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SYMMETRIC MONOIDAL CATEGORIES AND Γ-CATEGORIES

AMIT SHARMA

Abstract. In this paper we construct a symmetric monoidal closed model category of
coherently commutative monoidal categories. The main aim of this paper is to establish
a Quillen equivalence between a model category of coherently commutative monoidal
categories and a natural model category of Permutative (or strict symmetric monoidal)
categories, Perm, which is not a symmetric monoidal closed model category. The right
adjoint of this Quillen equivalence is the classical Segal’s Nerve functor.

Contents

1 Introduction 417
2 The Setup 420
3 The model category of Permutative categories 437
4 The model category structures 444
5 Segal’s Nerve functor 455
6 The Thickened Nerve 472
A The notion of a Bicycle 484
B Bicycles as oplax sections 489
C The adjunction L a K 498
D Local objects 502
E Oplax to SM functors 504

1. Introduction

In the paper [BF78] Bousfield and Friedlander constructed a model category of Γ-spaces
and proved that its homotopy category is equivalent to a homotopy category of connective
spectra. Their research was taken further by Schwede [Sch99] who constructed a Quillen
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equivalent model structure on Γ-spaces whose fibrant objects can be described as (pointed)
spaces having a coherently commutative group structure. Schwede’s model category is a
symmetric monoidal closed model category under the smash product defined by Lydakis
in [Lyd99] which is just a version of the Day convolution product [Day70] for normalized
functors. This paper is the first in a series of papers in which we study coherently com-
mutative monoidal objects in cartesian closed model categories. Our long term objective
is to understand coherently commutative monoidal objects in suitable model categories
of (∞, n)-categories such as [Rez10], [Ara14]. The current paper deals with the case of
ordinary categories which is an intermediate step towards achieving the aforementioned
goal. A Γ- category is a functor from the (skeletal) category of finite based sets Γop into
the category of all (small) categories Cat. We denote the category of all Γ- categories and
natural transformations between them by ΓCat. Along the lines of the construction of
the stable Q-model category in [Sch99] we construct a symmetric monoidal closed model
category structure on ΓCat which we refer to as the model category structure of coher-
ently commutative monoidal categories. A Γ- category is called a coherently commutative
monoidal category if it satisfies the Segal condition, see [Seg74] or equivalently it is a
homotopy monoid in Cat in the sense of Leinster [Lei00]. These Γ- categories are fibrant
objects in our model category of coherently commutative monoidal categories. The main
objective of this paper is to compare the category of all (small) symmetric monoidal cat-
egories with our model category of coherently commutative monoidal categories. There
are many variants of the category of symmetric monoidal categories all of which have
equivalent homotopy categories, see [Man10, Theorem 3.9]. All of these variant categories
are fibration categories but they do not have a model category structure. Due to this
shortcoming, in this paper we will work in a subcategory Perm which inherits a model
category structure from Cat. The objects of Perm are permutative categories (also called
strict symmetric monoidal categories) and maps are strict symmetric monoidal functors.
We recall that a permutative category is a symmetric monoidal category whose tensor
product is strictly associative and unital. It was shown by May [May72] that permuta-
tive categories are algebras over the categorical Barrat-Eccles operad, in Cat. We will
construct a model category structure on Perm by transferring along the functor F which
assigns to each category, the free permutative category generated by it. This functor is a
right adjoint of an adjunction U : Perm
 Cat : F where U is the forgetful functor. This
model category structure also follows from results in [BM07] and [Lac07]. We will refer
to this model structure on Perm as the natural model category structure of permutative
categories. The weak equivalences and fibrations in this model category structure are
inherited from the natural model category structure on Cat, namely they are equivalence
of categories and isofibrations respectively. The homotopy category of Perm is equivalent
to the homotopy categories of all the variant categories of symmetric monoidal categories
mentioned above. The model category of all (small) permutative categories is a Cat-
model category. However the shortcoming of the natural model category structure is that
it is not a symmetric monoidal closed model category structure. In the paper [Sch08] a
tensor product of symmetric monoidal categories has been defined but this tensor product
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does not endow the category of symmetric monoidal categories with a symmetric monoidal
closed structure. However it follows from [Bou17, Prop. 6.4] that there is a symmetric
skew monoidal structure on Perm which induces a symmetric monoidal closed structure
on the homotopy category of Perm.

The model category structure of coherently commutative monoidal categories on ΓCat
is obtained by localizing the projective (or strict) model category structure on ΓCat.
The guiding principle of this construction is to introduce a semi-additive structure on the
homotopy category. We achieve this by inverting all canonical maps

X t Y //X × Y

in the homotopy category of the projective model category structure on ΓCat. The fibrant
objects in this model category structure are coherently commutative monoidal categories.
We show that ΓCat is a symmetric monoidal closed model category with respect to the
Day convolution product. In the paper [KS15] the authors construct a model category of
E∞-quasicategories whose underlying category is the category of (honest) commutative
monoids in a functor category. The authors go on further to describe a chain of Quillen
equivalences between their model category and the model category of algebras over an
E∞-operad in the Joyal model category of simplicial sets. However they do not get a
symmetric monoidal closed model category structure. Moreover in this paper we want to
explicitly describe a pair of functors which give rise to a Quillen equivalence (in the case
of ordinary categories).

In the paper [Seg74], Segal described a functor from (small) symmetric monoidal
categories to the category of infinite loop spaces, or equivalently, the category of connective
spectra. This functor is often called Segal’s K-theory functor because when applied to
the symmetric monoidal category of finite rank projective modules over a ring R, the
resulting (connective) spectrum is Quillen’s algebraic K-theory of R. This functor factors
into a composite of two functors, first of which takes values in the category of (small)
Γ- categories ΓCat, followed by a group completion functor. In this paper we will refer
to this first factor as Segal’s Nerve functor. We will construct an unnormalized version
of the Segal’s nerve functor and will denote it by K. The main result of this paper is
that the unnormalized Segal’s nerve functor K is the right Quillen functor of a Quillen
equivalence between the natural model category of permutative categories and the model
category of coherently commutative monoidal categories. Unfortunately, the left adjoint
to K does not have any simple description therefore in order to to prove our main result
we will construct another Quillen equivalence, between the same two model categories,
whose right adjoint is obtained by a thickening of K. We will denote this by K and refer to
it as the thickened Segal’s nerve functor. The (skeletal) category of finite (unbased) sets
whose objects are ordinal numbers is an enveloping category of the commutative operad,
see [Shaon]. In order to define a left adjoint to K we will construct a symmetric monoidal
completion of an oplax symmetric monoidal functor along the lines of Mandell [Man10,
Prop 4.2]. In order to do so we define a permutative category L equipped with an oplax
symmetric monoidal inclusion functor i : N // L, having the universal property that
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each oplax symmetric monoidal functor X : N //Cat extends uniquely to a symmetric
monoidal functor LX : L //Cat along the inclusion i. The category of oplax symmetric
monoidal functors [N ,Cat]OL is isomorphic to ΓCat therefore this symmetric monoidal
extension defines a functor L : ΓCat // [L,Cat]⊗. Now the left adjoint to K, L, can be
described as the following composite

ΓCat
L(−)
// [L,Cat]⊗

hocolim
// Perm,

where hocolim is a homotopy colimit functor. The relation between permutative cate-
gories and connective spectra has been well explored in [Tho95], [Man10]. Thomason was
the first one to show that every connective spectra is, up to equivalence, a K-theory of a
permutative category. Mandell [Man10] used a different approach to establish a similar
result based on the equivalence between Γ-spaces and connective spectra established in
[BF78]. In the same paper Mandell proves a non-group completed version of Thomason’s
theorem [Man10, Theorem 1.4] by constructing an oplax version of Segal’s nerve functor.
This theorem states that the oplax version of Segal’s nerve functor induces an equiva-
lence of homotopy theories between a homotopy theory of permutative categories and a
homotopy theory of coherently commutative monoidal categories where the weak equiva-
lences of both homotopy theories are based on weak equivalences in the Thomason model
category structure on Cat [Tho80]. We have based our theory on the natural model
category structure on Cat wherein the notion of weak equivalence is much stronger. In a
subsequent paper we plan to show that our main result implies the non-group completed
version of Thomason’s theorem [Man10, Theorem 1.4].

2. The Setup

In this section we will review the machinery needed for various constructions in this
paper. We will begin with a review of symmetric monoidal categories and different types
of functors between them functors between them. We will also review Γ- categories and
collect some useful results about them. Most importantly we will be reviewing the notion
of Grothendieck construction of functors taking values in Cat and use it to construct
Leinster’s category which will play a pivotal role in our theory. We will also review the
natural model category structure on Cat and Cat•.

2.1. Preliminaries. In this subsection we will briefly review the theory of permutative
categories and monoidal and oplax functors between them. The definitions reviewed here
and the notation specified here will be used throughout this paper.

2.2. Definition. A symmetric monoidal category is consists of a 7-tuple

(C,−⊗−, 1C , α, βl, βr, γ)

where C is a category, −⊗− : C ×C //C is a bifunctor, 1C is a distinguished object of
C,

α : (−⊗−)⊗− ⇒ −⊗ (−⊗−)
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is a natural isomorphism called the associativity natural transformation, βl : 1C⊗− ⇒ idC
and βr : −⊗ 1C ⇒ idC are called the left and right unit natural isomorphisms and finally

γ : (−⊗−)⇒ −⊗− ◦ τ

is the symmetry natural isomorphism. This data is subject to some conditions which are
well documented in [Mac71, Sec. VII.1, VII.7]

2.3. Definition. A symmetric monoidal category C is called either a permutative cat-
egory or a strict symmetric monoidal category if the natural isomorphisms α, βl and βr
are the identity natural transformations.

2.4. Definition. An oplax symmetric monoidal functor F is a triple (F, λF , εF ), where
F : C //D is a functor between symmetric monoidal categories C and D,

λF : F ◦ (−⊗
C
−)⇒ (−⊗

D
−) ◦ (F × F )

is a natural transformation and εF : F (1C) // 1D is a morphism in D, such that the
following three conditions are satisfied

OL.1 For each objects c ∈ Ob(C), the following diagram commutes

F (1C ⊗
C
c)
λF (1C ,c)

//

F (βCl (c))

��

F (1C)⊗
D
F (c)

εF⊗
D
idF (c)

��

F (c)
βDl (F (c))−1

// 1D ⊗
D
F (c)

OL.2 For each pair of objects c1, c2 ∈ Ob(C), the following diagram commutes

F (c1 ⊗
C
c2)

λF (c1,c2)
//

F (γC(c1,c2))

��

F (c1)⊗
D
F (c2)

γD(F (c1),F (c2))

��

F (c2 ⊗
C
c1)

λF (c2,c1)
// F (c2)⊗

D
F (c1)
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OL.3 For each triple of objects c1, c2, c3 ∈ Ob(C), the following diagram commutes

F (c1 ⊗
C
c2)⊗

D
F (c3)

λF (c1,c2)⊗
D
idF (c3)

**

F ((c1 ⊗
C
c2)⊗

C
c3)

λF (c1⊗
C
c2,c3) 55

F (αC(c1,c2,c3))

��

(F (c1)⊗
D
F (c2))⊗

D
F (c3)

αD(F (c1),F (c2),F (c3))

��

F (c1 ⊗
C

(c2 ⊗
C
c3))

λF (c1,c2⊗
C
c3)

))

F (c1)⊗
D

(F (c2)⊗
D
F (c3))

F (c1)⊗
D

(F (c2 ⊗
C
c3))

idF (c1)⊗
D
λF (c2,c3)

44

2.5. Definition. An oplax monoidal natural transformation η between two oplax sym-
metric monoidal functors F : C // D and G : C // D is a natural transformation
η : F ⇒ G such that for each pair of objects c1, c2 of the symmetric monoidal category C,
the following two diagrams commute:

F (c1 ⊗
C
c2)

η(c1⊗
C
c2)

//

λF (c1,c2)

��

G(c1 ⊗
C
c2)

λG(c1,c2)

��

F (1C)

εF
$$

η(1C)
// G(1C)

εG
zz

F (c1)⊗
D
F (c2)

η(c1)⊗
D
η(c2)
// G(c1)⊗

D
G(c2) 1D

2.6. Notation. We will say that a functor F : C //D between two symmetric monoidal
categories is unital or normalized if it preserves the unit of the symmetric monoidal
structure i.e. F (1C) = 1D. In particular, we will say that an oplax symmetric monoidal
functor is a unital (or normalized) oplax symmetric monoidal functor if the morphism εF
is the identity.

2.7. Proposition. Let F : C //D be a functor and

φ = {φ(c) : F (c)
∼=
//G(c)}c∈Ob(C)

is a family of isomorphisms in D indexed by the object set of C. Then there exists a unique
functor G : C // D such that the family φ glues together into a natural isomorphism
φ : F ⇒ G.

The following lemma is a useful property of unital symmetric monoidal functors:
In this paper we will frequently encounter oplax (and lax) symmetric monoidal func-

tors. In particular we will be dealing with such functors taking values in Cat. Let ∗
denote the terminal category.
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2.8. Definition. We define a category Catl whose objects are pairs (C, c), where C is
a category and c : ∗ // C is a functor whose value is c ∈ C. A morphism from (C, c) to
(D, d) in Catl is a pair (F, α), where F : C // D is a functor and α : F (c) // d is a
map in D. The category Catl is equipped with an obvious projection functor

pl : Catl //Cat. (1)

We will refer to the functor pl as the universal left fibration over Cat.

Let (F, α) : (C, c) // (D, d) and (G, β) : (D, d) // (E, e) be a pair of composable
arrows in Catl. Then their composite is defined as follows:

(G, β) ◦ (F, α) := (G ◦ F, β · (idG ◦ α)),

where · represents vertical composition and ◦ represents horizontal composition of 2-
arrows in Cat.

2.9. Definition. The category of elements of a Cat valued functor F : C // Cat,
denoted by

∫ c∈C
F (c) or elF , is a category which is defined by the following pullback

square in Cat: ∫ c∈C
F (c)

p2
//

p1

��

Catl

pl

��

C
F

// Cat

The category
∫ c∈C

F (c) has the following description:

The object set of
∫ c∈C

F (c) consists of all pairs (c, d), where c ∈ Ob(C) and d :
∗ //F (c) is a functor. A map φ : (c1, d1) // (c2, d2) is a pair (f, α), where f : c1

// c2 is
a map in C and α : F (f) ◦ d1 ⇒ d2 is a natural transformation. The category of elements

of F is equipped with an obvious projection functor p :
∫ c∈C

F // C.

2.10. Remark. We observe that a functor d : ∗ // F (c) is the same as an object d ∈
F (c). Similarly a natural transformation α : F (f) ◦ d ⇒ b is the same as an arrow
α : F (f)(d) // b in F (a), where f : c // a is an arrow in C. This observation leads to

a simpler equivalent description of
∫ c∈C

F (c). The objects of
∫ c∈C

F (c) are pairs (c, d),

where c ∈ C and d ∈ F (c). A map from (c, d) to (a, b) in
∫ c∈C

F (c) is a pair (f, α), where
f : c // a is an arrow in C and α : F (f)(d) // b is an arrow in F (a).

Next we want to define a symmetric monoidal structure on the category
∫ c∈C

F (c).
In order to do so we will use two functors which we now define. The first is the following
composite

p⊗1 :

∫ c∈C
F (c)×

∫ c∈C
F (c)

p1×p1
// C × C

−⊗
C
−
// C.

The second functor

p⊗2 :

∫ c∈C
F (c)×

∫ c∈C
F (c) //Catl
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is defined on objects as follows:

p⊗2 ((c1, d1), (c2, d2)) := d1 ⊗ d2,

where the map on the right is defined by the following composite

∗
((d1,d2))

// F (c1)× F (c2)
λF ((c1,c2))

// F (c1 ⊗
C
c2).

Let
(f1, α1) : (c1, d1) // (a1, b1) and (f2, α2) : (c2, d2) // (a2, b2)

be two maps in
∫ c∈C

F (c). The functor is defined on arrows as follows:

p⊗2 ((f1, α1), (f2, α2)) := (F (f1 ⊗
C
f2), α1 ⊗ α2),

where the second component α1 ⊗ α2 is a natural transformation

α1 ⊗ α2 : F (f1 ⊗
C
f2) ◦ λF ((c1, c2)) ◦ (d1, d2)⇒ λF ((a1, a2)) ◦ (b1, b2).

In order to define this natural transformation, consider the following diagram:

F (c1 ⊗
C
c2)

F (f1⊗
C
f2)

  

F (c1)× F (c2)

λF ((c1,c2))
66

F (f1)×F (f2)

((

(α1,α2)

��∗

((d1,d2))

99

((b1,b2))
// F (a1)× F (a2)

λF ((a1,a2))
// F (a1 ⊗

C
a2)

Now we define
α1 ⊗ α2 := idλF ((a1,a2)) ◦ (α1, α2).

The arrow α1 ⊗ α2(∗) has domain

λF ((a1, a2))(F (f1)(d1(∗)), F (f2)(d2(∗))) ∈ F (a1 ⊗
C
a2).

The following diagram

∗
((d1,d2))

vv

((b1,b2))

((

F (c1)× F (c2)

λF ((c1,c2))

��

F (f1)×F (f2)
// F (a1)× F (a2)

λF ((a1,a2))

��

F (c1 ⊗
C
c2)

F (f1⊗
C
f2)

// F (a1 ⊗
C
a2)
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shows that

F (f1 ⊗
C
f2)(λF ((c1, c2))(d1(∗), d2(∗))) = λF (a1, a2)(F (f1)(d1(∗)), F (f2)(d2(∗))).

Now we have to verify that p⊗2 is a bifunctor. Let (g1, β1) : (a1, b1) // (x1, z1) and

(g2, β2) : (a2, b2) // (x2, z2) be another pair of maps in
∫ c∈C

F (c). The following diagram
will be useful in establishing the desired bifunctorality:

F (c1 ⊗
C
c2)

F (f1⊗
C
f2)

  

F (c1)× F (c2)

λF ((c1,c2))
77

F (f1)×F (f2)

''

(α1,α2)

��∗

(z1,z2) 00

(d1,d2)

::

(b1,b2)
// F (a1)× F (a2)

(β1,β2)

��

F (g1)×F (g2)

''

λF ((a1,a2))
// F (a1 ⊗

C
a2)

F (g1⊗
C
g2)

''

F (x1)× F (x2)
λF ((x1,x2))

// F (x1 ⊗
C
x2)

Now consider the following chain of equalities:

p⊗2 ((g1, β1), (g2, β2)) ◦ p⊗2 ((f1, α1), (f2, α2)) =

((F (g1 ⊗
C
g2), idλF ((x1,x2)) ◦ (β1, β2)) ◦ ((F (f1 ⊗

C
f2), idλF ((a1,a2)) ◦ (α1, α2)) =

(F ((g1 ⊗
C
g2) ◦ (f1 ⊗

C
f2)), (idλF ((x1,x2)) ◦ (β1, β2)) · (idF (g1⊗

C
g2) ◦ (α1, α2))) =

(F ((g1⊗
C
g2) ◦ (f1⊗

C
f2)), (idλF ((x1,x2)) ◦ (β1, β2)) · (idλF ((x1,x2)) ◦ (idF (g1)×F (g2)) ◦ (α1, α2))) =

(F (g1f1 ⊗
C
g2f2), idλF ((x1,x2)) ◦ ((β1, β2) · (idF (g1)×F (g2)) ◦ (α1, α2))) =

(F (g1f1 ⊗
C
g2f2), idλF ((x1,x2)) ◦ ((β1 · (idF (g1) ◦ α1), β2 · (idF (g2) ◦ α1))) =

p⊗2 ((g1, β1) ◦ (f1, α1)), ((g2, β2) ◦ (f2, α2)).

The above chain of equalities prove that p⊗2 is a bifunctor. The definitions of the functors
p⊗1 and p⊗2 imply that the outer rectangle in the following diagram is commutative:∫ c∈C

F (c)×
∫ c∈C

F (c)
p⊗2 //

p⊗1

��

−�− ((

Catl

pl

��

∫ c∈C
F (c)

::

uuC
F

// Cat
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Since
∫ c∈C

F (c) is a pullback of pl along F , therefore there exists a bifunctor

−�− :

∫ c∈C
F (c)×

∫ c∈C
F (c) //

∫ c∈C
F (c) (2)

which makes the entire diagram commutative. We describe this bifunctor next. Let
((c1, d1), (c2, d2)) be an object in

∫ c∈C
F ×

∫ c∈C
F (c).

(c1, d1)� (c2, d2) := (c1 ⊗
C
c2, λF (c1, c2) ◦ ((d1, d2))).

Let (f1, α1) : (c1, d1) //(a1, b1) and (f2, α2) : (c2, d2) //(a2, b2) be two maps in
∫ c∈C

F (c).

(f1, α1)� (f2, α2) := (f1 ⊗
C
f2, idλF (a1,a2) ◦ (α1, α2)).

2.11. Theorem. The category of elements of a Cat valued lax symmetric monoidal func-
tor whose domain is a permutative category is a permutative category.

Proof. Let (F, λF ) : C // Cat be a lax symmetric monoidal functor. We begin by
defining the symmetry natural isomorphism γ∫ c∈C F (c). Let (c1, d1), (c2, d2) be a pair of

objects in
∫ c∈C

F . We define

γ∫ c∈C F (((c1, d1), (c2, d2))) := (γC(c1, c2), id).

The second component is identity because the lax symmetric monoidal structure of F
implies that the following diagram commutes:

∗
((d1,d2))

&&

((d2,d1))

((

$$

F (c1)× F (c2) τ //

λF ((c1,c2))

��

F (c2)× F (c1)

λF ((c2,c1))

��

F (c1 ⊗
C
c2)

γC((c1,c2))
// F (c2 ⊗

C
c1)

It is easy to see that this defines a natural isomorphism. We claim that the proposed
symmetric monoidal structure on

∫ c∈C
F (c) is strictly associative. Given a third object

(c3, d3) in
∫ c∈C

F (c), we observe that

((c1, d1)� (c2, d2))� (c3, d3) =

(c1 ⊗
C
c2 ⊗

C
c3, (λF ((c1 ⊗

C
c2, c3)) ◦ (λF ((c1,c2)) × id) ◦ ((d1, d2), d3)).
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The following diagram, which is the lax version of (OL.3) for F ,

∗
((d1,d2),d3)

((

(d1,(d2,d3))

  

(F (c1)× F (c2))× F (c3)

αF (c1),F (c2),F (c3)

��

λF ((c1,c2))×id
// F (c1 ⊗

C
c2)× F (c3)

λF ((c1⊗
C
c2,c3))

��

F (c1 ⊗
C
c2 ⊗

C
c3)

F (c1)× (F (c2)× F (c3))
id×λF ((c2,c3))

// F (c1)× F (c2 ⊗
C
c3)

λF (c1,c2⊗
C
c3)

OO

tells us that

((c1 ⊗
C
c2 ⊗

C
c3, λF ((c1 ⊗

C
c2, c3) ◦ (λF ((c1,c2)) × id) ◦ ((d1, d2), d3)) =

(c1 ⊗
C
c2 ⊗

C
c3, λF ((c1, c2 ⊗

C
c3) ◦ (id× λF ((c2,c3))) ◦ (d1, (d2, d3)) =

(c1, d1)� ((c2, d2)� (c3, d3).

Thus we have proved that the symmetric monoidal functor is strictly associative. It is easy
to see that the symmetry isomorphism γ∫ c∈C F (c) satisfies the hexagon diagram because

C is a permutative category by assumption. Thus we have proved that
∫ c∈C

F (c) is a
permutative category.

2.12. Review of Γ- categories. In this subsection we will briefly review the theory
of Γ- categories. We begin by introducing some notations which will be used throughout
the paper.

2.13. Notation. We will denote by n the finite set {1, 2, . . . , n} and by n+ the based set
{0, 1, 2, . . . , n} whose basepoint is the element 0.

2.14. Notation. We will denote by N the skeletal category of finite unbased sets whose
objects are n for all n ≥ 0 and maps are functions of unbased sets. The category N is a
(strict) symmetric monoidal category whose symmetric monoidal structure will be denoted
by +. For to objects k, l ∈ N their tensor product is defined as follows:

k + l := k + l.

2.15. Notation. We will denote by Γop the skeletal category of finite based sets whose
objects are n+ for all n ≥ 0 and maps are functions of based sets.
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2.16. Definition. A map f : n+ //m+ in Γop is called inert if its restriction to the set
n− Supp(f) is a bijection, where Supp(f) ⊆ n is the support of f .

2.17. Definition. A morphism f in Γop is called active if f−1({0}) = {0} i.e. the
pre-image of {0} is the singleton set {0}.

2.18. Notation. We denote by Inrt the subcategory of Γop having the same set of objects
as Γop and inert morphisms.

2.19. Notation. We denote by Act the subcategory of Γop having the same set of objects
as Γop and active morphisms.

2.20. Notation. A map f : n // m in the category N uniquely determines an active
map in Γop which we will denote by f+ : n+ //m+. This map agrees with f on non-zero
elements of n+.

2.21. Notation. Given a morphism f : n+ // m+ in Γop, we denote by Supp(f) the
largest subset of n whose image under f does not contain the basepoint of m+. The set
Supp(f) inherits an order from n and therefore could be regarded as an object of N . We
denote by Supp(f)+ the based set Supp(f) t {0} regarded as an object of Γop with order
inherited from n.

2.22. Proposition. Each morphism in Γop can be uniquely factored into a composite of
an inert map followed by an active map in Γop.

Proof. Any map f : n+ //m+ in the category Γop can be factored as follows:

n+

finrt &&

f
//m+

Supp(f)+

fact

88 (3)

where Supp(f) ⊆ n is the support of the function f i.e. Supp(f) is the largest subset of
n whose elements are mapped by f to a non zero element of m+. The map finrt is the
projection of n+ onto the support of f and therefore finrt is an inert map. The map fact
is the restriction of f to Supp(f) ⊂ n, therefore it is an active map in Γop.

