T-embe-
ddings, and denote the Ord-category FT-Emb by T-Emb. Here FT : C Ñ T-Alg denotes
the free T-algebra functor.

If A is an Ord-category with a terminal object, we write A{1 for the full subcategory
of A2 consisting of morphisms AÑ 1.

11.4. Proposition. Let T be a lax idempotent monad on an Ord-category with a ter-
minal object. There is an equality of sub-Ord-categories of C2

T-Emb � &kz�T-Alg{1
�
. (11.2)

Proof. An object of &kzpT-Alg{1q is a morphism f : X Ñ Y of C for which the following
is a rali

Cpf, Aq : CpY,Aq ÝÑ C2pf, pAÑ 1qq � CpX,Aq (11.3)
naturally in the T-algebra A, in the sense that, each T-algebra morphism A Ñ A1 must
induce a morphism of ralis. In other words, each morphism X Ñ A has a left Kan
extension along f , and these are preserved by T-algebra morphisms.

X

f
��

// A

Y

>>

The morphism (11.3) can be written as

CpY,Aq � T-AlgpFTY,Aq
T-AlgpFTf,1q
ÝÝÝÝÝÝÝÝÑ T-AlgpFTX,Aq � CpX, V pAqq (11.4)

which is a rali, naturally in the T-algebra A, if and only if FTf is a lari. This gives an
equality on objects in (11.2).

Both sides of (11.2) are locally full subcategories of C2, so it only remains to verify the
equality at the level of morphisms. Suppose that f and g are T-embeddings. A morphism
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ph, kq : f Ñ g is a morphism on the right hand side of (11.2) if it is compatible with
the rali structures on the morphisms (11.3) corresponding to f and g; in other words,
if ph, kq induces a morphism of ralis. This is equivalent to requiring that ph, kq should
induce a morphism of ralis between the ralis (11.4) that correspond to f and g. By
Yoneda lemma, this means that ph, kq is a morphism of T-embeddings, and concludes the
proof.

11.5. Corollary. Assume that the Ord-category C has a terminal object. The assign-
ment T ÞÑ T-Emb is a functor from the category of lax idempotent monads on C to the
poset of sub-Ord-categories of C2.
Proof. If ϕ : S Ñ T is a monad morphism between lax idempotent monads, then T -Alg �
S-Alg. Applying &kzp�q and Proposition 11.4, we obtain S-Emb � T-Emb.

11.6. Proposition. Let T be a lax idempotent monad on an Ord-category with a ter-
minal object. The obvious inclusion of Ord-categories

T-Alg{1 � pT-Embq&kz

identifies T-Alg with the fibre of cod: pT-Embq&kz ÝÑ C over 1.
Proof. We will show that a morphism A Ñ 1 is in pT-Embq&kz if and only if A is a
T-algebra. The components ηX : X Ñ TX of the unit of the monad T are T-embeddings
due to the adjunction TηX % µX . Furthermore, for any morphism u : X Ñ Y , there is a
morphism pu, Tuq : ηX Ñ ηY in T-Emb because Tu � µX � µY � T

2u.
Suppose that AÑ 1 has a kz-lifting operation against T-embeddings, which provides

a diagonal filler to the square displayed below.

A

ηA

��

A

��
TA //

a

==

1

Being a retract for ηA, the map a is a T-algebra structure for A; see Remark 2.6. We leave
to the reader the verification that the Ord-functor of the statement is full and faithful.

11.7. Corollary. In the conditions of Proposition 11.6,

T-Emb � &kz�T-Emb&kz
�

Proof. There always is an inclusion of the left into the right hand side of the equality
above, by the Galois connection of Theorem 9.1. Let us denote by T-Emb&kz

1 the fibre of
cod: T-Emb&kz � C over 1. We have

T-Emb � &kz�T-Alg{1
�
�
&kz�T-Emb&kz

1
�
�
&kz�T-Emb&kz

�
.
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11.8. Corollary. If pL,Rq is a lofs on an Ord-category C with a terminal object, then

L-Coalg � R1-Emb
where R1 is the Ord-monad on C � C{1 that is the restriction of R.
Proof. The inclusion of R1-Alg ãÑ R-Alg, given by A ÞÑ pAÑ 1q, induces the inclusion
arrow in the following,

L-Coalg � &kz�R-Alg
�
�
&kz�R1-Alg{1

�
� R1-Emb

where the last isomorphism is provided by Proposition 11.4.
The Ord-functor of Corollary 11.8 may be described more explicitly. If f : X Ñ Y is

an L-coalgebra, then the corresponding R1-embedding structure is given by the adjunction
R1f % r : R1Y Ñ R1X where r is the unique morphism of R1-algebras that composed
with the unit ηY : Y Ñ R1Y equals the kz-lifting corresponding to the square displayed
below.

X
ηX //

f
��

R1X

!�Rp!q
��

Y

r�ηY

<<

!
// 1

12. KZ-reflective LOFSs
We begin by summarising the most basic definitions of [7] around reflective factorisation
systems.

An ofs pE ,M q on a category with a terminal object C induces a reflective subcategory
of C formed by those objects X for which X Ñ 1 belongs to M . In the other direction,
each reflective subcategory B � C induces a pre-factorisation system pE ,M q whose E is
formed by all the morphisms that are orthogonal to each object of B. With an obvious
ordering on reflective subcategories and pre-factorisation systems, these two constructions
form an adjunction (a Galois correspondence). Those pre-factorisation systems obtained
from reflective subcategories are called reflective, and are characterised as those for which
g � f P E and g P E implies f P E .

In this section we consider the analogous notion of kz-reflective lofs and find a
characterisation that mirrors the case of ofss.

12.1. Definition. We say that the Ord-monad T on C is fibrantly kz-generating if the
locally full inclusion of Ord-categories T-Emb � C2 has a right adjoint (in the Ord-
enriched sense).

12.2. Proposition. Let T be an Ord-monad on C. Then T is fibrantly kz-generating
if and only if there exists an Ord-enriched awfs pL,Rq for which L-Coalg � T-Emb.
Furthermore, if C is cocomplete and has limits of morphisms, this awfs is lax orthogonal.
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Proof. The implication in one direction is clear; indeed, if T-Emb equals L-Coalg, then
the condition of Definition 12.1 holds.

Assume that T is fibrantly kz-generating. The inclusion LaripT-Algq � T-Alg2 is
comonadic by §5. The inclusion T-Emb � C2 is a pullback of the comonadic inclusion
mentioned, therefore, it satisfies all the hypotheses of (the Ord-enriched version) of Beck’s
comonadicity theorem, except perhaps for the hypothesis of being a left adjoint. Together
with Definition 12.1, we deduce that T-Emb is comonadic over C2.

