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CATEGORIES OF WEAK FRACTIONS

PIERRE-ALAIN JACQMIN

Abstract. Given a set Σ of morphisms in a category C, we construct a functor
F1/Σ : C → C[1/Σ] which sends elements of Σ to split monomorphisms. Moreover, we
prove that F1/Σ is weakly universal with that property when considered in the world
of locally posetal 2-categories. Besides, we also use locally posetal 2-categories in order
to construct weak left adjoints to those functors for which any object in the codomain
admits a weak re�ection. We then apply these two results in order to restate the Injec-
tive Subcategory Problem for Σ into the existence of some kind of weak right adjoint
for F1/Σ.

1. Introduction

While a universal property requires the existence of a unique morphism satisfying a given
property, a weak universal property merely requires its existence (but not its uniqueness),
see [5, 9, 19]. For instance, given a functor G : D → C, a re�ection (respectively a weak
re�ection) for an object C in C along G consists of an object D in D together with a
morphism n : C → G(D) such that for any morphism m : C → G(D′), there exists a
unique (respectively, there exists a) morphism d : D → D′ such that G(d) ◦ n = m.

C
n //

m
""

G(D)

G(d)

��
G(D′)

Given such a re�ection along G for each object C in C, it is well known that one can
construct a left adjoint F : C → D to G, the value of F on arrows being determined by
these universal properties. If instead, each object C of C is only endowed with a weak
re�ection along G, such a left adjoint F can no longer be constructed; the reason being
that the image by F of an arrow is not uniquely determined and nothing ensures that a
functorial choice can be made. To get round this, weak left adjoints have been considered
in the literature (see [17, 19]). A closely related, but more general, approach than in [17]
is considered here, using categories enriched in the category Pos of posets. Pos-categories
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can be seen as ordinary categories coherently equipped with a poset structure on each
hom-set. We regard each category C as a Pos-category P0(C) having the same objects
as C but whose hom-set P0(C)(A,B) is the set of non-empty subsets of C(A,B), ordered
by inclusion. A functor G : D → C between ordinary categories induces a Pos-functor
P0(G) : P0(D) → P0(C). If each object of C admits a weak re�ection along G, one can
now construct a weak left adjoint F : P0(C) ⇀ P0(D) in the sense of De�nition 3.3. The
⇀ sign indicates that F is merely a lax-Pos-functor, i.e., identities and composition are
preserved laxly: 1F (A) 6 F (1A) and F (g) ◦ F (f) 6 F (g ◦ f). The construction of F is
now based on the fact that, for a non-empty set of arrows C → C ′, one can associate
the (non-empty) set of all arrows F (C) → F (C ′) satisfying the obvious commutativity
condition.

Given a class Σ of morphisms in a category C, the category of fractions of C with
respect to Σ is, if it exists, the universal functor FΣ−1 : C → C[Σ−1] which sends elements
of Σ to isomorphisms [11]. When Σ is a set, the category of fractions always exists and is
constructed by formally adding inverses to elements of Σ. The main objective of this paper
is to treat the weak version of it, namely to �nd a weakly universal functor which sends
elements of Σ to split monomorphisms. In order to avoid size problems, we will assume
that Σ is a set of morphisms of C. Then, for each element s : A→ B of Σ, we formally add
a morphism s : B → A such that s ◦ s = 1A to form the category C[1/Σ]. This category
can thus be thought of as adding left inverses to elements of Σ. It comes equipped with
a functor F1/Σ : C → C[1/Σ] which sends elements of Σ to split monomorphisms. Then,
given a functor G : C → D which also sends elements of Σ to split monomorphisms, there
exists a Pos-functor H : P0(C[1/Σ])→ P0(D) such that H ◦ P0(F1/Σ) = P0(G).

P0(C)
P0(F1/Σ)

//

P0(G) ((

P0(C[1/Σ])

∃H
��

P0(D)

One also has such a weak universal property in the case where G is a lax-Pos-functor
P0(C) ⇀ D to a Pos-category D. In that case, one needs to require that D is almost
complete, i.e., that hom-sets in D have non-empty suprema and these are preserved by
left and right compositions. One also needs G to be almost complete, i.e., that the action
of G on arrows preserves non-empty suprema. The assumption that G sends elements of
Σ to split monomorphisms is now replaced by the conjunction of:

(A) for all s : A→ B in Σ, there exists d ∈ D(G(B), G(A)) such that d ◦G(sf) 6 G(f)
for any f ∈ C(C,A);

(B) if G(sf) = G(sf ′) for some f, f ′ : C → A in C and s : A → B in Σ, then G(hf) =
G(hf ′) for any h ∈ C(A,D).