The next lemma is special case of [Lei00, Prop. 3.1.1]

2.23. Lemma. There is an isomorphism of categories between the category of oplax sym-
metric monoidal functors and oplax monoidal natural transformations [N ,Cat]OL

⊗ and the
category ΓCat.
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2.24. Natural model category structure on Cat. In this subsection we will
review the natural model category structure on the category of all small categories Cat.
The model category structures recalled this section have been published in [JT91]. The
original content of this section is the explicit description of the generating cofibrations
and a characterization of equivalence of categories. The weak equivalences in this model
structure are equivalences of categories. We begin by reviewing this notion:

2.25. Definition. A functor F : C //D is called an equivalence of categories if there
exists another functor G : D // C and two natural isomorphisms

ε : FG ∼= idD and η : idC ∼= GF

The inclusion of the category of all (small) groupoids Gpd into Cat has a right adjoint
which we denote by J : Cat //Gpd. For any category C, J(C) is the largest groupoid
contained in C. The following charaterization of an equivalence of categories will be useful
throughout the paper:

2.26. Lemma. A functor F : C // D is an equivalence of categories if and only if the
following two induced functor are equivalences of groupoids:

J(F ) : J(C) // J(D) and J([I, F ]) : J([I, C]) // J([I,D])

Proof. (⇒) It is easy to see that J preserves equivalences of categories i.e. if F : C //D
is an equivalence of categories then J(F ) : J(C) // J(D) is also an equivalence. An
equivalence of categories induces an equivalence on its category of arrows, thus the functor
J([I;F ]) is also an equivalence of categories.

(⇐) Let us assume that the two conditions hold. Let f : d //e be an arrow in D such
that the domain and codomain objects d and e respectively are in the image of F . By
assumption the functor J([I, F ]) is essentially surjective therefore there exists an arrow
g : a // b in C such that the following diagram commutes:

F (a)

F (g)
��

ε(d)
// d

f

��
F (b)

ε(e)
// e

where the pair (ε(d), ε(e)) is an isomorphism in the arrow category [I;D]. By the assump-
tion that J(F ) is an equivalence of categories, there exist two unique (invertible) arrows
h and k such that F (h) = ε(d) and F (k) = ε(e). This implies that there exists a unique
arrow k−1 ◦ g ◦ h such that f = F (k ◦ g ◦ h−1). Thus we have proved that F is fully-
faithful. Let p be an object of D which is NOT in the image of F then the assumption of
equivalence of J([I, F ]) guarantees the existence of an isomorphism m : x // y in C such
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that the following diagram commutes:

F (x)

F (m)

��

ε(d)
// d

idd

F (y)
ε(e)

// d

Thus we have shown that F is essentially surjective.

A significant part of this section will be devoted to review properties of fibrations in
this model structure, namely isofibrations, which we now define:

2.27. Definition. If C and D are categories, we shall say that a functor F : C //D is
an isofibration if for every object c ∈ C and every isomorphism v ∈Mor(D) with source
F (c), there exists an isomorphism u ∈ C with source c such that F (u) = v.

2.28. Notation. Let J be the groupoid generated by one isomorphism 0 ∼= 1. We shall
denote the inclusion {0} ⊂ J as a map d1 : 0 // J and the inclusion {1} ⊂ J by the map
d0 : 1 // J .

2.29. Notation. Let A and B be two small categories, we will denote by [A,B], the
category of all functors from A to B and natural transformations between them.

The next proposition and the lemma following it provide characterizations of isofibra-
tions and acyclic isofibrations. These follow from the above definition and [Mac71, Ch.
IV.4]

2.30. Proposition. A functor F : C // D is an isofibration if and only if it has the
right lifting property with respect to the inclusion i0 : 0 ↪→ J and therefore also with the
inclusion i1 : 1 ↪→ J .

We want to present a charaterization of acyclic isofibrations, i.e. those functors of
categories which are both an isofibration and an equivalence of categories, similar to the
characterization of isofibrations given by proposition 2.30. The following property of
acyclic isofibrations will be useful in achieving this goal:

2.31. Lemma. An equivalence of categories is an isofibration iff it is surjective on objects.

2.32. Notation. We will denote the category 0 //1 either by I or by [1]. We will denote

the discrete category {0, 1} either by ∂I or ∂[1]. We will denote the category 0
f01
// 1

f12
// 2

by [2].

Now we define a category ∂[2] which has the same object set as the category [2],
namely {0, 1, 2}. The Hom sets of this category are defined as follows:

Hom∂[2](i, j) =


{f01}, if i = 0 and j = 1

{f12}, if i = 1 and j = 2

{f02, f12 ◦ f01}, if i = 0 and j = 2

{id}, otherwise.



SYMMETRIC MONOIDAL CATEGORIES AND Γ-CATEGORIES 431

We have the following functor
∂2 : ∂[2] ↪→ [2]

which is identity on objects. This functor sends the morphism f01(resp. f12) to the mor-
phism 0 // 1(resp. 1 // 2) in the category [2]. Both morphisms f02, f12 ◦ f01 are mapped

to the composite morphism 0
f01
// 1

f12
// 2. Similarly we have the map ∂1 : ∂[1] // [1] which

is identity on objects. We have a third functor ∂0 : ∅ // [0] which is obtained by the
unique function ∅ // {0}. We will refer to these three functors as the boundary maps.

2.33. Proposition. A functor F : C // D is an isofibration and an equivalence of
categories if and only if it has the right lifting property with respect to the three boundary
maps ∂0, ∂1 and ∂2.

Proof. Let us first assume that F is an isofibration as well as an equivalence of categories.
Now Lemma 2.31 says that F is surjective on objects which is equivalent to F having
the right lifting property with respect to the boundary map ∂0. Now we observe that for
any pair of objects d, d′ ∈ Ob(D), there exists a pair of objects c, c′ ∈ Ob(C) such that
F (c) = d and F (c′) = d′ and the morphism

Fc,c′ : HomC(c, c′) //HomD(d, d′)

is a bijection. This implies that F has the right lifting property with respect to the
morphism ∂1. Whenever we have the following (outer) commutative diagram

∂[2]

∂2

��

K // C

F

��

[2]

L

<<

// D

we have the following equality

F (K(f02)) = F (K(f12)) ◦ F (K(f01)),

where the maps f02, f12 and f01 are defined above. The morphism

FK(0),K(2) : HomC(K(0), K(2)) //HomD(F (K(0)), F (K(2)))

is a bijection, this implies that the morphism K(f02) : K(0) //K(2) is the same as the
composite morphism K(f12) ◦ K(f01) : K(0) // K(2) Now we are ready to define the
lifting (dotted) arrow L. We define the object function of the functor L to be the same as
that of the functor K, i.e. LOb = KOb. We define L(f01) = K(f01) and L(f12) = K(f12).
Now the discussion above implies that this definition makes the entire diagram commute.

Conversely, let us assume that the morphism F has the right lifting property with
respect to the three boundary maps. The morphism F having the right lifting property
with respect to ∂0 is equivalent to F being surjective on objects. Now the right lifting



432 AMIT SHARMA

property with respect to ∂1 implies that for any map g : d // d′ in the category D, there
exists a map w : c // c′ in C, such that F (w) = g, for each pair of objects c, c′ ∈ Ob(C)
such that F (c) = d and F (c′) = d′. Let c ∈ Ob(C) and v : F (c) // d be an isomorphism
in D. Now we can define a functor A : [2] // D, on objects by A(0) = A(2) = F (c),
A(1) = d and on morphisms by A(f01) = v and A(f12) = v−1. As mentioned earlier, the
right lifting property with respect to ∂1 implies that there exist two maps u : c // c′

and r : c′ // c such that F (u) = v and F (r) = v−1. This allows us to define a functor
K : ∂[2] // C, on objects by K(0) = K(2) = c and K(1) = c′ and on morphisms by
K(f01) = u, K(f12) = r and K(f02) = r ◦ u. This definition gives us the following (outer)
commutative diagram

∂[2]

∂2

��

K // C

F

��

[2]

L

<<

A
// D

Our assumption of right lifting property with respect to ∂2 gives us a lift (dotted arrow)
L which makes the entire diagram commute. This implies the r ◦ u = idc. A similar
argument will show that u ◦ r = idc′ . Thus we have shown that F is an isofibration which
is surjective on objects. Lemma 2.31 says that F is both an equivalence of categories and
an isofibration.

2.34. Definition. We shall say that a functor F : C //D is monic (resp. surjective,
bijective) on objects if the object function of F , FOb : Ob(C) //Ob(D), is injective (resp.
surjective, bijective).

2.35. Theorem. [Joy08] There is a combinatorial model category structure on the cate-
gory of all small categories Cat in which

1. A cofibration is a functor which is monic on objects.

2. A fibration is an isofibration and

3. A weak-equivalence is an equivalence of categories.

Further, this model category structure is cartesian closed and proper. We will call this
model category structure as the natural model category structure on Cat.

2.36. Notation. We will denote by 0 the terminal category having one object 0 and just
the identity map.

2.37. Definition. A small pointed category is a pair (C, φ) consisting of a small cat-
egory C and a functor 0 // C. A basepoint preserving functor between two pointed
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categories (C, φ) and (D,ψ) is a functor F : C // D such that the following diagram
commutes

0
ψ

""

φ

}}

C
F

// D

Every model category uniquely determines a model category structure on that category
of its pointed objects, see [JT08, Proposition 4.1.1]. Thus we have the following theorem:

2.38. Theorem. There is a combinatorial Cat-model category structure on the category
of all pointed small categories and basepoint preserving functors Cat• in which

1. A cofibration is a basepoint preserving functor which is monic on objects.

2. A fibration is a basepoint preserving functor which is also an isofibration of (unbased)
categories and

3. A weak-equivalence is a basepoint preserving functor which is also equivalence of
(unbased) categories.

We will call this model category structure as the natural model category structure on
Cat•.

Let C+ denote the category C
∐
∗ i.e. the category having two connected compo-

nents C and the terminal category ∗. We will consider C+ as a pointed category having
basepoint ∗. The generating cofibrations and acyclic cofibrations in Cat• are obtained
by adding an external basepoint to corresponding maps in Cat. The category Cat• is
locally presentable follows from results in [AR94].

2.39. Leinster construction. In this section we will construct a permutative category
which would help us in constructing the desired left adjoint to the Segal’s Nerve functor.
We will refer to this category as the Leinster category and we will denote it by L. The
defining property of this permutative category is that for each permutative category P
we get a following bijection of mapping sets:

Perm(L, P ) ∼= OLSM(N , P )

where the mapping set OLSM(N , P ) is the set of all oplax symmetric monoidal functors
from N to P . The existence of this category is ensured by [BKP89, Thm. 3.13][GJO17,
Thm. 2.8]. An object in L is an order preserving morphism of the category N namely an

order preserving map of (finite) unbased sets ~k : k // r. For another object ~m : m // s

in L, a morphism between ~k and ~m is a pair (h, φ), where h : s // r and φ : k //m are
morphisms in N such that the following diagram commutes:

k

~k

��

φ
//m

~m

��
r s

h
oo
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2.40. Notation. For an object ~m : m // s in L we will refer to the natural number s
as the length of ~m.

2.41. Remark. An object of L, ~m : m // s, should be viewed as a finite sequence of
objects of N namely (m1,m2, . . . ,ms) for s > 0, with s = 0 corresponding to the empty
sequence (), where mi = ~m−1(i), for 1 ≤ i ≤ s.

2.42. Remark. An object ~m : m // s does not have to be a surjective map. In other
words the corresponding sequence ~m = (m1, . . . ,ms) can have components which are empty
sets.

2.43. Remark. Let ~n and ~m be two objects in L. A morphism (h, φ) : ~n // ~m, in L,
should be viewed as a family of morphisms

φ(i) = ni // +
h(j)=i

mj

for 1 ≤ i ≤ s, where + represents the symmetric monoidal structure on N .

We want to recall from [Shaon] or appendix E how each Γ- category X can be extended
to a symmetric monoidal functor L(X) : L //Cat. This functor is defined on objects as
follows:

L(X)(~m) := X(m+
1 )×X(m+

2 )× · · · ×X(m+
r )

where () 6= ~m = (m1,m2, . . . ,mr) is an object of L. L(X)(()) = ∗. For each map
F = (f, φ) : ~m // ~n in L we want to define a functor

L(X)(F ) : L(X)(~m) // L(X)(~n).

Each map φ(i) in the family φ provides us with a composite functor

X(m+
i )

X(φ(i))
// X( +

f(j)=i
nj)

Ki
//
∏
f(j)=i

X(nj),

where Ki = (X(δ
+

f(j)=i
nj

nj1
), . . . , X(δ

+
f(j)=i

nj

njr )). For each pair n-fold product functor in Cat,
there is a canonical natural isomorphism between them which we denote by can. This
gives us the following composite functor

|~m|∏
i=1

X(m+
i )

|~m|∏
i=1

X(φ(i))

// X( +
f(j)=i

nj)

|~m|∏
i=1

Ki

//

|~m|∏
i=1

∏
f(j)=i

X(nj)
can
//

|~n|∏
k=1

nk

which is the definition of L(X)(F ). In other words

L(X)(F ) := can ◦
|~m|∏
i=1

Ki ◦
|~m|∏
i=1

X(φ(i))
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2.44. Proposition. Let X be a Γ- category, there exists an extension of X to L, L(X) :
L //Cat which is a symmetric monoidal functor.

2.45. Remark. The symmetric monoidal extension described above is functorial in X.
In other words we get a functor

L(−) : ΓCat // [L,Cat]⊗ (4)

2.46. Definition. For a Γ- category X we define

L(X) :=

∫ ~n∈L
L(X)(~n).

i.e. the Grothendieck construction of L(X).

More concretely, an object in the category L(X) is a pair (~m, ~x) where ~m : m // s ∈
Ob(L) and

~x = (x1, x2, . . . , xs) ∈ Ob(X(m+
1 )×X(m+

2 )× · · · ×X(m+
s )).

A morphism from (~m, ~x) to (~n, ~y) in L(X) is a pair ((h, φ), F ) where (h, φ) : ~m // ~n is
a map in L and F : L(X)((h, φ))(~x) // ~y is a map in the product category X(n+

1 ) ×
X(n+

2 )× · · · ×X(n+
r ).

Now we define a tensor product on the category L(X). Let (~n, ~x) and (~m, ~y) be two

objects of L(X), we define another object (~n, ~x) ⊗
L(X)

(~m, ~y) as follows:

(~n, ~x) ⊗
L(X)

(~m, ~y) := (~n�~m, λL(X)(~n, ~m)−1((~x, ~y))). (5)

For a pair of morphisms ((h1, α), a) : (~n, ~x) // (~k,~s) and ((h2, β), b) : (~m, ~y) // (~l,~t), in

L(X), we define another morphism in L(X) as follows:

((h1, α), a) ⊗
L(X)

((h2, β), b) := ((h1, α)�(h2, β), λAX((h1, α), (h2, β))−1((a, b))), (6)

where λL(X)((h1, α), (h2, β)) is the composite functor

(L(X)((h1, α))× L(X)((h2, β))) ◦ λL(X)(~n, ~m) = λL(X)(~k,~l) ◦ L(X)((h1, α)�(h2, β)).

2.47. Proposition. The category L(X) is a permutative category with respect to the
tensor product defined above.

Proof. The category L is a permutative category. Now the proposition follows from
theorem 2.11.
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2.48. Gabriel Factorization. In analogy with the way a functor can be factored as
a fully faithful functor followed by an essentially surjective one, every strict symmetric
monoidal Φ : E // F admits a factorization of the form

E Φ //

Γ ��

F

G
∆

??

where Γ is essentially surjective and ∆ is fully faithful. In fact we may suppose that Γ is
identity on objects in which case we get the Gabriel factorization of Φ. In order to obtain
a Gabriel factorization we define the symmetric monoidal category G as having the same
objects as E and letting, for c, d ∈ Ob(G),

G(c, d) := F (Φ(c),Φ(d)).

The composition in G is defined via the composition in F in the obvious way. The
symmetric monoidal structure on G is defined on objects as follows:

e1 ⊗
G
e2 := e1 ⊗

E
e2

where e1, e2 ∈ Ob(G) = Ob(E). For a pair of morphisms f1 : e1
// h1 and f2 : e2

// h2

we define
f1 ⊗

G
f2 := f1 ⊗

F
f2.

We recall that Π1 : Cat //Gpd is the (2−) functor which assigns to each category C
the groupoid obtained by inverting all maps in C. The following lemma is a consequence
of the well known fact that Π1 preserves finite products and therefore maps Cat-enriched
adjunctions to Gpd-enriched adjunctions i.e.. equivalences:

2.49. Lemma. Let F : C //D be a functor which is either a left or a right adjoint, then
the induced functor Π1(F ) : Π1(C) // Π1(D) is an equivalence of categories.

2.50. Proposition. Let E be a symmetric monoidal category, F be a symmetric monoidal
groupoid and Φ : E //F be a strict symmetric monoidal which is a composite of n strict
symmetric monoidal functors i.e. Φ = φn ◦ · · · ◦φ1 such that each φi has either a left or a
right adjoint for 1 ≤ i ≤ n. Then the Gabriel category of Φ, G, is isomorphic to Π1(E).

Proof. The functor Φ has a Gabriel factorization

E
Φ //

Γ ��

F

G
∆

??

see [GJ08, Sec. 1.1]. The above lemma 2.49 tells us that the functor

Π1(Φ) : Π1(E) // Π1(F ) = F
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is an equivalence of groupoids. In the above situation the Gabriel category G is a groupoid
therefore Π1(G) = G. We recall that Ob(G) = Ob(E) and since Π1(Φ) is an equivalence
of categories therefore for each pair of objects e1, e2 ∈ E we have the following

E(e1, e2) ∼= F (Φ(e1),Φ(e2)) = G(e1, e2).

Thus the functor Γ is an isomorphism of categories.

3. The model category of Permutative categories

In this section we will describe a model category structure on the category of all (small)
permutative categories Perm and two model category structures on the category of all
Γ- categories ΓCat. The three desired Quillen adjunctions will be amongst the model
categories described here. We begin with the category Perm. The desired model category
structure on Perm is a restriction of the natural model category structure on Cat• which
leads us to call it the natural model category structure on Perm. The model structure in
this section is known to experts in the area but the original content of this section is the
characterization of cofibrations in the aforementioned natural model category.

We begin by reviewing permutative categories. A permutative category is a symmetric
monoidal category in which the associativity and unit natural isomorphisms are the iden-
tity natural transformations. A map in Perm is a strict monoidal functor i.e. a functor
which strictly preserves the tensor product, the unit object and also the associativity, unit
and symmetry isomorphisms. A permutative category can be equivalently described as
an algebra over a categorical version of the Barratt-Eccles operad, see [Dun94, Proposi-
tion 2.8]. The objective of this section is to define a model category structure on Perm
and explore its properties. The model category structure on Perm is well known, it is a
special case of [Lac07, Thm. 4.5], it also follows from [BM07].

3.1. Theorem. There is a Cat-model category structure on the category of all small
permutative categories and strict symmetric monoidal functors Perm in which

1. A fibration is a strict symmetric monoidal functor which is also an isofibration of
(unbased) categories and

2. A weak-equivalence is a strict symmetric monoidal functor which is also an equiva-
lence of (unbased) categories.

3. A cofibration is a strict symmetric monoidal functor having the left lifting property
with respect to all maps which are both fibrations and weak equivalences.

Further, this model category structure is combinatorial and proper.
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3.2. Remark. The Cat-enrichment of the above model category is given by the bifunctor

[−,−]str⊗ : Permop ×Perm //Cat.

For any two permutative categories C and D, [C,D]str⊗ is the category whose objects are
strict symmetric monoidal functors and maps are strict (unital) monoidal natural trans-
formations. The cotensor product of a permutative category C with a category E is the
functor category [E,C] which inherits a (strict) pointwise symmetric monoidal structure
from C.

A functor F : C //D is an equivalence of categories if and only if there exists another
functor G : D // C and two natural isomorphisms FG ∼= idC and idD ∼= GF . We would
like to have a similar characterization for a weak equivalence in Perm but unfortunately
this is only possible by relaxing the strictness condition on the functor G. The following
theorem is a special case of [Kel74, Thm. 1.5]:

3.3. Theorem. Let F : C //D be a strict symmetric monoidal functor in Perm. Any
adjunction (F,G, η, ε) consisting of a unital right adjoint functor G : D // C and a pair
of unital natural isomorphisms ε : FG ∼= idD and η : idC ∼= GF , enhances uniquely to a
unital symmetric monoidal adjunction i.e. there exists a unique natural isomorphism

λG := id ◦ (ε× ε) · (λGF ◦ idG×G) · id ◦ (ε−1 × ε−1). (7)

enhancing G = (G, λG), into a unital symmetric monoidal functor such that η and ε are
unital monoidal natural isomorphims.

3.4. Corollary. A strict symmetric monoidal functor F : C //D is a weak equivalence
in Perm if and only if there exists a symmetric monoidal functor G : D //C and a pair
of symmetric monoidal natural isomorphisms ε : FG ∼= idD and η : idC ∼= GF .

Proof. The only if part of the statement of the corollary is obvious. Let us assume
that F is a weak equivalence in Perm. By regarding the unit objects of C and D as
basepoints, we may view F as a (pointed) functor in Cat• which is a weak equivalence in
the natural model category of pointed categories Cat•. Then, by definition, there exists
a unital functor G : D // C and two unital natural isomorphisms η : idC ⇒ GF and
ε : FG⇒ idD. Now the result follows from the theorem.

Next we want to give a characterization of acyclic fibrations in Perm. Recall that a
functor is an acyclic fibration in Cat if and only of it is an equivalence which is surjec-
tive on objects. The following corollary provides equivalent characterizations of acyclic
fibrations in Perm

3.5. Corollary. Given a strict symmetric monoidal functor F : C //D between per-
mutative categories, the following statements about F are equivalent:

1. F is an acyclic fibration in Perm.

2. F is an equivalence of categories and surjective on objects.
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3. There exist a unital symmetric monoidal functor G : D // C such that FG = idD
and a unital monoidal natural isomorphism η : idC ∼= GF .

Proof. (1) ⇒ (2) An acyclic fibration F : C // D in Perm is an acyclic fibration
in Cat•, when the unit objects are regarded as basepoints of C and D. Every acyclic
fibration in Cat• is an equivalence of categories and surjective on objects, see 2.31.

(2) ⇒ (3) Since every object is cofibrant in the natural model category structure on
Cat•, therefore there exist a unital functor G : D //C such that FG = idD. There also
exists a unital natural isomorphism η : idC ∼= GF , see 2.38. Now the theorem tells us that
there is a unique enhancement of G to a unital symmetric monoidal functor such that η
is a unital monoidal natural isomorphisms.

(3)⇒ (4) Conversely, if there exists a unital symmetric monoidal functor (G, λG) and
a unital monoidal natural isomorphisms η : idC ∼= GF such that FG = idD then F is an
acyclic fibration in Cat and therefore it is an acyclic fibration in Perm.

Every object in Cat is cofibrant in the natural model structure but this is not the
case in Perm. The cofibrant objects satisfy a freeness condition, for example every free
permutative category generated by a category is a cofibrant object in Perm. In general,
the notion of cofibrations in Perm is stronger than that in Cat as the following lemma
suggests:

3.6. Lemma. A cofibration in Perm is monic on objects.

Proof. We begin the proof by defining a permutative category EC whose set of objects
is the same as that of C. The category EC has exactly one arrow between any pair of
objects. This category gets a unique permutative category structure which agrees with
the permutative category structure of C on objects. The category EC is equipped with
a unique strict symmetric monoidal functor ιC : C // EC which is identity on objects.
It is easy to see that the category EC is a groupoid and the terminal map EC // ∗ is an
acyclic fibration in Perm.

Let i : C //D be a cofibration in Perm. Let us assume that the object function Ob(i) :
Ob(C) // Ob(D) is NOT a monomorphism. Now we have the following commutative
diagram

C
ιC //

i
��

EC

��

D // ∗
The above diagram has NO lift because Ob(i) is NOT a monomorphism. Since the
terminal map EC // ∗ is an acyclic fibration, we have a contradiction to our assumption
that i is a cofibration in Perm. Thus a cofibration in Perm is always monic on objects.

Frequently in this paper we would require a characterization of cofibrations in Perm.
The object function of a strict symmetric monoidal functor, which is a homomorphisms
of monoids, determines whether the functor is a cofibration in Perm. We now recall that
the category of monoids has a (weak) factorization system:



440 AMIT SHARMA

3.7. Lemma. There is a weak factorization system (L,R) on the category of monoids,
where R is the class of surjective homomorphisms of monoids.

Proof. We have to show that each homomorphism of monoids f : X // Y admits a

factorisation f : X
u
// E

p
// Y with u lies in the class L and p lies in the class R. For

this, let q : F (Y ) // Y be the homomorphism adjunct to the identity map on Y in the
category of sets, where F (Y ) is the free monoid generated by the underlying set of Y .
The homomorphism q is surjective. Let E = X

∐
F (Y ) be the coproduct of X and F (Y )

in the category of monoids, and let u : X // E and v : F (Y ) // E be the inclusions.
Then there is a unique map p : E // Y such that pu = f and pv = q. We claim that u
is in L and p is in R. The homomorphism p is surjective because q is surjective. In order
to show that u is in L we have to show that whenever we have a (outer) commutative
diagram in the category of monoids, where s is in R

X

u
��

g
// C

s
����

E = X
∐
F (Y )

f
//

L

88

D

there exists a diagonal filler L which makes the entire diagram commutative. The lower
horizontal map f can be viewed as a pair of homomorphisms f1 : X // D and f2 :
F (Y ) // D. Now, it would be sufficient to show that there exists a homomorphism
L2 : F (Y ) // C such that the following diagram commutes

C

s
����

F (Y )
f2

//

L2

<<

D

By adjointness, the existence of the homomorphism L2 is equivalent to the existence of
a morphism of sets, T : Y // U(C), such that the following diagram commutes in the
category of sets

U(C)

U(s)
����

Y
U(f2)

//

T
==

U(D)

where U is the forgetful functor from the category of monoids to the category of sets
which is right adjoint to the free monoid functor F . Such a map T exists because s is a
surjective map of sets. Thus we have shown that the homomorphism u lies in the class
L.
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The next lemma provides the desired characterization of cofibrations.

