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CUBICAL MODEL CATEGORIES AND QUASI-CATEGORIES

BRICE LE GRIGNOU

ABSTRACT. The goal of this article is to emphasize the role of cubical sets in enriched
category theory and infinity-category theory. We show in particular that categories
enriched in cubical sets provide a convenient way to describe many infinity-categories
appearing in the context of homological algebra.
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Introduction

The goal of this article is to emphasize the role of cubes and cubical sets when dealing
with compositions of homotopies.

Indeed, let (E,®,1) be a monoidal model category, together with the choice of an
interval T U1 — H = 1. One can think of the category of simplicial sets with the
interval A[1], of the category of chain complexes with the cellular model of the interval,
or of the category of differential graded coalgebras with the cellular model of the interval.
Then let (A,~v,n) be a monoid in E (for instance a simplicial monoid or a differential
graded algebra depending on our choice of category E). A point of A is a morphism
a: 1 — Ain the category E. Then, a path between two points in A is the data of a
morphism H — A. Using the product on A, one can define the product of two paths f
and g as follows

HoHL% Ao A AL
The product of f with ¢ is thus a morphism from H ® H to A ; that is a square of A.

Similarly, the product of a n-cube f : H*" — A with a m-cube g : H®™ — Ais a n+m-
cube f-g: H®"t™ — A. The same phenomenon appears when dealing with a "monoid
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CUBICAL MODEL CATEGORIES AND QUASI-CATEGORIES 623

with many objects", that is a category enriched over E. This enlightens the fact that
cubes appear naturally when mixing homotopy with composition. In the case where the
monoidal structure is Cartesian, that is ® is the categorical product X, for instance for
simplicial sets, then the interval H has a diagonal map H — H ® H. Then, the product
of two paths which is a square induces another path, the diagonal of this square

HoHoH - AQAL A .

There exists a category of cubes [J, (the p stands for pre), described in details in the
book [Cis06], which roughly consists of cubes of various dimensions (17, together with
face inclusions 9; : DZ — Dg“ and contraction along a direction o; : D; — Dg_l. This
category has a monoidal product given by

n m __ n+m
O @ Or = Opm

In a similar way as simplicial sets sSet = Fun(A°P, Set) are gluings of points, lines, trian-
gles, tetrahedrons, . .., precubical sets [J,—Set = Fun(OJ2, Set) are gluings of points, lines,
squares, cubes, ... Moreover, precubical sets represent all the possible homotopy types as
well as simplicial sets ; indeed, the category [J,—Set has a model structure Quillen equiv-
alent to the Kan—Quillen model category of simplicial sets. Besides, cubical sets inherit a
monoidal structure from that of cubes.

Then all the discussion above about compositions and homotopies is encompassed in
the following proposition.

0.1. PROPOSITION. [Cis06] Let (E,®, 1)be a monoidal model category. Then, the data of
an interval H of E, is essentially the data of a monoidal Quillen adjunction

Ly
O,—Set —— E.
Ry

Moreover, this induces another adjunction

Ly
Catgp (_H CatE

D

between categories enriched in precubical sets and calegories enriched in E, which is a
Quillen adjunction, when the Dwyer-Kan model structure on Catg exists.
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Besides, let us consider the simplicial set A[3].

(2)

(0) (3)

Seen as an infinity-category, it has 4 objects, that is 0, 1, 2, 3. Its morphisms are generated
by the edges (ij) for any integers 0 < ¢ < j < 3. Then there are exactly 4 morphisms
from 0 to 3 that is (03), (01)(13), (02)(23) and (01)(12)(23). They are organized into a
square a follows.

(01)(13) (01)(123)(01)(12)(23)

(013) (0123) (012)(23)

(03) (023)  (02)(23)

More generally, the morphisms of A[n] from i to j are organized into a j — i — 1-cube for
1 < j. In particular the morphisms from 0 to n are organized into a n — 1-cube. The face
maps A[n — 1] — A[n| induce face maps between cubes. This seems to be the beginning
of a functor W), from A to the category Caty, of categories enriched over precubical sets
such that W, ,, := W,(n) would be the cubical category with n + 1 objects 0,...,n and

Wyn(0,n) =0yn — 1],
and more generally,
Wp,n(i7j> = Dp[j —1— 1] )
for any integers 0 < i < j < n. However, the degeneracy map o; : A[3] — A2

would give a functor W, » — W,,; corresponding at the level of mapping spaces to a map
v : 0,[2] — 0,[1] mimicking the behaviour of the function

[0,1] x [0,1] — [0, 1]
(z,y) — max(z,y) .
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Unfortunately, such a morphism from [J,[2] to 0J,[1] does not exist. Therefore, one needs
to enhance precubes and precubical sets by adding this map v to obtain respectively the
category [J. of cubes with connections and the category [J.—Set of cubical sets with con-
nections ; see for instance [Mal09].

Actually, there exists a functor W, from the category A to the category Caty, of
categories enriched over cubical sets with connections which has the shape that we hoped
earlier. Indeed, W,, := W.(n) has n + 1 objects 0,...,n and

W,(0,n) =0.n—1] .
It induces an adjunction

We
sSet =—— Catp, .
NC

The usual adjunctions relating simplicial sets to categories enriched over a monoidal model
category E factorizes through this one. Moreover, this is a Quillen adjunction if the
category of simplicial sets is endowed with the Joyal model structure. This two facts
coupled with some Reedy theory lead us to the following theorem.

0.2. THEOREM. Let E be a monoidal model category and suppose that the category Catg
of categories enriched over E has a Dwyer-Kan model structure. Then, for any Reedy
cofibrant replacement F of the cosimplicial E-enriched category n — [n], the induced
adjunction

F
sSet =— Catg ,
F!

15 a Quillen adjunction.

The use of cubical sets is particularly efficient when dealing with enriched model
structures. Simplicial model categories are model categories M enriched, tensored and
cotensored over the category of simplicial set satisfying an additional axiom which implies
that the simplicial category of fibrant-cofibrant objects is a model of the infinity-category
that is presented by the model category M. Replacing the category of simplicial sets by
another monoidal model category E, one obtains the notion of an E-model category ; see
[Hov99|. By the following proposition, any E-model category M has the structure of a
cubical model category.

0.3. PROPOSITION. Let (E,®,1) be a monoidal model category and let M be an E-model
category. Then, any choice of an interval (resp. monoidal interval) H in E induces the
structure of a O,—Set-model category (resp. O.—Set-model category) on M.

In particular, if M is a simplicial model category, then it has an induced structure of a
cubical model category. We are also interested in the cases where M is an E-model category
for some E but it is not a simplicial model category ; for instance the Joyal model category
and the model category of algebras over a nonsymmetric differential graded operad where
E is respectively the Joyal model category and the model category of differential graded
coalgebras.
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LAyouT. This article is organized as follows. In the first section, we describe in details
the theory of enriched categories and recall some results about their homotopy theory.
The two next sections deal with the categories of precubical sets and cubical sets with
connections and their model structures. Many of the results given there are due to Cisin-
ski. The fourth part makes a link between simplicial sets and enriched categories. The
final section applies the material developed to concrete examples.

RELATIONS TO OTHER WORKS. Some results given here were already known. Indeed,
many of the results about cubical homotopy are consequences of the work of Cisinski
(|Cis06]). The idea that the homotopy coherent nerve functors for dg categories and
simplicial categories factor through categories enriched over cubical sets with connections
was already in [RZ18|. Moreover, similar ideas to those of Section 4, already appeared
independently in [KV18]. However, to the best of my knowledge, this is the first time
that cubical sets are used systematically to study enriched categories.

CONVENTIONS.

> The category of simplicial sets is denoted sSet. It is usually endowed with the Kan-
Quillen model structure. If we endow it with the Joyal model structure, we write
sSet ;.

> We denote by [n] the category with n 4+ 1 objects 0,...n such that

. xif i < g,
hom[n]@?]) = {

(@ otherwise.

Furthermore, 52 : [n] — [n+ 1] is the only injective functor which omits the objects
iin [n+ 1] and o2 : [n] — [n — 1] is the only surjective functor which sends the
objects ¢ and 7 + 1 to i. All these categories [n] and these functors generate the
category A.

> Let U < U' be two universes. Usually, we work with categories whose sets of
morphisms are U-small and whose set of objects is U-large (that is a subset of U).
In particular, these categories are U’-small, in the sense that their sets of objects
and morphisms are U’-small. Then, when performing constructions on a category
considered as an object, or when working with «the category of categories», we
assume working with U’-small categories.

ACKNOWLEDGMENT. I was supported by the NWO Spinoza grant of Pr. Ieke Moerdijk.
Moreover, I would like to thank Gabriel Drummond-Cole and Manuel Rivera for pointing
out to me the existence of the article [RZ18]. T would also like to thank the anonymous
referee for his remarks.
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1. Monoidal categories and enriched categories

1.1. MONOIDAL CATEGORIES AND MONOIDAL ADJUNCTIONS. In this section, we recall
the notions of a monoidal adjunction, of a monoidal natural transformation after Kelly

[Kel74].

1.2. DEFINITION. Let (E,®,1) and (F,®,1) be two monoidal categories, and let F,G :
C — D be two lax monoidal functors between them. A natural transformation ¢ : F — G
s monoidal if the following diagrams commute

FIX) F(Y) — F(X®Y) 1
¢<X)®¢(Y)l l¢<X®Y) / \
GX)®GY) — G(X®Y) (1) o G

for any objects X, Y of the category C.

1.3. DEFINITION. Let (E,®,1) and (F,®,1) be two monoidal categories. A monoidal
adjunction between them is the data of an adjunction

E——F,
R

together with structures of lax monoidal functors on L and R so that the unit map Id — RL
and the counit map LR — 1d are monoidal natural transformations.

1.4. THEOREM. [Kel7}] Let us consider an adjunction L < R between two monoidal
categories.

1. the data of a structure of a lax monoidal functor on R is equivalent to the data of a
structure of an oplax monoidal functor on L;

2. gwen an enhancement of L 4 R into a monoidal adjunction, the structural maps
LIX®Y) = L(X)® LY) and L(1) — 1 making L an oplax monoidal functor
(as a left adjoint to the lax monoidal functor R) are inverse to the structural maps
LIX)® L(Y) = L(X®Y) and 1 — L(1) making L a lax monoidal functor;

3. a structure of a lax monoidal functor on R is part of a monoidal adjunction if and
only if the corresponding structure of an oplax monoidal functor on L is strong.