Condition (A) should be thought of as the existence of a retraction for G(s) while condi-
tion (B) mimics the fact that G(s) should be a monomorphism. When these conditions
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hold, there exists an almost complete lax-Pos-functor H : P0(C[1/Σ]) ⇀ D such that
H ◦ P0(F1/Σ) = G.

P0(C)
P0(F1/Σ)

//

G
%

P0(C[1/Σ])

∃H
�
D

This problem of turning elements of Σ into split monomorphisms recently appeared in [15]
where, under strong conditions on Σ, a functorial choice of retractions has been con-
structed and the solution was proved to be (strongly) universal. The analogous problem
of turning some morphisms of a Pos-category into left adjoint split monomorphisms has
been considered in [21].

Given a class Σ of morphisms in a category C, an object I is said to be orthogonal to
(respectively, injective with respect to) Σ if the presheaf C(−, I) : Cop → Set sends elements
of Σ to isomorphisms (respectively to epimorphisms). The class of objects orthogonal to
Σ (respectively, injective with respect to Σ) is denoted by Σ⊥ (respectively by ΣM). The
Orthogonal Subcategory Problem (OSP) is the problem to know whether Σ⊥ is a re�ective
subcategory of C. This problem appeared in [10] and has been deeply studied since then
(see [1, 3, 4, 6, 18, 20]). In [11], connections with the category of fractions C[Σ−1] are
established. One can show that, if Σ is a set, the full inclusion Σ⊥ ↪→ C has a left adjoint
whose unit is inverted by FΣ−1 if and only if FΣ−1 : C → C[Σ−1] has a fully faithful right
adjoint (see Theorem 5.3).

Due to the new technology developed here, one can have a similar reformulation for
the weak version of the OSP, i.e., the Injective Subcategory Problem (ISP). The ISP
asks whether ΣM is weakly re�ective in C (see [1, 2, 13, 14] for instance). If each object
C of C has a weak re�ection nC : C → J(D) along the full inclusion J : ΣM ↪→ C for
which nC ∈ Σ, one can construct a weak left adjoint R : P0(C) ⇀ P0(ΣM) to P0(J). By
the weak universal property of F1/Σ : C → C[1/Σ], this gives rise to a lax-Pos-functor
R′ : P0(C[1/Σ]) ⇀ P0(ΣM). The composite P0(J)◦R′ has then a property close to being a
weak right adjoint for P0(F1/Σ), and this property is equivalent to the condition of having
weak re�ections along J formed by elements of Σ, see Theorem 6.1.

P0(ΣM)kKP0(J)

yy

P0(C)
P0(F1/Σ)

//
R

5

P0(C[1/Σ])
R′

b

The paper is organized as follows. In Section 2, we establish the terminology on Pos-
categories needed in the paper. In Section 3, we give equivalent de�nitions of a weak left
adjoint for a Pos-functor. In Section 4, we construct the functor F1/Σ : C → C[1/Σ] and
prove its weak universal property. Section 5 is devoted to the reformulation of the OSP
using the category of fractions. Finally, in Section 6, we use the results from the previous
sections in order to reformulate the ISP in terms of the functor F1/Σ : C → C[1/Σ].
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2. Pos-categories

Let Pos be the cartesian closed category of posets and order-preserving maps.

2.1. Definition. A Pos-category is a Pos-enriched category. Equivalently, it is a locally
posetal 2-category. A Pos-functor between Pos-categories is a Pos-enriched functor, or
equivalently, it is a 2-functor between the locally posetal 2-categories.

2.2. Definition. Let C and D be two Pos-categories. A lax-Pos-functor F : C⇀ D is a
lax-2-functor between the locally posetal 2-categories C and D. Equivalently, it is given by

• a function F : ob(C)→ ob(D),

• for each pair of objects (A,B) in C, an order-preserving function F : C(A,B) →
D(F (A), F (B))

such that

• 1F (A) 6 F (1A) for each object A of C,

• F (g) ◦ F (f) 6 F (g ◦ f) for any pair (f, g) of composable arrows in C.