The Ord-category of T-embeddings forms part of a double category. In other words,
T-embeddings are closed under composition, just as laris are. We will be able to apply
the dual of [5, Thm. 6] if we show the following: if f is a T-embedding, then the square
on the left is a morphism of T-embeddings 1 Ñ f . This is equivalent to saying that the
square on the right is a morphism of laris 1 Ñ F Tf , which is easily seen to hold.

�

1
��

�

f

��
�

f // �

�

1
��

�

FT f
��

�
FT f // �

We deduce, by a dual form of [5, Thm. 6], that the underlying category of T-Emb is
L-Coalg for an awfs pL,Rq. We leave to the reader the verification that this isomorphism
is not only one of categories but one of Ord-categories.

It remains to show that, in the presence of limits of morphisms and colimits, this
awfs is a lofs. For this we appeal to the dual version of [27, Cor. A.3], which we explain
here. The setup consists of a pullback square as displayed on the left hand side below,
for Ord-monads P and S, the respective forgetful Ord-functors as vertical arrows, and a
Ord-functor W : A Ñ B with the property that right Kan extensions along W exist (e.g.,
when W is a right adjoint). The completeness conditions are that A should be complete
and W continuous ([27, Cor. A.3] says cocomplete where it should say of complete; the
proof is unaltered). The thesis states that P is lax idempotent if S is so.

P-Alg

��

// S-Alg

��
A W // B

T-Emb //

U
��

E-Coalg

��
C2 pFT q2 // T-Alg2

Our situation is the pullback square displayed on the right hand side above, where C is
cocomplete and the free algebra Ord-functor F T is a left adjoint. The lax idempotent
comonad E on T-Alg2 is the one of §5 and exists since C, and thus T-Alg, has limits of
morphisms. Therefore, the comonad corresponding to the comonadic U is lax idempotent
by the dual of [27, Cor. A.3] recalled above.

12.3. Definition. The Ord-category of lax idempotent monads on the Ord-catego-
ry C, denoted by LIMndpCq, has morphisms T Ñ S natural transformations that are
compatible with the multiplication and unit of the monads, in the usual manner. This
Ord-category is a (possibly large) preordered set, i.e., it has at most one morphism between
any pair of objects, by Lemma 2.7.
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We will denote by LIMndfibpCq the full subcategory of LIMndpCq consisting of those
monads that are fibrantly kz-generating, in the sense of Definition 12.1.

When C is cocomplete, has limits of morphisms and terminal object, we have a sit-
uation that can be summarised by the following diagram of preordered sets and order-
preserving maps.

LOFSpCq� _

p�q-Coalg
��

Φ̃

''

LIMndfibpCq� _

I
��

Ψoo

SubpC2q LIMndpCqΨ̃oo

(12.1)

The vertical maps are full, the one on the right being an inclusion. The one on the left
sends each lofs on C to the sub-Ord-category L-Coalg of C2. The map Ψ̃ sends a lax
idempotent monad T on C to &kzpT-Alg{1q, and has a lifting to a map Ψ that sends a
fibrantly kz-generating T to the lofs pL,Rq on C that satisfies L-Coalg � T-Emb – see
Proposition 12.2. Finally, Φ̃ sends pL,Rq to R1, the restriction of R to the slice C{1 � C.

It will be convenient to use the following relaxed notion of adjunction. Suppose given
a diagram of functors and a natural transformation, that may be enriched as needed, as
displayed.

A

F ''

+3θ
B
I
��

Goo

D

12.4. Definition. Following [31, §2], we say that θ exhibits G as a I-right adjoint of F ,
and F as a I-left adjoint of G denoted by F %I G, if

ApA,GpBqq F
ÝÑ DpF pAq, FGpBqq Dp1,θBqÝÝÝÝÑ DpF pAq, IpBqq

is invertible, for all objects A P A and B P B

It is easy to prove that if I : B Ñ D is fully faithful and θ is an isomorphism, then G
is fully faithful.

12.5. Theorem. When C is cocomplete, has limits of morphisms and terminal object,
the functor Φ̃ in (12.1) is a I-left adjoint of Ψ. Moreover, Ψ is fully faithful.
Proof. Let us denote the monad part of the lofs ΨpTq by S. The counit of the relative
adjunction will have components S1 Ñ T, where S1 is the restriction of S to C � C{1.
We want to define this counit to be an isomorphism, for which we need S1 � T, or,
equivalently, S1-Alg � T-Alg. The left hand side of the equality is the fibre over 1 of
the codomain Ord-functor S-Alg Ñ C, while the right hand side is the fibre over 1 for
the codomain Ord-functor T-Emb&kz Ñ C, by Proposition 11.6. It suffices, thus, to show
S-Alg � T-Emb&kz . By hypothesis, T-Emb � L-Coalg, and the required equality follows
from Theorem 9.2.
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We next prove that the function

LOFSpCqppL,Rq,ΨpTqq Φ̃
ÝÑ LIMndpCqpR1,Tq,

induced by the counit described in the previous paragraph, is bijective. Domain and
codomain are either empty or singletons, so it suffices to prove that the existence of a
morphism R1 Ñ T implies that of another pL,Rq Ñ ΨpTq. Equivalently, it suffices to
prove that T-Alg � R1-Alg implies L-Coalg � T-Emb. Furthermore, it suffices to prove
that R1-Emb � T-Emb, by Corollary 11.8. The latter inclusion follows from applying
&kzp�q to T-Alg � R1-Alg and applying Proposition 11.4.

12.6. Definition. We call a lofs pL,Rq on C kz-reflective if L-Coalg � T-Emb for a lax
idempotent monad T on C. In other words, the kz-reflective lofss are those lofss that
arise from lax idempotent monads that are fibrantly kz-generating; see Proposition 12.2.

When C is cocomplete, has limits of morphisms and terminal object, so we have the
situation (12.1), kz-reflective lofss are those isomorphic to one of the form ΨpTq, for a
lax idempotent monad T.

12.7. Proposition. Let pL,Rq be a kz-reflective lofs on a cocomplete Ord-category
with lax limits of morphisms and terminal object. Then, L-Coalg � R1-Emb and pL,Rq �
ΨpR1q.
Proof. Suppose that pL,Rq � ΨpTq for a lax idempotent monad T. This means that
L-Coalg � T-Emb for an Ord-monad T on C. On the other hand, R-Alg � L-Coalg&kz for
any lofs, as we saw in Theorem 9.2. Therefore,

R1-Alg � R-Alg1 � T-Emb&kz
1 � T-Alg

where the subscript 1 denotes the fibre of the various categories fibred over C via the
codomain functor. The last equality of the sequence is provided by Proposition 11.6. We
obtain an isomorphism of Ord-monads between R1 and T.