3.8. Lemma. A strict symmetric monoidal functor F : C //D in Perm is a cofibration
if and only if the object function of F lies in the class L i.e. it has the left lifting property
with respect to surjective homomorphisms of monoids.

Proof. Let us assume that Ob(F ) lies in the class L. Let p : X // Y be an acyclic
fibration in Perm then the object function Ob(p) : Ob(X) // Ob(Y ) is a surjective
homomorphism. The assumption that Ob(F ) lies in L implies that whenever we have the
following (outer) commutative diagram there exists a (dotted) diagonal filler Ob(L) which
makes the entire diagram commutative in the category of monoids

Ob(C)

Ob(F )

��

// Ob(X)

Ob(p)
����

Ob(D) //

Ob(L)
::

Ob(Y )

(8)

Now we want to show that whenever we have a (outer) commutative diagram, there
exists a lift L which makes the following diagram commutative in Perm

C

F
��

// X

p
����

D
G
//

L

>>

Y

We will present a construction of the strict symmetric monoidal functor L in the above
diagram. We choose a lift Ob(L) in the diagram (8) to be the object function of the
functor L. Since p is an acyclic fibration therefore for each pair of objects y, z ∈ Ob(X),
each function

py,z : X(y, z) // Y (p(y), p(z))

is a bijection. For each pair of objects d1, d2 in D, we define a function

Ld1,d2 : D(a, b) //X(L(d1), L(d2))

by the following composite diagram

D(d1, d2)
Gd1,d2

// Y (G(d1), G(d2))
p−1
L(d1),L(d1)

// X(L(d1), L(d2)).

In order to check that our definition respects composition, it would be sufficient to check
that for another object d3 ∈ Ob(D), the following diagram commutes:

Y (F (d1), F (d2))× Y (F (d2), F (d3))

−◦−
��

p−1
L(d1),L(d2)

×p−1
L(d2),L(d3)

// X(L(d1), L(d2))×X(L(d2), L(d3))

−◦−
��

Y (F (d1), F (d2))
p−1
L(d1),L(d3)

//// X(L(d1), L(d3))
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The commutativity of the above diagram follows from the commutativity of the following
diagram which is the result of the assumption that p is a functor

Y (F (d1), F (d2))× Y (F (d2), F (d3))

−◦−
��

X(L(d1), L(d2))×X(L(d2), L(d3))

−◦−
��

pL(d1),L(d2)×pL(d2),L(d3)
oo

Y (F (d1), F (d2)) X(L(d1), L(d3))pL(d1),L(d3)

oo

Thus we have shown that the family of functions {Ld1,d2}d1,d2∈Ob(D) together with the
object function Ob(L) defines a functor L. Now we have to check that L is a strict
symmetric monoidal functor. Clearly L(d1 ⊗ d2) = L(d1)⊗ L(d2) for each pair of objects
d1, d2 ∈ Ob(D) because the object function of L is a homomorphism of monoids. The same
equality holds for each pair of maps in D. Finally we will show that L strictly preserves
the symmetry isomorphism. By definition, L(γDd1,d2

) = p−1
G(d1⊗d2),G(d2⊗d1) ◦G(γDd1,d2

). Since

G is a strict symmetric monoidal functor, therefore G(γDd1,d2
) = γYG(d1),G(d2) = γYpL(d1),pL(d2).

Since p is also a strict symmetric monoidal functor therefore

p−1
G(d1⊗d2),G(d2⊗d1)(γ

Y
G(d1),G(d2)) = p−1

G(d1⊗d2),G(d2⊗d1)(γ
Y
pL(d1),pL(d2)) = γXL(d1),L(d2).

This means that L(γDd1,d2
) = γXL(d1),L(d2) for each pair of objects d1, d2 ∈ Ob(D). Thus we

have shown that L is a strict symmetric monoidal functor which makes the entire diagram
(3) commutative i.e. F is an acyclic cofibration in Perm.

Conversely let us assume that F is an acyclic cofibration in Perm. We want to
show that the object function of F lies in the class L. Let f : M // N be a surjective
homomorphism of monoids. The homomorphism f induces an acyclic fibration E(f) :
EM // EN , where EM and EN are permutative categories whose monoid of objects
are M and N respectively and there is exactly one map between each pair of objects. By
assumption the functor F has the left lifting property with respect to all strict symmetric
monoidal functors in the set

{E(f) : EM // EN : f ∈ R}

because every element of this set is an acyclic fibration in Perm. This implies that the
object function of F has the left lifting property with respect to all maps in R.

The next proposition provides three equivalent characterizations of acyclic cofibrations
in Perm:

3.9. Proposition. Let F : C // D be a strict symmetric monoidal functor between
permutative categories C and D, the following conditions on F are equivalent

1. The strict symmetric monoidal functor F is an acyclic cofibration in Perm.
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2. There exist a strict symmetric monoidal functor G : D // C such that GF = idC
and a unital monoidal natural isomorphism η : idD ∼= FG which is the unit of an
adjunction (G,F, η, id) : D ⇀ C.

3. There is a (permutative) subcategory S of D, an isomorphism H : C ∼= S, in
Perm, a strict symmetric monoidal functor T : D // S and a unital monoidal
natural isomorphism ιS ◦ T ∼= idD, where ιS : S ↪→ D is the inclusion functor such
that T ◦ ιS = idS and F = ιS ◦H

Proof. (1) ⇒ (2) Since F is an acyclic cofibration in Perm therefore the (outer) com-
mutative diagram has a diagonal filler G such that the entire diagram is commutative in
Perm

C

F
��

C

p

����

D

G

>>

// ∗
Now we construct the monoidal natural isomorphism η : idD // FG. For each object
d ∈ Ob(D) which is in the image of F , there exists a unique c ∈ Ob(C) such that d = F (c).
In this case we define η(d) = idd. Let d ∈ Ob(D) lie outside the image of F . Since F
is an equivalence of categories, we may choose an object c ∈ Ob(C) and an isomorphism
icd : F (c) ∼= d such that for each arrow f : d // e in D, there exists a unique arrow
g : c // a in C which makes the following diagram commutative in D:

F (c)
id //

F (g)

��

d

f

��
F (a)

ie
// e

(9)

Whenever d = d1 ⊗ d2, we may choose c = c1 ⊗ c2 and id = id1 ⊗ id2 . This gives us a
composite isomorphism

η(d) := d
(id)−1

// FG(F (c))
FG(id)

// FG(d).

In light of the commutative diagram (9), it is easy to see that this isomorphism is natural.
Thus we have defined a (unital) natural isomorphism η : idD ⇒ FG. Our choice for each
pair of objects d1, d2 ∈ Ob(D) for id1⊗d2 = id1⊗id2 guarantees that η is a monoidal natural
isomorphism i.e. η(d1 ⊗ d2) = η(d1)⊗ η(d2).

(2) ⇒ (3) The permutative subcategory S ⊆ D is the full subcategory of D whose
objects lie in the image of F i.e. the object set of S is defined as follows:

Ob(S) := {F (c) : c ∈ Ob(C)}

If F (c1) and F (c2) lie in S then F (c1) ⊗
D
F (c2) = F (c1 ⊗

C
c2) also lies in S. Thus S is a

permutative subcategory. The isomorphism H is obtained by restricting the codomain of
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F to S. The left adjoint of ιS is the composite functor FG. The counit of the adjunction
(FG, ιS) is the identity natural isomorphism. The unit (monoidal) natural isomorphism
is just η. Thus S is reflective.

(3)⇒ (1) If we assume (4) then any (outer) commutative square

C
Q
//

F
��

X

p
����

D

L

>>

R
// Y

where p is a fibration in Perm, would have a diagonal filler L if and only if the lower
square in the following (solid arrow) commutative diagram has a diagonal filler K

C

H
��

Q

  

S //
_�

ιS
��

X

p
����

D
K

>>

R
// Y

Since ιS has a strict symmetric monoidal left adjoint T with an identity counit, therefore
the composite K = T ◦ Q ◦ H−1 is a diagonal filler of the lower square such that entire
diagram commutes. This implies that F has the left lifting property with respect to
fibrations in Perm. Thus F is an acyclic cofibration in Perm.

4. The model category structures

A Γ- category is a functor from Γop to Cat. The category of functors from Γop to Cat
and natural transformations between them [Γop,Cat] will be denoted by ΓCat. We begin
by describing a model category structure on ΓCat which is often referred to either as
the projective model category structure or the strict model category structure. Following
[Sch99] we will use the latter terminology.

4.1. Definition. A morphism F : X // Y of Γ- categories is called

1. a strict equivalence of Γ- categories if it is degreewise weak equivalence in the natural
model category structure on Cat i.e. F (n+) : X(n+) // Y (n+) is an equivalence of
categories.

2. a strict fibration of Γ- categories if it is degreewise a fibration in the natural model
category structure on Cat i.e. F (n+) : X(n+) // Y (n+) is an isofibration.

3. a Q-cofibration of Γ- categories if it has the left lifting property with respect to all
morphisms which are both strict weak equivalence and strict fibrations of Γ- categories.
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In light of proposition 2.33 we observe that a map of Γ- categories F : X // Y is a
strict acyclic fibration of Γ- categories if and only if it has the right lifting property with
respect to all maps in the set

I = {Γn × ∂0,Γ
n × ∂1,Γ

n × ∂2 | ∀n ∈ Ob(N )}. (10)

We further observe, in light of proposition 2.30, that F is a strict fibration if and only it
has the right lifting property with respect to all maps in the set

J = {Γn × i0,Γn × i1 | ∀n ∈ Ob(N )}. (11)

4.2. Theorem. Strict equivalences, strict fibrations and Q-cofibrations of Γ- categories
provide the category ΓCat with a combinatorial model category structure.

A proof of this proposition is given in [Lur09, Proposition A.3.3.2].
To each pair of objects (X,C) ∈ Ob(ΓCat) × Ob(Cat) we can assign a Γ- category

X ⊗ C which is defined in degree n as follows:

(X ⊗ C)(n+) := X(n+)× C,

This assignment is functorial in both variables and therefore we have a bifunctor

−⊗− : ΓCat×Cat // ΓCat.

Now we will define a couple of function objects for the category ΓCat. The first function
object enriches the category ΓCat over Cat i.e. there is a bifunctor

MapΓCat(−,−) : ΓCatop × ΓCat //Cat

which assigns to any pair of objects

(X, Y ) ∈ Ob(ΓCat)×Ob(ΓCat),

a category MapΓCat(X, Y ) whose set of objects is the following

Ob(MapΓCat(X, Y )) := HomΓCat(X, Y )

and the morphism set of this category are defined as follows:

Mor(MapΓCat(X, Y )) := HomΓCat(X × I, Y )

For any Γ- category X, the functor X ⊗ − : Cat // ΓCat is left adjoint to the functor

MapΓCat(X,−) : ΓCat // Cat. The counit of this adjunction is the evaluation map
ev : X⊗MapΓCat(X, Y ) //Y and the unit is the obvious functor C //MapΓCat(X,X⊗
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C). To any pair of objects (C,X) ∈ Ob(Cat) × Ob(ΓCat) we can assign a Γ- category
homΓCat(C,X) which is defined in degree n as follows:

(homΓCat(C,X))(n+) := [C,X(n+)] .

This assignment is functorial in both variable and therefore we have a bifunctor

homΓCat(−,−) : Catop × ΓCat // ΓCat.

For any Γ- category X, the functor homΓCat(−, X) : Cat // ΓCatop is left adjoint to
the functorMapΓCat(−, X) : ΓCatop //Cat. The following proposition summarizes the
above discussion.

4.3. Proposition. There is an adjunction of two variables

(−⊗−,homΓCat(−,−),MapΓCat(−,−)) : ΓCat×Cat // ΓCat. (12)

4.4. Definition. Given model categories C, D and E, an adjunction of two variables,
(⊗,homC,MapC, φ, ψ) : C × D // E, is called a Quillen adjunction of two variables, if,
given a cofibration f : U // V in C and a cofibration g : W //X in D, the induced map

f�g : (V ⊗W )
∐
U⊗W

(U ⊗X) // V ⊗X

is a cofibration in E that is trivial if either f or g is. We will refer to the left adjoint of
a Quillen adjunction of two variables as a Quillen bifunctor.

We recall that [Hov99, Lemma 4.2.2] provides three equivalent characterizations of
the notion of a Quillen bifunctor. This lemma will be useful in this paper in establishing
enriched model category structures.

4.5. Definition. Let S be a monoidal model category. An S-enriched model category
or simply an S-model category is an S enriched category A equipped with a model cate-
gory structure (on its underlying category) such that there is a Quillen adjunction of two
variables, see definition 4.4, (⊗,homA,MapA, φ, ψ) : A× S //A.

The following theorem follows from [Lur09, Rem. A.3.3.4]

4.6. Theorem. The strict model category of Γ- categories, ΓCat, is a Cat-enriched
model category.

Let X and Y be two Γ- categories, the Day convolution product of X and Y denoted
by X ∗ Y is defined as follows:

X ∗ Y (n+) :=

∫ (k+,l+)∈Γop

Γop(k+ ∧ l+, n+)×X(k+)× Y (l+). (13)
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Equivalently, one may define the Day convolution product of X and Y as the left Kan
extension of their external tensor product X×Y along the smash product functor

− ∧− : Γop × Γop // Γop.

we recall that the external tensor product X×Y is a bifunctor

X×Y : Γop × Γop //Cat

which is defined on objects by

X×Y (m+, n+) = X(m+)× Y (n+).

4.7. Proposition. The category of all Γ- categories ΓCat is a symmetric monoidal cat-
egory under the Day convolution product (13). The unit of the symmetric monoidal struc-
ture is the representable Γ- category Γ1.

Next we define an internal function object of the category Γ- category which we will
denote by

Map
ΓCat

(−,−) : ΓCatop × ΓCat // ΓCat. (14)

Let X and Y be two Γ- categories, we define the Γ- category Map
ΓCat

(X, Y ) as follows:

Map
ΓCat

(X, Y )(n+) :=MapΓCat(X ∗ Γn, Y ).

4.8. Proposition. The category ΓCat is a closed symmetric monoidal category under
the Day convolution product. The internal Hom is given by the bifunctor (14) defined
above.

The above proposition implies that for each n ∈ N the functor −∗Γn : ΓCat //ΓCat
has a right adjointMap

ΓCat
(Γn,−) : ΓCat //ΓCat. The functor −∗Γn has another right

adjoint which we denote by −(n+ ∧ −) : ΓCat // ΓCat. We will denote −(n+ ∧ −)(X)
by X(n+ ∧ −), where X is a Γ- category. The Γ- category X(n+ ∧ −) is defined by the
following composite:

Γopn
+∧−
// Γop X

//Cat. (15)

The following proposition sums up this observation:

4.9. Proposition. There is a natural isomorphism

φ : −(n+ ∧ −) ∼=Map
ΓCat

(Γn,−).

In particular, for each Γ- category X there is an isomorphism of Γ- categories

φ(X) : X(n+ ∧ −) ∼=Map
ΓCat

(Γn, X).

The next theorem verifies the compatibility of the strict model category ΓCat with the
Day convolution product. This theorem can be proved by a straightforward verification
of Lemma [Hov99, Lemma 4.2.2(3)] using proposition 4.8 along with adjointness:



448 AMIT SHARMA

4.10. Theorem. The strict Q-model category ΓCat is a symmetric monoidal closed
model category under the Day convolution product.

4.11. Coherently commutative monoidal categories. The objective of this sub-
section is to construct a new model category structure on the category ΓCat. This new
model category is obtained by localizing the strict model category defined above and we
call it the The model category of coherently commutative monoidal categories. We will
refer to this new model category structure as the model category structure of coherently
commutative monoidal categories on ΓCat. The aim of this new model structure is to
endow its homotopy category with a semi-additive structure. In other words we want this
new model category structure to have finite homotopy biproducts. We go on further to
show that this new model category is symmetric monoidal with respect to the Day con-
volution product, see [Day70]. The proposed model category structure will be constructed
using left Bousfield localization of model categories [Hir02, Definition 3.3.1]:

4.12. Remark. The strict model category of all Γ- categories is a Cat-enriched model
category by theorem 4.6, this enrichment is equivalent to having a Quillen adjunction
−⊗ Γ1 : Cat
 ΓCat :MapΓCat(Γ

1,−) whose left adjoint preserves the tensor product,
see [Bar07, Lemma 3.6]. Further the adjunction τ1 : sSets 
 Cat : N , see [Joy08],
is a Quillen adjunction with respect to the Joyal model category structure on sSets and
natural model category structure on Cat whose left adjoint τ1 preserves finite products (and
thus the tensor product in the cartesian closed Joyal model category of simplicial sets).
Again lemma [Bar07, Lemma 3.6] implies that the strict model category of Γ- categories
is a sSets-enriched model category with respect to the Joyal model category structure on
sSets. The right Hom bifunctor of this enrichment

Map(−−) : ΓCatop × Γ-space // sSets

assigns to a pair of objects (X,C), a simplicial sets Map(XC) which is defined as follows:

Map(X,C) := N(MapΓCat(X,C)).

We want to construct a left Bousfield localization of the strict model category of
Γ- categories. For each pair k+, l+ ∈ Γop, we have the obvious projection maps in ΓS

δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+.

The maps
Γop(δk+l

k ,−) : Γk // Γk+l and Γop(δk+l
l ,−) : Γl // Γk+l

induce a map of Γ-spaces on the coproduct which we denote as follows:

hlk : Γl t Γl // Γl+k.

We now define a class of maps E∞S in ΓCat:

E∞S := {hlk : Γl t Γl // Γl+k : l, k ∈ Z+}
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We recall that I is the category with two objects and one non-identity arrow between
them. We define another class of maps in ΓCat:

I × E∞S := {I × hlk : hlk ∈ E∞S}

4.13. Definition. We call a Γ- category X a (I × E∞S)-local object if, for each map
hlk ∈ E∞S, the induced simplicial map

Maph
ΓCat(∆[n]× hlk, X) :Maph

ΓCat(∆[n]× Γk+l, X) //

Maph
ΓCat(∆[n]× (Γl t Γl), X),

is a homotopy equivalence of simplicial sets for all n ≥ 0 where Maph
ΓCat(−,−) is the

simplicial function object associated with the strict model category ΓCat, see [DK80a],
[DK80c] and [DK80b].

Remark (4.12) above and appendix D tell us that a model for Maph
ΓCat(X, Y ) is the

Kan complex J(N(MapΓCat(X, Y ))) which is the maximal kan complex contained in the
quasicategory N(MapΓCat(X, Y )).

The following proposition gives a characterization of E∞S-local objects

4.14. Proposition. A Γ- category X is a (I ×E∞S)-local object in ΓCat if and only if
it satisfies the Segal condition namely the functor

(X(δk+l
k ), X(δk+l

l )) : X(k + l+) //X(k+)×X(l+)

is an equivalence of categories for all k+, l+ ∈ Ob(Γop).

Proof. We begin the proof by observing that each element of the set E∞S is a map of
Γ- categories between cofibrant Γ- categories. Lemma D.8 implies that X is a (I ×E∞S)-
local object if and only if the following functor

MapΓCat(h
k
l , X) :MapΓCat(Γ

k+l, X) //MapΓCat(Γ
k t Γl, X)

is an equivalence of (ordinary) categories. We observe that we have the following com-
mutative square in Cat

MapΓCat(Γ
k+l, X)

∼=
��

MapΓCat(hkl ,X)
//MapΓCat(Γ

k t Γl, X)

∼=
��

X((k + l)+)
(X(δk+l

k ),X(δk+l
l ))

// X(k+)×X(l+)

This implies that the functor (X(δk+l
k ), X(δk+l

l )) is an equivalence of categories if and only
if the functor MapΓCat(h

k
l , X) is an equivalence of categories.
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4.15. Definition. We will refer to a (I×E∞S)-local object as a coherently commutative
monoidal category.

4.16. Definition. A morphism of Γ- categories F : X // Y is a (I ×E∞S)-local equiv-
alence if for each coherently commutative monoidal category Z the following simplicial
map

Maph
ΓCat(F,Z) :Maph

ΓCat(Y, Z) //Maph
ΓCat(X,Z)

is a homotopy equivalence of simplicial sets.

4.17. Proposition. A morphism between two cofibrant Γ- categories F : X // Y is an
(I × E∞S)-local equivalence if and only if the functor

MapΓCat(F,Z) :MapΓCat(Y, Z) //MapΓCat(X,Z)

is an equivalence of categories for each coherently commutative monoidal category Z.

4.18. Definition. We will refer to a (I × E∞S)-local equivalence as an equivalence of
coherently commutative monoidal categories.

The main result of this section is about constructing a new model category structure
on the category ΓCat, by localizing the strict model category of Γ- categories with respect
to morphisms in the set E∞S. We recall the following theorem which will be the main
tool in the construction of the desired model category. This theorem first appeared in an
unpublished work [Smi] but a proof was later provided by Barwick in [Bar07].

4.19. Theorem. [Bar07, Theorem 2.11] If M is a combinatorial model category and S
is a small set of homotopy classes of morphisms ofM, the left Bousfield localization LSM
of M along any set representing S exists and satisfies the following conditions.

1. The model category LSM is left proper and combinatorial.

2. As a category, LSM is simply M.

3. The cofibrations of LSM are exactly those of M.

4. The fibrant objects of LSM are the fibrant S-local objects Z of M.

5. The weak equivalences of LSM are the S-local equivalences.

4.20. Theorem. There is a closed, left proper, combinatorial model category structure
on the category of Γ- categories, ΓCat, in which

1. The class of cofibrations is the same as the class of Q-cofibrations of Γ- categories.

2. The weak equivalences are equivalence of coherently commutative monoidal cate-
gories.

An object is fibrant in this model category if and only if it is a coherently commutative
monoidal category.
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Proof. The strict model category of Γ- categories is a combinatorial model category
therefore the existence of the model structure follows from theorem 4.19 stated above.

4.21. Notation. The model category constructed in theorem 4.20 will be called the model
category of coherently commutative monoidal categories.

The rest of this section is devoted to proving that the model category of
coherently commutative monoidal categories is a symmetric monoidal closed model cate-
gory. In order to do so we will need some general results which we state now.

The following proposition has been proved in [Joy08, Lemma E.2.13]

4.22. Proposition. A cofibration, f : A // B, between cofibrant objects in a model
category C is a weak equivalence in C if and only if it has the right lifting property with
respect to all fibrations between fibrant objects in C.

4.23. Proposition. Let X be a coherently commutative monoidal category,
then for each n ∈ Ob(N ), the Γ- category X(n+ ∧ −) is also a
coherently commutative monoidal category.

Proof. We begin by observing that X(n+ ∧ −)(1+) = X(n+) and since X is fibrant,

the pointed category X(n+) is equivalent to
n∏
1

X(1+). Notice that the isomorphisms

(n+ ∧ (k + l)+) ∼=
n
∨
1
(k + l)+ ∼= (

n
∨
1
k+) ∨ (

n
∨
1
l+) ∼= ((

n
∨
1
k+) + (

n
∨
1
l+)). The two projection

maps δk+l
k : (k + l)+ // k+ and δk+l

l : (k + l)+ // l+ induce an equivalence of categories

X((
n
∨
1
k+) + (

n
∨
1
l+)) //X(

n
∨
1
k+) ×X(

n
∨
1
l+). Composing with the isomorphisms above, we

get the following equivalence of pointed simplicial sets X(n+ ∧ −)((k + l)+) //X(n+ ∧
−)(k+)×X(n+ ∧ −)(l+).

4.24. Corollary. For each coherently commutative monoidal category X and n ∈ N,
the mapping object Map

ΓCat
(Γn, X) is also a coherently commutative monoidal category.

Proof. The corollary follows from proposition 4.9.

The category Γop is a symmetric monoidal category with respect to the smash product
of pointed sets. In other words the smash product of pointed sets defines a bi-functor −∧
− : Γop×Γop //Γop. For each pair k+, l+ ∈ Ob(Γop), there are two natural transformations

δk+l
k ∧ − : (k + l)+ ∧ − ⇒ k+ ∧ − and δk+l

l ∧ − : (k + l)+ ∧ − ⇒ l+ ∧ −.

Horizontal composition of either of these two natural transformations with a Γ- category
X determines a morphism of Γ- categories

idX ◦ (δk+l
k ∧ −) =: X(δk+l

k ∧ −) : X((k + l)+ ∧ −) //X(k+ ∧ −).
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4.25. Proposition. Let X be an coherently commutative monoidal category, then for
each pair (k, l) ∈ Ob(N )×Ob(N ), the following morphism

(X(δk+l
k ∧ −), X(δk+l

l ∧ −)) : X((k + l)+ ∧ −) //X(k+ ∧ −)×X(l+ ∧ −)

is a strict equivalence of Γ- categories.

Using the previous two propositions, we now show that the mapping space functor
Map

ΓCat
(−,−) provides the homotopically correct function object when the domain is

cofibrant and codomain is fibrant.

4.26. Lemma. Let W be a Q-cofibrant Γ- category and let X be a coherently commuta-
tive monoidal category. Then the mapping object Map

ΓCat
(W,X) is also a coherently

commutative monoidal category.

Proof. We begin by recalling that

Map
ΓCat

(W,X)((k + l)+) =MapΓCat(W,X((k + l)+ ∧ −)).

Since X is a coherently commutative monoidal category, therefore X((k+ l)+∧−) is also
a coherently commutative monoidal category, for all k, l ≥ 0 according to proposition
4.23. The proposition 4.25 tells us that the map (X(δk+l

k ∧ −), X(δk+l
l ∧ −)) is a strict

equivalence of Γ- categories. Now Theorem 4.10 implies that the following induced functor
on the mapping (pointed) categories

(MapΓCat(W,X(δk+l
k ∧−)),MapΓCat(W,X(δk+l

l ∧−))) :MapΓCat(W,X((k+ l)+∧−))
//MapΓCat(W,X((k)+ ∧ −))×MapΓCat(W,X((l)+ ∧ −))

is an equivalence of categories.