2.3. Notation. Each Pos-category C induces a Pos-functor C(−,−) : Cop × C → Pos
which is the classical `hom-functor'. As usual, the category Pos is seen as a Pos-category
with the pointwise order on morphisms and the Pos-category Cop is obtained by reversing
the 1-cells of C but not the order in the hom-sets.

2.4. Definition. Let F,G : C ⇀ D be lax-Pos-functors between Pos-categories. A Pos-
transformation α : F  G consists of, for each object A of C, a morphism αA : F (A) →
G(A). We say that

• α is lax-natural (α : F ⇀ G) if G(f) ◦ αA 6 αB ◦ F (f) for each f ∈ C(A,B);

• α is oplax-natural (α : F ⇁ G) if G(f) ◦ αA > αB ◦ F (f) for each f ∈ C(A,B);

• α is natural (α : F → G) if it is both lax-natural and oplax-natural, i.e., if
G(f) ◦ αA = αB ◦ F (f) for each f ∈ C(A,B).

We have evident identities and compositions of lax-Pos-functors and of Pos-transfor-
mations. Moreover, given two Pos-transformations α, β : F  G, we write α 6 β if
αA 6 βA for all objects A of C.

In [12], a poset P is said to be an almost compete semilattice if it has all non-empty
suprema. In view of this, we de�ne:
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2.5. Definition. A Pos-category C is said to be almost complete if for all pair of objects
(A,B), the poset C(A,B) has all non-empty suprema and if for each morphism f : A→ B
and each object X in C, the composition maps

f ◦ − : C(X,A)→ C(X,B) and − ◦f : C(B,X)→ C(A,X)

preserve non-empty suprema.
A lax-Pos-functor F : C ⇀ D between Pos-categories is said to be almost complete if,

for each pair (A,B) of objects of C, the map

F : C(A,B)→ D(F (A), F (B))

preserves existing non-empty suprema.

Note that in general, an almost complete Pos-category is not enriched in the category
of almost complete semilattices and functions preserving non-empty suprema since, for
non-rectangular non-empty sets S ⊆ C(A,B)× C(B,C), we do not have ∨

g∈π2(S)

g

 ◦
 ∨
f∈π1(S)

f

 =
∨

(f,g)∈S

(g ◦ f)

in general.

2.6. Notation. For a set X, we denote by P0(X) the set

P0(X) = {X ′ ⊆ X |X ′ 6= ∅}.

To any category C, we associate an almost complete Pos-category P0(C) having the same
objects as C and for any pair of objects (A,B) in C, P0(C)(A,B) = P0(C(A,B)) ordered
by inclusion. Given X ∈ P0(C(A,B)) and Y ∈ P0(C(B,C)), we de�ne

Y ◦X = {g ◦ f | f ∈ X, g ∈ Y }.

The identity on A in P0(C) is the singleton {1A}.
Given a functor F : C → D between ordinary categories, one constructs an almost com-

plete Pos-functor P0(F ) : P0(C)→ P0(D) by P0(F )(A) = F (A) for any object A in C and
P0(F )(X) = {F (f) | f ∈ X} for X ∈ P0(C(A,B)). Finally, each natural transformation
α : F → G : C → D gives rise to a natural Pos-transformation P0(α) : P0(F ) → P0(G)
simply by setting P0(α)A = {αA} for each object A of C.

By abuse of notation, for a lax-Pos-functor G : P0(C) ⇀ D, we are often going to
denote G({f}) by G(f) for a morphism f in C.

3. Weak left adjoints

Let us now turn our attention to weak adjunctions. The following theorem is the `weak
version' of the well-know fact that an adjunction F a G can be equivalently described via
a unit η : 1C → GF and a counit ε : FG→ 1D satisfying the two triangular identities, or
via bijections D(F (C), D) ∼= C(C,G(D)) natural in C and D.
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3.1. Theorem. Let G : D → C be a Pos-functor between Pos-categories. For a lax-Pos-
functor F : C⇀ D, the following statements are equivalent:

1. There exists a lax-natural Pos-transformation η : 1C ⇀ GF and a Pos-transform-
ation ε : FG 1D such that G(εD) ◦ ηG(D) 6 1G(D) for all objects D in D.