12.8. Definition. An object A in the Ord-category C, which we assume has a terminal
object, is kz-injective with respect to an Ord-functor U : J Ñ C2 if pAÑ 1q P J &kz .

Kz-injectivity can be expressed in the absence of a terminal object. The universal
property of the diagonal filler is that of a left Kan extension, plus there should be com-
patibility with the morphisms of J . We will always have terminal objects available, so we
can safely leave this formulation to the reader. The notion was extensively used in [1]; see
[11] for an early appearance (where the term right injective was used for a dual notion).

12.9. Corollary. If pL,Rq is kz-reflective on C, then

1. An object of C is an R1-algebra if and only if it is kz-injective, equivalently, injective,
with respect to R1-embeddings

2. A morphism f of C is an L-coalgebra if and only if each R1-algebra is kz-injective
with respect to f .
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Proof. Let pL,Rq be the underlying wfs of pL,Rq (see Remark 4.4). We already know
that any R1-algebra is kz-injective with respect to L-coalgebras, by Theorem 9.2, and, by
hypothesis, with respect to R1-embeddings too.

It remains to prove that each object C that is injective with respect to L is an R1-
algebra. The unit ηC : C Ñ R1pCq is an R1-embedding, since R1 is lax idempotent, and
therefore it is an L-coalgebra, and a fortiori it is in L. Then, ηC has a section and C is
an R1-algebra; see Lemma 2.5.

To say that each R1-algebra A is kz-injective with respect to f is equivalent to saying
that f is an R1-embedding, i.e., f is an L-coalgebra.

12.10. Remark. In part (2) of the above corollary, kz-injectivity of R1-algebras cannot
be replaced by plain injectivity. Indeed, any split monic is injective with respect to all
objects, but there are many ofss (in particular, lofss) whose left morphisms do not
include the split monics. To wit, the ofs on the category of sets whose left morphisms
are the surjections.

13. A characterisation of kz-reflective lax factorisations
In this section we will denote by pE,Mq the lofs on C whose E-coalgebras are laris in C
and whose M-algebras are split opfibrations in C.

13.1. Definition. We will refer to those lofss pL,Rq that admit a morphism pE,Mq Ñ
pL,Rq as sub-lari lofss. If such morphism exists, it is unique. Another way of putting
the definition is to require LaripCq � L-Coalg.

Not all lofss are sub-lari. For example, the initial awfs (the one that factors a
morphism f as f � Rf � Lf with Lf � 1dompfq and Rf � f) is orthogonal and, thus, lax
orthogonal. Coalgebras for the associated comonad are the invertible morphisms in C. It
is clear that not every lari is an isomorphism, so this lofs is not sub-lari.

13.2. Proposition. kz-reflective lofss are sub-lari.
Proof. By definition, L-Coalg equals T-Emb, for a certain T. We have to show that
LaripCq � T-Emb. By definition of T-Emb as a pullback (see Definition 11.1) so it suffices
to exhibit a commutative square

LaripCq //

��

LaripT-Algq
��

C2
pFTq2

// T-Alg2

where the vertical arrows are the obvious inclusions. The Ord-functor pFTq2 obviously
induces another LaripCq Ñ LaripT-Algq that makes the diagram commutative, since any
Ord-functor preserves laris.



LAX ORTHOGONAL FACTORISATIONS IN ORDERED STRUCTURES 1407

13.3. Definition. We shall be interested in lofs pL,Rq that satisfy the following can-
cellation properties:

• If g and g � f are L-coalgebras, then f is an L-coalgebra.

• If, in the following diagram, g, g1, g � f and g1 � f 1 are L-coalgebras and pv, wq and
pu,wq are morphisms of L-coalgebras, then pu, vq is a morphism of L-coalgebras.

�
f
��

u // �
f 1��

� v //

g
��

�
g1��

� w // �

We call these lofss cancellative.

13.4. Example. For lofss that are ofss, or in other words, when both the comonad
and the monad of the lofss are idempotent, the second condition of the definition above
is superfluous. Therefore, cancellative ofss are precisely the reflective ofss, as shown
in [7, Thm. 2.3]. This is the result that we will generalise in Theorem 13.6.

13.5. Lemma. The lofs pE,Mq is cancellative.
Proof. Recall that E-coalgebras are the same as laris. Suppose that f and g are
composable morphisms and that g % r and pg � fq % t are lari structures. Defining
s � t � g, we have that s � f � t � g � f � 1. It remains to prove that f � s � f � t � g ¤ 1,
which is equivalent to g � f � t � g ¤ g, and this inequality holds since g � f � t ¤ 1.


OO

t $

f

��

u // 
 OO

t1%

f 1

��



g

��

OO
r%

v // 


g1

��

OO

r1 $


 w // 


Now suppose given morphisms of laris pu,wq : g � f Ñ g1 � f 1 and pv, wq : g Ñ g1, as
depicted. We have to show that pu, vq : f Ñ f 1 is a morphism of laris, i.e. that u � t � g �
t1 � g1 � v, which holds by the following string of equalities

u � t � g � t1 � w � g � t1 � g1 � v

completing the proof.
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13.6. Theorem. A sub-lari lofs pL,Rq on a finitely complete Ord-category is kz-
reflective if and only if it is cancellative.
Proof. When L-Coalg is equal to T-Emb for some lax idempotent T, it always satisfies the
cancellation properties of Definition 13.3 since laris do: if g and g � f are T-embeddings,
i.e., if Tg and T pg � fq � Tg � Tf are laris, then Tf is a lari, which is to say that f is
a T-embedding; and similarly for morphisms. See Lemma 13.5.

Conversely, suppose that pL,Rq is cancellative (Definition 13.3), that is, LaripCq �
L-Coalg. We shall show that the inclusion L-Coalg � R1-Emb of Corollary 11.8 is an
identity, so pL,Rq � ΨpR1q is reflective.

If f : X Ñ Y is an R1-embedding, then consider the following commutative diagram.

X
L! ��

f // Y
L!��

R1X

��

R1f // R1Y

��
1 1

The morphisms L! are cofree L-coalgebras while R1f is a lari and therefore an L-
coalgebra. So, L! �f is an L-coalgebra and f is an L-coalgebra by the cancellation hypoth-
esis. This means that each R1-embedding is an L-coalgebra, and all that remains to prove
is that morphisms of R1-embeddings are morphisms of L-coalgebras.

Let pu, vq : f Ñ f 1 be a morphism of R1-embeddings, so pR1u,R1vq : R1f Ñ R1f
1 is a

morphism of laris, and, therefore, a morphism of L-coalgebras. It follows that pu,R1vq,
depicted on the left below, is a morphism of L-coalgebras.