Given a structure of an oplax monoidal structure on L, the structure of a lax monoidal
functor on R is given by the adjoint morphisms of the maps

LIR(X)® R(Y)) » LR(X)® LR(Y) > X ®Y
L(1) = 1.
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Similarly, given a structure of a lax monoidal structure on R, the structure of an oplax
monoidal functor on L is given by the adjoint morphisms of the maps

X®Y = RL(X)® RL(YY) — R(L(X)® L(Y))
1 — R(1).

1.5. REMARK. Following Theorem 1.4, one can also define a monoidal adjunction as an
adjunction together with the structure of a strong monoidal functor on the left adjoint.

1.6. DEFINITION. A bilinear monoidal category (E, ®, 1) is a monoidal category such that
E is cocomplete and such that the bifunctor — ® — commutes with colimits separately on
both sides.

For any such bilinear monoidal category, the element 1 € C induces a cocontinuous
functor ¢ : Set — E such that i(x) = 1.This functor has a right adjoint S such that
S(X) = homeg(1, X).

Set<Z_E
S

1.7. PROPOSITION. The functor i is strong monoidal. Therefore, the adjunction 1 45 s
monoidal.

PROOF. Since the monoidal structure is bilinear, then for any sets X and Y we have
Z(X) X ’L(Y) ~ (|_|an1]) X (Ubey“) ~ u(a,b)EXxYﬂ Q1 ~ l—'(a,b)eXxY“ >~ Z(X X Y) .
]

1.8. DAY CONVOLUTION PRODUCT. Let (A, ®,1) be a small category endowed with a
monoidal structure. Then, the opposite category A’ inherits a monoidal structure. We
denote by A — Set the category of presheaves over A, that is functors from A to Set.

1.9. DEFINITION. For any presheaves X,Y over A, the Day convolution product X ® Y

15 the following left Kan extension

AP Aor Y0 Get  Set % Set

®

AP

The Day product may also be defined in the following way. Both X and Y are colimits
of representables

X ~ colimyeq/x a
Y ~ colimgeq/y a .

Then,
X (%) Y ~ COhm(a,a’)eA/XxA/Y a® CL/ .
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1.10. PROPOSITION. [Day70] The Day product defines a bilinear monoidal structure on
the category A — Set. Moreover, the Yoneda embedding functor A — A — Set is strong
monoidal.

1.11. ENRICHED CATEGORIES.

1.12. DEFINITION. Let (E,®,1) be a monoidal category. A category enriched over E (or
E-category) (€, m,u) is the data of

> a set of objects Ob(%),
> for any objects x,y € Ob(¥), an element € (x,y) of the category E,
> an associative composition My, . = € (x,y) @ €(y,z) = €(x, 2),

> a unit for this composition u, : 1 — € (x,x) for any object x.
A functor F between two such E-categories (€, m,u) and (¢',m’,u’) is the data of
> a function from Ob(€) to Ob(€") also denoted F,

> for any objects x,y € Ob(€), a morphism F,, : € (z,y) = €' (F(x), F(y)),
> which commutes with the composition and the unit in the sense that
My re) Fz) Fry © Fyz) = Foamay.
Up(z) = Fac,a:ux ’
for any objects x,y,z of €.
This defines the category Catg of E-categories.
Forgetting the composition and the unit in E-categories, one gets the notion of a
E-quiver.

1.13. DEFINITION. A E-quiver 2 is the data of a set of objects Ob(L2) together with an
element 2(x,y) of E for any objects z,y € Ob(L2). A morphism F of quivers from 2 to
2’ is the data of a function from Ob(2) to Ob(Z2') also denoted F and, for any objects
z,y € Ob(2), a morphism F,, : 2(x,y) — 2'(F(x),F(y)). We denote by Quive the
category of E-quivers.

1.14. LEMMA. Suppose that the monoidal category E is bilinear. Then, the forgetful func-
tor O : Catg — Quivg has a left adjoint T such that for any quiver 2

> the set Ob(T2) is exactly the set Ob(2),
> for any objects x,y € Ob(2)

—H—Q(Jj, y) = I—'nZl |—|x0:x7x1,...,xn:y o@(%’ :Ul) K- ® o@(l‘n—la xn) Zf x 7é vy,
-ﬂ—g(xa x) =1U (l—lnzl l—lscozx,m1,...,xn::c Q('xoa {El) K- & c>@($nfla xn)) 3

> the composition is given by the concatenation of tensors.

Moreover, the adjunction T 4 O is monadic.
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PRrROOF. Straightforward. [

1.15. LEMMA. If the category E is cocomplete, then the category Quivg is cocomplete.
Moreover, for any reqular cardinal X\, if E is a A-presentable category, then, the category
Quivg is A-presentable.

PRrROOF. It is straightforward to prove that the category Quivg is stable under small co-
products. Let us prove that it has all cokernels. Consider the following diagram of

E-quivers.

F
— A

2 2
~—
G

The cokernel 2" of F' and G is the following E-quiver:

> its set of objects is the cokernel of the underlying functions of F' and G from Ob(2) to
Ob(2"). Therefore, it is the quotient of the set Ob(2”) by the relation F(z) ~ G(x)
for any object x of 2. Let us denote by K the surjection from Ob(2’) to Ob(2").
It is clear that at the level of objects of 2, KF = KG.

> For any objects z,y € Ob(2"), 2"(x,y) is the cokernel in E of the following diagram.

Fa,b

/_\

Uk F(a)=z, K F(b)=y2(a, b) Uk (=2, K (y)=y 2 (2", 1)

\_/'

Ga,b

Besides, if E is A-presentable, then the category Quivg of E-quivers is generated under
Mfiltered colimits by E-quivers 2 whose sets of objects are A-small and such that for any
objects z,y, 2(x,y) is A-small. The (possibly large) set of isomorphisms classes of such
E-quivers is actually a small set. [

1.16. LEMMA. Suppose that the monoidal category (E, ®,1) is bilinear. Then the category
Cate has all filtered colimits and the forgetful functor O preserves filtered colimits.

PROOF. Let D : I — Catg be a filtered diagram and let
2 =colim; Oo D .

We denote by F'(i) the morphism of E-quivers D(i) — 2 for any object ¢ € I. The set of
objects Ob(L2) is the colimit of the diagram i € I — Ob(D(i)). Moreover, for any two of
its element x,y,

"@(J;? y) = COhm(LF(i)(x’):x,F(i)(y'):y)D(i>(ZE,7 y,)
~ COliHli(U(F(i)(m’):z,F(i)(y’):y)D(i)(xla y)) -
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Then, for any three objects x,y, z of 2,

2(r,y) @ 2(y,2)
= (colim; p(s) @) =r, (i) (y)=p) D (1) (2, ¥')) @ (colim p(yym)=y,r() (=)= D () (", 2"))
~ colim;, F(i)(e')=a, F () (') =5, F() ") =y FG) =) D (D) (2, ) @ D(5)(y", 2") .
The inclusion functor (i, F(i)(2') = =, F(i)(y') = y, F(i)(2) = 2) — (i, F(i)(2') =
r, F(i)(y) =y,i, F(i))(y) =y, F(i)(2") = 2) is final. Thus
2(2,y) ® 2(y, 2) = colim, r(;)(@)=e,P(5) ()=, F(i) (=)= D (1) (2", ) @ D(i)(y', 2') .
Besides, the following cocone

Myt 1 o1 . F(3))yt o
D)) & D)) "% Dii)(a'#) S 2ay)
induces a composition morphism mZ, . : 2(x,y) ® 2(y,2) — 2(x,2). Moreover, the

T,Y,z
composite map
’ . F(Z)'c/ a!
12 D), 2)) —=5 2(x,x)

does not depend on the choice of i and 2’ € Ob(D(i)) such that F(i)(z’') = x. Then,
it defines a morphism 7, : 1T — 2(z,x). Similar arguments about final diagrams as
those used above show that 7, is a unit for the composition and that the composition
is associative. We thus have defined the structure of an E-category on 2. Finally, it is
straightforward to prove that 2 equipped with this structure is the colimit of the diagram
D. [

1.17. THEOREM. [KL01] Let \ be regular cardinal. Suppose that the category E is a
A-presentable bilinear monoidal cateqory. Then the category Catg is A-presentable.

PROOF. It follows from the fact that the monad O o T preserves filtered colimits. [

1.18. DEFINITION. We denote by %y the E-enriched category with one object 0 such that
*H(O, 0) = “E .

1.19. DEFINITION. For any object X of E, let [1]x be the E-category with two objects 0
and 1 such that

This defines a functor [1] : E — Catg.
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1.20. ADJUNCTION BETWEEN CATEGORIES OF ENRICHED CATEGORIES. Let GG be a lax
monoidal functor from (E,®, 1) to (F,®, 1). Since G is monoidal one can define a functor
from Catg to Catg also denoted G such that for any E-category (€, m,u):

> Ob(G(¥)) = Ob(¥),
> G(€)(z,y) = G(€(z,y)).
> the composition is defined as follows

G(mayy,2)

1.21. PROPOSITION. Let L 4 R be a monoidal adjunction between two monoidal cate-
gories (E,®,1) and (F,®,1). Then, the extended functor L : Cate — Catg is left adjoint
to the extended functor R : Catp — Catg.

PRrROOF. For any E-category (%, m,u), the map ny : € — RL(%) is indeed a functor of
E-categories. Similarly, for any F-category (¢’,m/,u’), the map ex : LR(¢') — ¢ is
indeed a functor of F-categories. It is then straightforward to prove that the composite
functors

@) 2 LRL(€) O (%)

R(€") 1 RLR(%") 2 R(%) |

are respectively the identity of L(%) and the identity of R(%”). n
1.22. MONOIDAL MODEL CATEGORIES.

1.23. DEFINITION. [Monoidal model category| Let (E,®,1) be a (not necessarily sym-
metric) monoidal category equipped with a model structure. It is said to be a monoidal
model category if

> the monoidal structure is bilinear,

> the monoidal unit 1 is cofibrant,

> for any cofibrations f: X — X' and g:Y — Y’, the morphism
XY Uxegy XV - X' @Y’

s a cofibration; moreover, this is a weak equivalence whenever either f or g is.
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1.24. REMARK. Qur definition is different from Hovey’s original definition [Hov99, Def-
inition 4.2.6]. Indeed, we do not assume that the monoidal structure is closed, but we
assume that the monoidal unit is cofibrant, which is stronger than Hovey’s unit axiom.