Finally we get to the main result of this section. All the lemmas proved above will be
useful in proving the following theorem:

4.27. Theorem. The model category of coherently commutative monoidal categories is
a symmetric monoidal closed model category under the Day convolution product.

Proof. Let i : U // V be a Q-cofibration and j : Y //Z be another Q-cofibration. We
will prove the theorem by showing that the following pushout product morphism

i�j : U ∗ Z
∐
U∗Y

V ∗ Y // V ∗ Z

is a Q-cofibration which is also an equivalence of coherently commutative monoidal
categories whenever either i or j is an equivalence of coherently commutative monoidal
categories. We first deal with the case of i being a generating Q-cofibraion. The closed
symmetric monoidal model structure on the strict Q-model category, see theorem 4.10,
implies that i�j is a Q-cofibration. Let us assume that j is an acyclic Q-cofibration i.e.
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the Q-cofibration j is also an equivalence of coherently commutative monoidal categories.
According to proposition 4.22 the Q-cofibration i�j is an equivalence of coherently com-
mutative monoidal categories if and only if it has the left lifting property with respect to
all strict fibrations of Γ- categories between coherently commutative monoidal categories.
Let p : W // X be a strict fibration between two coherently commutative monoidal
categories. A (dotted) lifting arrow would exists in the following diagram

U ∗ Z
∐
U∗Y

V ∗ Y //

��

W

p

��

V ∗ Z

88

// Y

if and only if a (dotted) lifting arrow exists in the following adjoint commutative diagram

C //

j

��

Map
ΓCat

(V,W )

(j∗,p∗)

��

D

44

//Map
ΓCat

(U,X) ×
Map

ΓCat
(U,Y )

Map
ΓCat

(V, Y )

The map (j∗, p∗) is a strict fibration of Γ- categories by lemma [Hov99, Lemma 4.2.2] and
theorem 4.10. Further the observation that both V and U are Q-cofibrant and the above
lemma 4.26 together imply that (j∗, p∗) is a strict fibration between coherently commu-
tative monoidal categories and therefore a fibration in the model category of coherently
commutative monoidal categories. Since j is an acyclic cofibration by assumption there-
fore the (dotted) lifting arrow exists in the above diagram. Thus we have shown that if i
is a Q-cofibration and j is a Q-cofibration which is also a weak equivalence in the model
category of coherently commutative monoidal categories then i�j is an acyclic cofibration
in the model category of coherently commutative monoidal categories. Now we deal with
the general case of i being an arbitrary Q-cofibration. Consider the following set:

S = {i : U // V | i�j is an acyclic cofibration in }

where ΓCat is endowed with the model structure of coherently commutative monoidal
categories. We have proved above that the set S contains all generating Q-cofibrations.
We observe that the set S is closed under pushouts, transfinite compositions and retracts.
Thus S contains all Q-cofibrations. Thus we have proved that i�j is a cofibration which is
acyclic if j is acyclic. The same argument as above when applied to the second argument
of the Box product (i.e. in the variable j) shows that i�j is an acyclic cofibration whenever
i is an acyclic cofibration in the model category of coherently commutative monoids.

Finally we will provide a characterization of cofibrations in the model category of
coherently commutative monoidal categories.
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4.28. Notation. For each morphism F : X // Y in ΓCat we get a collection of object
functions {Ob(F (k+)) : Ob(X(k+)) //Ob(Y (k+)) : k+ ∈ Ob(Γop)}. These functions glue
together into a Γ-set, which we denote by Ob(F ), whose structure maps are just the object
functions of the structure maps (functors) of F , i.e.

Ob(F )(f) := Ob(F (f)),

for each f ∈Mor(Γop).

4.29. Lemma. A map i : A // B in ΓCat is a cofibration in the model category of
coherently commutative monoidal categories if and only if the Γ-set Ob(i) has the left
lifting property with respect to every surjective function of Γ-sets.

Proof. Let p : X // Y be an acyclic fibration in the model category of coherently
commutative monoidal categories. For any (outer) commutative diagram in ΓCat

A
H //

i
��

X

p
��

B
G
//

L

>>

Y

we will construct a dotted arrow L which will make the whole diagram commutative. The
morphism Ob(p) is a surjective map of Γ-sets. By assumption the (outer) commutative
diagram

Ob(A)
Ob(H)

//

Ob(i)

��

Ob(X)

Ob(p)

��

Ob(B)
Ob(G)

//

Ob(L)
::

Ob(Y )

has a (dotted) lifting arrow (of Γ-sets) Ob(L) which makes the whole diagram commuta-
tive. For each k+ ∈ Ob(Γop) and each pair of objects a, b ∈ Ob(B(k+)) we want to define
a function

L(k+)a,b : MorB(k+)(a, b) //MorX(k+)(Ob(L)(k+)(a), Ob(L)(k+)(b)).

By assumption, the map p is an acyclic fibration therefore for each k+ ∈ Ob(Γop), the
functor p(k+) is an acyclic fibration in the natural model category structure on Cat. This
implies that the function

p(k+)v,w : MorX(k+)(Ob(L)(k+)(a), Ob(L)(k+)(b)) //MorY (k+)(G(k+)(a), G(k+)(b))

is a bijection. Now we define the function L(k+)a,b to be the following composite

MorB(k+)(a, b)
G(k+)a,b

// MorY (k+)(G(k+)(a), G(k+)(b))

p(k+)−1
v,w
// MorX(k+)(Ob(L)(k+)(a), Ob(L)(k+)(b)),
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where (v, w) = (Ob(L)(k+)(a), Ob(L)(k+)(b)) An argument similar to the one in the proof
of Lemma 3.8 shows that the above collection of maps {L(k+)a,b : a, b ∈ Ob(B(k+))}
defines a functor L(k+) whose object function is the same as Ob(L)(k+). Now we want
to check whether this collection of functors {L(k+) : k+ ∈ Ob(Γop)} glues together into a
morphism of Γ- categories. It would be sufficient to show that for any f : k+ //m+ ∈
Mor(Γop), the following diagram commutes:

MorB(k+)(a, b)
L(k+)a,b

//

B(f)a,b
��

MorX(k+)(v, w)

X(f)v,w
��

MorB(m+)(B(f)(a), B(f)(b))
L(m+)B(f)(a),B(f)(b)

//MorX(m+)(x, y)

(16)

where (x, y) = (Ob(L)(m+)(B(f)(a)), Ob(L)(m+)(B(f)(b))). Since p and G are maps of
Γ- categories therefore we have following (solid arrow) commutative diagram of mapping
sets:

MorB(m+)(B(f)(a), B(f)(b))
G(m+)

//MorY (m+)(q, r)

p(m+)−1
x,y

��

MorB(k+)(a, b)
G(k+)a,b

//

B(f)a,b
33

MorY (k+)(G(k+)(a), G(k+)(b))

Y (f)

33

p(k+)−1
v,w

{{

MorX(k+)(v, w)

p(k+)v,w

OO

X(f)v,w

//MorX(m+)(x, y)

p(m+)x,y

OO

where

(q, r) = (G(m+)(B(f)(a)), G(m+)(B(f)(b))) = (Y (f)(G(k+)(a)), Y (f)(G(k+)(b))).

Since the dotted arrows are the inverses to the associated solid arrows therefore the entire
diagram is commutative. This commutativity implies that the diagram 16 is commutative.

5. Segal’s Nerve functor

In the paper [Seg74], Segal described a construction of a Γ- category from a (small)
symmetric monoidal category which we call the Segal’s nerve of the symmetric monoidal
category. His construction defined a functor which we call Segal’s nerve functor. This
functor was further studied in [SS79], [May78]. Oplax and lax variations of Segal’s nerve
functor were defined in [Man10], [EM06]. In this section we will review Segal’s nerve
functor and describe a new representation of Segal’s nerve functor. The Segal’s nerve
functor is built on a family of discrete categories which carry a partial symmetric monoidal
structure namely {P(n)}n∈N, where P(n) denotes the power set of the finite set n. The
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partial symmetric monoidal structure is just the union of disjoint subsets of n. Segal’s
nerve of a symmetric monoidal category consists of, in degree n, the category of all
functors which preserve this partial symmetric monoidal structure upto isomorphism.
One of our goals in this section is to further clarify the situation by firstly defining an
unnormalized version of Segal’s nerve and secondly by completing the partial symmetric
monoidal structures and thereby present a construction of Segal’s nerve using (strict)
symmetric monoidal functors. For each n ∈ N we construct a permutative category L(n)
which is equipped with an inclusion functor i : P(n) // L(n) and which satisfies the
following universal property:

P(n)

i
��

F // C

L(n)

∃!

==

where the functor F satisfies F (S tT ) ∼= F (S)⊗
C
F (T ) for all S, T ∈ P(n) and S ∩T = ∅.

This allows us to define our unnormalized Segal’s nerve, in degree n, as follows:

K(C)(n+) := [L(n), C]str⊗ .

We will show the existence of a functor L : ΓCat //Perm which is a left adjoint to the
unnormalized Segal’s Nerve functor K. The main objective of this section is to show that
the adjoint pair of functors (L,K) induces a Quillen equivalence between the natural model
category Perm and the model category of coherently commutative monoidal categories
ΓCat. We begin by reviewing Segal’s construction.

5.1. Definition. An nth Segal bicycle into a symmetric monoidal category C is a triple
Ψ = (Ψ, σΨ, uΨ), where Ψ is a family of objects of C

Ψ = {Ψ(S) : Ψ(S) ∈ Ob(C)}S∈P(n)

and σΨ is a family of morphisms of C

σΨ = {σΨ((S, T )) : Ψ(S t T )
∼=
//Ψ(S)⊗Ψ(T ) : f(S,T ) ∈Mor(C)}(S,T )∈Λ,

where the indexing set Λ := {(S, T ) : S, T ⊆ n, S ∩ T = ∅}. Finally uΨ : Ψ(∅)
∼=
// 1C is

an isomorphism in C. This triple is subject to the following conditions:

SB.1 For each S ∈ P(n), the following diagram commutes:

Ψ(∅)⊗Ψ(S)

uψ

��

Ψ(S)
σΨ((∅,S))
oo

σΨ((S,∅))
// Ψ(S)⊗Ψ(∅)

uΨ

��

1C ⊗Ψ(S)
βl

// Ψ(S) Ψ(S)⊗ 1Cβr
oo
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SB.2 For each triple S, T, U ∈ P(n) of mutually disjoint subsets of n, the following dia-
gram commutes:

Ψ(S t T t U)

σΨ((StT,U))

��

σΨ((S,T
∐
U))

// Ψ(S)⊗Ψ(T t U)

id⊗σΨ((T,U))

��

Ψ(S t T )⊗Ψ(U)

σΨ((S,T ))⊗id ++

Ψ(S)⊗ (Ψ(T )⊗Ψ(U))

αC(Ψ(S),Ψ(T ),Ψ(U))ss

(Ψ(S)⊗Ψ(T ))⊗Ψ(U))

SB.3 For each pair S, T ∈ P(n) of disjoint subsets of n, the following diagram commutes:

Ψ(S t T )
σΨ((S,T ))

//

σΨ((T,S)) ))

Ψ(S)⊗Ψ(T )

γC((S,T ))
��

Ψ(T )⊗Ψ(S)

Next we define morphisms of Segal bicycles

5.2. Definition. A morphism of nth Segal bicycles τ : (Ψ, σΨ) //(Ω, σΩ) in a symmetric
monoidal category C is a family of maps of C

τ = {τ(S) : Ψ(S) // Ω(S)}S∈P(n)

such that the following two diagram commutes

Ψ(S
∐
T )

τ(S
∐
T )

//

σΨ((S,T ))

��

Ω(S
∐
T )

σΩ((S,T ))

��

Ψ(∅)

uΨ
%%

τ(∅)
// Ω(∅)

uΩ
yy

Ψ(S)⊗Ψ(T )
τ(S)⊗τ(T )

// Ω(S)⊗ Ω(T ) 1C

Given a permutative category C, nth Segal bicycles and morphisms of nth Segal
bicycles define a category which we denote by K(C)(n+). Next we want to compare the
notion of an nth Segal bicycle to that of a strict bicycle in the permutative category C:

5.3. Lemma. Let C be a permutative category. For each n, the category K(C)(n) is
isomorphic to the category of all strict bicycles from Γn to C, BikesStr(Γn, C).

Proof. We will prove the lemma by constructing a pair of inverse functors. We begin
by defining a functor F : K(C)(n) // BikesStr(Γn, C). Let (Ψ, σΨ, uΨ) ∈ Ob(K(C)(n)),
then for each k ∈ Ob(N ) we define a functor φ(k) : Γn(k+) // C as follows:

φ(k)(f) := Ψ(Supp(f)),
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where Supp(f) ⊂ n is the support of f : n+ // k+. The collection {φ(k)}k∈Ob(N ) defines
a (strict) cone LΦ because for any h : k // l in Mor(N ), Supp(f) = Supp(h ◦ f).
Similarly for each pair (k, l) ∈ Ob(N ) × Ob(N ), we will define a natural isomorphism
σΦ(k, l) : φ(k + l) ⇒ φ(k) � φ(l). To each g ∈ Γn((k + l)+) we can associate a pair of
functions (gk, gl) whose components are defined by the following two diagrams

n+ g
//

gk
$$

(k + l)+

δk+l
k
��

n+ g
//

gl
$$

(k + l)+

δk+l
l
��

k+ l+

we define
σΦ(k, l)(g) := σΨ(Supp(gk), Supp(gl))

and uΦ(0) := uΨ. We define the object function of F as follows:

F ((Ψ, σΨ, uΨ)) := (Φ, σΦ, uΦ).

For each morphism τ : Ψ // Υ in K(C)(n+), we define a map of bicycles F (τ) as
follows:

F (τ) = {F (τ)(f) := τ(Supp(f)) : φ(k)(f) // υ(k)(f) : f ∈ t
k∈N

Γn(k+)}

It follows from definition 5.2 that F (τ) is a morphism of strict bicycles.
Now we define the inverse functor G as follows: Let (L, σ, τ) = Φ : Γn  C be a strict

bicycle where L = (φ, σ) is its underlying strict cone, see appendix A, then we define an
n-th unnormalized Segal bicycle (G(Φ), σG(Φ), uG(Φ)) as follows:

G(Φ) = {G(Φ)(S) : G(Φ)(S) = φ(fS)}S∈P(n)

where fS : n+ // S+ is the projection map whose support is S ⊆ n. Next we define the
family of isomorphism σG(Φ). For each pair (S, T ) of disjoint subsets of n we get a map
fS+T : n+ // (S + T )+ in the category Γn((S + T )+). We now define

σG(Φ)((S, T )) := σ((S, T ))(fS+T ).

Finally uG(Φ) := τ(id0+).
A map of strict bicycles F : Φ //Ψ determines a collection of maps of C

G(F ) := {G(F )(S) : G(Φ)(S) //G(Ψ)(S)}S∈P(n)

This collection glues together to define a map of n-th unnormalized Segal bicycles. It is
easy to see that the functors F and G are inverse of each other.
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5.4. Definition. For each n ∈ N we will now define a permutative groupoid L(n).
The objects of this groupoid are finite sequences of subsets of n. We will denote an
object of this groupoid by (S1, S2, . . . , Sr), where S1, . . . Sr are subsets of n. A morphism
(S1, S2, . . . , Sr) // (T1, T2, . . . , Tk) is an isomorphism of finite sets F : S1 t S2 t · · · t
Sr

∼=
// T1 t T2 t · · · t Tk such that the following diagram commutes

S1 t S2 t · · · t Sr F //

''

T1 t T2 t · · · t Tk

ww
n

where the diagonal maps are the unique inclusions of the coproducts into n.

We define a subcategory PL(n) of L(Γn) which will turn out to be a coreflective

subcategory. An object of PL(n) is a finite sequence S = (S1, S2, . . . , Sr), where Si is a
subset of n for 1 ≤ i ≤ r.

5.5. Notation. An object S = (S1, S2, . . . , Sr) ∈ Ob(PL(n)) uniquely determines a

morphism (of unbased sets) σ(S) :
r
t
i=1
Si // n. We will refer to the map σ(S) as the

canonical inclusion of S in n.

5.6. Notation. An object S = (S1, S2, . . . , Sr) ∈ Ob(PL(n)) uniquely determines a

morphism (of unbased sets) Ind(S) :
r
t
i=1
Si // r. We will refer to the map Ind(S) as the

canonical index of S.

Given another object T = (T1, T2, . . . , Ts) in PL(n), where Tj is a subset of n for

1 ≤ j ≤ r, a morphism F : S // T in PL(n) is a pair (h, p), where h : s // r is a map

of finite unbased sets and p :
r
t
i=1
Si //

s
t
j=1

Tj is a bijection. The pair is subject to the

following condition:

1. The following diagram commutes:

n

r
t
i=1
Si

σ(S)

??

Ind(S)

��

p
//
s
t
j=1
Tj

Ind(T )

��

σ(T )

__

r s
hoo

5.7. Remark. The construction above defines a contravariant functor

PL(−) : Γop //Perm.
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A map f : n+ // m+ in Γop defines a strict symmetric monoidal functor PL(f) :

PL(m) // PL(n). An object (S1, S2, . . . , Sr) ∈ PL(m) is mapped by this functor to

(f−1(S1), f−1(S2), . . . , f−1(Sr)) ∈ PL(n).

5.8. Definition. For each n ∈ N we define a permutative category L(Γn) as follows:

L(Γn) :=

∫ ~k∈L
L(Γn)(~k),

see 2.46. This construction defines a functor L(Γ−) which is the following composite

Γop y
// ΓCat

L(−)
// [L,Cat]⊗ //Perm

where y is the Yoneda functor. L(−) is the functor defined 4.

5.9. Proposition. The category PL(n) is isomorphic to the full subcategory of L(Γn)
whose objects are finite sequences of projection maps in Γop having domain n+.

Proof. We will define a functor G : PL(n) //L(Γn). This functor is defined on objects
as follows:

G((S1, S2, . . . , Sr)) := (f1, f2, . . . , fr),

where S = (S1, S2, . . . , Sr) is an object in PL(n) and each fi : n+ // S+
i is a projection

map onto Si. Let T = (T1, T2, . . . , Ts) be another object in PL(n). A map (h, p) : S //T

in PL(n) is also a map in L such that L(Γn)((h, p))(S) = T . This defines the functor G
which is fully faithful.

5.10. Remark. The category PL(n) is a coreflective subcategory of L(Γn) as a result of
5.19 and 5.21.

5.11. Remark. The functor G : PL(n) // L(Γn) defined in the proof above is a strict
symmetric monoidal functor. This functor is a component of a natural transformation
between two contravariant functors

i : PL(−)⇒ L(Γ−),

where i(n+) := G and L(Γ−) : Γop //Perm is the functor that maps n+ to L(Γn).

5.12. Remark. Composing the natural transformation i in the above remark with the
functor Π1 gives us a natural equivalence

idΠ1 ◦ i : Π1 ◦ PL(−)⇒ Π1 ◦ L(Γ−)

i.e. for each n+ ∈ Γop the functor

idΠ1 ◦ i(n+) : Π1(PL(n)) // Π1(L(Γn))

is an equivalence of categories.
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5.13. Notation. Let C be a strict symmetric monoidal category. Let us denote by C the
underlying groupoid of C i.e. the groupoid obtained by discarding all non-invertible maps
in C. We recall that C retains the strict symmetric monoidal structure of C.

We recall that a strict bicycle Ψ = (ψ, σΨ, uΨ) : Γn  C defines an oplax symmetric

monoidal functor Ψ : N //
(
CΓn

)Ps
, see appendix B. For each k ∈ N , there is a functor

Ψ(k) : Γn(k) // C which is defined as follows:

Ψ(k)(f) := ψ(k)(f)

for each f ∈ Γn(k). For each morphism h : k // l in N , Ψ(h) := id, i.e. the identity
natural transformation. The family of natural isomorphisms σΦ and the unit natural iso-
morphism uΨ provide an oplax symmetric monoidal structure on Ψ. The oplax symmetric

monoidal inclusion functor i :
(
CΓn

)Ps
//

(
CL(Γn)

)Ps
provides the following composite

oplax symmetric monoidal functor

N
Φ
//
(
CΓn

)Ps i
//

(
CL(Γn)

)Ps
.

This composite oplax symmetric monoidal functor extends uniquely, along the inclusion

N ↪→ L, into a strict symmetric monoidal functor L(Ψ) : L //

(
CL(Γn)

)Ps
, see appendix

E. This functor uniquely determines another strict symmetric monoidal functor

Φ̃ : L(Γn) // C. (17)

Let φ : PL(n) //C be a strict symmetric monoidal functor. The functor φ determines
a strict Segal bicycle (F (φ), σF (φ), uF (φ)) which we now define. For each S ⊆ n, we define
F (φ)(S) = φ((S)). The collection of isomorphism σF (φ) is defined as follows:

σF (φ)((S, T )) := φ((m, id)),

where (m, id) : (S t T ) // (S, T ) is a map in PL(n) whose first component is given by
the multiplication map m : 2 // 1. Finally, the isomorphism uF (φ) is defined as follows:

uF (φ) := φ((id, i)),

where (id, i) : (∅) // () is the following map in PL(n):

∅

��

∅

��

1 0
i

oo

The conditions SB1, SB2 and SB3 follow from the strict symmetric monoidal functor
structure of φ. The above construction defines a functor

F : [PL(n), C]str⊗ //K(C)(n+).
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5.14. Lemma. The functor F is an isomorphism of categories.

Proof. We will define a functor F−1 : K(C)(n+) // [PL(n), C]str⊗ which is the inverse
of F . An object Φ ∈ K(C)(n+) is an nth strict Segal bicycle. An nth strict Segal bicycle

uniquely determines a strict symmetric monoidal functor Φ̃ : L(Γn) // C, see (17). Now
we define the strict symmetric monoidal functor F−1(Φ) to be the following composite:

PL(n) ∼= L(Γn)proj ↪→ L(Γn)
Φ̃
// C.

5.15. Remark. In the statement of the above lemma the functor category [PL(n), C]str⊗
could be replaced by the isomorphic category [Π1(PL(n)), C]str⊗ where Π1(PL(n)) is the

groupoid obtained by inverting all morphisms in PL(n).

5.16. Notation. Let f = (f1, f2, . . . , fr) be a finite sequence, where fi : n+ // k+
i

is a map of based sets for 1 ≤ i ≤ r. We denote the finite sequence
(Supp(f1), Supp(f2), . . . , Supp(fr)) by Supp(f).

5.17. Notation. Let f = (f1, f2, . . . , fr) be a finite sequence, where fi : n+ // k+
i is a

map of based sets for 1 ≤ i ≤ r. We denote the sum
r
t
i=1
fi|Supp(fi) by tot(f), where the

map fi|Supp(fi) : Supp(fi) // ki is the restriction of fi.

We now define another category L(n) which is equipped with an inclusion functor

ι : PL(n) ↪→ L(n). (18)

5.18. Definition. An object in L(n) is a finite sequence f = (f1, f2, . . . , fr), where
fi : n+ // k+

i is a map of based sets for 1 ≤ i ≤ r. To each finite sequence f one can
(uniquely) associate the following zig-zag

r
t
i=1
Supp(fi)

σ(f)

��

tot(f)
//
r
t ki
i=1

Ind(f)
// r

n

where σ(f) := σ(Supp(f)). A map from f to g = (g1, g2, . . . , gs) in L(n) is a triple is a
triple (h, q, p), where h : s // r is a map in N , q is a map in N and p is a bijection in
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N such that the following diagram commutes

n

r
t
i=1
Supp(fi)

p
//

σ(f)

::

tot(f)

��

s
t
i=1
Supp(gi)

σ(g)

dd

tot(g)

��
r
t
i=1
ki

q
//

Ind(f)

��

r
t
i=1
li

Ind(g)

��
r s

hoo

Each subset S ⊆ n uniquely determines a projection map fS : n+ //S+. The inclusion
functor (18) is defined on objects as follows:

ι((S1, S2, . . . , Sr)) := fS = (fS1 , fS2 , . . . , fSr).

The functor is defined on morphisms as follows:

ι((h, p)) := (h, p, p),

where (h, p) : S = (S1, S2, . . . , Sr) //T = (T1, T2, . . . , Ts) is a map in PL(n) and (h, p, p) :

fS //fT = (fT1 , fT2 , . . . , fTs) is a map in L(n) which is described by the following diagram:

n

r
t
i=1
Supp(fSi) =

r
t
i=1
Si

p
//

σ(fS)

88

id

��

s
t
j=1
Tj =

s
t
j=1
Supp(fTj)

σ(fT )

gg

id

��
r
t
i=1
Si

p
//

Ind(f)

��

s
t
j=1
Tj

Ind(g)

��
r s

hoo

5.19. Lemma. For each n ∈ N the permutative category L(n) is isomorphic to the per-

mutative category L(Γn).

Proof. The objects of both categories are the same. We will show that each morphism

in L(Γn) uniquely defines a morphism in L(n) and therefore there is an isomorphism of

permutative categories J(n) : L(Γn) // L(n) which is identity on objects.
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Let ~f = (f1, . . . , fr) and ~g = (g1, . . . , gs) be two objects in L(Γn) where fi : n+ // k+
i

for 1 ≤ i ≤ r and gi : n+ // l+i for 1 ≤ i ≤ s. We recall that a map F : ~f // ~g in L(Γn)

is a map F = (h, p) : ~k = (k1, . . . , kr) //~l = (l1, . . . , ls) in the category L such that

L(Γn)((h, p))((f1, . . . , fr)) = (g1, . . . , gs). (19)

We recall that the map F = (h, p) in L is a commutative square

k
p
//

~k

��

l

~l

��
r s

h
oo

This map (h, p) uniquely determines a (finite) sequence (p1, . . . , pr) of maps in N where
pi : ki // +

h(j)=i
lj for 1 ≤ i ≤ r. The condition (19) implies that the following diagram

commutes for each i ∈ r and q ∈ s such that h(q) = i:

n+ fi ////

gq
��

k+
i

p+
i // ( +

h(j)=i
lj)

+

uq
{{

l+q

where uq : ( +
h(j)=i

lj)
+ // lq is the projection map onto lq where h(q) = i. Since each pi is a

map in N and the supports of uq are distinct non-intersecting sets for 1 ≤ q ≤ s therefore
we have the following equality:

Supp(fi) = Supp(p+
i ◦ fi) = t

h(j)=i
Supp(gj).