X
L! ��

u // X 1

L!��
R1X

R1f ��

R1u // R1X
1

R1f 1��
R1Y

R1v // R1Y
1

�

X
u //

f ��

X 1

f 1��
Y

v //

L! ��

Y 1

L!��
R1Y

R1v // R1Y
1

On the other hand, pv,R1vq is a morphism of L-coalgebras, being the image under L of
the morphism pv, 1q : pY Ñ 1q Ñ pY 1 Ñ 1q. By the second part of Definition 13.3, we
deduce that pu, vq is a morphism of L-coalgebras, as required.

14. Simple adjunctions
In §3 we saw that a reflection T on C is simple if and only if a certain copointed end-
ofunctor pL,Φq on C2 underlies a comonad whose category of coalgebras is T-Iso � C2.
In this section we generalise that result in three directions. First, we work with Ord-
enriched categories, Ord-enriched functors and so on. Secondly, the 2-dimensional aspect
introduced by the enrichment over Ord allows us to substitute isomorphisms by laris
and T -isomorphisms by T-embeddings. Thirdly, even though §3 speaks of reflections, the
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constructions therein only need an adjunction (not necessarily a reflection) and this is the
framework we choose.

14.1. Definition. Let S % G : B Ñ C be an adjunction between Ord-functors on Ord-
categories, of which we require C to have pullbacks and B to have lax limits of morphisms.
We can always construct a monad R on C2 by considering the comma-object Kf � GSf Ó
ηY and defining Rf : Kf Ñ Y as the second projection. (The existence of this comma-
object is explained in Remark 14.2, below.)

X

Lf
!!

ηX

!!

f

##

Kf
qf //

Rf
��

GSX

GSf
��

Y ηY

//

¥

GSY

The Ord-functorial factorisation f � Rf � Lf has an associated locally monotone co-
pointed endofunctor Φ: Lñ 1, where the component Φf is provided by the commutative
square displayed.

�

Lf

��

�

f

��
�

Rf // �

We continue with the notation of previous sections, where pE,Mq denotes the lofs
whose E-coalgebras are the laris.

14.2. Remark. The comma-square of Definition 14.1 can be obtained by pulling back
along ηY the image under G of the projection MpSfq : Sf Ó SY Ñ SY .

Kf

Rf
��

//

pb

GpSf Ó SY q

GpMSfq
��

//

¥

GSX

GSf
��

Y ηY

// GSY GSY

14.3. Lemma. There is a pullback square of locally monotone endofunctors of C2, as
depicted on the left. There is a pullback of Ord-categories, as depicted on the right.

L

pb

//

Φ
��

G2ES2

G2ΦES2
��

1C2
η2
// G2S2

pL,Φq-Coalg //

U
��

pb

pE,ΦEq-Coalg

��
C2

S2
// B2
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Proof. In order to obtain a pullback square as on the left hand side of the statement,
we need to give two pullback squares: one corresponding to the domain component and
another corresponding to the codomain component. We define the domain component
of L Ñ G2ES2 to be the unit η : 1 Ñ GS; this is possible since domE � 1. The
resulting square has horizontal morphisms both equal to η and vertical morphisms equal
to the identity, since dom ΦE � 1. This square is manifestly a pullback. The codomain
component we choose is the pullback square of Remark 14.2.

The fact that there is a pullback of Ord-functors as on the right hand side of the
statement follows easily, and it is a well-known fact (see, eg, [19, Prop. 9.2]).

As a consequence of the previous lemma, the pullback square in (11.1) that defines
S-Emb factors as two pullback squares, as depicted.

S-Emb

��

//

pb

E-Coalg

pL,Φq-Coalg //

pb
��

pE,ΦEq-Coalg

��
C2 S2

// B2

The equality E-Coalg � pE,ΦEq-Coalg was exhibited in Corollary 5.3. The Ord-functor
S-Emb Ñ pL,Φq-Coalg is an isomorphism, being the pullback of an isomorphism. The
remark that follows describes this functor and its inverse in more explicit terms.

14.4. Remark. Suppose that f : X Ñ Y has a structure of pL,Φq-coalgebra, given by
p1, sq : f Ñ Lf , where s : Y Ñ Kf . This structure corresponds bijectively to an rf : SY Ñ
SX in B with rf � Sf � 1 and Sf � rf ¤ 1, in a way that can be explicitly described:
rf : SY Ñ SX is the morphism whose transpose under the adjunction S % G is qf �s : Y Ñ
Kf Ñ GSX, i.e.

rf �
�
SY

Ss
ÝÑ SKf

Sqf
ÝÝÑ SGSX

εSXÝÝÑ SX
�
.

and
Rf � s � 1 qf � s �

�
Y

ηYÝÑ GSY
Grf
ÝÝÑ GSX

�
.

14.5. Definition. We say that the adjunction S % G is simple (or simple with respect
to pE,Mq) if, for each f : X Ñ Y in C, the morphism Lf has an S-embedding structure
given by �

SX
SLf
ÝÝÑ SKf

�
%
�
SKf

Sqf
ÝÝÑ SGSX

εSXÝÝÑ SX
�
.

where ε is the counit of S % G. This amounts to the existence of the inequality SLf �
εSX � Sqf ¤ 1, or equivalently, the inequality GSpLfq � qf ¤ ηKf .

The following theorem is a version of [8, Thm. 11.5] and a higher-dimensional analogue
of the characterisation of simple reflections in §3.
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14.6. Theorem. The following statements are equivalent.

1. The adjunction S % G is simple.

2. The locally monotone forgetful functor U : S-Emb Ñ C2 has a right adjoint and the
induced comonad has underlying functor L and counit Φ: Lñ 1C2.

3. The locally monotone copointed endofunctor Φ: L ñ 1C2 admits a comultiplication
Σ: L ñ L2 making L � pL,Φ,Σq into a comonad whose category of coalgebras is
isomorphic to S-Emb over C2.

15. Simple monads
Our definition of simple adjunction, Definition 14.1, requires the existence of some Ord-
enriched limits: pullbacks in one of the two Ord-categories involved, and lax limits of
morphisms in the other. We shall now look at the situation when the adjunction is the
Eilenberg-Moore adjunction of an Ord-monad T on C. In this situation, all the com-
pleteness requirements can be burden on C. Lax limits of morphisms can be constructed
from pullbacks and a lax limits of the identity morphisms, i.e., cotensor products with
the arrow poset 2. These are the minimal requirements in the following definition, and
ensure the existence of arbitrary comma-objects.

15.1. Definition. Let C be an Ord-category that admits pullbacks and cotensor prod-
ucts with 2. A monad T � pT, η, µq on C whose functor part T is locally monotone
(i.e., Ord-enriched) is simple if the free T-algebra adjunction is simple in the sense of
Definition 14.5.