A consequence of K. Brown’s lemma (a functor that sends acyclic cofibrations between
cofibrant objects to weak equivalences preserves weak equivalences between cofibrant ob-
jects) is that, in a monoidal model category, for any cofibrant object X and for any weak
equivalence Y — Y’ between cofibrant objects, the morphism X ® Y — X ® Y is a weak
equivalence between cofibrant objects as well as the morphism ¥ ® X — Y’ ® X. Then
for any weak equivalence between cofibrant objects, the morphism X®" — Y®" is a weak
equivalence between cofibrant objects for any integer n € N.

If (E,®, 1) is a monoidal model category, then we can define a tensor product on the
homotopy category Ho(E) as follows:

X ®noE) Y i=7(QX @ QY) ,

where QX and QY are cofibrant replacement of X and Y and 7 is the localisation functor
m:E— Ho(E).

1.25. PROPOSITION. [Hov99, Theorem 4.3.2] This tensor products is part of a monoidal
structure on the category Ho(E). Moreover, the localisation functor m: E — Ho(E) is lax
monoidal.

1.26. REMARK. Again, Hovey’s theorem involves closed monoidal structure and imply
results about closedness of the monoidal structure of the monoidal structure of Ho(E).
Howewver, the proof of the part of the theorem that we recall does not use the closedness.

1.27. DEFINITION. Let (E, ®,1) and (F,®, 1) be two monoidal model categories. A Quillen
monoidal adjunction relating E to F is an adjunction

E—F
R
which 1s both a Quillen adjunction and a monoidal adjunction.
1.28. LEMMA. Let us use the notations of the above definition. Then the left derived

functor LL : Ho(E) — Ho(F) is strong monoidal. Moreover, the canonical natural trans-
Jormation from ILL o Ty 1o ThoE) © L is a monoidal natural transformation.

PROOF. The structure of a strong monoidal functor on the left derived functor is given
by the isomorphism

Vo) = Ir = L(1g) = LL(Tgo(e))
and the following composite map

H_L(X) @ Ho(F) H_L(Y)

L(QX) @mo(r) L(QY)
(QX) ®F L(QY)
(QX ®F QY)

[LL(X RE Y).

12

L
L

12
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where the isomorphism L(QX)®p.r) L(QY) ~ L(QX)®rL(QY') comes from the fact that
both L(QX) and L(QY) are cofibrant. A straightforward check shows that this defines
the structure of a strong monoidal functor and the canonical natural transformation from
LL o THoE) t0 THo(E) © L is a monoidal natural transformation. n

1.29. ENRICHED, TENSORED AN COTENSORED CATEGORY. In this section, we recall
the definition of tensored-cotensored-enriched category over a not necessarily symmetric
monoidal category.

1.30. DEFINITION. Let (E,®,1) be a monoidal category . Any category € enriched over
E has an underlying category S(€) with the same object and so that

homS(‘K) (Ia y) = homE(“ ) Cg<x7 y))
Then the mapping (x,y) € Ob(€) x Ob(€) — € (x,y) € E becomes a functor
{—,—}:5(¥)" x S(¢) — E.

1.31. REMARK. Actually, one can define a category enriched over E as the data of a
category C together with a functor {—,—} : C% x C — E together with a natural maps
{X, Y} {Y,Z} = {X,Z} and maps Tg — {X, X} that make a unital associative com-
position and so that

home(z,y) = homg (1, {x,y}).

1.32. DEFINITION. |(Co)tensorisation| Let (E,®, 1) be a monoidal category and let C be
a category enriched over E.

> One says that C is tensored over E if the functor
YeC—{X,Y}€E
has a left adjoint that we denote X < —
> One says that C is cotensored over E if the functor
XeC?—-{X,Y}€E
has a right adjoint that we denote (—,Y).

If C is tensored over E, then the construction (X, A) — X <A is binatural. Thus, one
gets a functor
—<4—:CxE—-C

Moreover, the composition and the unit of the enrichment induce functorial morphisms

X<a(A®B)— (X<A)<B,
Xal~X,
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for any X € C, any A, B € E; these functors are compatible with the monoidal structure
of E in the sense that the following diagrams are commutative

Xa((A®B)®C)— (X< (A® B))aC—— (X < A)<B) «C

| |

X<4(A® (B®C()) (X<aA) <« (BxC),

X <a(1®A) (X<T)<aA

Similarly, if C is cotensored over E, then the construction (A,Y") — (A, Y) is binatural.
Thus, one gets a functor
(—, =) E?xC—C.

Moreover, the composition and the unit of the enrichment induce functorial isomorphisms

(A(B, X)) - (A® B, X) ,
(1,X) ~ X .

such that the duals of the above diagrams are commutative.
Now, consider two monoidal categories (E, ®, 1) and (F,®, 1) and a monoidal adjunc-
tion

Let € be a category enriched over F that is tensored (resp. cotensored). Then the cat-
egory enriched over F R(%) is also tensored (resp. cotensored). The bifunctor associated
to the tensoring is — < L(—) and the bifunctor associated to the cotensoring is (L(—), —).

1.33. MODEL CATEGORY ENRICHED OVER A MONOIDAL MODEL CATEGORY. In this
subsection (E, ®, 1) is a monoidal model category.

1.34. DEFINITION. [Homotopical enrichment|Let M be a model category. We say that M
is homotopically enriched over E if it enriched over E and if for any cofibration f : X — X'
in M and any fibration g : Y — Y’ in M, the morphism in E:

(XY} = (XY} x(xyy {X, Y}

s a fibration. Moreover, we require this morphism to be a weak equivalence whenever f
or g is a weak equivalence.
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1.35. DEFINITION. A E-model category is a model category M tensored-cotensored-enriched
over E such that the enrichment of M over E is homotopical.

One can show that the enrichment is homotopical if for any cofibration f: X — Y in
M and any cofibration g : A — B in E, the morphism in M:

X<aBUxpuY<9A—>Y B

is a cofibration, and it is a weak equivalence whenever f or g is a weak equivalence.

1.36. PROPOSITION. Consider a monoidal Quillen adjunction E - F. If M is an F-model
category, then it has a canonical structure of a E-model category.

PROOF. We already know that M is tensored-cotensored-enriched over E. The enrichment
is homotopical because the functor E — F is a left Quillen functor. [

1.37. DWYER-KAN MODEL STRUCTURE. This section recalls model structures on cate-
gories enriched over a monoidal model category E in the vein of [Lur09, A.3.1]. There are
other results related to this subject. See for instance [BM12|, [Cav14].

Let (E,®, 1) be a monoidal model category.

1.38. DEFINITION. Let g be the following composite functor
E L Ho(E) S Set .

where Ho(E) is the homotopy category of E and S is the Yoneda functor homy,e) (1, —).
Since the localization functor E — Ho(E) and S : Ho(E) — Set are both laxz monoidal,
then my s laz monoidal.

1.39. DEFINITION. If it exists, the Dwyer-Kan model structure on the category Catg is
the model structure such that

> the weak equivalences are the functors F from (€, p,u) to (€', 1/, v') such that F,, :
C(x,y) = €' (F(x), F(y)) is a weak equivalence of E for any x,y € Ob(¥), and such
that mo(F') : mo(€') — m0(€") is an essentially surjective functor.

> the (large) set of cofibrations is the smallest subset of the set of functors which is
stable under pushouts, transfinite compositions and retracts and which contains the
functor ) — %y and, for any cofibration f : X — Y of E, the functor [1]; : [1]x —
[y

1.40. THEOREM. ([Lur09, A.3.2.4]) Suppose that (E,®,1) is a combinatorial monoidal
model category such that every object is cofibrant and such that weak equivalences are stable
under filtered colimits. Then, the category Catg admits the Dwyer-Kan model structure
which is moreover left proper and combinatorial. A set of generating cofibration is

{0 — %1} U{[1]¢] f is a generating cofibration of E} .
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1.41. REMARK. Lurie assumed E to be symmetric monoidal in his result. The proof does
not relies on this assumption. Actually, this result a consequence (after some work) of the
theory of combinatorial model categories ; see for instance [Ros09].

Consider a monoidal Quillen adjunction between monoidal model categories.

L

E ? F.
1.42. PROPOSITION. Suppose that the category Catg and Catg have Dwyer-Kan model
structures. Suppose moreover that the functor L : E — F preserves weak equivalences (for

instance if any object of E is cofibrant). Then the adjunction

L
CatE (_5 CatF .
R

15 a Quillen adjunction.

PROOF. It is straightforward to prove that R : Catg — Catg preserves acyclic fibrations. So
L : Catg — Catf preserves cofibrations. Let us prove that it preserves weak equivalences.
Let F': (¢,7) — (Z,7) be weak equivalence of Catg. Since the functor L : E — F
preserves weak equivalences, then the map L(F) : (LE)(z,y) — (L2)(F(x),F(y)) is a
weak equivalence for any objects x,y € Ob(%¢’). Besides, the functors mp : E — Set and
mo o L : E — Set are lax monoidal and there exists a monoidal natural transformation
between them (Lemma 1.28). We thus obtain a natural transformation between the
functor 7y : Catg — Cat and the functor 7y o L : Catg — Cat. So, we have the following
commuting square diagram of categories

7'('0((5) e WoL(g

lm(m lﬂoL(F)

71'0@ _— WQL@,

whose horizontal arrows are isomorphisms on objects. Since moF is essentially surjective,
then moLF' is also essentially surjective. [

2. Cubical sets

There are many different categories called cubical sets. See for instance [GMO03|, and
[Isa09]. In this paper we just focus on two of these categories that we call precubical sets
and cubical sets with connections. The first one is described in [Cis06, §8.3|, in [Jar02]
and in [Jar06] and the second one in [Mal09] and [Cis14, Example 1.6].

We deal with cubical sets with connections for the following reason. It has the minimal
structure that make usual nerve functors from quasi categories to enriched categories
factorise through categories enriched over cubical sets with connections.
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2.1. SEGMENTS. We give here the notions of a segment and of an interval inspired from
[BMO6]. Note that a segment (resp. an interval) in the sense of [BMO06] is a monoidal
segment (resp. monoidal interval) for us.

2.2. DEFINITION. Let (E,®,1) be a monoidal category. A segment of E is an object H of

E together with maps
89,61

Tu1 22 g2

which factorizes the morphism 1 U1 — 1. Moreover, in a monoidal model category, an
interval is a segment such that the map (8%,0%) is a cofibration and the map oy is a weak
equivalence.