The r inclusion maps t
h(j)=i

Supp(gj) ⊆ t
i∈s
Supp(gi) for 1 ≤ i ≤ r determine a canonical

bijection
σF : t

i∈r
t

h(j)=i
Supp(gj) // t

i∈s
Supp(gi)

such that the following diagram commmutes:

n

t
i∈r
Supp(fi) = t

i∈r
t

j∈h−1({i})
Supp(gj)

σF //

55

tot(f)

��

t
i∈s
Supp(gi)

dd

tot(g)

��

t
i∈r
ki

p
//

Ind(f)

��

t
i∈s
li

Ind(g)

��
r s

h
oo
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Thus we have uniquely associated to an arrow F = (h, p) in L(Γn), an arrow in the

category L(n). We define the morphism function of J(n) as follows:

J(n)(F = (h, p)) := (h, p, σF ).

As mentioned above the object function of J(n) is the identity. This defines a functor
which is an isomorphism of categories.

5.20. Remark. By proposition 2.7 there exists a unique functor L(−) : Γop // Perm
and the family isomorphisms J(n) in the lemma above glue together to define a natural

isomorphism J : L(Γ−)⇒ L(−). This implies that we have a composite natural transfor-
mation

PL(−)
i⇒ L(Γ−)

J⇒ L(−)

where i is the natural transformation obtained in remark 5.11. Further the natural equiv-
alence of remark 5.12 extends to a natural equivalence Π ◦ (J ◦ i)

idΠ1 ◦ (J ◦ i) : Π1 ◦ PL(−)⇒ Π1 ◦ L(Γ−)⇒ Π1 ◦ L(−).

We define another functor G : L(n) // PL(n). This functor is defined on objects as
follows:

G((f1, f2, . . . , fr)) := Supp(f) = (Supp(f1), Supp(f2), . . . , Supp(fr)).

This functor is defined on morphisms as follows:

G((h, q, p)) := (h, p).

5.21. Theorem. The category PL(n) is a coreflective subcategory of L(n).

Proof. We will show that the functor G defined above is a right adjoint to the inclusion
functor ι. It is easy to see that idPL(n)

= Gι. We define a natural transformation

ε : ιG⇒ idL′′(n). Let f = (f1, f2, . . . , fr) be an object in L(n). We define

ε(f) := (id, tot(f), id) : (fSupp(f1), fSupp(f2), . . . , fSupp(fr)) = fSupp(f) = ιG(f) // f

The following commutative diagram verifies that the triple on the right is a map in L(n):

n

r
t
i=1
Supp(fSupp(fi))

id

σ(fSupp(f))

88

id

r
t
i=1
Supp(fi)

σ(f)

dd

tot(f)

��
r
t
i=1
Supp(fSupp(fi))

tot(f)
//

Ind(fS)

��

r
t
i=1
ki

Ind(f)

��
r r

id
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The following chain of equalities verifies that ε is a natural transformation:

(h, q, p) ◦ ε(f) = (h, q, p) ◦ (id, tot(f), id) = (h, q ◦ tot(f), id) =

(h, tot(g) ◦ p, p) = (id, tot(g), id) ◦ (h, p, p) = ε(g) ◦ ιG((h, q, p)).

Now we want to define another category QL′′(n) which is isomorphic to the full sub-

category of PL(n) whose objects are finite sequences of, not necessarily distinct, singleton
subsets of n. We will denote an object of QL′′(n) by s = (s1, s2, . . . , sr). Equivalently we
may describe this object S by a map

s : r // n

A map p : (s1, s2, . . . , sr) // (t1, t2, . . . , tr) = t in QL′′(n) is a bijection p : r // r such
that the following diagram commutes:

r
p

//

s
��

r

t
��

n

We observe that the category QL′′(n) is in fact a groupoid. We define a functor

H : PL(n) // QL′′(n). Let S = (S1, S2, . . . , Sr) be an object of PL(n), we define H(S)
to be the following composite where the first map is the canonical bijection

H(S) :
r
+
i=1
Si
can−1

//
r
t
i=1

Si
σ(S)
// n,

where + denotes the tensor product in N . Let (h, p) : S //T = (T1, T2, . . . , Ts) be a map

in PL(n). We define the morphism function of the functor H as follows:

H((h, p)) := N (p),

where N (p) :
s
+
j=1
Tj //

r
+Si
i=1

is the bijection in N which makes the following diagram

commutative
r
t
i=1
Si

can

��

p
//
s
t
j=1
Tj

can

��
r
+
i=1
Si

s
+
j=1
TjN (p)

oo
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It is easy to check that H : PL(n) //QL′′(n) is a functor. The following commutative
diagram indicates the naturality in our definition of the functor H:

n

r
t
i=1
Si

p

∼=

~~

Ind(S)

��

σ(S)

<<

r
t
i=1
Si

σ(S)

bb

can

��

p

∼=

~~
s
t
j=1
Tj

σ(T )

//

Ind(T )

��

s
t
j=1
Tj

σ(T )

VV

can

��

r
r
+
i=1
Si

Ind(S)◦can−1

ii

s

h

??

s
+
j=1
Tj

Ind(T )◦can−1

ii

N (p)

??

(20)

The above diagram will be useful in proving that H is a left-adjoint-inverse. Now we

define another functor ι : QL′′(n) //PL(n). Let s : r //n be an object in QL′′(n). The
canonical inclusion of s in n can be factored as follows:

r
t
i=1
s(i)

σ(s)

!!

Ind(s)

~~
r s

// n

(21)

where Ind(s) is the bijection s(i) 7→ i and σ(s) is the canonical inclusion map. The functor
ι is defined on objects as follows:

ι(s) := (s(1), s(2), . . . , s(r)).

Let p : s // t be a map in QL′′(n), the functor ι is defined on morphisms as follows:

ι(p) := (p−1, p′),

where p′ is the unique bijection which makes the following diagram commute:

r
t
i=1
s(i)

Ind(s)

��

p′
//
r
t
i=1
t(i)

Ind(t)

��
r

s

��

r
p−1

oo

t
yy

n
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By the above commutative diagram and factorization (21) we get the following commu-

tative diagram which shows that ι(p) = (p−1, p′) is indeed a morphism in PL(n):

n

r
t
i=1
s(i)

σ(s)

==

Ind(s)

��

p′
//
r
t
i=1
t(i)

Ind(t)

��

σ(t)

``

r

s

//

r
p−1

oo

t

oo

5.22. Theorem. The category QL′′(n) is isomorphic to a reflective subcategory of PL(n).

Proof. We will show that the functor H defined above is a left-adjoint-inverse to ι which
is also defined above. Clearly Hι = idQL′′(n). We now construct a natural transformation

η : id→ ιH. Let S = (S1, S2, . . . , Sr) be an object of PL(n). We define

η(S) := (Ind(S) ◦ can−1, id).

The following commutative diagram verifies that the pair on the right is a map in PL(n):

n

r
t
i=1
Si

Ind(S)

��

σ(S)

??

r
t
i=1
Si

can

��

σ(S)

__

r
r
+
i=1
Si

Ind(S)◦can−1
oo

We claim that η as defined above is a natural transformation. Let (h, p) : S // T =

(T1, T2, . . . , Tj) be a map in PL(n). In order to prove our claim we would like to show

that the following diagram commutes in PL(n):

S
η(S)
//

(h,p)

��

ιH(S)

ιH((h,p))
��

T
η(T )
// ιH(T )

The following chain of equalities verifies that η is a natural transformation:

η(T ) ◦ (h, p) = (Ind(T ) ◦ can−1, id) ◦ (h, p) = (h ◦ (Ind(T ) ◦ can−1), p) =

((Ind(S) ◦ can−1) ◦H(p), p) = (H(p), p) ◦ (Ind(S) ◦ can−1, id) = ιH((h, p)) ◦ η(S).
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we refer the reader to the commutative diagram (20) for an explanation of the middle
equalities. The composite natural transformation

idPL(n)
◦ ι⇒ ιHι⇒ ι ◦ idQL′′(n)

is the identity, this follows from the observation that

η(ι(s)) = (Ind(ι(s)) ◦ can−1, id) = (can ◦ can−1, id) = ι((id, id)) = idι(s).

Similarly we claim that the following composite natural transformation

H ◦ idPL(n)
⇒ HιH ⇒ idQL′′(n) ◦H

is the identity. Our claim follows from the observation that

H(η(S)) = H((Ind(S) ◦ can−1, id)) = (id, id) = idS.

The above discussion can be summarized by the following diagram in which both pairs
of functors are adjunctions

QL′′(n) �
�

// PL(n)

H
uu

22 L(n)
G
qq

(22)

We observe that the groupoid L(n), see definition 5.4, is just the Gabriel factorization of
the functor H. Since the functor H has a right adjoint, proposition 2.50 implies that the

groupoid L(n) is isomorphic to Π1(PL(n)). Thus we have the following lemma:

5.23. Lemma. For a permutative category C, the category K(C)(n+) is isomorphic to
the category of strict symmetric monoidal functors [L(n), C]str⊗ .

Proof. The above discussion and lemma 5.14 give us the following chain of isomorphisms:

K(C)(n+) ∼= [Π1(PL(n)), C]str⊗
∼= [L(n), C]str⊗ (23)

5.24. Remark. There is a functor PL(−) : Γop // Permop, see 5.8, which gives us a

composite functor Π1 ◦ PL(−). For each n ∈ N we have an isomorphism of categories

I(n) : Π1(PL(n)) ∼= L(n). Now proposition 2.7 implies that we have a functor L(−) :

Γop //Permop and a natural isomorphism I : Π1 ◦ PL(−)⇒ L(−).

5.25. Remark. There is bifunctor defined by the following composite:

[L(−),−]str⊗ : Γop ×Perm
L(−)×id

// Permop ×Perm
[−,−]str⊗

// Cat

where L(−) is the functor defined above and [−,−]str⊗ is the function object defined in
remark 3.2.
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5.26. Remark. The above lemma 5.23 and the above remark together imply that for each
pair (n+, C) ∈ Γop × Perm there is an isomorphism of categories η(n) : [L(n), C]str⊗

∼=
K(C)(n+). Now proposition 2.7 implies that there is a bifunctor

K(−,−) : Γop ×Perm //Cat

defined by K(n+, C) = K(C)(n+) which is equipped with a natural isomorphism η :
[L(−),−]str⊗

∼= K(−,−). This also implies that there is a functor

K : Perm // ΓCat

defined by K(C) := K(−, C) for each permutative category C.

5.27. Remark. The above lemma 5.23 implies that for each permutative category C,
there is a Γ- category

[L(−), C]str⊗ : Γop //Cat

and it is isomorphic to K(C).

5.28. Remark. The natural equivalence from remark 5.20 extends to the following com-
posite natural equivalence:

idΠ1 ◦ (J ◦ i) ◦ I−1 : L(n)
I−1

⇒ Π1 ◦ PL(−)⇒ Π1 ◦ L(Γ−)⇒ Π1 ◦ L(−).

where I is the natural isomorphism from remark 5.24

The above lemma 5.23 implies that the functor K preserves limits in Perm because
degreewise it is isomorphic to a functor which preserves limits. The category ΓCat is
complete and cocomplete. Now the formal criterion for existence of an adjoint [Mac71,
Thm. 2, Ch. X.7] implies that K has a left adjoint which we denote

L : ΓCat //Perm.

Each n ∈ Ob(N ) uniquely defines n projection maps of based sets δnk : n+ // 1+, 1 ≤
k ≤ n. Each of these projection maps induce a strict symmetric monoidal functor L(δnk ) :
L(1) // L(n) which maps the object 1 ∈ Ob(L(1)) to the inverse image of 1 under the
map δnk i.e. L(δnk )(1) = (δnk )−1({1}) = {k} ⊂ n in the category L(n). These inclusion
maps together induce a strict symmetric monoidal functor in Perm

n
∨
k=1
L(δkn) :

n
∨
k=1
L(1) // L(n),

where
n
∨
k=1
L(1) is the coproduct of n copies of L(1) in Perm. We will now present a

concrete construction of the coproduct
n
∨
k=1
L(1) and also construct a strict symmetric

monoidal functor
n
∨
k=1
L(ιkn). An (non-unit) object S of

n
∨
k=1
L(1) is a (finite) sequence
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(s1, s2, . . . , sr) in which si is either the empty set or a singleton subset of n for 1 ≤ i ≤ r.

We observe that the object S is equipped with a (unique) morphism
r
t
i=1
si // n. A

morphism f : S // T = (t1, t2, . . . , tq) is an isomorphism f :
r
t
i=1
si //

q
t
i=1

ti such that the

following diagram commutes:

r
t
i=1
si

f

∼=
//

��

q
t
i=1
ti

��
n

The functor
n
∨
k=1
L(δnk ) is now the obvious inclusion functor.

5.29. Lemma. The strict symmetric monoidal functor
n
∨
k=1
L(δnk ) is an acyclic cofibration

in Perm.

Proof. The functor
n
∨
k=1
L(δnk ) is a cofibration because its object function is a monomor-

phism of free monoids. The inclusion functor
n
∨
k=1
L(δnk ) is fully-faithful. Each object of

L(n) is isomorphic to an object of
n
∨
k=1
L(1).

5.30. Corollary. For each permutative category C, K(C) is a coherently commutative
monoidal category.

Proof. By Lemma 5.23, K(C)(n+) ∼= [L(n), C]str⊗ . Now we have the following commuta-
tive diagram in Cat

K(C)(n+) //

(K(C)(δn1 ),...,K(C)(δnn))
��

[L(n), C]str⊗

([L(δn1 ),C]str⊗ ,...,[L(δnn),C]str⊗ )
��

n∏
i=1

K(C)(1+) //
n∏
i=1

[L(1), C]str⊗

According to the lemma 5.29, the strict symmetric monoidal functor
n
∨
k=1
L(δnk ) is an acyclic

cofibration therefore it follows from remark 3.2 that the right vertical functor is an acyclic
fibration in Cat. The two horizontal functors in this diagram are isomorphisms, therefore
(K(C)(δn1 ), . . . ,K(C)(δnn)) is also an acyclic fibration in Cat. Thus we have proved that
K(C) is a coherently commutative monoidal category for every C ∈ Ob(Perm).

The above corollary will be extremely useful in proving that the adjunction (L,K) is a
Quillen adjunction. We recall that a map in ΓCat between two coherently commutative
monoidal categories is a weak equivalence (resp. fibration) if and only if it is degreewise
a weak equivalence (resp. fibration) in Cat.
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5.31. Lemma. The adjunction (L,K) is a Quillen adjunction between the natural model
category Perm and the model category of coherently commutative monoidal categories
ΓCat.

Proof. We will prove the lemma by showing that the right adjoint functor K preserves
fibrations and acyclic fibrations. Let F : C // D be a fibration in Perm. In order to
show that K(F ) is a fibration in the model category of coherently commutative monoidal
categories ΓCat, it would be sufficient to show that K(F )(n+) is a fibration in Cat, for
all n+ ∈ Ob(Γop). For each n ∈ N the groupoid L(n) is a cofibrant object in Perm. The
natural model category Perm is a Cat-model category whose cotensor is given by the
functor [−,−]str⊗ . This implies that the functor

[L(n), F ]str⊗ : [L(n), C]str⊗ // [L(n), D]str⊗

is a fibration in Cat and it is an acyclic fibration in Cat whenever F is an acyclic fibration.

6. The Thickened Nerve

In this section we will describe a thickened version of Segal’s nerve functor which we will
denote by K and show that K is the right Quillen functor of a Quillen equivalence. Unlike
the left Quillen functor of the Quillen adjunction (L,K) mentioned in the previous section,
whose mere existence was shown, we will explicitly describe a functor L : ΓCat //Perm
and show that it is the left Quillen adjoint of K. The adjunction (L,K) is proved in
appendix C. The explicit description will play a vital role in proving that the Quillen pair
(L,K) is a Quillen equivalence. In this section we will also present the main result of this
paper which proves that the Quillen pair of functors (L,K) is a Quillen equivalence. The
Quillen equivalence (L,K) will be used to prove the main result.

We begin by defining a functor L : ΓCat //Perm as follows:

ΓCat
L(−)
// [L,Cat]⊗

LH
∫ ~n∈L−
// Perm

where L(−) is the symmetric monoidal extension functor described in section 2.39. The

second functor LH
∫ ~n∈L− first performs the Grothendieck construction on a functor F ∈

[L,Cat]⊗ to obtain a permutative category
∫ ~n∈L

F , see theorem 2.11. and then it localizes

(or formally inverts) the horizontal arrows of the permutative category
∫ ~n∈L

F . We recall

that an arrow in the category
∫ ~n∈L

F is a pair (f, φ) where f is a map in L and φ is
an arrow in the category F (codom(f)). An arrow (f, φ) is called horizontal if φ is the

identity morphism. Thus for a Γ- category X, L(X) = LH
∫ ~n∈L

L(X) is the permutative
category obtained by localizing with respect to the set of all horizontal morphisms in

the (permutative) category
∫ ~n∈L

L(X), see [GZ67, Ch. 1] for a procedure of localization.

The results of [Day73] imply that the category
∫ ~n∈L

L(X) has the universal property that
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any strict symmetric monoidal functor F :
∫ ~n∈L

L(X) //C which maps every horizontal

morphism in
∫ ~n∈L

L(X) to an isomorphism in C extends uniquely to a strict symmetric

monoidal functor FNat : L(X) //C along the projection map p :
∫ ~n∈L

L(X) //LX, i.e.
the functor FNat makes the following diagram commute∫ ~n∈L

L(X)F //

p

��

C

LX
FNat

:: (24)

The localization construction is functorial in X and therefore we get a functor L(−) :
ΓCat //Perm.

Now we define the thickened nerve functor K. We will first define this functor in the
spirit of the papers [May78], [SS79], [Man10] and [EM06] and later we will provide a
couple of new interpretation of this functor based on pseudo bicycles, see appendix A and
strict symmetric monoidal functors.

6.1. Definition. An nth pseudo Segal bicycle in a symmetric monoidal category C is a
quadruple (Φ, αΦ, σφ, uΦ) of families of objects or morphisms of the symmetric monoidal
category C, where

1. Φ = {cf}f∈An is a family of objects of C, where the indexing set

An := {f ∈ Γop : domain(f) = n+}.

2. αΦ = {α(h, f) : cf // ch+◦f}(h,f)∈D is a family of isomorphisms in C, where the
indexing set

D := {(h, f) ∈Mor(N )× An : dom(h)+ = codom(f)}

3. σΦ = {σ(k, l, f) : cf // cfk ⊗ cfl}(k,l,f)∈B is a family of isomorphisms in C, where
fk = δk+l

k ◦ f and fk = δk+l
l ◦ f and the indexing set

B := {(k, l, f) ∈ N× N× An : codom(f) = (k + l)+}.

4. uφ = {u(f) : cf // 1C}f∈An(0) is a family of isomorphisms in C, where the indexing
set is the following subset of An

An(0) := {f ∈ An : codom(f) = 0+}.

The quadruple (Φ, αΦ, σφ, uΦ) is subject to the following conditions:
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PSB.1 For any (pointed) function f : n+ //m+ in the indexing set An, the map

cf
σ(m,0,f)

// cfm ⊗
C
cf0

id⊗
C
u(f0)

// cfm ⊗
C

1C

is the inverse of the (right) unit isomorphism in C. Similarly the map

cf
σ(0,m,f)

// cf0 ⊗
C
cfm

u(f0)⊗
C
id

// 1C ⊗
C
cfm

is the inverse of the (left) unit isomorphism in C.

PSB.2 For each triple (k, l, f) ∈ B, where the indexing set B is defined above, the following
diagram commutes in the category C

cf
α(γNk,l)f

//

σ(k,l,f)

��

cf

σ(l,k,f)

��

cfk ⊗
C
cfl γCcfk

,cfl

// cfl ⊗
C
cfk

PSB.3 For any triple k, l,m ∈ N, and each f : n+ // (k + l + m)+ in the set An, the
following diagram commutes

cf
σ(k+l,m,f)

//

σ(k,l+m,f)

��

ck+l ⊗
C
cm

σ(k,l,f)⊗
C
idcfm

��

cfk ⊗
C
cfl+m

idcfk
⊗
C
σ(l,m,f)

��

cfk ⊗
C

(cfl ⊗
C
cfm) oo

αCcfk
,cfl

,cfm

(ck ⊗
C
cl)⊗

C
cm

PSB.4 For each triple (k, l, h) ∈ B, where the indexing set B is defined above, and each pair
of active maps f : k+ // p+, g : l+ // q+ in Γop, the following diagram commutes
in the category C

ch
σ(k,l,h)

//

α(f+g,h)

��

chk ⊗
C
chl

α(f+g,hk)⊗
C
α(f+g,hl)

��

c(f+g)◦h
σ(k,l,(f+g)◦h)

// c((f+g)◦h)k ⊗
C
c((f+g)◦h)l

Next we define the notion of a morphism of pseudo Segal bicycles:
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6.2. Definition. A morphism of nth unnormalized pseudo Segal bicycles

F : (Φ, αΦ, σφ, uΦ) // (Ψ, αΨ, σψ, uΨ)

is a family F = {F (f) : cΦ
f

// cΨ
f }f∈An of morphisms in C which satisfies the following

conditions:

1. For each f ∈ An(0) (codom(f) = 0+), the following diagram commutes:

cΦ
f

F (f)
//

uΦ(f)
��

cΨ
f

uΨ(f)
��

1C

2. For each pair (f, h) ∈ An×Mor(N ) such that the domain of h+, namely dom(h)+,
is the same as the codomain of f , the following diagram commutes

cΦ
f

F (f)
//

αΦ(h,f)

��

cΨ
f

αΨ(h,f)

��

cΦ
h◦f F (h◦f)

// cΨ
h◦f

3. For each triple (k, l, f) ∈ B, where the index set B is defined above, the following
diagram commutes

cΦ
f

F (f)
//

σΦ(k,l,f)

��

cΨ
f

σΨ(k,l,f)

��

cΦ
fk
⊗
C
cΦ
fl F (fk)⊗

C
F (fl)

// cΨ
fk
⊗
C
cΨ
fl

All nth unnormalized pseudo Segal bicycles in a symmetric monoidal category C and
all morphisms of nth unnormalized pseudo Segal bicycles in C form a category which we
denote by K(C)(n+).

6.3. Lemma. Let C be a permutative category. For each n, the category K(C)(n+) is
isomorphic to the category of all pseudo bicycles from Γn to C namely BikesPs(Γn, C).

The proof of this lemma is just the adaptation of the argument of the proof lemma
5.3, which deals with the case of strict bicycles, to the present scenario of pseudo bicycles.
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6.4. Definition. For each n ∈ Ob(N ) we will now define a permutative groupoid L(n).
The objects of this groupoid are finite collections of morphisms in Γop having domain n+,
in other words the object monoid of the category L(n) is the free monoid generated by the
following set

Ob(L(n)) := t
k∈Ob(N )

Γn(k+).

We will denote an object of this groupoid by (f1, f2, . . . , fr). A morphism
(f1, f2, . . . , fr) // (g1, g2, . . . , gk) is an isomorphism of finite sets

F : Supp(f1) t Supp(f2) t · · · t Supp(fr)
∼=
// Supp(g1) t Supp(g2) t · · · t Supp(gk)

such that the following diagram commutes

Supp(f1) t · · · t Supp(fr)
F //

))

Supp(g1) t · · · t Supp(gk)

uun

where the diagonal maps are the unique inclusions of the coproducts into n.

6.5. Remark. The construction above defines a contravariant functor L(−) : Γop //Perm.
A map f : n+ //m+ in Γop defines a strict symmetric monoidal functor L(f) : L(m) //L(n).
An object (f1, f2, . . . , fr) ∈ L(m) is mapped by this functor to (f1 ◦ f, f2 ◦ f, . . . , fr ◦ f) ∈
L(n).

6.6. Remark. We observe that the category L(n) defined above is a Gabriel factorization
of the composite functor G ◦H, see equation (22), and therefore by proposition 2.50 it is

isomorphic to Π1L(n), for each n ∈ N. Further by proposition 2.7 these isomorphisms

glue together to define a natural isomorphism T : Π1 ◦ L(−)⇒ L(−).

6.7. Remark. The natural equivalence from remark 6.6 extends to the following compos-
ite natural equivalence:

T ◦ (idΠ1 ◦ (J ◦ i) ◦ I−1) : L(n)
I−1

⇒ Π1 ◦ PL(−)⇒ Π1 ◦ L(Γ−)⇒ Π1 ◦ L(−)
T⇒ L(−).

where T is the natural isomorphism from remark 6.6.

6.8. Proposition. For each n ∈ Ob(N ), the permutative category L(n) represents the
functor BikesPs(Γn,−). In other words there is a natural isomorphism

ψn : [L(n),−]str⊗
∼= BikesPs(Γn,−).

It was proved in [AGV72, sec. 6] that, for any Γ- category X, the permutative category
L(X) is a pseudo-colimt of the functor L(X). In other words L(X) represents the category
of pseudo-cones i.e. for any category C

Ps[LX,∆C] ∼= [L(X), C].

This characterization provides the functor L with some very desirable homotopical prop-
erties.
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6.9. Lemma. The functor L preserves degreewise equivalences of Γ-categories.

Proof. The functor L is a composite of the functor L followed by a pseudo-colimit
functor. The functor L : ΓCat // [L,Cat]str⊗ preserves degreewise equivalences. The
results of [Gam08] show that a pseudo colimit functor is a homotopy colimt functor and it
preserves degreewise equivalences. Hence the functor L preserves degreewise equivalences
of Γ- categories.