C
FT
//

oo
UT

K T-Alg

Explicitly, T is simple when, for each f : X Ñ Y in C, the morphism FTpLfq is a right
adjoint of εT

FTX �F
TqT

f , with these morphisms defined by the following diagram, where the
square is a comma-object.

X

Lf
!!

ηX

  

f

##

Kf

Rf
��

¥

qf // TX

Tf
��

Y ηY

// TY

(15.1)

15.2. Lemma. An Ord-monad T on C is simple if and only if there is an adjunction
T pLfq % µX � Tqf , where µX is the multiplication of T.
Proof. The simplicity of T is the existence of an inequality FTLf � εFTX �F

Tqf ¤ 1. The
forgetful Ord-functor UT reflects inequalities between morphisms. Then, the mentioned
inequality is equivalent to TLf � µX � Tqf ¤ 1, its image under UT.
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15.3. Corollary. An Ord-monad T on C is simple if and only if TLf � qf ¤ ηKf .
Proof. This is a reformulation of the observation at the end of Definition 14.5.

Putting together Theorem 14.6 and Definition 12.1, we have:

15.4. Corollary. Simple lax idempotent monads T on cocomplete Ord-categories with
terminal object, pullbacks and cotensor products with 2 are fibrantly kz-generating. The
induced lofs pL,Rq is isomorphic to ΨpTq. In particular, this lofs is reflective, and
R1 � T.
Proof. The last is the only assertion that needs a proof, the first being just Proposi-
tion 12.2. (Existence of pullbacks and cotensors with 2 are required in Definition 15.1,
while cocompletness is needed in Proposition 12.2.) If pL,Rq is the lofs induced by T, we
have L-Coalg equal to T-Emb � C2 (Theorem 14.6). Then, pL,Rq is sub-lari, as laris
always are T-embeddings. It is easy to see that T-embeddings and their morphisms sat-
isfy the conditions of Definition 13.3, so pL,Rq is cancellative. By the characterisation of
Theorem 13.6, pL,Rq is a reflective lofs, i.e., of the form ΨpR1q (Proposition 12.7). Since
the left part of both ΨpR1q and ΨpTq is T-Emb, and Ψ is full and faithful (Theorem 12.5)
we obtain R1 � T.

15.5. Remark. The existence of terminal object, pullbacks and lax limits of morphisms
in the corollary above may be replaced by the existence of finite Ord-enriched limits.
Indeed, terminal objects and pullbacks provide all finite conical limits, while the lax
limits of the identity morphisms provide cotensor products with the arrow poset 2. As
explained in [18, p. 306] (in the case of Cat), this suffices to have finite Ord-enriched
limits.

Corollary 15.4 means that, if C is finitely complete, each simple lax idempotent monad
T induces a lofs pL,Rq with L-Coalg isomorphic to T-Emb over C2.

15.6. Proposition. The monad P on Ord described in Example 2.3 is simple.
Even though a direct proof of the proposition is easy, we will not include it here since

it is a particular instance of the more general [8, Thm. 13.5] (for categories enriched in
the symmetric monoidal category 2).

In [8] a couple of criteria where introduced to discern whether a lax idempotent monad
is simple. In §18 we shall make use of one of these criteria, which we proceed to explain.

For each morphism f : X Ñ Y there is a “comparison” morphism

κ : T pTf Ó ηY q ÝÑ T 2f Ó TηY

induced by the universal property of comma-objects. More explicitly, κ is a morphism,
as displayed in the diagram below, unique with the property of making the triangles (A)
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and (B) commutative.

TKf
Tqf //

κ
**

TRf

��

T 2X

T 2f

��

T 2f Ó TηY
¥

tt

44
pBq

pAq

TY ηT Y

// T 2Y

We may now state a version of [8, Prop. 12.6].

15.7. Proposition. A lax idempotent Ord-monad T is simple provided that, for every
f and u : Kf Ñ TKf , u ¤ ηKf whenever κ � u ¤ κ � ηKf , where κ is the comparison
morphism TKf Ñ T 2f Ó TηY .

16. Submonads of simple monads
The aim of the present section is to provide easy criteria that will allow us to recognise
simple submonads of simple lax idempotent monads. These results will be later used in
Corollary 18.2. A morphism in an Ord-category is full if it is representably so, i.e., if
postcomposing with this morphism is a full morphism of posets. For example, laris are
full.

16.1. Lemma. Let T be a lax idempotent Ord-monad. Then, T-embeddings are full if
and only if the components of the unit X Ñ TX are full.
Proof. By definition of lax idempotent monad, the unit components ηX : X Ñ TX are
T-embeddings, and, hence, they are full provided that T-embeddings are full.

Conversely, suppose that f : X Ñ Y is a T-embedding. Then, ηY � f � Tf � ηX is full,
being a composition of the lari Tf and the full morphism ηX . Therefore, f is full.

16.2. Proposition. Suppose that ϕ : S Ñ T is a morphism of Ord-monads whose com-
ponents ϕX are T-embeddings. If T is lax idempotent and the components of the unit
ηX : X Ñ TX are full, then S is lax idempotent, with full unit components eX : X Ñ SX.
Proof. That S is lax idempotent follows from the following calculations and fullness of
TϕX � ϕSX � ϕTX � SϕX :

ϕTX � SϕX � SeX � TηX � ϕX ¤ ηTX � ϕX � ϕTX � eTX � ϕX � ϕTX � SϕX � eSX .

Moreover, with ηX � ϕX � eX full, also eX is full.
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We say that a morphism f : X Ñ Y is a pullback-stable T-embedding if the pullback
of f along any morphism into Y is a T-embedding.

16.3. Theorem. Suppose that ϕ : S Ñ T is a monad morphism between Ord-monads on
an Ord-category with pullbacks and cotensors with 2. Assume that the components of ϕ
are pullback-stable T-embeddings, and that T-embeddings are full. If T is lax idempotent,
then S is simple whenever T is so.
Proof. Let us denote the unit of S by e : 1 ñ S, and the Ord-functorial factorisations
obtained from S and T following the construction of the comma-object (15.1), respectively,
by �

X
LSfÝÝÑ KSf

RSfÝÝÑ Y
�
�
�
X

f
ÝÑ Y

�
�
�
X

LT fÝÝÑ KTf
RT fÝÝÑ Y

�

Consider the following diagram where KTf � Tf Ó ηY , KSf � Sf Ó eY , and LTf �
ϕf � LSf , and note that p�q is a pullback.

X
eX //

f

��

LSf
$$

SX
ϕX // TX

Tf

��

KSf
tf

44

ϕf

%%

RSf

��

p�q

KTf

qf

66

RT f
ww

¥

Y eY

// SY ϕY

// TY

By Corollary 15.3, to conclude that S is simple, it is enough to show that SLSf �tf ¤ eKSf .
And this inequality follows from the following calculations, using the fullness of Tϕf �ϕKSf .