2. There exists a Pos-transformation ρ = (ρC,D)C,D : D(F (−),−) C(−, G(−)) oplax-
natural in C and natural in D together with a Pos-transformation σ = (σC,D)C,D :
C(−, G(−)) D(F (−),−) lax-natural in C such that ρ ◦ σ 6 1C(−,G(−)).

3. There exists a Pos-transformation ρ′ = (ρ′C,D)C,D : D(F (−),−) C(−, G(−)) oplax-
natural in C and lax-natural in D together with a Pos-transformation σ′ = (σ′C,D)C,D :
C(−, G(−)) D(F (−),−) such that ρ′ ◦ σ′ 6 1C(−,G(−)).

Proof. 1 ⇒ 2: Given objects C in C and D in D, we de�ne

ρC,D(f) = G(f) ◦ ηC ∈ C(C,G(D))

for any morphism f : F (C) → D in D. This de�nes an order-preserving function ρC,D :
D(F (C), D) → C(C,G(D)). The corresponding Pos-transformation ρ : D(F (−),−)  
C(−, G(−)) is oplax-natural in C since G is a Pos-functor and η is lax-natural. It is
natural in D again since G is a Pos-functor. Now, for a morphism g : C → G(D) in C,
we de�ne

σC,D(g) = εD ◦ F (g) ∈ D(F (C), D).

The corresponding Pos-transformation σ : C(−, G(−)) D(F (−),−) is lax-natural in C
since F is a lax-Pos-functor. Finally, given g : C → G(D), we have

ρC,D(σC,D(g)) = ρC,D(εD ◦ F (g))

= G(εD ◦ F (g)) ◦ ηC
= G(εD) ◦GF (g) ◦ ηC
6 G(εD) ◦ ηG(D) ◦ g
6 g

proving 2.
2 ⇒ 3 is obvious.
3 ⇒ 1: Given such ρ′ and σ′, we de�ne as usual

ηC = ρ′C,F (C)(1F (C))

for any object C of C and
εD = σ′G(D),D(1G(D))
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for any object D of D. The Pos-transformation η : 1C  GF is lax-natural since, for
f : C → C ′ in C, we have

GF (f) ◦ ηC = GF (f) ◦ ρ′C,F (C)(1F (C))

6 ρ′C,F (C′)(F (f)) since ρ′ is lax-natural in D

6 ρ′C′,F (C′)(1F (C′)) ◦ f since ρ′ is oplax-natural in C

= ηC′ ◦ f.

Finally, for any object D in D, we can compute

G(εD) ◦ ηG(D) = G(σ′G(D),D(1G(D))) ◦ ρ′G(D),FG(D)(1FG(D))

6 ρ′G(D),D(σ′G(D),D(1G(D))) since ρ′ is lax-natural in D

6 1G(D)

proving 1.

3.2. Remark. In the above theorem, if C is of the form P0(C) for a category C, then
the inequality G(εD) ◦ ηG(D) 6 1G(D) in 1 becomes an equality G(εD) ◦ ηG(D) = 1G(D) for
each object D in D. Indeed, in that case, 1G(D) is a singleton and the left hand side is a
non-empty subset of it.

3.3. Definition. Let G : D → C be a Pos-functor between Pos-categories. A weak left
adjoint for G is a lax-Pos-functor F : C⇀ D satisfying the equivalent conditions of The-
orem 3.1.

Note that in general, a Pos-functor may have many weak left adjoints. Our no-
tion of weak adjoints generalizes the one in [17] where ordinary functors G : D → C
were considered. There, weak left adjoints send a morphism of C to a non-empty set of
morphisms in D. Regarding the above de�nition for the Pos-functor P0(G) : P0(D) →
P0(C), a weak left adjoint for P0(G) sends non-empty sets of morphisms of C to non-
empty sets of morphisms in D. In [16], a weak left adjoint for a functor G : D →
C is de�ned as an (ordinary) functor F : C → D together with natural transforma-
tions η : 1C → GF and ε : FG → 1D satisfying only one triangular identity, namely
(1G ? ε)(η ? 1G) = 1G.