Notice that one can also define a segment as a functor ' : A<y — E such that

2.3. DEFINITION. Let (E,®,1) be a monoidal category. A monoidal segment
(Ha 6(;—]76111]’0-1177}])

1S a segment
Ok 0k)  1r on
Tul —H —1,

together with a map vy - H @ H — H such that
> the product vy is associative, that is yy(Idg ® vu) = yu (v @ Idy),
> the product has a unit given by 6% : 1 — H,
> the morphism oy is a morphism of monoids,

> the morphism 0% : 1 — H is absorbing, that is the following diagram commutles

1
c1oH M e I g e
l [ o
1 T H 1.

A morphism of monoidal segments from (H, 0%, 0%, 0w, vu) to (H', 0%, 03, 0w, Yar) 18 a
morphism of segment f : H — H' such that fyg = vyao(f ® f). In a monoidal model
category, a monoidal segment which is also an interval is called a monoidal interval.

2.4. REMARK. One also can deal with segments H with a monoidal structure so that 6%
is absorbing instead of 0. This would yield another category of cubes called cubes with a
left connections, while our category of cubes with connections is actually the category of
cubes with right connections.
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2.5. REMARK. One can add many different structures to segments. Any type of structured
segment yields a category of cubes which is the PRO category associated to that structured
segment, and then a category of cubical sets which are presheaves on the category of cubes.

See again [GM03].

2.6. CUBES. This subsection deals with two categories of cubes : the category of precubes
and the category of cubes with connections.

For any integers n € N, we denote by (0" the n-times product of the poset {0 < 1}
Or:={0<1}".

Notice that the full subcategory of the category of sets spanned by the objects [J" has
a symmetric monoidal structure given by the cartesian product. Consider the following
functions

60 0% - O

R L I L

o0 —0O°,

v O?2 = 0O
defined by

=9

°(x) =0,
) =1,
(i)=xVieO,
(i

i,j) = max(i, j) V4,5 € O .

>

*
~—
I

o
Y
Tensoring 0%, 61, o and v with identities, one obtains the following maps
00 = Id' x §° x Id"*: 0" ~ I x [ x O~ — O+
OF=1Id x & x Id": 0" ~[F x O0° x O — O FL
op=Id"xox I[d""t "~ x O x Ot Ot
v = Id*t x vy x I Or ~ [F x 02 x 072 — Ot

for any n. The maps 6 and §} are called cofaces, the maps o; are called codegeneracies
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and the maps 7" are called connections. These functions satisfy the following relations

(66 = 05,00, iF i < j
0i0; =001, if 1> 7,
08¢ = 8_yoy, if i < j
0;0f = Id

005 = 050;-1,1f i > j |
ViV = ViVi+1

Vi = Vi1V, >,
0% = 0i0; ,

oY = Vj-10i, L1 < g,
oY = VjCit1, if 1> 7,
%0] = Yi0iyy = Id

id) = %’51'1“ =0j0;

Yid5 = 05_17vi, if i+ 1 <7,
| Yid§ = 057yi—1, if 1> 7 .

2.7. DEFINITION. The category of precubes U, is the subcategory of posets whose objects
are the posets (" for n € N and whose morphisms are generated by the cofaces 62 and 6}
and the codegeneracies o;. The category of cubes with connections L. is the subcategory
of posets whose objects are the posets L™ for n € N and whose morphisms are generated
by the cofaces 6 and 6}, the codegeneracies o; and the connections ;.

2.8. REMARK. The term connections was introduced in [BP81].

2.9. REMARK. Beware! The category of cubes with connections that we consider is not the
same as the category considered by [GMO03], but it is the category considered in [Mal09].

The rewriting rules given above give us the following proposition.

2.10. PROPOSITION. [GM03] Any morphism in the category OJ, may be uniquely written
as a sequence
5'5611 U 5Z€ZO-J1 to O-j'm Y

where 117 > --- > 1; and j1 < +++ < Jm. Similarly, any morphism in the category O, may
be uniquely written as a sequence

€1 €n
Ogy 03 Yjy ** Vjm Oy " Oy

where 11 > -+ >0, 1< - < Jy and k1 < --- < k.
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2.11. PROPOSITION. Both the category of precubes and the category of cubes with con-
nections inherit a strict monoidal structure from the cartesian product of posets. In both

cases, the unit is (° and
Dn ® Dm — Dn+m ’

for any integers n, m.
PROOF. The proposition follows from long but straightforward verifications. n
2.12. REMARK. The monoidal category (O,, ®,0°) is not symmetric monoidal. Indeed,

the following diagram does not commute

o —= s et

| o

M — O =012
Id®69

For the same reason, the monoidal category (0., ®,1°) is not symmetric monoidal.

2.13. PROPOSITION. [Cis06, Proposition 8.4.6], [Mal09, Proposition 5.5] Let (C,®, 1) be
a monoidal category. The category of strong monoidal functors from [, to C and monoidal
natural transformations is equivalent to the category of segments of C. Similarly, the
category of strong monoidal functors from L. to C and monoidal natural transformations
15 equivalent to the category of monoidal segments of C.

2.14. REMARK. Actually Maltsiniotis shows the above results for strict monoidal cate-
gories and strict monoidal functors. But the same arguments work.

2.15. CUBICAL SETS.

2.16. DEFINITION. The category of precubical sets UJ,—Set is the category of presheaves
on U, that is functors from LIP to Set. The category of cubical sets with connections
O.—Set is the category of presheaves on L., that is functors from 0% to Set.

2.17. NOTATIONS.

> We will denote by O,[n] (resp. O.[n]) the Yoneda embedding of O in the category
[J,—Set (resp. O.—Set).

> For any precubical set or any cubical set with connections X and any integer n € N,
X (n) will denote the set X (O").

2.18. EXAMPLE. We will often deal with the following cubical sets.

> We denote by 00J,[n| the union of all the faces of O,[n], that is

00,[n)(O™) = {f € homp, (O™, 0")| there is a factorisation f = 05" g}
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> For any (e,4) € {0,1} x {1,...,n}, let M%[n] be the i-cap of dT,[n], that is
My [n)(O™)
= {f € homp, (O™,0")| there is a factorisation f = 5<% g with (¢,7) # (e,)} .

> One can define in a similar way the cubical sets with connections 00 [n] and M5 [n).

2.19. REMARK. Since the categories [,—Set and [J.—Set are presentable and since the
bifunctor —@— commutes with colimits on both sides, then one can show that the monoidal
categories U,—Set and O.—Set are biclosed, that is the functor — ® X and the functor
X ® — have both right adjoints.

2.20. PROPOSITION. [Cis06, 8.4.23] Let (C,®,1) be a monoidal cocomplete bilinear cat-
egory. The category of cocontinuous strong monoidal functors from O,—Set to C with
monoidal natural transformations is equivalent to the category of segments of C. Similarly,
the category of cocontinuous strong monoidal functors from [.—Set to C with monoidal
natural transformations is equivalent to the category of monoidal segments of C.

PROOF. It is a straightforward consequence of Proposition 2.13. ]

Moreover, any functor L, : [,—Set — C which is cocontinuous has a right adjoint.
Then, any adjunction

LP
0, —Set R:> C,
P

is essentially determined by the image under the functor L, of [J,[1]. The same result
holds if we replace the category [J,—Set by the category U.—Set.

2.21. NOTATIONS. Let (C,®,1) be a bilinear monoidal category. Consider a segment H
wn C. The adjunction relating C to precubical sets induced by this segment will be denoted
Lf . Rf. If H is a monoidal segment, the induced adjunction relating C to cubical sets
with connections will be denoted L* - RH .

2.22. REMARK. Notice that for any monoidal segment H,
H_ 7O] o 7H
LYo DM~

2.23. LEMMA. [Cis06, Lemme 8.4.36] For any integer n € N and for any integersi,j € N
such that i + j = n, we have

o0, [n] ~ 003, [i] ® U,[5] Voo, eon, i Dplil ® 00, [5] -

Moreover,
I_I;’"[n] ~ aDp[n — 1] & Dp[l] |—|8Dp[n—1]®Dp[0] Dp[n — 1} (029 Dp[()}
5[] =~ 0, [1] © A0, — 1] Uy osoiny 5p10] @ Dyl — 1]

M5 n] ~ M) © G4 Ureiigan, ) O[] ® 000, (] -

The same results hold in the category of cubical sets with connections.
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3. Homotopy theory of cubical sets

This section deals with the homotopy theories of precubical sets and of cubical sets with
connections. We first recall their model structures from the work of Cisinski, Jardine
and Maltsiniotis and give additional results on the model structure on cubical sets with
connections. We then study the Reedy model structure on cocubical objects and its link to
functors from cubical sets (precubical or with connections) to any other monoidal model
category.

3.1. HOMOTOPY THEORY OF PRECUBICAL SETS. We know that the unit of the cartesian
monoidal structure on simplicial sets is the final object A[0]. Moreover, the map A[0] L
A[0] = AJ0] may be factorised as follows

s0ust
—

AJ0] U AJ0] All] % AJ0] .

By Proposition 2.20, this induces a strong monoidal cocontinuous functor Lﬁm : 0,—Set —
sSet and hence a monoidal adjunction between precubical sets and simplicial sets
1AM
P
[J,—Set —— sSet .

RO

One can transfer the usual model structure on simplicial sets to precubical sets.

3.2. THEOREM. [Cis06][Jar02] There exists a combinatorial proper model structure on
precubical sets such that

> the cofibrations are the monomorphisms,

> the weak equivalences are the morphisms f such that Lﬁm(f) 15 a weak equivalence,
> the generating cofibrations are the injections 0(0)[n] — Oln],

> the generating acyclic cofibrations are the injections M [n] — O[n],

> the adjunction Lﬁm o Rﬁm 15 a Quillen equivalence,

> (O,—Set, ®, %) is a monoidal model category,

> the functor Rﬁm preserves and reflects weak equivalences.

3.3. REMARK. Jardine and Cisinski described independently two model structures on the
category of cubical sets ; see [Jar02] and [Cis06]. They are actually the same (see [Jar06]).
Besides, the fact that this model structure is right proper is a direct consequence of Cisin-
ski’s theory. However, this property seems hard to prove in Jardine’s framework which is
more topological.



644 BRICE LE GRIGNOU

3.4. HOMOTOPY THEORY OF CUBICAL SETS WITH CONNECTIONS. Consider the follow-
ing sequence of adjunctions

1,Be(] AN

P c
0,—Set m—— [0, — Set — sSet .
ROel] RAI

One can also transfer the usual model structure on simplicial sets to cubical sets with
connections.