Tϕf � ϕKSf � SLSf � tf � Tϕf � TLSf � ϕX � tf � Tϕf � TLSf � qf � ϕf ¤

¤ ηKf � ϕf � Tϕf � ϕKSf � eKSf

16.4. Corollary. Suppose that ϕ : S Ñ T is a monad morphism between Ord-monads
on an Ord-category with pullbacks and cotensors with 2. Assume that the components of
ϕ are T-embeddings, and that T is lax idempotent and simple, with full unit components
X Ñ TX. Then:

1. S is lax idempotent and simple, with full unit components X Ñ SX;

2. every S-embedding is a T-embedding;

3. S-embeddings are full.

Proof. (1) follows from Proposition 16.2, while (3) follows directly from (2) and our
assumptions. Finally, (2) is an instance of Corollary 11.5.
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17. Frames
Recall that a frame is a complete lattice that satisfies the infinite distributive law p

�
i siq^

a �
�

ipsi ^ aq. If B is a distributive lattice, let us denote by P pBq the frame of down-
closed subsets of B, and by IdlpBq the frame of ideals of B. An ideal is a subset I that
is down-closed and closed under finite joins. There is a functor Idl sending a morphism
of lattices f : A Ñ B to the morphism f� : IdlpAq Ñ IdlpBq that sends an ideal I to the
smallest ideal that contains fpIq. The morphism Idlpfq always has a right adjoint which
is the restriction of f�1 : P pBq Ñ P pAq to ideals.

17.1. Proposition. The monad Idl on DLat is lax idempotent and simple.
Proof. It is well known that a distributive lattice A is a frame precisely when each
ideal I of A has a supremum, i.e., when the inclusion A Ñ IdlpAq has a left adjoint
_ : IdlpAq Ñ A. This is to say, by Definition 2.1, that the monad Idl is lax idempotent.

We will use Corollary 15.3 to prove the simplicity. Let f : A Ñ B in DLat. The
comma-object Kf � f� Ó B is the distributive lattice tpI, bq P IdlpAq � B : f�pIq ¤
Ópbqu. The projection qf : Kf Ñ IdlpAq is simply given by pI, bq ÞÑ I, and the morphism
Lf : AÑ Kf is given by Lfpaq � pÓpaq, fpaqq. We have to show pLfq� � qf ¤ ηKf , which,
evaluating at pI, bq P Kf , is

pLfq�pIq ¤ ÓpI, bq.

This is equivalent to saying that Lfpaq � pÓpaq, fpaqq ¤ pI, bq for all a P I, which holds
since fpIq ¤ f�pIq ¤ Ópbq.

17.2. Corollary. There is a lofs on the Ord-category DLat of distributive lattices
such that:

1. Its left morphisms are injective (equivalently, full) morphisms of lattices f : AÑ B
that satisfy: for all b, b1 P B and a P A, if fpaq ¤ b _ b1, then there exist x, x1 P A
such that fpxq ¤ b, fpx1q ¤ b1 and a ¤ x_ x1.

2. Frames are precisely the distributive lattices that are injective with respect the mor-
phisms described above.

Proof. The existence of the lofs, say pL,Rq, follows from Proposition 17.1 and Corol-
lary 15.4. The L-coalgebras coincide with the Idl-embeddings, so we have to show that
these coincide with the full morphisms described in the first part of the statement.

First we show that a morphism of distributive lattices f : AÑ B is full if and only if
Idlpfq is full. That full morphisms between lattices are the same as injective morphisms
is easy to see (fpxq ¤ fpyq means fpx ^ yq � fpxq ^ fpyq � fpxq). If Idlpfq is injective,
then, f , being the restriction of Idlpfq to principal ideals, has to be injective, i.e., full.

Conversely, suppose that f is full. Since there always is an adjunction Idlpfq % f�1, we
have to show that f�1 �Idlpfq � 1. Up to isomorphism, f is the inclusion of a full sublattice
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C � B. The right adjoint f�1 becomes identified with p�XCq : IdlpBq Ñ IdlpCq. Recall
that IdlpfqpIq is the ideal of B generated by I, and since Idlpfq preserves suprema,

IdlpfqpIq � Idlpfq
�ª
aPI

Ópaq
	
�
ª
aPI

IdlpfqpÓpaqq �
ª
aPI

pÓpfpaqqq �
¤
aPI

pÓpfpaqqq,

where the last equality holds because filtered suprema of ideals coincide with the set-
theoretical union.

We can show that Idlpfq is full too, as follows. Given IdlpfqpIq � IdlpfqpJq, for all
a P I there exists b P J such that fpaq ¤ fpbq. By the fullness of f , then a ¤ b, so a P J .
Thus, I � J .

As mentioned above, the morphism Idlpfq has always a right adjoint f�1 from IdlpBq
to IdlpAq given by taking preimage under f . When f is full, the unit of the adjunction
is an equality 1 � f�1 � Idlpfq, since Idlpfq is full (and faithful). We would have proven
that f is an Idlpfq-embedding when we show that f�1 is a morphism of frames. Being
a right adjoint, it automatically preserves meets, so we need to show that it preserves
suprema. Furthermore, f�1 also preserves directed suprema of ideals, since these are
just set-theoretical unions, and preserves the bottom element. All that remains to have
preservation of suprema is the preservation of binary suprema. In other words, that for
I, J P IdlpBq, we should have

f�1pIq _ f�1pJq � f�1pI _ Jq. (17.1)

Since I _ J � YtÓpb _ b1q : b P I, b1 P Ju, and f�1 preserves unions, it suffices to show
that f�1pÓpb _ b1qq P f�1pIq _ f�1pJq for b P I and b1 P J . This clearly follows from
the condition of f in the first part of the statement. Conversely, (17.1) for I � Ópbq and
J � Ópb1q yields the condition of the statement.

The second part of the statement is a consequence of Corollary 15.4.

17.3. Example. We point out that the extra condition on the full morphism f in the first
part of the corollary above is not redundant. To see this, first observe that the ideals of a
finite distributive lattice B are necessarily principal ideals, or in other words, B Ñ IdlpBq
is an isomorphism. If f : A Ñ B is a full inclusion of finite distributive lattices, we have
that f is an Idl-embedding if and only if f has a right adjoint. This condition is not
always satisfied.

18. Filter monads
In this section we exhibit awfss on the Ord-category of t0 topological spaces arising
from simple lax idempotent Ord-monads. These factorisations were constructed in [6].