In the strong case, a left adjoint for a functor G : D → C exists if and only if each
object in C has a re�ection along G. Let us now study the weak version of this.

3.4. Definition. Let G : D → C be a Pos-functor between Pos-categories. Given an
object C in C, a weak re�ection for C along G is a pair (D,n) where D is an object of
D and n a morphism C → G(D) in C such that for any morphism f : C → G(D′) in C,
there exists a morphism g : D → D′ in D such that G(g) ◦ n 6 f .

C
n //

∀ f ""

G(D)

∃G(g)zz
G(D′)

>
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When there is no ambiguity, we will sometimes denote the weak re�ection simply by n. It
is obvious to see that if n′ : C → G(D) is a morphism such that n′ 6 n, then n′ is also a
weak re�ection for C along G if n is.

3.5. Example. Let G : D → C be an (ordinary) functor between categories and C ∈ C an
object. A morphism n : C → G(D) in C is a weak re�ection along G (in the classical sense)
if and only if the singleton {n} : C → G(D) in P0(C) is a weak re�ection along P0(G) in the
sense of De�nition 3.4. Indeed, if n is a weak re�ection in C and X ∈ P0(C(C,G(D′))),
for each f ∈ X, we can choose gf : D → D′ in D such that G(gf )n = f . The set
Y = {gf | f ∈ X} then satis�es P0(G)(Y ) ◦ {n} = X. Conversely, if {n} is a weak
re�ection along P0(G) and f : C → G(D′) is a morphism in C, we know there exists
Y ∈ P0(D(D,D′)) such that P0(G)(Y ) ◦ {n} ⊆ {f}. Since Y is not empty, there exists
g ∈ Y which thus satis�es

P0(G)({g}) ◦ {n} ⊆ P0(G)(Y ) ◦ {n} ⊆ {f}.

Therefore G(g)n = f and n is a weak re�ection along G.
In addition, an object C ∈ C has a weak re�ection along G if and only if it has a weak

re�ection along P0(G). The `only if' part immediately follows from the above. Conversely,
if N ∈ P0(C(C,G(D))) is a weak re�ection along P0(G), then any singleton {n} ⊆ N is
also a weak re�ection and thus any n ∈ N is a weak re�ection along G. Such a n ∈ N
exists since N is not empty.

3.6. Theorem. Let G : D → C be an almost complete Pos-functor between almost com-
plete Pos-categories. The following statements are equivalent:

1. Any object C in C has a weak re�ection along G.

2. G has a weak left adjoint F : C⇀ D.

Proof. 1 ⇒ 2: For each object C in C, we choose a weak re�ection ηC : C → G(F (C)).
This already de�nes F on objects. Then, given f : C → C ′ in C, we set

F (f) =
∨
g∈Zf

g

where
Zf = {g : F (C)→ F (C ′) |G(g) ◦ ηC 6 ηC′ ◦ f}

is a non-empty set since (F (C), ηC) is a weak re�ection. Clearly, F preserves the order
of the hom-sets. Since G(1F (C)) ◦ ηC = ηC , we have 1F (C) ∈ Z1C and thus 1F (C) 6 F (1C).
Now, given f : C → C ′ and f ′ : C ′ → C ′′ in C, we have

F (f ′) ◦ F (f) =

 ∨
g′∈Zf ′

g′

 ◦
 ∨
g∈Zf

g

 =
∨

(g,g′)∈Zf×Zf ′

g′g 6 F (f ′f)
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where the second equality holds since D is almost complete and the inequality comes from
the fact that, if g ∈ Zf and g′ ∈ Zf ′ ,

G(g′g)ηC = G(g′)G(g)ηC 6 G(g′)ηC′f 6 ηC′′f
′f

implying that g′g ∈ Zf ′f . Hence, we have a lax-Pos-functor F : C ⇀ D. The weak
re�ections ηC de�ne a Pos-transformation η : 1C  GF . This η is lax-natural since, given
f : C → C ′ in C, we have

GF (f) ◦ ηC = G(
∨
g∈Zf

g) ◦ ηC

=

 ∨
g∈Zf

G(g)

 ◦ ηC since G is almost complete

=
∨
g∈Zf

(G(g) ◦ ηC) since C is almost complete

6 ηC′ ◦ f.