Before moving on we would like to observe that for any object ~n ∈ Ob(L) there exists
the following zig-zag of maps in L

(1)
(id,mn)← (n)

(mr,id)
// ~n = (n1, n2, . . . , nr) (25)

where n = n1 + n2 + · · · + nr and mn : n+ // 1+ is the unique multiplication map from
n+ to 1+ in Γop. To be more precise, the left map is given by the following commutative
diagram

n
mn //

��

1

��

1 1

(26)

and the right map is given by the following commutative diagram

n

��

n

Ind(~n)

��
1 rmr
oo

(27)

The following corollary provides a useful insight into the structure of the localization of
the category of elements of a coherently commutative monoidal category X, with respect
to horizontal maps. It turns out that this localized category is a thickening of X(1+). This
thickening is indicative of the fact that the homotopy colimit of a diagonal functor ∆(c)
is equivalent to c. The category L(X) is a further thickening of this localized category.

6.10. Corollary. For each coherently commutative monoidal category X the inclusion
functor i : X(1+) // L(X) is an equivalence of categories.

Proof. The functor i : X(1+) // L(X) is an inclusion functor, it is defined on objects
as follows:

i(x) := (id1, x)

and for a morphism f : x // y in X(1+) it is defined as follows:

i(f) := ((id1, id1), f).



478 AMIT SHARMA

Clearly the functor i is fully faithful. Now we will show that i is also essentially surjective.
In order to do so, we will use the maps (26) and (27) defined above. For each object
(~n, ~x) ∈ L(X), the map (27) provides a functor

L(X)((mr, idn)) : X(m+) //

r∏
i=1

X(mi).

Since X is a coherently commutative monoidal category therefore the above functor is an
equivalence of categories. Thus we may choose an object x ∈ X(m+) and an isomorphism

j : L(X)((mr, idn))(x) // ~x in
r∏
i=1

X(mi). We observe that the map

((mr, idn), j) : ((n), x) // (~n, ~x)

is an isomorphism in L(X) because L(X) is obtained by inverting all horizontal maps in
the category of elements of L(X). The map (26) provides us with the following isomor-
phisms:

((id1,mn), idL(X)((id1,mn))((x))) : ((n), (x)) // ((1),L(X)((id1,mn))((x)))

The above two isomorphisms show that each object (~n, ~x) ∈ L(X) is isomorphic to an
object in the image of the functor i namely ((1),L(X)((id1,mn))((x))). The isomorphism
is given by the composite

((mr, idn), j) ◦ ((id1,mn), idL(X)((id1,mn))((x)))
−1.

Thus we have proved that i is essentially surjective and therefore an equivalence.

6.11. Remark. There exists an inverse functor i−1 : L(X) //X(1+) such that i−1 ◦ i =
idX(1+).

Momentarily we will switch to the language of bicycles for the purpose of proving
lemma 6.15. Each object of a permutative category C defines a trivial bicycle from Γ1

to C which we denote by Φc = (Lc, σc). We define this bicycle Φc : Γ1  C next. We
begin by defining the underlying lax cone Lc = (φc, αc). For each k ∈ Ob(N ), we define
the functor φc(k) : Γ1(k+) // C as follows:

φc(k)(f) =

{
c, if f 6= 0

1C , otherwise.
(28)

For a map h : k // l in the category N , we define the map αc(h)(f) : φc(f) // φc(h ◦ f)
as follows:

αc(h)(f) =

{
idc, if f 6= 0

id1C , otherwise.
(29)
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It is easy to see that with the above definition, Lc = (φc, αc) is a lax cone. This lax cone is
given a bicycle structure by defining σc(k, l) : φc(k+ l)⇒ φc(k)� φc(l) to be the identity
natural transformation. Thus we have defined a strict bicycle (Lc, σc) = Φc : Γ1  C.
This construction defines a functor

Φ− : C //BikesPs(Γ1, C) (30)

6.12. Lemma. Every bicycle (L, σ) = Φ : Γ1  C is isomorphic to the trivial bicycle
determined by the object φ(1)(id1+) ∈ Ob(C), namely Φφ(1)(id1+ ), where L = (φ, α) is the
underlying lax symmetric monoidal cone of Φ.

Proof. We will construct an isomorphism of bicycles

η(Φ) : Φ // Φφ(1)(id1+ ).

In order to do so, we will use the natural isomorphism

α(mk) : φ(k+)⇒ φ(1+) ◦ Γ1(mk)

provided by the bicycle Φ, where mk : k+ // 1+ is the multiplication map. For each
k ∈ Ob(N ) we define a natural isomorphism η(Φ)(k) as follows:

η(Φ)(k)(f) := α(mk)(f) : φ(k)(f) // φ(1)(id1+),

where f ∈ Γ1(k+). One can check that the natural isomorphisms in the collection
{η(Φ)(k)}k∈Ob(N ) glue together into an isomorphism of bicycles η(Φ) : Φ // Φφ(1)(id1+ ).

6.13. Corollary. For any symmetric monoidal category C, the category KC(1+) is
equivalent to C.

Proof. For each permutative category C we define a functor I(C) : BikesPs(Γ1, C) //C.
On objects this functor is defined as follows:

I(C)(Φ) = φ(1)(id1+),

where L = (φ, α) is the underlying lax cone of Φ. For a morphism of (pseudo) bicycles
F : Φ //Ψ we define

I(F ) = F (1)(id1+).

This functor is inverse of the functor Φ−.
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6.14. Lemma. A strict symmetric monoidal functor in Perm is an equivalence of cate-
gories if and only if its image under the right adjoint functor K is a strict equivalence in
ΓCat.

Proof. Let F : C // D be a strict symmetric monoidal functor in Perm which is an
equivalence of categories. We consider the following diagram

K(C)(1+) = BikesPs(Γ1, C)

I(C)

��

BikesPs(Γ1,F )
// BikesPs(Γ1, D) = K(D)(1+)

I(D)

��

C
F

// D

(31)

where I(C) and I(D) are equivalences defined in the proof of corollary 6.13. If the functor
F is an equivalence then the two out of three property of weak equivalences says that the
map K(F )(1+) = BikesPs(Γ1, F ) is an equivalence of categories. Since K(F ) is a map
between two coherently commutative monoidal Γ- categories, therefore it is a strict weak
equivalence if and only if K(F )(1+) is an equivalence of categories.

Conversely, if the morphism of Γ- categories K(F ) is a (strict) weak equivalence then
K(F )(1+) is an equivalence of categories. Another application of the two out of three
property of weak equivalences to the commutative diagram (31) tells us that the functor
F is an equivalence of categories.

It was shown by Leinster in [Lei00] that the degree one category of a
coherently commutative monoidal category has a symmetric monoidal structure. We
want to explore the homotopy properties of the unit natural transformation η of the
adjunction (L,K).

6.15. Lemma. For each coherently commutative monoidal category X the unit map

η(X) : X //K(L(X))

is a strict equivalence of Γ- categories.

Proof. The Γ- category K(L(X)) is a coherently commutative monoidal category, there-
fore η(X) is a morphism between two coherently commutative monoidal categories. Now
in light of Lemma 6.3 it would be sufficient to show that the degree one functor

η(X)(1+) : X(1+) //BikesPs(Γ1,L(X))

is an equivalence of categories. We recall the definition of the functor η(X)(1+). For each
x ∈ X(1+), the strict symmetric monoidal functor η(X)(1+)(x) = Φ = (L, σ) : Γ1  
L(X) is defined as follows:

φ(n)(f) := ((n), X(f)(x)),
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where L = (φ, α) is the underlying lax cone of Φ. In light of corollaries 6.10 and 6.13 we
have the following commutative diagram in Cat:

X(1+)
η(X)(1+)

//

i
))

BikesPs(Γ1,L(X))

I
��

L(X)

where the vertical functor I in the diagram above is the functor from corollary 6.13 and
the diagonal functor i in the above diagram is the functor from corollary 6.10. The two
corollaries mentioned above say that i and I are equivalences of categories therefore by the
two out of three property of the natural model category Cat the unit map in degree one
η(X)(1+) is an equivalence of categories. Hence we have proved that the map of coherently
commutative monoidal categories η(X) is a (strict) equivalence of Γ- categories.

The adjoint functors L and K have sufficiently good properties which ensure that the
above lemma implies that for each Γ- category X the counit map η(X) is a coherently
commutative monoidal equivalence.

6.16. Corollary. For a Γ- category X, the unit map η(X) : X // K(L(X)) is a co-
herently commutative monoidal equivalence.

Proof. Let r : X // Xf denote a fibrant replacement of X in the model category of
coherently commutative monoidal categories. In other words Xf is a coherently commuta-
tive monoidal category and r is an acyclic cofibration in the model category of coherently
commutative monoidal categories. Since η is a natural transformation therefore we have
the following commutative diagram in ΓCat

Xf η(Xf )
// K(L(Xf ))

X

r

OO

η(X)
// K(L(X))

K(L(r))

OO

The above lemma tells us that the morphism η(Xf ) is a coherently commutative monoidal
equivalence and so is r by assumption. Theorem 6.17 and lemma 6.14 together imply that
K(L(r)) is a coherently commutative monoidal equivalence. Now the 2 out of 3 property
of model categories implies that η(X) is a coherently commutative monoidal equivalence.

Finally we have developed enough machinery to provide a characterization of a coher-
ently commutative monoidal equivalence.

6.17. Theorem. A morphism of Γ- categories F : X // Y is a coherently commuta-
tive monoidal equivalence if and only if the strict symmetric monoidal functor L(F ) :
L(X) // L(Y ) is an equivalence of (permutative) categories.
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Proof. Let us first assume that the morphism of Γ- categories F is a coherently commu-
tative monoidal equivalence. Any choice of a cofibrant replacement functor Q for ΓCat
provides a commutative diagram

Q(X)
Q(F )

//

��

Q(Y )

��

X
F

// Y

The vertical maps in this diagram are acyclic fibrations in the model category of coherently
commutative monoidal categories which are strict equivalences of Γ- categories. Applying
the functor L to this commutative diagram we get the following commutative diagram in
Perm

L(Q(X))
L(Q(F ))

//

��

L(Q(Y ))

��

L(X)
L(F )

// L(Y )

The functor L is a left Quillen functor therefore it preserves weak equivalences between
cofibrant objects. This implies that the top horizontal arrow in the above diagram is a
weak equivalence in Perm. The above lemma 6.9 implies that the vertical maps in the
above diagram are weak equivalences in Perm. Now the two out of three property of
weak equivalences in model categories implies that L(F ) is a weak equivalence in Perm.

Conversely, let us first assume that L(F ) : L(X) // L(Y ) is a weak equivalence
between coherently commutative monoidal categories in Perm. The functor K preserves
equivalences in Perm, therefore the morphism K(L(F )) : K(L(X)) //K(L(Y )) is a strict
equivalence of Γ- categories. Now we have the following commutative diagram

K(L(X))
K(L(F ))

// K(L(Y ))

X

η(X)

OO

F
// Y

η(Y )

OO

Lemma 6.9 implies that the two vertical arrows in the above diagram are strict equiva-
lences of Γ- categories, therefore by the two-out-of-three property of model categories, F
is also a coherently commutative monoidal equivalence. Now we tackle the general case.
Let F : X //Y be a morphism of Γ- categories such that L(F ) is an equivalence of cate-
gories. By a choice of a functorial factorization functor we get the following commutative
diagram whose vertical arrows are acyclic cofibrations in the model category of coher-
ently commutative monoidal categories and R(X) and R(Y ) are coherently commutative
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monoidal categories:

R(X)
R(F )

// R(Y )

X

ζ(X)

OO

F
// Y

ζ(Y )

OO

Applying the functor L to the above diagram we get the following commutative diagram
in Perm:

L(R(X))
L(R(F ))

// L(R(Y ))

L(X)

L(ζ(X))

OO

L(F )

// L(Y )

L(ζ(Y ))

OO

Since L is a left Quillen functor therefore it preserves acyclic cofibrations. This implies
that the two vertical morphisms in the above diagram are equivalences of categories. By
assumption L(F ) is an equivalence of categories therefore the two out of three property
implies that L(R(F )) is an equivalence of categories. The discussion earlier in this proof
regarding strict equivalence between coherently commutative monoidal categories implies
that R(F ) is a strict equivalence of Γ- categories.

The lemmas proved in this section and the results of section 3 together imply the main
result of this paper which is the following:

6.18. Theorem. The adjunction (L,K) is a Quillen equivalence.

Proof. We observe that L(n) is a cofibrant permutative category for all n ∈ N. Since the
permutative category L(n) is cofibrant for all n ≥ 0 therefore it is easy to see (remark 3.2)
that the right adjoint functor K preserves fibrations and trivial fibrations in Perm and
therefore (L,K) is a Quillen adjunction. Let X be a cofibrant object in the model category
of coherently commutative monoidal categories and let C be a permutative category. We
will show that a map F : L(X) // C is a coherently commutative monoidal equivalence
if and only if its adjunct map φ(F ) : X // KC is an equivalence of categories. Let us
first assume that F is an equivalence in Perm. The adjunct map φ(F ) is defined by the
following commutative diagram:

K(L(X))
K(F )

// K(C)

X

η

OO

φ(F )

99

The right adjoint functor K preserves weak equivalences therefore the top horizontal arrow
is a strict equivalence of Γ- categories. The unit map η is a coherently commutative
monoidal equivalence by corollary 6.16. Now the 2 out of 3 property of model categories
implies that φ(F ) is also a coherently commutative monoidal equivalence.
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Conversely, let us assume that φ(F ) is a coherently commutative monoidal equivalence.
The 2 out of 3 property of model categories implies that top horizontal arrow in the above
commutative diagram, namely K(F ) is a coherently commutative monoidal equivalence
and therefore a strict equivalence of Γ- categories. Now Lemma 6.14 implies that the
strict symmetric monoidal functor F is an equivalence of categories.

Now we are ready to state the main result of this paper which is a corollary of the
above theorem:

6.19. Corollary. The adjunction (L,K) is a Quillen equivalence.

Proof. Remark 6.7 gives a natural equivalence of permutative categories

T ◦ (idΠ1 ◦ (J ◦ i) ◦ I−1) : L(n)
I−1

⇒ Π1 ◦ PL(−)⇒ Π1 ◦ L(Γ−)⇒ Π1 ◦ L(−)
T⇒ L(−).

We observe that for all n ∈ N T ◦ (idΠ1 ◦ (J ◦ i) ◦ I−1)(n) is a weak equivalence in Perm
between cofibrant (and fibrant) permutative categories.

We recall from remark 3.2 that the bifunctor [−,−]str⊗ is the Hom functor of the Cat-
model category Perm. This implies that for each n ∈ N and each permutative category
C, the functor

[T ◦ (idΠ1 ◦ (J ◦ i) ◦ I−1)(n), C]str⊗ : [L(n), C]str⊗ // [L(n), C]str⊗

is an equivalence of categories. In other words the natural transformation

[T ◦ (idΠ1 ◦ (J ◦ i) ◦ I−1)(−), C]str⊗ : [L(−), C]str⊗ // [L(−), C]str⊗

is a strict equivalence if Γ- categories. This morphism of Γ- categories uniquely determines
a strict equivalence of Γ- categories η(C) : K(C) ⇒ K(C) for each permutative category
C. The family {η(C)}C∈Ob(Perm) glues together to define a natural equivalence η : K ⇒ K.
The natural equivalence η induces a natural isomorphism between the derived functors of
K and K. Now the corollary follows from the above theorem 6.18.

A. The notion of a Bicycle

In the paper [Seg74], Segal described a functor from the category of all (small) symmet-
ric monoidal categories to the category of Γ- category. The Γ- category assigned by this
functor to a symmetric monoidal category was described by constructing a sequence of
(pointed) categories whose objects are a pair of families of objects and maps in the sym-
metric monoidal category satisfying some coherence conditions, see [Man10], [SS79] for a
complete definition. The objective of this section is to present a thicker version of Segal’s
pair of families as pseudo cones which satisfy some additional coherence conditions which
are usually associated to oplax symmetric monoidal functors. We begin by providing a
definition of a pseudo cone in the spirit of Segal’s families:
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A.1. Definition. A pseudo cone from X to C is a pair (φ, α), where φ = {φ(n)}n∈Ob(N )

is a family of functors φ(n) : X(n+) // C and α = {α(f)}f∈MorN is a family of natural
isomorphisms

α(f) : φ(n)⇒ φ(m) ◦X(f),

where f : n //m is a map in N which can also be regarded as an active map f : n+ //m+

in Γop. The pair (φ, α) is subject to the following conditions

1. In the family α, the natural isomorphism indexed by the identity morphism of an
object in N should be the identity natural transformation i.e.

α(idn) = idφ(n),

for all n ∈ Ob(N ).

2. For every pair (f : n //m, g : m // l) of composable arrows in N , the following
diagram commutes:

φ(n)
α(g◦f)

$,

α(f)

s{
φ(m) ◦X(f)

α(g)◦idX(f)

+3 φ(m) ◦X(g ◦ f)

A.2. Definition. A a strict cone (φ, α) from X to C is a pseudo cone such that all
natural isomorphisms in the family α are identity natural transformations.

Now we define a morphism between two pseudo cones from X to C, L1 = (φ, α) and
L2 = (ψ, β).

A.3. Definition. A morphism of pseudo cones F : L1
// L2 consists of a family of

natural transformations F = {F (n)}n∈Ob(N ), having domain φ(n) and codomain ψ(n),
which is compatible with the families α and β i.e. the following diagram commutes

φ(n)
F (n) +3

α(f)

��

ψ(n)

β(f)

��
φ(m) ◦X(f)

F (m)◦idX(f)

+3 ψ(m) ◦X(f)

Let G : L2
// L3 = (υ, δ) be another morphism of pseudo cones from X to C,

then their composition is defined degreewise i.e. G ◦ F consists of the collection {(G(n) ·
F (n))}n∈Ob(N ). We observe that using the interchance law one gets the following equalities

(G(m) ◦ idX(f)) · (F (m) ◦ idX(f)) = (G(m) · F (m)) ◦ (idX(f) · idX(f))

= (G(m) · F (m)) ◦ idX(f).
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In other words the following diagram commutes

φ(n)
G(n)·F (n) +3

α(f)

��

υ(n)

δ(f)

��
φ(m) ◦X(f)

(G(m)·F (m))◦idX(f)

+3 υ(m) ◦X(f)

Thus the composite of two morphisms of pseudo cones, as defined above, is a morphism
of pseudo cones. The associativity of vertical composition of natural transformations and
the interchange law of natural transformations one can prove the following proposition:

A.4. Proposition. The composition of morphisms of pseudo cones as defined above is
strictly associative.

Thus we have defined a category. We denote this category of pseudo cones from X
to C by PsCones(X,C). In this paper we will be mainly concerned with pseudo cones
having some additional structure which we describe next.

A.5. Definition. A Pseudo Bicycle Φ from X to C, denoted Φ : X  C, consists of a
triple Φ = (L, σ, τ), where L = (φL, αL) is the underlying pseudo cone, τ : φL(0)⇒ ∆(1C)
is a natural transformation to the constant functor on the category X(0+) taking value
1C, and σ = {σ(k, l)}(k,l)∈Ob(N )×Ob(N ) is a family of natural transformations

σ(k, l) : φ(k + l)⇒ φ(k)� φ(l).

The functor φ(k)�φ(l) : X((k+l)+) //C on the right is defined by the following composite

X((k + l)+)
X(δk+l

k )×(δk+l
l )
// X(k+)×X(l+)

φ(k)×φ(l)
// C × C

−⊗−
// C.

This triple is subject to the following conditions:

C.1 For any object x ∈ X(m+), the map

σ(m, 0)(x) : φ(m+ 0)(x) // φ(m)(x)⊗
C
φ(0)(X(δm0 )(x)) = (φ(m)� φ(0))(x)

id⊗
C
τ(X(δm0 )(x))

// φ(m)(x)⊗
C

1C

is required to be the inverse of the (right) unit isomorphism in C. The map δm0 :
m+ // 0+ in the arrow above is the unique map in Γop from m+ to the terminal
object. Similarly the map

φ(0 +m)(x)
σ(0,m)(x)

// φ(0)(X(δm0 )(x))⊗
C
φ(m)(x) = (φ(0)� φ(m))(x)

τ(X(δm0 )(x))⊗
C
id

// 1C ⊗
C
φ(m)(x)

is the inverse of the (left) unit isomorphism in C.
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C.2 For each pair of objects k, l ∈ Ob(N ), we define a natural transformation γφ(k),φ(l) :
φ(k)� φ(l)⇒ φ(l)� φ(k) as follows:

γφ(k),φ(l) := γC ◦ idφ(k)×φ(l) ◦ id(X(δk+l
k ),X(δk+l

l )),

where γC is the symmetry natural isomorphism of C. We require that each natural
transformation σ(k, l) in the collection σ to satisfy the following symmetry condition

φ(k + l)
φ(γNk,l) +3

σ(k,l)

��

φ(l + k)

σ(l,k)

��
φ(k)� φ(l) γφ(k),φ(l)

+3 φ(l)� φ(k)

C.3 For any triple of objects k, l,m in N , the following diagram commutes

φ((k + l +m))
σ(k+l,m)

+3

σ(k,l+m)

��

φ(k + l)� φ(m)

σ(k,l)�idφ(m)

��

φ(k)� φ(l +m)

idφ(k)�σ(l,m)

��
φ(k)� (φ(l)� φ(m)) ksαφ(k),φ(l),φ(m)

(φ(k)� φ(l))� φ(m)

where the natural isomorphism αφ(k),φ(l),φ(m) is defined by the following diagram
which, other than the bottom rectangle, is commutative:

X((k + l +m)+)

F2 **

F1 // X((k + l)+)×X(m+)
F3 // (X(k+)×X(l+))×X(m+)

X(k+)×X((l +m)+)

id×(X(δl+ml ),X(δl+mm ))
��

X(k+)× (X(l+)×X(m+))

φ(k)×(φ(l)×φ(m))

��

α // (X(k+)×X(l+))×X(m+)

(φ(k)×φ(l))×φ(m)

��

C × (C × C)

−⊗(−⊗−)
��

α // (C × C)× C
(−⊗−)⊗−)
��αC

owC C

where αC is the associator of the symmetric monoidal category C, the arrow F3 =
(X(δk+l

k ), X(δk+l
l )) × id, the arrow F1 = (X(δk+l+m

k+l ), X(δk+l+m
m )) and the arrow

F2 = (X(δk+l+m
k ), X(δk+l+m

l+m )). We observe that the to and right vertical composite
arrows ate just the functor (φ(k) � φ(l)) � φ(m) and the diagonal and left vertical
arrow are just the functor φ(k)� (φ(l)� φ(m)).
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C.4 For each pair of maps f : k // p, g : l // q in N , the following diagram should
commute

φ(k + l)
σ(k,l) +3

α(f+g)

��

φ(k)� φ(l)

α(f)�α(g)

��
φ(p+ q) ◦X(f + g)

σ(p,q)◦idX(f+g)

+3 (φ(p) ◦X(f))� (φ(q) ◦X(g))

where α(f) � α(g) = id−⊗− ◦ (α(f) × α(g)) ◦ idX(f+g). We observe that (φ(p) �
φ(q)) ◦X(f + g) = (φ(p) ◦X(f))� (φ(q) ◦X(g)).

Let Ψ : X  C be another bicycle which is composed of the pair (K, δ)

A.6. Definition. A morphism of bicycles F : Φ // Ψ is a morphism of pseudo cones
F : L // K which is compatible with the additional structure of the two bicycles, i.e. for
all pairs (k, l) ∈ Ob(N )×Ob(N ), the following diagram commutes

φ(k + l)
F (k+l)

+3

σ(k,l)

��

ψ(k + l)

δ(k,l)

��
φ(k)� φ(l)

F (k)�F (l)
+3 ψ(k)� ψ(l)

For any pair (k, l) ∈ Ob(N ) × Ob(N ), the natural transformations F (k) and F (l)
determine another natural tranformation

F (k)× F (l) : φ(k)× φ(l)⇒ ψ(k)× ψ(l)

which is defined on objects as follows:

(F (k)× F (l))(x, y) := (F (k)(x), F (k)(y)),

where (x, y) ∈ Ob(X(k+)) × Ob(X(l+)). It is defined similarly on morphisms of the
product category X(k+)×X(l+). The natural transformation F (k)�F (l) in the diagram
above is defined by the following composite

X((k + l)+) L // X(k+)×X(l+)
φ(k)×φ(l)

//

ψ(k)×ψ(l)

88
F (k)×F (l)

��

C × C
−⊗
C
−
// C (32)

where L = (X(δk+l
k ), X(δk+l

l )). Composition of morphisms of bicycles is done by treating
them as morphisms of pseudo cones. We will use the following lemma to show that the
composition of two composable morphisms of bicycles is always a morphism of bicycles.

A.7. Lemma. Let F : Φ // Ψ and G : Ψ // Υ be two morphisms of bicycles, then for
all pairs (k, l) ∈ Ob(N )×Ob(N )

(G(k)�G(l)) · (F (k)� F (l)) = (G(k) · F (k))� (G(l) · F (l)).

Proof. The proof of the above lemma follows from the interchange law of compositions
of natural transformations.
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A.8. Corollary. Let F : Φ // Ψ and G : Ψ // Υ be two morphisms of bicycles, then
their composite G ◦ F is a morphism of bicycles.

Proof. We know that G ◦ F is a morphism of pseudo cones. All that we have to verify
that the following diagram commutes

φ(k + l)
G·F (k+l) +3

σ(k,l)

��

υ(k + l)

δ(k,l)

��
φ(k)� φ(l)

(G·F (k))�(G·F (l))
+3 υ(k)� υ(l)

Since F and G are morphisms of bicycles, therefore the following equality always holds

δ(k, l) · (G · F (k + l)) = ((G(k)�G(l)) · (F (k)� F (l))) · σ(k, l).

The lemma A.7 tells us that

(G(k)�G(l)) · (F (k)� F (l)) = (G(k) · F (k))� (G(l) · F (l)).

Thus the above diagram commutes.

A.9. Proposition. The definition of the category of all pseudo bicycles from X to C
determines a bifunctor

BikesPs(−,−) : ΓCatop ×Perm //Cat.

A.10. Definition. A strict bicycle (L, σ) is a bicycle such that L is a strict cone and
all natural transformations in the collection σ are natural isomorphisms.

Strict bicycles from X to C constitute a full subcategory of the category of pseudo bi-
cycles BikesPs(X,C), which we denote by BikesStr(X,C). The definition of the category
of all strict bicycles from X to C is functorial in both variables.