Each t0 topological space X carries an order given by

x ¤ y if and only if y P txu (18.1)
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– this is the opposite of what is usually called the specialisation order. This induces an
order structure on each hom-set Top0pX, Y q by defining f ¤ g if fpxq ¤ gpxq, for all
x P X, making Top0 into an Ord-enriched category.

A comma-object f Ó g in Top0 can be described as the subspace of X � Y defined by
the subset tpx, yq P X � Y : fpxq ¤ gpyqu.

f Ó g
d1 //

d0
��

¤

Y

g

��
X

f
// Z

Denote by F : Top0 Ñ Top0 the filter monad. If X is a t0 space, FX is the set of filters
of open sets of X, with topology generated by the subsets U# � tϕ P FX : U P ϕu, where
U P OpXq. The (opposite of the) specialisation order on FX results in the opposite
of the inclusion of filters. In particular, FX is a poset. If f : X Ñ Y is continuous,
then Ff is defined by Ffpϕq � tV P OpY q : f�1pV q P ϕu. The unit of the monad
has components ηX : X Ñ FX, where ηXpxq is the principal filter generated by x, that
is ηXpxq � tU P OpXq : x P Uu. The multiplication of the monad has components
µX : F 2X Ñ FX, given by µXpΘq � tU P OpXq : U# P Θu.

Observe that ηX is a full morphism. It is in fact an embedding meaning a topological
embedding, in the usual sense: a continuous function that is an homeomorphism onto its
image, where the latter is equipped with the subspace topology.

It was shown in [10] that the category of algebras for this monad is isomorphic to
the category whose objects are continuous lattices [29] and morphisms poset maps that
preserve directed sups and arbitrary infs. Our choice of the (opposite of the) specialisation
order on spaces, which is the opposite of the order used in [10], grants a few comments as
a way of avoiding confusion. A space X P Top0 has an F-algebra structure precisely when
the opposite of the poset pX,¤q is a continuous lattice, where ¤ is the order (18.1). The
topology of the space X can be recovered as the Scott topology of the continuous lattice
pX,¤qop. A morphism of F-algebras f : X Ñ Y is a continuous function that preserves
arbitrary suprema, as a poset map pX,¤q Ñ pY,¤q [10, Thm. 4.4].

The filter monad F was shown to be lax idempotent in [13], where it is also proved
that a continuous function f between t0 spaces is an embedding if and only if Ff is a
lari. In other words, F-embeddings are precisely the topological embeddings.

18.1. Theorem. The Ord-monad F is simple.
Proof. We verify the hypothesis of Proposition 15.7. For any pair of continuous maps
f : X Ñ Z and g : Y Ñ Z, the comparison morphism

κ : F pf Ó gq ÝÑ Ff Ó Fg � FX � FY

sends a filter ϕ on f Ó g to the pair of filters pψ0, ψ1q

ψ0 � tU P OpXq : d�1
0 pUq P ϕu ψ1 � tV P OpY q : d�1

1 pV q P ϕu
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where d0 and d1 are the projections from f Ó g to X and Y , respectively. Given px, yq P
f Ó g, recall that its image under the unit is

ηfÓgpx, yq � tW P Opf Ó gq : px, yq P W u.

We have pFd0qηfÓgpx, yq � ηXd0px, yq � ηXpxq, and similarly, pFd1qηfÓgpx, yq � ηY pyq.
The hypothesis of Proposition 15.7 will be satisfied if we show that κ � u ¤ κ � ηfÓg

implies u ¤ ηfÓg; or, in terms of filters, if we show that, given ϕ P F pf Ó gq, px, yq P f Ó g
as above, the inequalities ψ0 ¤ ηXpxq and ψ1 ¤ ηY pyq imply ϕ ¤ ηfÓgpx, yq. By definition
of the (opposite) specialisation order, we need to show the two inclusions

tU P OpXq : d�1
0 pUq P ϕu � tU P OpXq : x P Uu

tV P OpY q : d�1
1 pV q P ϕu � tV P OpY q : y P V u

imply ϕ � tW P Opf Ó gq : px, yq P W u. Given x P U P OpXq, y P V P OpY q, then

pU � V q X pf Ó gq � d�1
0 pUq X d�1

1 pV q P ϕ.

But any neighbourhood W of px, yq contains another of the form pU � V q X pf Ó gq, so
W P ϕ, completing the proof.

Since every principal filter is completely prime, and so in particular prime and proper,
and µXpΘq is completely prime (resp. prime, proper) whenever Θ is so, the functors F1,
Fω and FΩ that assign to each space X the space of proper (resp. prime, completely
prime) filters are the functor part of submonads F1, Fω and FΩ of the filter monad, with
the monad morphisms defined pointwise by the corresponding embeddings. Hence, using
Corollary 16.4, we can immediately conclude:

18.2. Corollary. The Ord-monads of proper filters, of prime filters and of completely
prime filters are lax idempotent and simple.

Therefore these monads induce lofss pLα,Rαq, with α � 0, 1, ω,Ω (denoting F by F0),
with associated weak factorisation systems pLα,Rαq, where L0 is the class of embeddings,
L1 is the class of dense embeddings, Lω is the class of flat embeddings, and LΩ is the class
of completely flat embeddings [12, 13, 6]. Moreover, Rα is the class of morphisms which
are injective with respect to Lα (see [6] for details).

19. Metric spaces
It is an insight of Bill Lawvere [26, 25] that metric spaces can be regarded as enriched
categories and that, from this point of view, completeness can be interpreted in terms
of “modules.” The necessary base of enrichment is the category of extended non-negative
real numbers R̄�.

The category R̄� has objects the real non-negative numbers plus an extra object 8,
and has one morphism αÑ β if and only if α ¥ β; 8 is an initial object and 0 a terminal
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object. One can use the addition of real numbers to define a symmetric monoidal structure
on R̄�, with the convention that adding 8 always produces 8. The unit object of this
tensor product is 0. Furthermore, R̄� is closed, with internal hom rα, βs equal to β � α
if this difference is non-negative, and equal to zero otherwise, with the convention that
rα,8s � 8, r8,8s � 0 and r8, αs � 0.

A small R̄�-category can be described as a set A with a distance function Ap�,�q : A�
AÑ R̄� that satisfies Apa, aq � 0 for all a P A and the triangular inequality. In general, it
may very well happen that Apa, bq � 0 even if a � b; the distance may not be symmetric,
i.e., Apa, bq � Apb, aq, and the distance between two points may be 8. We regard R̄�-
categories as generalised metric spaces and think of Apa, bq P R̄� as the “distance” from
a to b.

For example, R̄� itself is a generalised metric space with distance from α to β given
by rα, βs.