Finally, for each object D in D, using the fact that ηG(D) is a weak re�ection, we choose
an εD : FG(D) → D such that G(εD) ◦ ηG(D) 6 1G(D). This de�nes the required Pos-
transformation ε : FG 1D and F is a weak left adjoint for G.

2 ⇒ 1: Let F : C ⇀ D, η : 1C ⇀ GF and ε : FG  1D be given by Theorem 3.1. Let
us prove that, for an object C in C, (F (C), ηC) is a weak re�ection along G. Given any
morphism f : C → G(D′), the composite εD′ ◦ F (f) : F (C) → D′ satis�es the required
condition since

G(εD′ ◦ F (f)) ◦ ηC = G(εD′) ◦GF (f) ◦ ηC 6 G(εD′) ◦ ηG(D′) ◦ f 6 f.

In [19], an (ordinary) functor G : D → C is said to `have a weak left adjoint' if each
object of C has a weak re�ection along G, although no map C → D is considered. Due to
Theorem 3.6, this terminology is thus consistent with ours.

4. Categories of (weak) fractions

Given a class Σ of morphisms in a category C, the category of fractions of C with respect
to Σ is, if it exists, the universal solution to the problem of �nding a functor F : C → D
which sends elements of Σ to isomorphisms [11]. When Σ is a set, the category of fractions
always exists and its construction is recalled below. The main objective of this section is
to develop a weak version of this. More precisely, if Σ is a set, we are going to construct a
functor F1/Σ : C → C[1/Σ] which sends elements of Σ to split monomorphisms and which
is, in some sense, weakly universal with that property.
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So let C be a category and Σ a set of morphisms in C. We �rst construct a conditional
graph G1/Σ (in the sense of [4]; or more precisely a V-conditional graph, for a bigger
universe V containing our base universe U). The objects of G1/Σ are the same as the
objects of C and given any pair (A,B) of objects, we de�ne G1/Σ(A,B) as the disjoint
union

G1/Σ(A,B) = C(A,B)
∐
{s | s ∈ C(B,A) ∩ Σ} .

We consider the following commutativity conditions on G1/Σ (i.e., the pairs of paths to
quotient out in the path category of G1/Σ):

• s ◦ s ≈ 1A for each s : A→ B in Σ;

• 1A ≈ (empty path on A) for each object A in C;

• g ◦ f ≈ gf for each composable pair of arrows (f, g) in C.

In the third family of commutativity conditions above, the left hand side g ◦ f represents
the two arrow path made of f followed by g while the right hand side gf represents the
single arrow path made of the composition of f and g in C. The path category of G1/Σ

will be denoted by C[1/Σ]. It is not hard to see that, since Σ is a set, C[1/Σ] is actually
an ordinary U -category. It comes equipped with a functor

F1/Σ : C −→C[1/Σ]

A 7−→A

f 7−→ [f ]

where [p] denotes the equivalence class of a path p from G1/Σ. This functor F1/Σ sends
elements of Σ to split monomorphisms since [s] ◦ F1/Σ(s) = 1A for each s : A → B in
Σ. Moreover, as attested by the Theorem 4.1 below, F1/Σ is, in the Pos-category world,
weakly universal with that property.

Before proving this theorem, let us recall that to construct the category of fractions
for C with respect to Σ, one �rst de�nes the conditional V-graph GΣ−1 , which is just G1/Σ

together with the additional commutativity conditions

• s ◦ s ≈ 1B for each s : A→ B in Σ.

The path category of GΣ−1 is denoted C[Σ−1] and the obvious functor FΣ−1 : C → C[Σ−1]
is the expected category of fractions.

4.1. Theorem. Let C be a category and Σ a set of morphisms in C. Let also D be an
almost complete Pos-category.

1. If G : P0(C) ⇀ D is an almost complete lax-Pos-functor such that

(A) for all s : A → B in Σ, there exists d ∈ D(G(B), G(A)) such that
d ◦G(sf) 6 G(f) for any f ∈ C(C,A),
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(B) if G(sf) = G(sf ′) for some f, f ′ : C → A in C and s : A → B in Σ, then
G(hf) = G(hf ′) for any h ∈ C(A,D);

then, there exists an almost complete lax-Pos-functor H : P0(C[1/Σ]) ⇀ D such that
H ◦ P0(F1/Σ) = G.