3.5. THEOREM. ([Mal09, Proposition 3.3] and [Cis1/, Theorem 1.7]) The category O. is
a test category. Hence, the category [J.—Set admits a model structure whose cofibrations
are monomorphisms and whose weak equivalences are maps f : X — Y such that the map

N(B:/X) = N(O:/Y)

s a weak equivalence of simplicial sets for the Kan-Quillen model structure and so that
the functor from O.—Set to sSet that sends X to N(O./X) is an equivalence at the level
of homotopy categories. Moreover, the model structure is monoidal, combinatorial and
proper and

> a set of generating cofibrations is given by the maps

{00.[n] — O.[n]|n € N} .

> a set of generating acyclic cofibrations is given by the maps

{M%[n] — O.[n]|n € N} .

3.6. REMARK. Actually, Maltsiniotis showed that [J. is a strict test category.

3.7. PROPOSITION. The functor LA .—Set — sSet preserves and reflects weak equiv-
alences, that is weak equivalences are maps f such that L?mf 15 a weak equivalence.

PROOF. Let Sd : [J.—Set — sSet be the colimits preserving functor that extends by
colimits the functor defined on generators []. that sends [J" to the simplicial nerve of the
category of its subobjects in [J.. The category [, equipped with its structure of a Reedy
category (see the coming Proposition 3.11) is a regular skeletal category in the sense
[Cis06, §8.2| (applying [Cis06, Proposition 8.1.37| since automorphisms of [J. are trivial
and [Cis06, Proposition 8.2.2]). Thus, by [Cis06, Proposition 8.2.28] we get a natural
weak equivalence of simplicial sets

N(O./X) — Sd(X)
for any X € [J.—Set, defined as follows

e if X = [O.[n], then the morphism is the simplicial nerve of the functor O./0O0" —
Subobjects(d") that sends a map O™ — 0" to its image;
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e in the general case the morphism is as follows

N(DC/X) = COhm(Dn7¢)GDC/XN(|:|C/DH) — COlim(D717¢)€DC/XSd(|:|n) = Sd(X)

But, the category of subobjects of [J" is equivalent to the n-times product of the poset
[1] = {0 — 1} and its simplicial nerve is A[1]”. This is actually LCA[I](DC[n]). Thus we
have a natural isomorphism

Sd(Oeln]) = Lo (Oeln]).

Since both Sd and LcAm preserve colimits, we get an isomorphism Sd ~ L W Thus
we have a natural transformation N(O./X) — Lfm (X) which is objectwise a weak
equivalence. Since, the functor X — N([O./X) preserves and reflects weak equivalences,
then LCA[” also preserves and reflects weak equivalences. [

3.8. COROLLARY. The functor LE““]

equivalences.

: O,—Set — [.—Set preserves and reflects weak

PRrROOF. It follows from the facts that Lﬁm = 20, LECM and that Lﬁm and L2

preserve and reflect weak equivalences. [

3.9. PROPOSITION. The adjunction LCAM . RCAM 15 a Quillen equivalence as well as the
adjunction LE“M = RECU].

PROOF. Since both LEM and L& send generating cofibrations to cofibrations they pre-
serve cofibrations. Moreover since they preserve weak equivalences (Proposition 3.7 and
Corollary 3.8), they are left Quillen functors. We know that the functor

X e 0.—Set — 0O./X € Cat — N(OO./X) € sSet

induces an equivalence of categories between the homotopy category of cubical sets with
connections and the homotopy category of simplicial sets. Since the morphism N(OJ./X) —

Lfm (X) described in the proof of Proposition 3.7 is an equivalence for any object X,

then L&MW is an equivalence of categories at the level of homotopy categories. Thus,
LCA“] 4 RS 1 s a Quillen equivalence. Since Le ' is also an equivalence at the level
of homotopy categories, by the 2-out-of-3 rule, this is also the case for LECM. Thus
LE el 4 RE s also a Quillen equivalence. ]

3.10. THE REEDY MODEL STRUCTURE ON COCUBICAL OBJECTS. In this subsection and
until the end of this section, what we describe holds in the category of precubical sets and
in the category of cubical sets with connections. Therefore, we will not use the indices ¢
or r but use the notation [J and talk about cubical sets.
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3.11. PROPOSITION. The category U has a Reedy structure such that
> the degree of 1" s n,
> the degree raising morphisms are the composites of cofaces,

> the degree lowering morphisms are the composites of codegeneracies (or the compos-
ites of codegeneracies and connections).

Let E be a model category. We know that the category Fun(O, E) of cocubical objects
in E is equivalent to the category Fun..(CO—Set, E) of functors from cubical sets to E which
preserve colimits. Therefore, we will often assimilate a cocubical object to such a functor.
We know that a cocubical object F also induces a functor F' from E to cubical sets defined
by

F'(X) := homg(F(-), X) ,
and which is right adjoint to Fj. Besides a map F' — G induces a natural transformation

G'— F

We can endow the category Fun([, E) of cocubical objects in E with the Reedy model
structure (see for instance [Hov99, Theorem 5.2.5]), that is,

> the weak equivalences are the morphisms F' — G such that F(O[n]) — G(O[n]) is
a weak equivalence in E for any n € N,

> the cofibrations (resp. acyclic cofibrations) are the morphisms F' — G such that
F(D[n]) Urenpy G(00[n]) = G(O[n])
is a cofibration (resp. an acyclic cofibration) in E for any n € N.

3.12. PROPOSITION. Let F — G be a Reedy cofibration of cocubical objects of E and let
p: X =Y be a cofibration of E. Then if one these two maps is also a weak equivalence,
then the morphism

G'(X) = G(Y) xpy) F'(X)
15 an acyclic fibration.

Equivalently, for any Reedy cofibration F' — G and for any cofibration of cubical sets
A — B, the morphism in E

F(B) Ur() G(A) = G(B)

is a cofibration and it is an acyclic cofibration if ¥ — G is acyclic. In particular, a Reedy
cofibrant functor F' preserves cofibrations.
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PROOF PROOF OF PROPOSITION 3.12. Consider a square diagram as follows

o@n)) —— G'(X)

|

D[TL} e G'(Y) XF!(Y) F‘(X) .
It induces another square diagram in E

F(TL) UaFr(n) (9G(n) — X

| |

Gn) — Y.

This square diagram has a lifting because one of the vertical maps is a weak equivalence.
So the first square diagram has also a lifting. n

3.13. COROLLARY. Let F' and G be two Reedy cofibrant cocubical objects of E and consider
a weak equivalence F' — G. Then, for any cubical set A, the morphism F{(A) — Gi(A) is
a weak equivalence and for any fibrant object X of E, the morphism G'(X) — F'(X) is a
weak equivalence.

PrROOF PROOF OF COROLLARY 3.13. It is a straightforward consequence of K. Brown’s
lemma (functors that preserves acyclic cofibrations preserve weak equivalences between
cofibrant objects) and Proposition 3.12. [

3.14. INTERVALS AND QUILLEN ADJUNCTIONS. Let (E,®, 1) be a monoidal model cat-
egory. Let us choose a segment 1 U1 — H — 1 (or a monoidal segment in the case
of cubical sets with connections). We know that such a segment induces a monoidal
adjunction L - R¥ relating cubical sets to E.

3.15. PROPOSITION. The adjunction L* 4 RY is a Quillen adjunction if and only if H
15 an interval, that s the morphism 1UT1 — H s a cofibration and the morphism H — 1
15 o weak equivalence.

3.16. REMARK. This is a cubical analogue of [BM06, Prop. A.13].

3.17. LEMMA. The functor LY preserves cofibrations if and only if the map 1U1 — H
s a cofibration.

PRrROOF. If LY preserves cofibrations, then the map
1Tut~Lf00M]) — LY0ON) ~ H

is a cofibration. Conversely, suppose that the map 1 U 1 — H is a cofibration. Let us
prove by induction that, for any integer n € N, the map

L*(00[n]) — L" (C[n))
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is a cofibration. Since E is a monoidal model category, the map () — 1 is a cofibration. So
the result holds for n = 0. Suppose that it holds for some integer n. Then the morphism

L*(00[n +1]) ~ (1U 1) ® L*(O[n]) Ugunews eomy H © L7 (90[n])

— H ® L7 (0n)) ~ LA + 1))
is a cofibration. So the result holds at the stage n + 1. n

PROOF PROOF OF PROPOSITION 3.15. Suppose that H is an interval and let us prove
that L is left Quillen. We already know from Lemma 3.17 that it preserves cofibrations.
So it suffices to show that it preserves acyclic cofibrations. Let n be an integer, let
0 <i<nandlet e € {0,1}. We will denote the opposite sign of ¢ by €. Then L (r1%<[i])
is the colimit of the following diagram

LAOOG—1])®1 — LEOO[i - 1)) @ H

!

LA —1]) @1

Since L7 (9(0[i — 1])) is cofibrant by Lemma 3.17, and since the map T — H is an acyclic
cofibration, then the morphism L7 (9(0fi — 1)) ® T — L¥(9(0[i — 1])) ® H is an acyclic
cofibration. So, the map L (O[i —1]) — L (M%€[i]) is also an acyclic cofibration. Besides,
since H®*~! is cofibrant and since the map 1 — H is an acyclic cofibration, then the map

o7 MO — 1)) ~ H* ' @ 1 — H® ~ L*(0O))

is a weak equivalence. So the map L7 (M<[;]) — L (O[4]) is a weak equivalence. It is even
an acyclic cofibration since the map M*[¢] — O[] is a cofibration and since L¥ preserves
cofibrations. Besides, L (M“¢[n]) is the colimit of the following diagram

LAl © L*(0(0n — i) —— L*(Ofi]) @ L*(9(O[n — i]))

l

LA (M<li]) @ L7 (On — 1)) .

Using the same arguments as in the paragraph just above, we can prove that the map
LH(M%[n]) — L¥(O[n]) is an acyclic cofibration. So L preserves acyclic cofibrations.
Therefore, it is a left Quillen functor. The converse implication is straightforward. [

Consider a morphism if intervals H — H’. By Proposition 2.20, it induces a unique
natural transformation L” — L’ Thus, we obtain a natural transformation R”" — R,

3.18. PROPOSITION. Consider a morphism of interval H — H'. This is in particular a
weak equivalence. Then, for any fibrant object X on E, the morphism R (X) — R"(X)
is a weak equivalence. Moreover, for any cubical set X, the morphism L7 (X) — L' (X)
15 a weak equivalence.
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PROOF PROOF OF PROPOSITION 3.18. By Proposition 3.15, we know that the functor
L7 and L*" are both Reedy cofibrant. Moreover, the map L7 — L' is an equivalence.
We conclude by Corollary 3.13. n

3.19. COROLLARY. The two following propositions are equivalent.

1. There exists an interval H of E such that the adjunction L™ - RY is a Quillen
equivalence.

2. For any interval H of E, the adjunction L™ 4 R¥ is a Quillen equivalence.

PROOF. The second statement implies the first one since there exists intervals. Besides,
suppose that the first statement is true, and let H' be an other interval. There exists a
sequence of weak equivalences of intervals as follows

H——=-- H «~— H.