Each generalised metric space A has an opposite Aop with the same points and distance
Aoppa, bq � Apb, aq. We will concentrate on skeletal generalised metric spaces, i.e., those
spaces A for which Apa, bq � 0 � Apb, aq implies a � b. For example, R̄� is skeletal.

R̄�-enriched functors f : A Ñ B are identified with functions A Ñ B that are non-
expansive: Apa, bq ¥ Bpfpaq, fpbqq. It is easy to verify that there exists a unique R̄�-
natural transformation f ñ g : AÑ B if and only if 0 � Bpfpaq, gpaqq for all a P A. In this
way we obtain an Ord-category Metsk of skeletal generalised metric spaces, with objects
the skeletal R̄�-categories, morphisms the R̄�-functors and inequality f ¤ g between two
of them given by the existence of a R̄�-natural transformation f ñ g. Observe that
MetskpA,Bq is not only a preorder but a poset, because B is skeletal.

There is a notion of colimit suited to enriched categories, known as weighted colimit (or
indexed colimit in older texts); see [20, 21] for a standard reference. Each family of weights
induces a lax idempotent Ord-monad on Metsk whose algebras are the skeletal generalised
metric spaces that admit colimits with weights in the family (see [23, Theorems 6.1 and
6.3]). This monad is in fact simple (§15), as shown in the more general context in [8,
§12]. It follows from the theory developed herein that there is a lofs on Metsk whose
left morphisms are the embeddings with respect to that monad and whose fibrant objects
are the skeletal generalised metric spaces that admit all Φ-colimits (see Proposition 12.2
and Corollary 15.4). The rest of the section is occupied by the example of a particular
class of colimits that admit an explicit description.

The class of absolute colimits, i.e., the weights whose associated colimits are preserved
by any R̄�-functor whatsoever, generates a simple lax idempotent monad Q on Metsk.
Putting together [26] and [30] one can give a description of Q in terms of Cauchy sequences.

Cauchy sequences in a skeletal generalised metric space A are defined in the same
way as for classical metric spaces. Two Cauchy sequences panq and pbnq are equivalent if
both Apan, bnq and Apbn, anq have limit 0. Denote by QA the set of equivalence classes
of Cauchy sequences in A with distance QAprans, rbnsq � limnApan, bnq. It is not hard to
see that QA is a skeletal generalised metric space.

The assignment A ÞÑ QA is part of an Ord-monad Q on Metsk, with unit A Ñ QA
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the map that sends a P A to the constant sequence on a, that we denote by ca.
The convergence of a sequence pxnq to a point a in a generalised metric space A differs

from ordinary convergence in metric spaces only in that we have to require that both
Apa, xnq and Apxn, aq converge to 0 in R̄�. The following assertions are equivalent for a
skeletal generalised metric space A: it is an algebra for Q; the canonical isometry AÑ QA
has a left adjoint; A is a retract of a space of the form QB; every Cauchy sequence in A
converges. Spaces that satisfy these equivalent properties are known as Cauchy-complete.

If pLQ,RQq is the kz-reflective lofs on Metsk generated by Q, the LQ-coalgebras, or
left maps of the factorisation, are the Q-embeddings and can be characterised as follows.

19.1. Proposition. A non-expansive map f : AÑ B between skeletal generalised spaces
is a Q-embedding if and only if it is an isometry and for each b P B the non-expansive
function Bpf�, bq : Aop Ñ B can be written as Bpf�, bq � limnAp�, xnq for a Cauchy
sequence pxnq in A.
Proof. First, if Qf has a retract r, then Qf is an isometry and thus f is an isometry;
for, Bpfpaq, fpa1qq � QBpcfpaq, cfpa1qq � QBpQfpcaq, Qfpc

1
aqq � QApca, ca1q � Apa, a1q.

If r is moreover a right adjoint of Qf , and, for a given b P B, rpcbq has an associated
Cauchy sequence pxnq in A, we must have

Bpfpaq, bq � QB
�
cfpaq, cb

�
� QB

�
Qfpcaq, cb

�
� QA

�
ca, rpcbq

�
� lim

n
Apa, xnq

for all a P A.
Conversely, suppose that f is an isometry and Bpf�, bq � limnAp�, xnq. We must

define an equivalence class of Cauchy sequences rrbns P QA for each rbns P QB in a way
such that QBprfpanqs, rbnsq � QAprans, rrbnsq. Since any Cauchy sequence is a limit of
constant sequences (eg, bn � limn cbn), it suffices to define r and to verify this equality for
constant sequences; i.e., we have to give rrcbs P QA such that Bpfpaq, bq � QApca, rrcbsq.
Since we know that Bpf�, bq � limnAp�, xnq, we may set rrcbs � rxns and the equality
holds. In this way we prove that there is an adjunction Qf % r : QB Ñ QA. It remains
to prove that r � Qf � 1, but f is an isometry, which implies that Qf is an isometry
and therefore one-to-one, so the equality follows from the adjunction triangle equation
Qf � r �Qf � Qf .

It follows from the general theory that, given a Q-embedding f : A Ñ B and a non-
expansive function h : A Ñ C into a Cauchy-complete skeletal generalised metric space
C, there is an extension d.

A
h //

f
��

C

B
d

<<

Furthermore, Cauchy-complete skeletal generalised metric spaces are precisely those in-
jective with respect to the Q-embeddings. In terms of sequences, the extension d is
given by dpbq � limn hpxnq, where pxnq is a Cauchy sequence in A such that Bpf�, bq �
limnAp�, xnq.
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19.2. Corollary. Let f : A Ñ B be a non-expansive function between skeletal gener-
alised metric spaces, and assume that B is a metric space. Then, f is a Q-embedding if
and only if it is a dense isometry.
Proof. If f is a Q-embedding and b P B, there is a Cauchy sequence pxnq in A such that
limnAp�, xnq � limnBpf�, bq. Given ε ¡ 0, there is an n0 such that Apxn, xmq   ε{2 if
n,m ¥ n0. Thus, for m ¥ n0 we have

Bpfpxmq, bq � lim
n
Bpfpxmq, fpxnqq � lim

n
Apxm, xnq ¤ ε{2   ε.

It follows that pfpxmqq converges to b, and f is dense. Observe that we have used that
the distance of B is symmetric.

Conversely, if f is a dense isometry, any b P B is limn fpxnq for some sequence pxnq in
A, which is Cauchy since f preserves distances and pfpxnqq converges. Then Bpfpaq, bq �
limnApa, xnq for all a P A, and Proposition 19.1 applies.

The definition of QA given in terms of Cauchy sequences immediately tells us that if
A is a metric space then QA is a metric space too; i.e., its distance function is symmetric.
We deduce:

19.3. Corollary. The lofs pLQ,RQq restricts to an ofs on the category of metric
spaces. Its left maps are the dense isometries.
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