2. If G : P0(C)→ D is an almost complete Pos-functor such that

(C) for all s : A → B in Σ, there exists d ∈ D(G(B), G(A)) such that d ◦ G(s) =
1G(A);

then, G automatically satis�es conditions (A) and (B) and there exists an almost
complete Pos-functor H : P0(C[1/Σ])→ D such that H ◦ P0(F1/Σ) = G.

P0(C)
P0(F1/Σ)

//

G �

P0(C[1/Σ])

HuD

Proof. 1: On objects, H has to be de�ned as H(A) = G(A). For s : A → B in Σ, we
denote

Ds = {d ∈ D(G(B), G(A)) | d ◦G(sf) 6 G(f) for any f ∈ C(C,A)}

which is not empty by our hypothesis (A) on G. Then, for a path p : A→ B in G1/Σ, we
set

H([p]) =∨
[fn◦sn−1◦···◦f2◦s1◦f1]=[p]

G(fn) ◦

 ∨
dn−1∈Dsn−1

dn−1

 ◦ · · · ◦G(f2) ◦

 ∨
d1∈Ds1

d1

 ◦G(f1)


=

∨
[fn◦sn−1◦···◦f2◦s1◦f1]=[p]

(
G(fn) ◦

∨
Dsn−1 ◦ · · · ◦G(f2) ◦

∨
Ds1 ◦G(f1)

)
where the suprema is taken over all alternating paths fn ◦ sn−1 ◦ · · · ◦f2 ◦ s1 ◦f1 equivalent
to p with n > 1. It follows then that for each morphism f in C, one has G(f) 6 H([f ]),
proving at the same time that H(1A) > 1H(A) for each object A of C. We then de�ne

H(X) =
∨

[p]∈X

H([p])

for any X ∈ P0(C[1/Σ](A,B)). This turns H into an almost complete lax-Pos-functor.
Indeed, since D is almost complete, it su�ces to prove H([q]) ◦ H([p]) 6 H([q ◦ p]) for
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composable paths p and q. Again since D is almost complete, this follows from

G(gm) ◦
∨

Dtm−1 ◦ · · · ◦G(g2) ◦
∨

Dt1 ◦G(g1) ◦G(fn) ◦
∨

Dsn−1 ◦ · · ·

◦G(f2) ◦
∨

Ds1 ◦G(f1)

6 G(gm) ◦
∨

Dtm−1 ◦ · · · ◦G(g2) ◦
∨

Dt1 ◦G(g1fn) ◦
∨

Dsn−1 ◦ · · ·

◦G(f2) ◦
∨

Ds1 ◦G(f1)

6 H([p ◦ q])

where fn ◦ sn−1 ◦ · · · ◦ f2 ◦ s1 ◦ f1 and gm ◦ tm−1 ◦ · · · ◦ g2 ◦ t1 ◦ g1 are representative of
[p] and [q] respectively. For the �rst part of the statement, since G is almost complete, it
remains now to prove that H([f ]) 6 G(f) for any morphism f : A→ B in C.

In order to do so, we are going to prove that for each path of the form
gn ◦ sn−1 ◦ · · · ◦ g2 ◦ s1 ◦ g1 equivalent to f , there exist morphisms h1, . . . , hn satisfying

• h1 = 1A,

• G(gihi) = G(sihi+1) for all 1 6 i < n,

• G(gnhn) = G(f).

B1
s1

  

B2
s2

  

· · · Bn−1
sn−1

""

B=Bn

A=A1

g1

;;

h1 <<
h2

//

h3

55

hn

77A2

s1

``

g2

>>

A3

s2

``

· · · An

sn−1

bb

gn

;;

Firstly, we note that if the path is f itself (i.e., n = 1 and g1 = f), the claim is trivial.
Now, suppose those morphisms h1, . . . , hn exist for the path gn ◦ sn−1 ◦ · · · ◦ g1 and let us
construct the desired morphisms k1, . . . , kn+1 for the path

gn ◦ sn−1 ◦ · · · sm ◦ y ◦ t ◦ (tx) ◦ sm−1 ◦ · · · ◦ s1 ◦ g1

where 1 6 m 6 n, t ∈ Σ and yx = gm (i.e., gm has been replaced by y ◦ t ◦ (tx)).