This induces a sequence of natural transformations of functors from cubical sets to Ho(E)

L1 y LT < L
By Proposition 3.18, these natural transformations are isomorphisms. So L is an equiv-
alence of categories as well as L. [
3.20. CUBICAL MODEL CATEGORIES.

3.21. PROPOSITION. Let (E,®, 1) be a monoidal model category and let M be an E-model
category. Then, any choice of an interval (resp. monoidal interval) H in E induces a
structure of a O,—Set-model category (resp. O.—Set-model category) on M.

PROOF. This is a consequence of Proposition 1.36. [

4. From quasi-categories to enriched categories

In this section, we study the link between quasi-categories and categories enriched in
cubical sets. Then, when E is a monoidal model category equipped with an interval, this
allows us to give precise conditions making an adjunction relating the Joyal category of
simplicial sets to the category Catg to be a Quillen adjunction.

4.1. NOTATIONS. The category of categories enriched over [1,—Set and the category of
categories enriched over [1.—Set are denoted respectively Caty, and Catg,.

4.2. FROM CUBICAL CATEGORIES TO QUASI-CATEGORIES.
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4.3. DEFINITION. Let (07 be the category obtained from the category of cubes with con-
nections O by adding an empty cube () so that

homg (0, 0) =
homg (0, D”) =
homg+ (00", 0) =

In particular, O, is the full subcategory of OF spanned by all objects except O. Moreover,
one can extend the monoidal structure of J. by D@ X = X @0 = 0.

4.4. DEFINITION. For any integer n € N, let (W, p, u) be the following category enriched
in the extended category of cubes with connections (IF

> its set of objects is {0,...,n},

> for anyi < je€{0,...,n}, -
Wa(i,j) = V"7

moreover, W, (i,i) = x and W, (j,i) = 0;

> the composition is defined for any i < j < k by

Wi (i, j) x Wa(j, k)
Wo(i,7) X * X W, (j, k)
lldx{l}xld
Dj—i—l ® Dl ® Dk—j—l

Wres(i, k)

Since, the fully faithful inclusion OF — O.—Set is strict monoidal, one can also consider
W, as a category enriched in cubical sets with connections.

4.5. PROPOSITION. The assignment n — W, defines a functor from the category A to the
category Catg+ of categories enriched in OF and so to the category Catn, which contains
Cato+ as a full subcategory.

PROOF. Any coface morphism 62 : [n] — [n + 1] in the category A induces a functor
W, — W, which is the function 62 on objects and such that for any j < i < k the
morphism W, (j, k) — W,1(J, k + 1) is given by

0
(ki1 O j1 k=i
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Similarly, any codegeneracy morphism o2 : [n] — [n — 1] in the category A induces a

cubical functor W,, — W,,_; which is the function aiA on objects and such that for any
J < i < k the morphism W, (j, k) — W, _1(j, k — 1) is given by

Dk’—j—l Yi—j—-1 Dk—j—Q

Moreover, the morphism W, (i, k) — W,_1(i,k — 1) is 0¢ : OF ! — O0F 72 and the
morphism W, (4,5 + 1) — W, _1(4,4) is 0;_;_1 : (P ~% — P~ .

4.6. DEFINITION. Let W. 4 N¢ be the adjunction relating simplicial sets to [J.—Set-
enriched-categories such that W, is the left Kan extension of the cosimplicial object n —
W,, and

N¢(C)(n) = homca, (W, C) .

4.7. PROPOSITION. The adjunction L2, W. 4 N¢o RAW g canonically isomorphic to
the adjunction € 4 N of the book Higher Topos Theory [Lur09, §1.1.5], in the sense that

LA, W. is canonically isomorphic to €.

PROOF. It suffices to exhibit a canonical isomorphism of cosimplicial simplicial categories
between n s Lo (W,,) and n — €([n]). On the one hand, let us notice that the following

diagram of monoidal categories and strong monoidal functors commute

OF —— O.—Set

| !

Cat — sSet

(up to a canonical monoidal isomorphic natural transformation) where the left vertical
functor ¢ is the inclusion of [} into posets which are particular categories. This gives us
the following commutating square

[0 enriched cats —— Catp,

L l

Cat enriched cats — Cata

The cosimplicial simplicial category €[—] is defined in [Lur09, §1.1.5] as €[n] = N(F[n])
for some cosimplicial category enriched in categories F'[n] that is canonically isomorphic
to i(W,,). Thus, we get canonical isomorphisms of cosimplicial simplicial categories

LAY(W,) ~ Ni(W,) ~ NF[n] = €[n].
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4.8. REMARK. Note that the construction above already appeared in [RZ18]. They showed
that the adjunction W, 4 N¢ factors the adjunction € 4 N of the book Higher Topos Theory
[Lur09, §1.1.5] as well as the dg nerve of [Lurl2, §1.3.1]. The main difference between
this work and ours is that the factorisation provided here is formal and does not rely on
any combinatorial computation.

4.9. DEFINITION. [Joy/[Lur09] The Joyal model category sSet; is the category of sim-
plicial sets sSet equipped with the model structure whose cofibrations are monomorphisms
and weak equivalences are maps f such that €(f) is a weak equivalence for the Dwyer-Kan
model structure on Cata. The fibrant objects are the quasi-categories. Moreover, this is a
cartesian closed monoidal model category.

4.10. LEMMA. A morphism F : ¢ — & in Catg, is a Dwyer-Kan equivalence if and only
if LCA[”(F) is a Dwyer-Kan equivalence.

PROOF. On the one hand, any map F,, : €(z,y) — Z(z,y) is an equivalence if and

only if L?[I](Fm’y) is an equivalence by Proposition 3.7. On the other hand, the functor
7o : J.—Set — Set factorises as

LAl o
0.—Set —— sSet — Set.

Thus, m(F) is an equivalence of categories if and only if moLe m(F) is an equivalence
since the two functors are the same. n

4.11. LEMMA. The functor W. preserves cofibrations.
Equivalently, the cosimplicial cubical category n — W, is Reedy cofibrant.

PROOF. It suffices to show that for any integer n, the map W,.(0A[n]) — W, is a cofibra-
tion. For n = 0, this is just the fact that ) — x is a cofibration. For n > 0, this follows
from the fact that the following square of cubical categories is a pushout

mamc[n—l] —— W.(9An])

T

[1]Dc[n71} — Wy

4.12. COROLLARY. The adjunction W, 4 N€ is a Quillen adjunction for the Joyal model
structure.

PROOF. It follows from the fact that W. preserves cofibrations (Lemma 4.11) and weak
equivalences (Lemma 4.10). "
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4.13. COROLLARY. The adjunction W, < N¢ is a Quillen equivalence for the Joyal model
structure.

PROOF. It is a consequence of the fact that the adjunction L2, W, N¢o RAM relating
simplicial sets to simplicial categories is a Quillen equivalence (see for instance [Lur09,

Proposition 2.2.4.1]) and the adjunction LA 4 A g 5 Quillen equivalence. ]
4.14. NERVE FUNCTORS.

4.15. DEFINITION. Let C be a cocomplete category. A functor F' : A — C induces an
adjunction

A
sSet 7—— C,
F.

where the left adjoint Fy is the left Kan extension of F' and where
FY(X), = homc(F(n),X) .

This right adjoint functor is called a nerve functor. If C is a model category, the functor F
(or equivalently the functor F') is said to be homotopy coherent if the adjunction F, 4 F
s a Quillen adjunction with respect to the Joyal model structure.

We are interested by the case where C is the category Catg equipped with the Dwyer-
Kan model structure; where E is a monoidal model category. We know that the adjunction
1 -1 .S relating E to sets is monoidal. Thus, it extends to an adjunction also denoted ¢ +4 .5
which relates E-categories to small categories.

Cat ﬁ Catg
S

Since the category A is a full subcategory of the category Cat, this provides us with a
cosimplicial object in Catg, that is

i(l=]) s = i([n])
that we refer to using the notation n +— [n].

4.16. THEOREM. Let E be a monoidal model category and suppose that the category Catg
has a Dwyer-Kan model structure. Then, for any Reedy cofibrant replacement F' of the
cosimplicial E-enriched category n v [n], the nerve F' is homotopy coherent (that is the
adjunction Fy 4 F' is a Quillen adjunction,).

Note first that the fact that F' is Reedy cofibrant implies that the functor F; : sSet —
Catg preserves cofibrations. So, it suffices to check that it preserves weak equivalences.
One way to prove it is to show that the functor £} sends the maps

A¥[n] = An], 0<k<n,
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and the map x — N(x <> %) to equivalences. We actually take a shortcut by using the
fact that W, is a left Quillen functor.

Recall that the category Fun(A, Catg) of cosimplicial E-categories carries a Reedy
model structure where a map F' — G is a cofibration (resp. an acyclic cofibration) if the
map

FI(AI) Unoap) Gi(0AT]) = Gi(Aln]) .
is a cofibration (resp. an acyclic cofibration) for any integer n.

4.17. LEMMA. For any monomorphism of simplicial sets X — 'Y and any Reedy cofibra-
tion F'— G in the category Fun(A, Catg), then the map

F(Y) Upu) Gi(X) = Gi(Y)

s a cofibration. Moreover, this is an acyclic cofibration if I — G is an acyclic cofibration.

In particular, for any simplicial set X and for any Reedy acyclic cofibration F' — G,
the map Fi(X) — Gi(X) is an acyclic cofibration.

PROOF. The proof is the same as Proposition 3.12 using the standard Reedy structure on
the category A. [

4.18. LEMMA. If a Reedy cofibrant replacement F' of the cosimplicial E-category n — [n]
is homotopy coherent, then all its Reedy cofibrant replacements are homotopy coherent.

PROOF. Let us suppose that F'is homotopy coherent. Let G be a cofibrant replacement
of [-]. Then G, preserves cofibrations by Lemma 4.17. Thus it suffices to show that
G\ preserves weak equivalences. Let us consider the following factorisation in the Reedy
model category of cosimplicial E-categories

FUG — G' — [-].