A.11. Proposition. The definition of the category of all pseudo bicycles from X to C
determines a bifunctor

BikesStr(−,−) : ΓCatop ×Perm //Cat.

B. Bicycles as oplax sections

In this appendix we want to describe a (pseudo) bicycle as an oplax symmetric monoidal

functor from the category N . We will construct a symmetric monoidal category
(
CX
)Ps

.
The objects of this category are all pairs (n, φ) where n ∈ Ob(N ) and φ : X(n+) // C

is a functor. A map from (n, φ) to (m,ψ) in
(
CX
)Ps

is a pair (f, η) where f : n // m
is a map in the category N and η : φ(n) ⇒ ψ(m) ◦X(f) is a natural isomorphism. Let
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(g, β) : (m,ψ) // (k, α) be another map in
(
CX
)Ps

, then we define their composition as
follows:

(g, β) ◦ (f, η) := (g ◦ f, β ∗ η),

where β ∗η is the composite natural transformation (β ◦X(f)) ·η in which φ◦X(f) is the
horizontal composition of the natural transformations φ(g) and idX(f) and (β ◦X(f)) · η
is the vertical composition of the two natural transformations. Using the interchange law
and the associativity of compositions one can show that the composition defined above is
associative.

B.1. Proposition. The composition law for the category
(
CX
)Ps

, as defined above, is
strictly associative.

Proof. Let (f, η(f)) : (n, φ) to (m,ψ), (g, β(g)) : (m,ψ) // (k, α) and (h, θ(h)) :

(k, α) // (j, δ) be three composable morphisms in
(
CX
)Ps

. We want to show that

((h, θ) ◦ (g, β) ◦ (f, η = (h, θ) ◦ ((g, β ◦ (f, η)).

In order to do so it would be sufficient to verify the associativity of the operation ∗, i.e,
to verify (θ ∗ β) ∗ η) = θ ∗ (β ∗ η). The situation is depicted in the following diagram

X(n+)
φ

//

⇓η

C

X(n+)
X(f)

//

⇓idX(f)

X(m+)
ψ

//

⇓β

C

X(n+)
X(f)

//

⇓idX(f)

X(m+)
X(g)

//

⇓idX(g)

X(k+) α
//

⇓θ

C

X(n+)
X(f)

// X(m+)
X(g)

// X(k+)
X(h)

// X(j+)
δ
// C

We begin by considering the left hand side, namely

θ ∗ (β ∗ η) = (θ ◦ idX(g) ◦ idX(f)) · ((β ◦ idX(f)) · η),

where · represents vertical composition of natural transformations which is an associative
operation. Therefore by rearranging we get

θ ∗ (β ∗ η) = (θ ◦ idX(g) ◦ idX(f)) · ((β ◦ idX(f)) · η)

((θ ◦ idX(g) ◦ idX(f)) · (β ◦ idX(f))) · η.

Now the interchange law says that the vertical composite ((θ◦ idX(g) ◦ idX(f)) · (β ◦ idX(f)))
is the same as ((θ ◦ idX(g)) · β) ◦ (idX(f) · idX(f))) · η which is the same as (θ ∗ β) ∗ η.
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Thus we have defined the category
(
CX
)Ps

. Next we want to define a symmetric

monoidal structure on the category
(
CX
)Ps

. Let (n, φ) and (m,ψ) be two objects of(
CX
)Ps

, we define
(n, φ)⊗ (m,ψ) := (n+m,φ� ψ),

where the second component on the right is defined as the following composite

X((n+m)+)
X(δn+m

n )×X(δn+m
m )
// X(n+)×X(m+)

φ×ψ
// C × C

−⊗
C
−
// C

Let (f, η) : (n, φ) // (k, δ) and (g, β) : (m,ψ) // (l, α) be two maps in
(
CX
)Ps

, then we
define

(f, η)⊗ (g, β) := (f + g, η � β),

where f + g : n+m // k+ l is the map determined by the symmetric monoidal structure
on N and the natural transformation η � β is defined to be the following composite:

id−⊗
C
− ◦ (η × β) ◦ idX(δn+m

n )×X(δn+m
m ).

In other words for any x ∈ X((n+m)+)

(η � β)(x) := η(X(δn+m
n )(x))⊗

C
β(X(δn+m

m )(x)),

where x ∈ X((n + m)+). It is easy to see that this defines a natural transformation
between the functors

φ� ψ : X((n+m)+) // C

and the following composite functor

X((n+m)+)
X(δn+m

n )×X(δn+m
m )
// X(n+)×X(m+)

X(f)×X(g)
// X(k+)×X(l+)

φ×ψ
// C × C

−⊗
C
−
// C.

We observe that for any two maps f : n // k and g : m // l in the category N , the
following diagram

X((n+m)+)
(X(δn+m

n ),X(δn+m
m ))
//

X(f+g)
��

X(n+)×X(m+)

X(f)×X(g)
��

X((k + l)+)
(X(δk+l

k ),X(δk+l
l ))

// X(k+)×X(l+)

This shows that η � β is a natural transformation between the functors φ � ψ and (φ �
ψ) ◦X(f + g). A routine verification of axioms of a symmetric monoidal category gives
us the following proposition:
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B.2. Proposition. The category
(
CX
)Ps

is a symmetric monoidal category.

Proof. The unit object of
(
CX
)Ps

is the pair (0, φ(0)), where φ(0) : X(0+) // C is the
constant functor assigning the value 1C . We begin by verifying that the tensor product
defined above defines a bifunctor

−⊗− :
(
CX
)Ps × (CX

)Ps
//
(
CX
)Ps

.

Let ((f, η), (g, β)) : ((k, φ), (l, φ)) // ((m,φ), (n, φ)) and ((p, δ)(q, θ)) :
((m,φ(m)), (n, φ)) // ((a, φ(a)), (b, φ(b))) be a pair of composable arrows in the prod-

uct category
(
CX
)Ps × (CX

)Ps
. We will show that

(p ◦ f, η(f) ∗ δ(p))⊗ (q ◦ g, β(f) ∗ θ(p)) = ((p, δ(p))⊗ (q, θ(q))) ◦ ((f, η(f))⊗ (g, β(g))).

Throughout this proof we will refer to the following commutative diagram

X((k + l)+)
(X(δk+l

k ),X(δk+l
l ))

//

X(f+g)

��

X(k+)×X(l+)
φ(k)×φ(l)

//

X(f)×X(g)

��

C × C

η(f)×β(g)
qy

X((m+ n)+)
(X(δm+n

m ),X(δm+n
n ))
//

X(p+q)

��

X(m+)×X(n+)
φ(m)×φ(n)

//

X(p)×X(q)

��

C × C

δ(p)×θ(q)
qy

X((a+ b)+)
(X(δa+b

a ),X(δa+b
b ))

// X(a+)×X(b+)
φ(a)×φ(b)

// C × C

Since the addition operation, +, is the symmetric monoidal structure on N , therefore
p ◦ f + q ◦ g = (p+ q) ◦ (f + g). We recall that

(p ◦ f, η(f) ∗ δ(p))⊗ (q ◦ g, β(f) ∗ θ(p)) = (p ◦ f + q ◦ g, (η ∗ δ)� (β ∗ θ)(p ◦ f + q ◦ g)).

By definition, the natural transformation (η ∗ δ) � (β ∗ θ)(p ◦ f + q ◦ g) is the following
composite:

id−⊗− ◦ (((δ(p) ◦ idX(f)) · η(f)) × (((θ(q) ◦ idX(g)) · β(f))) ◦ idX(δk+l
k )×X(δk+l

l ).

We observe that the above composite is the same as the following composite:

id−⊗− ◦ ((δ(p) × θ(q)) ◦ (idX(f) × idX(g)) · (η(f) × β(g))) ◦ id(X(δk+l
k ),X(δk+l

l )).

The composite natural transformation ((p, δ)⊗(q, θ))◦((f, η)⊗(g, β(g))) is, by definition,
the same as (θ� δ ◦ idf+g) · (η� β). Unwinding definitions gives us the following equality

(θ � δ ◦ idf+g) · (η � β(f + g)) =

(id−⊗− ◦ (δ × θ) ◦ id(X(δm+n
m ),X(δm+n

n )) ◦ idX(f+g))

· (id−⊗− ◦ (η × β) ◦ id(X(δk+l
k ),X(δk+l

l ))).
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The above diagram tells us that (X(δm+n
m ), X(δm+n

n )) ◦ X(f + g) = (X(f) × X(g)) ◦
(X(δk+l

k ), X(δk+l
l )). Now the interchange law of composition of natural transformations

gives the following equalities

(θ � δ ◦ idf+g) · (η � β(f + g)) =

(id−⊗− ◦ (δ × θ) ◦ (idX(f) × idX(g)) ◦ id(X(δk+l
k ),X(δk+l

l ))

· (id−⊗− ◦ (η × β) ◦ id(X(δk+l
k ),X(δk+l

l ))) =

id−⊗− ◦ ((δ × θ) ◦ (idX(f) × idX(g)) · (η × β)) ◦ id(X(δk+l
k ),X(δk+l

l )).

We will refer to the category ΓOL
(
N ,
(
CX
)Ps)

as the category of elements of the

exponential from X to C.

B.3. Proposition. The construction of the category of elements of the exponential de-
scribed above defines a bifunctor(

−−
)Ps

: ΓCatop ×Perm //Perm. (33)

The category
(
CX
)Ps

has an associated projection functor prN :
(
CX
)Ps

//N which
projects the first coordinate. Now we are ready to define a bicycle

B.4. Definition. A oplax symmetric monoidal section of
(
CX
)Ps

is a unital oplax sym-

metric monoidal functor Φ : N //
(
CX
)Ps

such that prN ◦ Φ = idN . A morphism of

oplax symmetric monoidal sections of
(
CX
)Ps

is an oplax natural transformation between

two oplax symmetric monoidal section of
(
CX
)Ps

.

We will denote the category of all oplax symmetric monoidal section of
(
CX
)Ps

by

ΓOL
(
N ,
(
CX
)Ps)

.

B.5. Proposition. The category of all oplax symmetric monoidal section of
(
CX
)Ps

is
isomorphic to the category of all bicycles from X to C. We begin by defining I.

Proof. We will define a pair of functors I : ΓOL
(
N ,
(
CX
)Ps)

// BikesPs(X,C) and

J : BikesPs(X,C) // ΓOL
(
N ,
(
CX
)Ps)

and show that they are inverses of one another.

For an object Φ ∈ Ob(ΓOL
(
N ,
(
CX
)Ps)

) we define the bicycle I(Φ) to be the pair (LΦ, σΦ)

where LΦ is a pair (φ, αΦ) consisting of a collection of functors φ which is composed of a
functor φ(n) : X(n) // C, for each n ∈ Ob(N ), which is defined as follows:

φ(n) := Φ(n).
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and a collection of natural transformations αΦ consisting of one natural transformation
αΦ(f) for each f ∈Mor(N ), which is defined as follows:

αΦ(f) := Φ(f).

Finally σΦ is a collection consisting of a natural transformation σΦ(k, l), for each pair of
objects (k, l) ∈ Ob(N )×Ob(N ) which is defined as follows:

σΦ(k, l) := λΦ(k, l),

where λΦ is the natural transformation providing the oplax structure to the functor F .

The pair Lφ = (φ, αΦ) is a normalized lax cone because Φ is a functor from N to
(
CX
)Ps

.
The conditions in the definition of a bicycle, namely C.1, C.2, C.3 follow from the oplax
structure on Φ. Thus we have defined a bicycle I(Φ). A morphism F : Φ // Θ in

ΓOL
(
N ,
(
CX
)Ps)

determines a collection of natural transformations CF consisting of a

natural transformation F (n) for each n ∈ Ob(N ). This collection defines a morphism of
bicycles because F is an oplax symmetric monoidal functor.

Now we define the functor J . Let Ψ : X  C be a bicycle from X to C which is
represented by a pair (LΨ, σΨ) and whose underlying lax monoidal cone is given by a pair

LΨ = (ψ, αΨ). We define a oplax symmetric monoidal section of
(
CX
)Ps

, Φ, as follows:

Φ(n) := ψ(n), and Φ(f) := αΨ(f).

This defines a functor Φ which is given the oplax symmetric monoidal structure by a
natural transformation λΦ : Φ ◦ (− ⊗

N
−) ⇒ (− ⊗

(CX)Ps
−) ◦ (Φ × Φ) which is defines as

follows:
λΦ(k, l) := σΨ(k, l).

Along the lines of the symmetric monoidal category
(
CX
)Ps

, we want to define another

symmetric monoidal category
(
CL(X)

)Ps
for every pair (X,C) ∈ Ob(Γop) × Ob(Perm).

The objects of
(
CL(X)

)Ps
are all pairs (~n, φ(~n)), where ~n ∈ Ob(L) and φ(~n) : L(X)(~n) //C

is a basepoint preserving functor. A map from (~n, φ(~n)) to (~m,ψ(~n)) in
(
CL(X)

)Ps
is a pair

(f, η(f)) where f : ~n // ~m is a map in the category L and η(f) : φ(~n)⇒ ψ(~m) ◦L(X)(f)

is a natural transformation. Let (g, β(g)) : (~m,ψ(~m)) // (~k, α(~k)) be another map in(
CL(X)

)Ps
, then we define their composition as follows:

(g, β(g)) ◦ (f, η(f)) := (g ◦ f, β(g) ∗ η(f)),

where β(g) ∗ η(f) is the composite natural transformation (β(g) ◦ idX(f)) · η(f) in which
φ(g) ◦ idX(f) is the horizontal composition of the natural transformations β(g) and idX(f)

and (β(g) ◦ X(f)) · η(f) is the vertical composition of the two natural transformations.
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Using the interchange law and the associativity of compositions, an argument similar
to B.1 can be written which proves that the composition defined above is associative.

The category
(
CL(X)

)Ps
is a symmetric monoidal category with the symmetric monoidal

structure being an extension of the symmetric monoidal structure of
(
CX
)Ps

. Let (~n, φ(~n))

and (~m,ψ(~m)) be two objects of
(
CL(X)

)Ps
, we define

(~n, φ(~n))⊗ (~m, ψ(~m)) := (~n�~m, φ(~n)� ψ(~m)),

where the second component on the right is defined as the following composite

L(X)(~n�~m)
λL(X)(n,m)

// L(X)(~n)× L(X)(~m)
φ(~n)×ψ(~m)

// C × C
−⊗
C
−
// C, (34)

where λL(X)(n,m) is the map given by the pseudo-functor structure of L(X). Let (f, η(f)) :

(~n, φ(~n)) // (~k, δ(k)) and (g, β(g)) : (~m, ψ(~m)) // (~l, α(~l)) be two maps in
(
CL(X)

)Ps
,

then we define
(f, η(f))⊗ (g, β(g)) := (f�g, η � β(f�g)),

where f�g : n�m // k�l is the map determined by the symmetric monoidal structure
on L and the natural transformation η � β(f�g) is defined as follows

(η � β(f�g)) := (id−⊗
C
−) ◦ (η(f)× β(g)),

where η(f)×β(g) : φ(~n)×ψ(~m)⇒ δ(~k)×α(~l) is the product of η(f) and β(f). An argu-

ment similar to Proposition B.2 shows that
(
CL(X)

)Ps
is a symmetric monoidal category

which is permutative if C is permutative. We will refer to the category Γstr
⊗

(
L,
(
CL(X)

)Ps)
as the symmetric monoidal completion of the category of elements of the exponential from
X to C.

B.6. Proposition. The symmetric monoidal completion of the category of elements of
the exponential described above defines a bifunctor(

−L(−)
)Ps

: ΓCatop ×Perm //Perm. (35)

The category
(
CL(X)

)Ps
has an associated projection functor prL :

(
CL(X)

)Ps
// L

which to projects the first coordinate.

B.7. Definition. A strict symmetric monoidal section of
(
CL(X)

)Ps
is a strict symmetric

monoidal functor Φ : N //
(
CL(X)

)Ps
such that prA ◦ Φ = idL. A morphism of strict

symmetric monoidal sections of
(
CL(X)

)Ps
is a symmetric monoidal natural transformation

between two strict symmetric monoidal section of
(
CX
)Ps

.

We will denote the (pointed) category of all strict symmetric monoidal sections of(
CL(X)

)Ps
by Γstr

⊗

(
L,
(
CL(X)

)Ps)
. There is an obvious inclusion functor I :

(
CX
)Ps

↪→(
CL(X)

)Ps
which is defined on objects as follows:

(n, φ) 7→ ((n), φ((n))).
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B.8. Proposition. The inclusion functor I :
(
CX
)Ps

↪→
(
CL(X)

)Ps
is a unital oplax

symmetric monoidal functor.

Proof. Let (k, φ(k)) and (l, ψ(l)) be two objects in the category
(
CX
)Ps

. Then

I((k + l, φ(k)� ψ(l))) = ((k + l), φ(k)� ψ(l)).

There is a partition map pk,l : (k + l) // (k, l) in L which makes the following diagram
commutative:

L(X)((k + l))
φ(k)�ψ(l)

//

L(X)(pk,l) ((

C

L(X)((k, l))
φ((k))�ψ((l))

99

This diagram implies that the partition map pk,l defines a map

(pk,l, id) : ((k + l), φ((k))� ψ((l)))) // ((k, l), φ((k))� ψ((l))))

in
(
CL(X)

)Ps
. We denote this map by λI((k, φ(k)), (l, ψ(l))). We observe that I(0, φ(0)) =

((), φ(())). Thus I strictly preserves the unit. Now we need to check the unit, symmetry
and associativity conditions, we begin by checking the symmetry condition. We observe
that the following diagram commutes

(k + l, φ(k)� ψ(l))

λI((k,φ(k)),(l,ψ(l)))

��

I(γ)
// (l + k, φ(l)� ψ(k))

λI((l,φ(l)),(k,ψ(k)))

��

((k, l), φ((k))� ψ((l))) γ
// ((l, k), φ((l))� ψ((k)))

because γ
(CX)

Ps

(k,φ(k)),(l,ψ(l)) = γ
(CL(X))

Ps

((k),φ((k))),((l),ψ((l))) ◦ idL(X)(pk,l). This equality follows from the
following commutative diagram:

L(X)((k + l))

L(X)(γNk,l)

��

L(X)(pk,l)
// L(X)((k, l))

φ((k))�ψ((l))
//

L(X)(γL
(k),(l)

)

��

G

��

C

L(X)((l + k))
L(X)(pl,k)

// L(X)((l, k))
φ((l))�ψ((k))

// C

where (γL(k),(l), G) = γ
(CL(X))

Ps

((k),φ((k))),((l),ψ((l))). A similar argument shows that the pair (I, λI)
satisfies the associativity condition OL.3. Thus we have proved that I is a unital oplax
symmetric monoidal functor.
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B.9. Theorem. For every pair (X,C) ∈ Ob(ΓCat)×Ob(Perm), the category

ΓOL
(
N ,
(
CX
)Ps)

is isomorphic to the category Γstr
⊗

(
L,
(
CL(X)

)Ps)
.

Proof. We will define a functor E : ΓOL
(
N ,
(
CX
)Ps)

// Γstr
⊗

(
L,
(
CL(X)

)Ps)
which

is the inverse of the functor i∗N : Γstr
⊗

(
L,
(
CL(X)

)Ps)
// ΓOL

(
N ,
(
CX
)Ps)

. Let Φ

be a oplax symmetric monoidal section of ΓOL
(
N ,
(
CX
)Ps)

, then composition with I

gives us a unital oplax symmetric monoidal functor I ◦ Φ : N // Γstr
⊗

(
L,
(
CL(X)

)Ps)
.

Now proposition 2.44 and the isomorphism of categories [N ,Γstr
⊗

(
L,
(
CL(X)

)Ps)
]OL
⊗
∼=

[Γop,Γstr
⊗

(
L,
(
CL(X)

)Ps)
] tells us that I◦Φ uniquely extends to a strict symmetric monoidal

functor L(I ◦ Φ) along the inclusion map i : N // L. Moreover this functor is a strict

symmetric monoidal section of
(
CL(X)

)Ps
. We define

E(Φ) := L(I ◦ Φ).

The uniqueness of the extension implies that the object function of the functor E is a

bijection. A morphism F : Φ //Ψ in ΓOL
(
N ,
(
CX
)Ps)

can be seen as an oplax symmetric

monoidal functor F : N // [I;
(
CX
)Ps

], where I is the category having two objects 0 and
1 and exactly one non-identity morphism 0 // 1, such that the following two diagrams
commute

N F //

Φ ##

[I;
(
CX
)Ps

]

[i0;(CX)
Ps

]
��

N F //

Φ ##

[I;
(
CX
)Ps

]

[i1;(CX)
Ps

]
��(

CX
)Ps (

CX
)Ps

where i0 : 0 // I and i1 : 1 // I are the inclusion functors. We recall that the
codomain functor category inherits a strict symmetric monoidal (permutative) structure

from
(
CX
)Ps

. We can compose this functor with the oplax symmetric monoidal functor
[I, I] to obtain a composite functor

N
F
// [I;
(
CX
)Ps

]
[I;I]
// [I;
(
CL(X)

)Ps
]

This composite oplax symmetric monoidal functor extends uniquely to a strict symmetric
monoidal functor

L([I; I] ◦ F ) : L // [I;
(
CL(X)

)Ps
]

along the inclusion map i : N // L. This extended strict symmetric monoidal functor

can be seen as a morphism in the category Γstr
⊗

(
L,
(
CL(X)

)Ps)
. We define

E(F ) := L([I; I] ◦ F ).
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One can check that E(F ◦G) = E(F )◦E(G). The uniqueness of the extension of [I; I]◦F
to L([I; I] ◦F ) implies that the functor E is fully faithful. Thus we have proved that the
functor E is an isomorphism of categories.

C. The adjunction L a K
In this Appendix we will establish an adjunction L a K, where L : ΓCat // Perm is
the realization functor defined in section 6 and K : Perm // ΓCat is the functor which
is also defined in section 6. We will establish the desired adjunction in two steps. In the
first step we show that the mapping set Perm(L(X), C) is isomorphic to the set of all

strict symmetric monoidal sections from L to
(
CL(X)

)Ps
, namely Ob(Γstr

⊗

(
L,
(
CL(X)

)Ps)
).

Throughout this section X will denote a Γ- category and C will denote a permutative
category. In the second step we show that the Hom set ΓCat(X,K(C)) is isomorphic

to the set of oplax symmetric monoidal sections Ob(ΓOL
(
N ,
(
CX
)Ps)

). We begin by

constructing a strict symmetric monoidal functor i : L //

(
L(X)

L(X)
)Ps

. For each

~n ∈ Ob(L) we will define a functor i(~n) : L(X)(n+) //L(X). For an ~x ∈ Ob(L(X)(n+)),
we define

i(~n)(~x) := (~n, ~x).

For a morphism a : ~x // ~y in L(X)(n+), we define

i(a) := (id~n, a),

where (id~n, a) : (~n, ~x) // (~n, ~y) is a morphism in L(X). For each morphism (h, φ) :
~n // ~m in L we will define a natural transformation i((h, φ) : i(~n)⇒ i(~m)◦L(X)((h, φ)).
Let ~x ∈ Ob(L(X)(n+)), we define

i((h, φ))(~x) := ((h, φ), idL(X)((h,φ))(~x)),

where ((h, φ), idL(X)((h,φ))(~x)) : (~n, ~x) // (~m,L(X)((h, φ)(~x)) is a morphism in L(X). It
is easy to see that for any morphism (h, φ) : ~x // ~y in L(X)(n+) the following diagram
commutes

(~n, ~x)
i((h,φ))(~x)

//

(id~n,a)

��

(~m,L(X)((h, φ))(~x))

(id~m,L(X)((h,φ))(a))

��

(~n, ~y)
i((h,φ))(~y)

// (~m,L(X)((h, φ))(~y))

in the category L(X). Thus we have defined a natural transformation i((h, φ)).

C.1. Proposition. The collection of functors {i(~n)}~n∈N glue together to define a strict

symmetric monoidal section of
(
L(X)

L(X)
)Ps

.

Proof. Clearly prL ◦ i = idL. Further i(~n�~m) = i(~n)� i(~m).
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A strict symmetric monoidal section of
(
L(X)

L(X)
)Ps

, φ : L //

(
L(X)

L(X)
)Ps

, and a

strict monoidal functor φ : L(X) // C determine another strict symmetric monoidal

section of
(
CL(X)

)Ps
, namely

(
φ
L(X)

)Ps
◦ φ. We want to show that i is a universal

strict symmetric monoidal section i.e. for any strict symmetric monoidal section of φ :

L //
(
CL(X)

)Ps
, there exists a unique strict symmetric monoidal functor φ : L(X) //C.

such that
(
φ
L(X)

)Ps
◦ i = φ.

C.2. Lemma. The section i is a universal strict symmetric monoidal section.

Proof. Let φ : L //
(
CL(X)

)Ps
be a lax symmetric monoidal section. We begin by

constructing a strict monoidal functor φ : L(X) // C such that
(
φ
L(X)

)Ps
◦ i = φ. On

objects of L(X), the functor φ is defined as follows:

φ((~n, ~x)) := φ(~n)(~x).

The morphism function of φ is defined as follows:

φ(((h, ψ), a)) := φ(~m)(a) ◦ φ((h, ψ))(~x).

One can easily check that φ is a functor.
Let (~m, ~y) be another object in L(X), we consider

φ((~n, ~x) ⊗
L(X)

(~m, ~y)) = φ(~n�~m, λ(~n, ~m)−1((~x, ~y))) = φ(~n�~m)(λ(~n, ~m)−1((~x, ~y))),

where (~x, ~y) is the concatenation of ~x and ~y. Since φ is a symmetric monoidal functor,
therefore φ(~n�~m) = φ(~n)� φ(~m). Now we observe that

φ(~n�~m)(λ(~n, ~m)−1((~x, ~y))) = φ(~n)� φ(~m)(λ(~n, ~m)−1((~x, ~y))) =

φ(~n)(~x)⊗
C
φ(~m)(~y) = φ(~n, ~x)⊗

C
φ(~m, ~y).

where the second equality follows from (34). Thus the functor φ preserves the symmetric
monoidal product strictly. Finally, we would like to show that this functor is uniquely

defined. Let G : L(X) //C be another a strict monoidal functor such that
(
GL(X)

)Ps◦i =

φ. Then for every object (~n, ~x) in L(X)

G((~n, ~x)) = G ◦ i(~n)(~x) = φ(~n)(~x) = φ(~n, ~x).