Since F' and G are cofibrant, then, the morphisms F' — G’ and G — G’ are both acyclic
cofibrations for the Reedy model structure. Thus, by Lemma 4.17 for any simplicial set
X, the two maps Fi(X) — G{(X) < G\(X) are weak equivalences. Subsequently, for any
Joyal weak equivalence of simplicial sets f : X — Y, Fi(f) is a weak equivalence if and
only if G|(f) is a weak equivalence if and only if G(f) is a weak equivalence. To conclude,
since F) preserves weak equivalences, then G, preserves weak equivalences. [

4.19. LEMMA. A morphism F : ¢ — 2 in Catg, is a Dwyer-Kan equivalence if and only
if LCDC[”(F) is a Dwyer-Kan equivalence.

PrOOF. This follows from the same arguments as those used in Lemma 4.10, using the
fact the functor L5 0,—Set — [J.—Set reflects weak equivalences. ]
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PROOF PROOF OF THEOREM 4.16. First, let G be a Reedy cofibrant replacement of the
functor

A — Catgp

Then the functor LE"‘“] oG is also Reedy cofibrant. Besides, by Corollary 4.12, the functor

A—)CE)’EDC
n— W, .

is an homotopy coherent Reedy cofibrant replacement of the functor n — [n]. So by
Lemma 4.18, LECM o G is homotopy coherent. Since the functor LECM reflects weak
equivalences (Lemma 4.19), then G is also homotopy coherent. Then, for any interval
H of E, the cosimplicial E-enriched category Lf o (G is homotopy coherent. So again by

Lemma 4.18, F'is homotopy coherent. [

4.20. PROPOSITION. We use the same notation as in Theorem 4.16. The following propo-
sittons are equivalent.

1. There exists an interval H of E such that the adjunction Lf o Rf relating precubical
sets to E is a Quillen equivalence.

2. For any Reedy cofibrant replacement F of the cosimplicial object n — [n] of Catg
the adjunction Fy 4 F' is a Quillen equivalence.

3. There ezists a Reedy cofibrant replacement F of the cosimplicial object n — [n] of
Catg such that the adjunction Fy 4 F' is a Quillen equivalence.

PROOF PROOF OF PROPOSITION 4.20. The equivalence between (2) and (3) follows from
the same arguments as those used to prove corollary 3.19. Then, let F': A — Catg, be
a Reedy cofibrant replacement of n — [n]. By the equivalence between (2) and (3) (for
E = O.—Set) and by Corollary 4.13, the adjunction LECU] o4 F'o REC“] is a Quillen
equivalence. Besides, the adjunction

[Qelt

Cat[‘p <:> Cat[‘c
ROell]

is a Quillen equivalence. So, by the 2-out-of-3 rule, the adjunction £} 4 F' is also a
Quillen equivalence. Now, suppose (1). Then, the adjunction Lf oF 4 F'o Rf is a
Quillen equivalence, which implies (2). Conversely, suppose (3), then for any interval H
of E, the adjunction Lf oF, 4 F'o Rf is a Quillen equivalence and since F} 4 F' is a
Quillen equivalence, then the adjunction

Ly

Catgp <:> CatE
Ry



656 BRICE LE GRIGNOU

is also a Quillen equivalence. In particular, for any precubical set X and any fibrant object
Y of E, a morphism L7 ([1]x) — [1]y is an equivalence if and only if the adjoint morphism
[1]x — RI[1]y is an equivalence. This rewrites as: L/(X) — Y is an equivalence if and
only if the adjoint morphism X — Rf Y is an equivalence ; that is, the adjunction

Ly
Dp—Set <—H E
Ry

is a Quillen equivalence. [

5. Applications

The goal of this final section is to describe various contexts where cubical categories ap-
pear.

Let (E,®,1) be a monoidal model category and let H be a monoidal interval. We
know that it induces a Quillen monoidal adjunction L 4 R relating cubical sets with
connections to E which extends to the level of enriched categories.

LH
Cat[,c <:>cH CatE .
Moreover, any E-model category M has an induced structure of a [J.—Set-model category.
In this section, we describe three examples of such a monoidal model category E: the
simplicial sets with the Joyal model structure, the chain complexes and the differential
graded coalgebras.

5.1. A REMARK ABOUT THE BOARDMAN—VOGT CONSTRUCTION. A theory of homotopy
coherent nerve is developed in [MWO07, §6]. Roughly, for any monoidal model category E
(satisfying some conditions) equipped with a monoidal interval H, there exists a endofunc-
tor Wy : Catg — Catg called the Boardman—Vogt construction together with a natural
transformation Wy — Id such that the functor

is a cofibrant replacement of C provided the unit maps 1 — C(z, x) are cofibrations. More
generally, any functor ' : C — D which is injective on objects and such that the maps
F,y : C(z,y) = D(F(x),F(y)) are cofibrations in E induces a cofibration of E-enriched
categories

Then, the functor n € A — Wyn| € Catg induces an adjunction

Wh
sSet =—— Catg ,
NH

where N is an homotopy coherent nerve.
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5.2. LEMMA. The functor Wy is isomorphic to the composite functor L2 o W,.

PROOF. It follows from the fact that the functor n — Wy[n| is isomorphic to the functor

nw— LAW,,. n
Therefore, the functor N is isomorphic to the functor N¢o R,

5.3. THE UNDERLYING (00, 1)-CATEGORY OF AN (00,2)-CATEGORY. Let us endow the

category of simplicial sets with the Joyal model structure which is a monoidal model
structure.

5.4. DEFINITION. Let [ be the groupoid with two objects 0 and 1 such that
0(é,j) ==, Vi,j € {0,1} .
In this context, the simplicial nerve of the groupoid [
H=N()

is a monoidal interval. Subsequently, there exists a monoidal Quillen adjunction relating
cubical sets to simplicial sets with the Joyal model structure.

LY
O.—Set = sSet;
RY

5.5. PROPOSITION. Let X be a quasi-category. Then RX(X) is canonically equivalent to
RCA[l](Core(X)) where Core(X) is the mazimal Kan complex contained in X .

PROOF. On the one hand, for any integer n, we have

homg, —set(Ce[n], R (X))
~ homgset (L7 (O.[n]), X)
~ homgset (H®", X)
~ homgse: (N (I"), X)
>~ hoM yasi—categories (V (1™), X))
>~ homgan—complexes (N (1), Core(X)) since N(I") is a Kan complex
~ homgset (N (I"), Core(X))
~homp, _set (e [n], R (Core(X))).

Therefore, the canonical map R¥(Core(X)) — R”(X) is an isomorphism. On the other
hand, in the Kan-Quillen model structure on simplicial sets whose fibrant objects are
Kan complexes, the inclusion A[1] — N(I) is an equivalence. So, by Proposition 3.18, we

obtain an equivalence Re)(Core(X)) — RH(Core(X)). o
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The adjunction L7 4 R¥ extends to the level of enriched categories.

L
Catg, —— Cata
H

c

where the category Cata of simplicial categories is equipped with the Dwyer-Kan model
structure induced by the Joyal model structure on simplicial sets. Any simplicial category
C whose mapping objects are quasi-categories (which is the case for any fibrant object
of Cata), represents an (0o, 2)-category. The underlying (oo, 1)-category is the simplicial
category with the same objects but whose mapping space between any two objects x to
y is
Core(C(x,y)) .

Let us denote it by Core(C). Then, the (0o, 1)-category represented by Core(C) is equiv-
alent to the (oo, 1)-category represented by RCAM(Core(C)) (indeed, they yield the same
quasi-category from the usual homotopy coherent nerve functors). The proposition just

above implies that
RAW(Core(C)) ~ REC .

Hence, REC represents the underlying (0o, 1)-category of C.
Besides, by Proposition 3.21, any sSet j-model category inherits a structure of a cubical
model category. For instance, we have the following proposition.
5.6. PROPOSITION. The Joyal model category sSet; is a [J.—Set-model category.
5.7. THE DG NERVE.

5.8. REMARK. Note that this example already appeared in [RZ18].

Let K be a commutative ring. We denote by dgMod the category of chain complexes
of K-modules. When equipped with the projective model structure, this is a monoidal
model category. The following chain complex

Cltlo = K- (0) @ K - (1)
Cl]; = K - (01)

O[], = 0 if k ¢ {0,1}
d(01) = (1) — (0) .

has the structure of a monoidal interval when equipped with the maps §°,§' : K — C[1],
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o:C[l] - K and v: C[1] ® C[1] — C[1] defined by the formulas

.

0°(1) = (0)
ot(1) = (1)
0(0) =0o(1) =
o(01

(01) @ (1)) = ~((1) @ (01)) =0 .

This gives an adjunction Wepy 4 N Cl relating differential graded categories to sim-
plicial set. The right adjoint functor N¢! is the dg-nerve of dg-categories described
in [Lurl2, §1.3.1]. Besides, any dgMod-model category has an induced structure of a
[J.—Set-model category.

5.9. PROPOSITION. The category of chain complexes of K-modules is a [J.—Set-model
cateqory.

5.10. THE COALGEBRAIC NERVE. Here K is a field.

5.10.1. A COALGEBRAIC MODEL OF THE INTERVAL.

5.11. DEFINITION. A counital coassociative coalgebra (V,w,T) is a comonoid in the cat-
egory of chain complexes. We denote by uCog the category of such coalgebras.

Since K is a field, the category of counital coassociative coalgebras admits a monoidal
model structure whose cofibrations and weak equivalences are respectively degreewise
injections and quasi-isomorphisms ; see [GG99]. The chain complex monoidal interval
C1] has the structure of a coalgebra as follows

7(0)=7(1) =1
w(i) = (1) ® (i) for i € {0,1}
w(01) = (0) ® (01) + (01) ® (1) .
Moreover, a straightforward checking leads to well known following result.
5.12. LEMMA. The data of (C[1],w,T,08° 6%, 0,7) defines a monoidal interval in the cat-
egory of counital coassociative coalgebras.
Therefore, any uCog-model category has an induced structure of a [J.—Set-model

category. We will study the example of dg associative algebras.

5.12.1. THE uCog-MODEL CATEGORY OF A,-ALGEBRAS. The remaining of this article
is devoted to the description through our cubical approach of the higher structures ap-
pearing in the study in of associative algebras in chain complexes over a field. What is
done there can easily be extended to the case of algebras over a nonsymmetric operad
using the theory developed in [B.19].
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5.13. DEFINITION. A differential graded (dg) associative algebra (or dg algebra for short)

(A, m) is the data of a chain complex A together with an associative product m : AQ A —
A.