A similar argument for morphisms of L(X) shows that G agrees with φ on morphisms also.
Thus we have proved that φ is a universal normalized lax symmetric monoidal section.
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C.3. Notation. As seen above we may compose a bicycle with a functor to obtain an-
other bicycle. More precisely, let F : L(X) //C be a strict symmetric monoidal functor,
then we will denote by F ◦ i the composite strict symmetric monoidal functor

L
i
// Γstr
⊗

(
L,
(
L(X)

L(X)
)Ps) Γstr

⊗

(
L,(FL(X))

Ps
)

// Γstr
⊗

(
L,
(
CL(X)

)Ps)
.

This composition defines a functor which we will denote by

i∗ : [L(X), C]str⊗ // Γstr
⊗

(
L,
(
CL(X)

)Ps)
.

The above lemma and argument similar to the proof of theorem B.9 lead us to the
following corollary:

C.4. Corollary. The functor i∗ : [L(X), C]str⊗ //Γstr
⊗

(
L,
(
CL(X)

)Ps)
is an isomorphism

of categories which is natural in both X and C.

The above corollary together with theorem B.9 and proposition B.5 provide us with
the following chain of isomorphisms of categories:

BikesPs(X,C)
J
// ΓOL

(
N ,
(
CX
)Ps) E

//

Γstr
⊗

(
L,
(
CL(X)

)Ps) i∗
// [L(X), C]str⊗ . (36)

Now we start the second step involved in establishing the adjunction L a K. We want

to define an oplax symmetric monoidal functor ε : N //

(
CK(C)

)Ps
. In order to do so we

will define, for each n ∈ Ob(N ), a functor ε(n) : K(C)(n+) //C. On objects this functor
is defined as follows:

ε(n)(Φ) := Φ((idn+))

and on morphisms it is defined as follows:

ε(n)(F ) := F (n)((idn+)),

where F : Φ //Ψ is a morphism in K(C). It is easy to see that the above definition pre-
serves composition and identity in K(C)(n+). We recall that for each map f : n //m inN
we get a functor L(f) : L(m+) //L(n+) which maps an object (f1, f2, . . . , fk) ∈ Ob(L(m))
to (f1 ◦ f, f2 ◦ f, . . . , fk ◦ f) ∈ Ob(L(n)). The functor K(C)(f) : K(C)(n+) // K(m+) is
defined by precomposition i.e. for each strict symmetric monoidal functor Φ : L(n) // C,
K(C)(f)(Φ) := Φ ◦ L(f). For each morphism f : n //m we will define a natural trans-
formation ε(f) : ε(n) ⇒ ε(m) ◦ K(f). We recall that the identity map of n determines a
map can : (idn+) // (f) in the category L(n) i.e. the following diagram commutes

Supp(idn+) = n

id
&&

id // n = Supp(f)

id
yy

n
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For an object Φ ∈ K(n+) we define

ε(f)(Φ) := Φ(can).

We observe that domain of Φ(can) is ε(n)(Φ) = Φ((idn+)) and its codomain is

ε(m)(K(C)(f)(Φ)) = K(C)(f)(Φ)(idm+) = Φ((f)).

Let F : Φ // Ψ be a morphism in K(C)(n+), then we have the following commutative
diagram

Φ((idn+))
ε(f)(Φ)

//

F (n)((idn+ ))

��

Φ(f)

F (m)(f)
��

Ψ((idn+))
ε(f)(Ψ)

// Ψ(f)

(37)

where we observe that the map F (n)((idn+)) is the same as ε(n)(F ) and the map F (m)(f)
is the same as (ε(m)◦K(C)(f))(F ). Thus we have defined a natural transformations ε(f)
for all f ∈Mor(N ). For another morphism g : m // k in the category N one can check
that ε(g ◦ f) = ε(g) ◦ ε(f).

C.5. Proposition. The functor ε defined above is an oplax symmetric monoidal section

of
(
CX
)Ps

.

let X and Y be a Γ- categories and C be a permutative category. We will say that an

oplax symmetric monoidal section H : N //

(
CL(X)

)Ps
is co-universal if for any other

oplax symmetric monoidal section M : N //

(
CL(Y )

)Ps
there exists a unique morphism

of Γ- categories F : Y //X such that the following diagram commutes

N H //

M !!

(
CL(X)

)Ps
(CL(F ))

Ps

��(
CL(Y )

)Ps
In the above situation we get a bijection

Ob(ΓOL
⊗

(
N ,
(
CY
)Ps)

) ∼= HomΓCat(Y,X).

C.6. Proposition. The oplax symmetric monoidal functor ε : N //

(
CK(C)

)Ps
defined

above is co-universal.
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D. Local objects in Cat-model categories

D.1. Introduction. A model category E is enriched over categories if the category E
is enriched(over Cat), tensored and cotensored, and the functor [−;−] : Eop×E //Cat is
a Quillen functor of two variables, where Cat = (Cat, Eq) is the natural model structure
for categories. The purpose of this appendix is to introduce the notion of local object
with respect to a map in a model category enriched over categories.

D.2. Preliminaries. Recall that a Quillen model structure on a category E is deter-
mined by its class of cofibrations together with its class of fibrant objects. For examples,
the category of simplicial sets sSets = [∆op, Set] admits two model structures in which
the cofibrations are the monomorphisms: the fibrant objects are the Kan complexes in
one, and they are the quasi-categories in the other. We call the former the model struc-
ture for Kan complexes and the latter the model structure for quasi-categories. We shall
denote them respectively by (sSets, Kan) and (sSets, QCat). In this appendix we con-
sider categories enriched over Cat. If E = (E, [−;−]) is a category enriched over Cat,
then so is the category CatFunc(E;Cat) of enriched functors E // Cat. An enriched
functor F :E //Cat isomorphic to the enriched functor [A,−] : E //Cat is said to be
representable. The enriched functor F is said to be represented by A. We say that an
enriched (over Cat) category E = (E, [−,−]) is tensored by I, where I is the category
with two objects and one non-identity arrow, if the enriched functor

[I, [A,−]] : E //Cat

is representable (by an object denoted I⊗A) for every object A ∈ E. Dually, we say that
an enriched category E is cotensored by I if the enriched functor

[I, [−, X]] : Eop //Cat

is representable (by an object denoted XI or [I,X]) for every object X ∈ E.

D.3. Definition. We shall say that a model category E is enriched over categories if
the category E is enriched over Cat, tensored and cotensored over I and the functor
[−,−] : Eop × E // Cat is a Quillen functor of two variables, where Cat = (Cat, Eq)
i.e. Cat is endowed with the natural model category structure.

D.4. Notation. We will denote the homotopy mapping spaces or the function complexes
of a model category M , see [DK80b], [Hov99], [Hir02], by Maph

M(a, b), for each pair of
objects a, b ∈M .

D.5. Function spaces for categories. If C is a category, we shall denote by J(C)
the sub-category of invertible arrows in C. The sub-category J(C) is the largest sub-
groupoid of C. More generally, if X is a quasi-category, we shall denote by J(X) the



SYMMETRIC MONOIDAL CATEGORIES AND Γ-CATEGORIES 503

largest sub- Kan complex of X. By construction, we have a pullback square

J(X) //

��

X

h
��

NJ(τ1(X)) // Nτ1(X)

where τ1(X) is the fundamental category of X and h is the canonical map. The function
space XA is a quasi-category for any simplicial set A. We shall denote by X(A) the full
sub-simplicial set of XA whose vertices are the maps A // X that factor through the
inclusion J(X) ⊆ X. The simplicial set X(∆[1]) is a path-space for X. We recall that
τ1(X) ∼= ho(X).

D.6. Lemma. If C is a category, then the simplicial object N(J(C)) ∼= J(N(C)), where
N : Cat // sSets is the nerve functor. Further this isomorphism is natural in C, i.e.
there is a natural isomorphism between the two composite functors NJ ∼= JN .

Proof. We recall that the Kan complex J(N(C)) is defined by the following pullback
square:

J(N(C)) //

��

N(C)

NJ(C) ∼= N(J(τ1(N(C)))) // N(τ1(N(C))) ∼= N(C)

Since the above commutative diagram is a pullback diagram in which the right vertical
arrow is the identity therefore we have the isomorphism J(N(C)) ∼= NJ(C). The second
statement follows from the functorality of pullbacks.

The category Cat can be enriched over simplicial sets by defining

MapCat(C,D) := N([C,D]).

Thus making Cat a simplicial category. The adjunction τ1 : sSets 
 Cat : N makes
Cat a (sSets, QCat)-model category, see [Joy08, Prop. 6.14]. In other words the functor
N([−;−]) : Catop × Cat // sSets is a Quillen functor of two variables with respect to
the natural model category structure on Cat and the Joyal model category structure on
sSets. We recall from [Sha, Appendix B.3] the mapping space:

Maph
Cat(C,D) = J(MapCat(C,D)) = J(N([C,D])) (38)

D.7. Local objects. Let Σ be a set of maps in a model category E. An object X ∈ E
is said to be Σ-local if the map

Maph
E(u,X) :Maph

E(A′, X) //Maph
E(A,X)

is a homotopy equivalence for every map u : A // A′ in Σ. Notice that if an object
X is weakly equivalent to a Σ-local object, then X is Σ-local. If the model category
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E is simplicial (=enriched over Kan complexes) and Σ is a set of maps between cofi-
brant objects, then a fibrant object X ∈ E is Σ-local iff the map MapsSets(u,X) :
MapsSets(A

′, X) //MapsSets(A,X) is a homotopy equivalence for every map u : A //A′

in Σ, where MapsSets(−,−) : Eop × E // sSets is the mapping space functor provid-
ing the simplicial enrichment of the category E. Now the argument used to prove [Sha,
Lemma B.6] adapted to the present setting proves the following lemma:

D.8. Lemma. Let E be a model category enriched over categories. If u : A // B is a
map between cofibrant objects, then the following conditions on a fibrant object X ∈ E are
equivalent

1. the map [u,X] : [B,X] // [A,X] is an equivalence of categories;

2. the object X is local with respect to the pair of maps {u, I ⊗ u}, where I ⊗ u :
I ⊗ A // I ⊗B.

E. From oplax to symmetric monoidal functors

Throughout this paper we have been using a universal characteristic property of the
permutative category L namely any oplax symmetric monoidal functor F : N // M ,
where M is a permutative category extends uniquely to a symmetric monoidal functor
L(F ) : L // M . The objective of this section is to provide a proof of this universal
property. We begin by understanding the Leinster’s category L abstractly.

The forgetful functor U : Perm // Cat has a left adjoint S : Cat // Perm which
associates to a category C the permutative category S(C) freely generated by C [GJ08,
Sec. 3.1]. This permutative category is defined as the following coproduct:

S(C) :=
⊔
n∈N

Sn(C),

where Sn(C) is the symmetric n-power of C. We observe that the nth symmetric group
Σn acts naturally on Cn with the right action defined by

x · σ := (xσ(1), xσ(2), . . . , xσ(n)),

for x := (x1, x2, . . . , xn) ∈ Cn and σ ∈ Σn. If we apply the Grothendieck construction to
this right action, we obtain the symmetric n-power of C,

Sn(C) := Σn

∫
Cn,

Explicitly, an object of Sn(C) is a finite sequence x = (x1, x2, . . . , xn) of objects of C, and
the hom set between x and y is defined as follows:

Sn(C)[x, y] :=
⊔
σ∈Σn

C(x1, yσ(1))× C(x2, yσ(2))× · · · × C(xn, yσ(n)).
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The tensor product on S(C) is defined by concatenation and the symmetry natural iso-
morphism is given by the shuffle permutation. The unit of S(C) is the empty sequence.
There is an inclusion functor

ιC : C // S(C)

which takes an object c ∈ Ob(C) to the one element sequence (c) ∈ S(C). This functor
exhibits S(C) as the free permutative category generated by C. More precisely, for every
permutative category A, the restriction functor

ι∗C : Perm(S(C), A) //Cat(C,A)

is a bijection. We observe that the object set of the category L is the following:

Ob(L) = Ob(S(N )).

Let P be a permutative category. For each pair of functors F1, F2 : P // Sets one
can define another functor which is denoted by F1 ∗ F2 : P // Sets and is called the
convolution product of F1 with F2 as follows:

F1 ∗ F2(m) :=

∫ k∈N ∫ l∈P
F1(k)× F2(l)× P (k ⊗

P
l,m).

The above construction defines a bifunctor

− ∗ − : [P ;Sets]× [P ;Sets] // [P ;Sets].

This bifunctor endows the functor category [P ;Sets] with a monoidal structure whose
unit object is the functor P (0,−) : P // Sets. See [Day73], [Day70],[IK86].

The adjunction (S, U) discussed above has a counit map i.e. for each permutative
category P there is a symmetric monoidal functor εP : S(P ) // P . This counit functor
provides us with the following composite functor

P
Y
// [P op;Sets]

ε∗P
// [S(P )op;Sets]

where Y is the Yoneda’s embedding functor. We denote this composite functor by ρP :
P // [S(P )op;Sets]. For each m ∈ Ob(P ) we get a functor ρP (m) : S(P )op //Sets which
is defined as follows:

ρP (m)((k1, k2, . . . , kr)) := P (εP (~k);m) = P (k1 ⊗
P
k2 ⊗

P
· · · ⊗

P
kr;m)

where ~k = (k1, k2, . . . , kr) is an object of the permutative category S(P ). For another

object ~l = (l1, l2, . . . , ls) in S(P ) we define:

P e(−,~l) := ρP (l1)∗ρP (l2)∗· · ·∗ρP (ls) = P (εP (−); l1)∗P (εN (−); l2)∗· · ·∗P (εP (−); ls). (39)
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In other words the mapping set P e(~k,~l) is the following coend:∫ q1∈S(P )

· · ·
∫ qs∈S(P )

P (εP (~q1); l1)× · · · × P (εP (~qs); ls)× S(P )(~k; q1 ⊗
S(P )

q2 ⊗
S(P )
· · · ⊗

S(P )
qs).

The above iterated coend has a simple description: A map in the mapping set P e(~k,~l)

can be described as an (s + 1)-tuple (f1, f2, . . . , fs;h), where |~l| = s, h : r // s is a map
in N and fi : ⊗

j∈h−1(i)
kj // li is a map in P for all 1 ≤ i ≤ s. These formulas for mapping

spaces for P e could possibly be deduced from results in [MW15].

E.1. Lemma. The collection of mapping sets {P e(~k,~l) : ~k,~l ∈ Ob(S(P ))} glue together
to define a permutative category P e whose object set is the same as that of S(P ).

Proof. We begin the proof by defining composition in the category P e. Let

(f1, f2, . . . , fs;h) : ~k //~l, (g1, g2, . . . , gt; q) : ~l // ~m = (m1, . . . ,mt)

be two maps in P e. We define their composite to be a map (c1, c2, . . . , ct; q ◦ h) : ~k // ~m
where the arrow vi is defined as follows:

⊗
z∈q◦h−1(i)

kz
can
// ⊗
j∈q−1(i)

⊗
w∈h−1(j)

kw

⊗
j∈q−1(i)

fj

// ⊗
j∈q−1(i)

lj //mi

for 1 ≤ i ≤ t. The isomorphism can in the above diagram is the unique isomorphism
provided by the coherence theorem for symmetric monoidal categories between words of
the same length. The associativity of this composition follows from the coherence theorem
for symmetric monoidal categories and the associativity of composition in the permutative
category P . The permutative structure is given by concatenation.

E.2. Remark. The permutative category L is isomorphic to the permutative category
((N op)e)op.

As above, let ~k and ~l be two objects of P e having lengths |~k| = r and |~l| = s respec-
tively. We define a function

λ~k,~l : P e(~k,~l) // P (
r
⊗
i=1
ki;

s
⊗
j=1
lj).

as follows:
λ~k,~l((f1, f2, . . . , fs;h)) := (

s
⊗
i=1

⊗
j∈h−1(i)

fj) ◦ can

E.3. Lemma. The collection of functions {λ~k,~l : ~k,~l ∈ Ob(P e)} glue together to define a
strict symmetric monoidal functor

λP : P e // P (40)

whose objects function maps an object ~k = (k1, k2, . . . , kr) to k1 ⊗
P
k2 ⊗

P
· · · ⊗

P
kr in Ob(P ).
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Proof. We have to check that the function defined above respects composition in the cat-
egory P e. Let (f1, f2, . . . , fs;h) : ~k //~l and (g1, g2, . . . , gt; q) : ~l // ~m = (m1,m2. . . . ,mt)
be two composable arrows in the category P e. We will show the following equality:

λ~l,~m((f1, f2, . . . , fs;h)) ◦ λ~k,~l((g1, g2, . . . , gt; q)) =

λ~k,~m((g1, g2, . . . , gt; q) ◦ (f1, f2, . . . , fs;h)) (41)

This is equivalent to showing that the following diagram commutes:

t
⊗
i=1

⊗
z∈q◦h−1(i)

kz

can

��

r
⊗
i=1
ki

can

��

canoo

t
⊗
i=1

⊗
j∈q−1(i)

⊗
w∈h−1(j)

kw

t
⊗
i=1

⊗
j∈q−1(i)

fj

��

s
⊗
i=1

⊗
j∈h−1(i)

kj

s
⊗
i=1

⊗
j∈h−1(i)

fj

��

can
oo

t
⊗
i=1

⊗
j∈q−1(i)

lj

⊗
j∈q−1(i)

gi

��

s
⊗
i=1
li

can

��

can
oo

t
⊗
i=1
mi

t
⊗
i=1

⊗
j∈q−1(i)

lj⊗
j∈q−1(i)

gi
oo

The composite of the top left arrow and the three left vertical arrows is the same as
λ~l,~m((f1, f2, . . . , fs;h))◦λ~k,~l((g1, g2, . . . , gt; q)) and the composite of the right three vertical
arrows and the bottom horizontal arrows is λ~k,~m((g1, g2, . . . , gt; q)◦(f1, f2, . . . , fs;h)). The
bottom square is obviously commutative because both composite arrows are composites of
the same two arrows. The top rectangle is made up of canonical isomorphisms provided by
the coherence theorem for symmetric monoidal categories. Now the commutativity of the
top rectangle follows from [JS93, Corollary 1.6] which implies that any diagram made of
canonical coherence maps commutes. The commutativity of the middle rectangle follows
from the naturality of the canonical isomorphisms provided by the coherence theorem for
symmetric monoidal categories.

We recall that the bifunctor −⊗− : P ×P //P providing the permutative structure
of a permutative category P extends uniquely to a functor

−
r
⊗− :

r∏
1=1

P // P,

for all r ∈ N. Similarly any natural transformation η : (−⊗−) ◦ (F × F )⇒ F ◦ (−⊗−)
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extends uniquely to a natural transformation ηr as shown in the diagram below:

r∏
i=1

P

r∏
i=1

F

��

−
r
⊗−
// P

F

��

ηr
~�

r∏
i=1

D
−
r
⊗−
// D

E.4. Notation. We will refer to the functor −
r
⊗ − as the r-fold extension of the per-

mutative structure of P and refer to ηr as the r-fold extension of η.

Any lax symmetric monoidal functor (F, µ, η) : P //D determines a strict symmetric
monoidal functor

F e : P e //De (42)

The object function of F e is defined as follows:

~k = (k1, k2, . . . , kr) 7→ (F (k1), F (k2), . . . , F (kr)).

Given another object ~l = (l1, . . . , ls) in P we define a map

F~k,~l : P e(~k,~l) //De(F (~k), F (~l))

as follows:
(f1, f2, . . . , fs;h) 7→ (g1, g2, . . . , gs;h),

where the map gi : ⊗
j∈h−1(i)

F (kj) // F (li) is the following composite:

⊗
j∈h−1(i)

F (kj)
µri
// F ( ⊗

j∈h−1(i)
kj)

F (fi)
// F (li),

where ri = h−1(i). An application of the coherence theorem for symmetric monoidal
categories shows that F e is a functor and it is easy to see that it preserves the permutative
structure.

The next theorem is about the universality of the above construction. The existence
part of the unique symmetric monoidal functor mentioned in the theorem below follows
from [BKP89, Thm. 3.13] which is a statement about algebras over 2-monads. We will
provide a direct proof here.

E.5. Theorem. The symmetric lax monoidal inclusion functor ι : P //P e is universal:
for any symmetric permutative category D and a symmetric lax monoidal functor φ :
P //D there exists a unique strict symmetric monoidal functor ψ : P e //D such that
ψ ◦ ι = φ:

P ι //

φ   

P e

ψ
��

D
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Proof. We define the functor ψ : P //D to be the following composite:

P e φe
//De λD

//D

The uniqueness of this functor is an easy consequence of the symmetric monoidal structure
on the permutative category P e and the strict symmetric monoidal nature of the functor
ψ.

An oplax symmetric monoidal functor F : P // D uniquely determines a Lax sym-
metric monoidal functor between the opposite categories namely F op : P op //Dop. This
duality provides us with the following corollary:

E.6. Corollary. Let P be a strict symmetric monoidal category, then there exists an-
other strict symmetric monoidal category Pe which is equipped with an inclusion functor
ι : P // Pe which is universal: For any strict symmetric monoidal category D and an
oplax symmetric monoidal functor F : P // D there exists a unique strict symmetric
monoidal functor ψ : Pe //D such that ψ ◦ ι = F i.e. the following diagram commutes:

P
ι //

F   

Pe

ψ
��

D

The strict symmetric monoidal category Pe is isomorphic to ((P op)e)op.
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[JT91] André Joyal and Myles Tierney, Strong stacks and classifying spaces, Category The-
ory (Berlin, Heidelberg) (Aurelio Carboni, Maria Cristina Pedicchio, and Guiseppe
Rosolini, eds.), Springer Berlin Heidelberg, 1991, pp. 213–236.

[JT08] A. Joyal and M. Tierney, Notes on simplicial homotopy theory, http://mat.uab.cat/

~kock/crm/hocat/advanced-course/Quadern47.pdf, 2008.

[Kel74] G. M. Kelly, Doctrinal adjunction, Category Seminar (Berlin, Heidelberg) (Gregory M.
Kelly, ed.), Springer Berlin Heidelberg, 1974, pp. 257–280.

[KS15] D. Kodjabachev and S. Sagave, Strictly commutative models for E∞ quasi-categories,
Homology Homotopy Appl. 17 (2015).

[Lac07] S. Lack, Homotopy-theoretic aspects of 2-monads., Journal of Homotopy and Related
Structures 2 (2007), no. 2, 229–260 (eng).

[Lei00] T. Leinster, Homotopy algebras for operads, Arxiv 126 (2000).

[Lur09] Jacob Lurie, Higher topos theory, Annals of Mathematics Studies, vol. 170, Princeton
University Press, Princeton, NJ, 2009.

[Lyd99] M. Lydakis, Smash products and Γ- spaces, Math. Proc. Camb. Soc. 126 (1999).

[Mac71] S. MacLane, Categories for the working mathematician, Springer-Verlag, 1971.

[Man10] M. A. Mandell, An inverse K-theory functor, Doc. Math. 15 (2010), 765–791.

[May72] P. May, The geometry of iterated loop spaces, Lectures Notes in Mathematics, vol. 271,
Springer-Verlag, 1972.

[May78] J. P. May, The spectra associated to permutative categories, Topology 17 (1978), no. 3,
225–228.

[MW15] Internal algebra classifiers as codescent objects of crossed internal categories., Th. and
Appl. of Cats. 30 (2015), no. 50, 17131792.

[Rez10] Charles Rezk, A cartesian presentation of weak ncategories, Geom. Topol. 14 (2010),
no. 1, 521–571.

[Sch99] S. Schwede, Stable homotopical algebra and Γ- spaces, Math. Proc. Camb. Soc. 126
(1999), 329.

[Sch08] V. Schmitt, Tensor product for symmetric monoidal categories, arXiv/0812.0150 (2008).

[Seg74] G. Segal, Categories and cohomology theories, Topology 13 (1974), 293–312.

[Sha] A. Sharma, The homotopy theory of coherently commutative monoidal quasi-categories,
arXiv:1908.05668.

[Shaon] A. Sharma, Symmetric multicategories as distributors, In Preparation.

[Smi] J. Smith, Combinatorial model categories, unpublished.

http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf
http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern47.pdf
arXiv:1908.05668


512 AMIT SHARMA

[SS79] N. Shimada and K. Shimakawa, Delooping symmetric monoidal categories, Hiroshima
Math. J. 9 (1979), 627–645.

[Tho80] R. W. Thomason, Cat as a closed model category, Cahiers Topologie Geom. Differen-
tial 21 (1980), no. 3, 305–324.

[Tho95] R. W. Thomason, Symmetric monoidal categories model all connective spectra, Theory
Appl. Categ. 1 (1995), no. 5, 78–118.

Department of mathematical sciences
Kent State university
Kent, OH
Email: asharm24@kent.edu

This article may be accessed at http://www.tac.mta.ca/tac/



THEORY AND APPLICATIONS OF CATEGORIES will disseminate articles that significantly advance
the study of categorical algebra or methods, or that make significant new contributions to mathematical
science using categorical methods. The scope of the journal includes: all areas of pure category theory,
including higher dimensional categories; applications of category theory to algebra, geometry and topology
and other areas of mathematics; applications of category theory to computer science, physics and other
mathematical sciences; contributions to scientific knowledge that make use of categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. Full
text of the journal is freely available at http://www.tac.mta.ca/tac/.

Information for authors LATEX2e is required. Articles may be submitted in PDF by email
directly to a Transmitting Editor following the author instructions at
http://www.tac.mta.ca/tac/authinfo.html.

Managing editor. Geoff Cruttwell, Mount Allison University: gcruttwell@mta.ca

TEXnical editor. Michael Barr, McGill University: michael.barr@mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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