5.14. DEFINITION. A dg conilpotent coassociative coalgebra (or dg conilpotent coalgebra
for short) (C,w) is the data of a chain complex C together with a coproduct w : C — C®C
which is coassociative that is (w ® Id) ow = (Id ® w) ow and conilpotent, that is, for any
element x € C,,, there exists an integer n such that

w™(z) = (w@Id*" oo (w®Id)ow(x) =0 .
There exists an adjunction
Q
NilCog =—— Alg
B

relating dg algebras to dg conilpotent coalgebras. The right adjoint B called the bar
functor is defined as follows.

> The underlying graded coalgebra of B.A is the cofree conilpotent coalgebra on the
suspension of A,

TsA := @ s A"
n>1
whose coproduct is given by
n—1
w(sr; ® -+ @ sxy,) = (s21 ® -+ 52;) @ (STjp1 ® -+ ® STy) .

=1

> The differential dp4 on BA is the only coderivation on T's.A whose projection on
the cogenerators sA is the following composite map

TsA - sA®sA®sA— sA
st — —sdx
se @ sy = (—1)"sya(e @ y)

The fact that d% 4, = 0 follows from the fact that d% = 0, that v4 is associative and
that v4 and d 4 satisfy the Leibniz equation.

5.15. PROPOSITION. There exists a model structure on the category of dg algebras whose
fibrations are degreewise surjections and whose weak equivalences are quasi-isomorphisms.
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5.16. THEOREM. [LH03] There exists a model structure on the category dg conilpotent
coalgebras transferred through the adjunction 2 4 B, that s

> a cofibration is a morphism [ such that Q(f) is a cofibration of algebras,

> a weak equivalence is a morphism f such that Q(f) is a quasi-isomorphism.
Moreover, for any dg algebra A, the morphism
QBA— A

is a cofibrant replacement of A, which implies that the adjunction 2 4 B is a Quillen
equivalence.

5.17. PROPOSITION. [AJ13][B.19] The category NilCog and the category Alg are both
uCog-model categories. Moreover, there exists a natural isomorphism of counital coasso-
ctative coalgebras

{C,BA} ~{QC, A} ,
for any dg conilpotent coalgebra C and for any dg algebra A.

Let us give a hint on what are these enrichments. On the one hand, dg algebras are
canonically cotensored over counital coassociative coalgebras. Indeed, for any dg algebra
A and any counital coassociative coalgebra V', the chain complex [V, A] has the canonical
structure of a dg algebra called the convolution algebra. Then, the tensorisation and the
enrichment may be obtained by the adjoint functor theorem. On the other hand, the
category of dg conilpotent coalgebras is canonically tensored over counital coassociative
coalgebras. Indeed, for any dg conilpotent coalgebra C and any counital coassociative
coalgebra V', the chain complex C ® V has the canonical structure of a dg conilpotent
coalgebra. Then, the cotensorisation and the enrichment may be obtained with the adjoint
functor theorem.

5.17.1. THE INFINITY CATEGORY OF DG ALGEBRAS. Restricting the uCog-enriched cat-
egory of dg conilpotent coalgebras to bar constructions of dg algebras (which are in par-
ticular fibrant-cofibrant dg conilpotent coalgebras) we obtain an uCog-enriched category
which is essentially the same as the uCog-enriched category Alg whose objects are dg

algebras and such that
Alg(A, A) :={BA,BA'} .
Then, using the interval C[1], one obtains a [J.—Set-enriched category Alg” with the
same objects as Alg and such that
Alg™(A, A')(n) = hompicog(BA © C[1]°", BA)

~ homycog(C[1]¥",{BA, BA'})

~ homycog(C[1]%", {QBA, A'})

~ homaig(QBA, [C[1]°", A]) .

Finally, the nerve N¢Alg" of this cubical category is the quasi-category whose n vertices
are the data of
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> n+ 1 dg algebras Ay, ..., A,,

> for any integers 0 < i < j < n, a morphism of dg conilpotent coalgebras

fi,j : (BAz) (059 C[l]®j7i71 — BAJ s

which is equivalent to the data of a morphism of dg algebras

QBA; — [C[1)¥ 1 A,

> such that the following diagram commutes

BA; @ C[1]9i-1 g C[1)ek——1 L2208,

|

BAJ ® C[l]@k’*jfl

BA; @ C[1]®77"1 @ 1 @ C[1]®+7-1 Fik
l1d®61®1d
BA;, ® C[l](@k_i_l P > BA,

for any integers 0 <i < j <k <n.

References

[AJ13]

[B.19]

[BMO06]

[BM12]

IBPS81|

[Cav14]

|Cis06]

Mathieu Anel and André Joyal, Sweedler theory of (co)algebras and the bar-cobar
constructions, arXiv:1309.6952 (2013).

Le Grignou B., Homotopy theory of unital algebra, Algebraic And Geometric
Topology 19 (2019), 1541-1618.

Clemens Berger and Ieke Moerdijk, The Boardman-Vogt resolution of operads in
monoidal model categories, Topology 45 (2006), no. 5, 807-849.

, On the homotopy theory of enriched categories, Quarterly Journal of
Mathematics 64 (2012).

R. Brown and Higgins P., On the algebra of cubes, Journal of pure and appiled
algebra 21 (1981), no. 3, 233-260.

Giovanni Caviglia, A Model Structure for FEnriched Coloured Operads,
arXiv:1401.6983 (2014).

Denis-Charles Cisinski, Les préfaisceaur comme modéles des types d’homotopie,
Astérisque, 2006.



[Cis14]

CUBICAL MODEL CATEGORIES AND QUASI-CATEGORIES 663

, Univalent universes for elegant models of homotopy types.

[Day70] Brian Day, On closed categories of functors, Reports of the Midwest Category

[GGY9|

[GMO3]

[Hov99]

[Isa09]

[Jar02]

[ Jar06|

[Joy]

[Kel74]

[KLO1]

[KV18]
[LHO3]

[Lur09]

|Lurl2]

[Mal09]

Seminar IV, Lecture Notes in Mathematics 137 (1970), 1-38.

Ezra Getzler and Paul Goerss, A model cate-
gory structure for differential graded coalgebras,
http://www.math.northwestern.edu/~pgoerss/papers/model.ps (1999).

Marco Grandis and Luca Johan Mauri, Cubical sets and their site, Theory and
Applications of Categories 11 (2003), no. 8, 185-211.

Mark Hovey, Model categories, Mathematical Surveys and Monographs, vol. 63,
American Mathematical Society, Providence, RI, 1999.

S.B. Isaacson, Cubical homotopy theory and monoidal model categories, Ph.D.
thesis, Harvard University, 2009. MR MR2713397

J.F. Jardine, Cubical homotopy theory: a beginning,
http://www.math.uwo.ca/7jardine/papers/preprints/index.shtml. (2002).

, Categorical homotopy theory, Homology Homotopy Appl. 8 (2006),
no. 1, 71-144.

A, Joyal, The theory of quasi-categories and its  applications,
http://mat.uab.cat/ kock/crm/hocat/advanced—course/Quadern45-2.pdf.

G. M. Kelly, Doctrinal adjunction, Category Seminar (Berlin, Heidelberg) (Gre-
gory M. Kelly, ed.), Springer Berlin Heidelberg, 1974, pp. 257-280.

G. M. Kelly and S. Lack, V-cat is locally presentable or locally bounded if v is
so, TAC 8 (2001).

Krzysztof Kapulkin and Vladimir Voevodsky, Cubical approach to straightening.

K. Lefevre-Hasegawa, Sur les A-infini catégories, arXiv.org:math/0310337
(2003).

Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170,
Princeton University Press, Princeton, NJ, 2009.

, Higher algebra, www.math.harvard.edu/~1lurie/papers/Higher
Algebra.pdf, 2012.

Georges Maltsiniotis, La catégorie cubique avec connerions est une catégorie test
stricte, Homology Homotopy Appl. 11 (2009), no. 2, 309-326.



664 BRICE LE GRIGNOU

[MWO7] Ieke Moerdijk and Ittay Weiss, Dendroidal sets, Algebr. Geom. Topol. 7 (2007),
1441-1470. MR 2366165 (2009d:55014)

[Ros09] Jiri Rosicky, On combinatorial model categories, Appl. Cat. Str. 17 (2009), 303—
316.

[RZ18] Manuel Rivera and Mahlmoud Zeinalian, Cubical rigidification, the cobar con-
struction and the based loop space, Algebraic And Geometric Topology 18 (2018),
3789-3820.

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

SUBSCRIPTION INFORMATION Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

INFORMATION FOR AUTHORS I¥TEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://wuw.tac.mta.ca/tac/authinfo.html.

MANAGING EDITOR. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca
TEXNICAL EDITOR. Michael Barr, McGill University: michael.barr@mcgill.ca

ASSISTANT TEX EDITOR. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin_seal@fastmail.fm

TRANSMITTING EDITORS.

Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr

Julie Bergner, University of Virginia: jeb2md (at) virginia.edu

Richard Blute, Université d’ Ottawa: rblute@uottawa.ca

Gabriella Bohm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu
Valeria de Paiva: Nuance Communications Inc: valeria.depaiva®gmail.com

Richard Garner, Macquarie University: richard.garner@mq.edu.au

Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch

Dirk Hofmann, Universidade de Aveiro: dirk@ua.pt

Pieter Hofstra, Université d’ Ottawa: phofstra (at) uottawa.ca

Anders Kock, University of Aarhus: kock@math.au.dk

Joachim Kock, Universitat Autonoma de Barcelona: kock (at) mat.uab.cat

Stephen Lack, Macquarie University: steve.lack@mq.edu.au

F. William Lawvere, State University of New York at Buffalo: wlawvere@buffalo.edu
Tom Leinster, University of Edinburgh: Tom.Leinster@ed.ac.uk

Matias Menni, Conicet and Universidad Nacional de La Plata, Argentina: matias.menni@gmail.com
Ieke Moerdijk, Utrecht University: i.moerdijk@uu.nl

Susan Niefield, Union College: niefiels@union.edu

Robert Paré, Dalhousie University: pare@mathstat.dal.ca

Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz

Giuseppe Rosolini, Universitad di Genova: rosolini@disi.unige.it

Alex Simpson, University of Ljubljana: Alex.Simpson@fmf.uni-1j.si

James Stasheff, University of North Carolina: jds@math.upenn.edu

Ross Street, Macquarie University: ross.street@mq.edu.au

Tim Van der Linden, Université catholique de Louvain: tim.vanderlinden@uclouvain.be



	Monoidal categories and enriched categories
	Cubical sets
	Homotopy theory of cubical sets
	From quasi-categories to enriched categories
	Applications