Am
gm //

x
  sm−1{{

Bm
sm

##
Bm−1

sm−1

;;

X

y

>>

t

��

Am+1

sm

cc

Z

t

OO

We set
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• ki = hi for all 1 6 i 6 m,

• km+1 = xhm,

• ki = hi−1 for all m+ 1 < i 6 n+ 1,

and all the desired equalities for the ki's immediately follow from the ones for the hi's.
Suppose now the morphisms h1, . . . , hn exist for the path gn ◦ sn−1 ◦ · · · ◦ g1 and let us

construct the desired morphisms k1, . . . , kn−1 for the path

gn ◦ sn−1 ◦ · · · sm+1 ◦ (gm+1x) ◦ sm−1 ◦ · · · ◦ s1 ◦ g1

where 1 6 m < n and smx = gm (i.e., gm+1 ◦ sm ◦ gm has been replaced by gm+1x).

Bm
sm

##

Bm+1

Am x
//

gm
==

Am+1

sm

cc

gm+1

::

We set

• ki = hi for all 1 6 i 6 m,

• ki = hi+1 for all m < i < n.

All the desired equalities for the ki's immediately follow from the ones for the hi's except
for G(gm+1xhm) = G(sm+1hm+2) if m < n−1 and G(gnxhn−1) = G(f) if m = n−1. Since
G(sm+1hm+2) = G(gm+1hm+1) for the �rst case and G(f) = G(gnhn) = G(gm+1hm+1) in
the second, it remains to prove G(gm+1xhm) = G(gm+1hm+1). Using our hypothesis (B)
about G, it su�ces to notice that

G(smxhm) = G(gmhm) = G(smhm+1).

Since each path equivalent to f is obtained from f by applying a �nite number of
times these two operations, this proves the claim that such morphisms h1, . . . , hn always
exist. To prove that H([f ]) 6 G(f), by de�nition of H([f ]), we need to prove that
G(gn) ◦

∨
Dsn−1 ◦ · · · ◦

∨
Ds1 ◦G(g1) 6 G(f) for all path gn ◦ sn−1 ◦ · · · ◦ s1 ◦ g1 equivalent

to f . Using our morphisms h1, . . . , hn, we have for each 1 6 i < n:

G(gn) ◦
∨

Dsn−1 ◦ · · · ◦G(gi+1) ◦
∨

Dsi ◦G(gihi)

= G(gn) ◦
∨

Dsn−1 ◦ · · · ◦G(gi+1) ◦
∨

Dsi ◦G(sihi+1)

6 G(gn) ◦
∨

Dsn−1 ◦ · · · ◦G(gi+1) ◦G(hi+1) since D is almost complete

6 G(gn) ◦
∨

Dsn−1 ◦ · · · ◦G(gi+1hi+1).
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Therefore, we have

G(gn) ◦
∨

Dsn−1 ◦ · · · ◦
∨

Ds1 ◦G(g1) = G(gn) ◦
∨

Dsn−1 ◦ · · · ◦
∨

Ds1 ◦G(g1h1)

6 G(gn) ◦
∨

Dsn−1 ◦ · · · ◦
∨

Ds2 ◦G(g2h2)

6 · · ·
6 G(gnhn)

= G(f)

concluding the proof of the �rst part of the statement.
2: Suppose now that G is an almost complete Pos-functor satisfying condition (C). It

is easy to see that G satis�es conditions (A) and (B). Notice also that, for any s : A→ B
in Σ,

Ds = {d ∈ D(G(B), G(A)) | d ◦G(s) 6 1G(A)}
and

∨
Ds ◦G(s) = 1G(A). It remains now to prove that the above constructed H is also a

Pos-functor. Since H is almost complete, it su�ces to prove H([q ◦ p]) = H([q]) ◦H([p])
for any pair of composable paths (p, q). In order to do so, let us de�ne, for each path p,
the morphism H ′(p) in D via the following rules:

• H ′(empty path on A) = 1G(A) for any object A,

• H ′(f ◦ p) = G(f) ◦H ′(p) for any path p composable with the morphism f of C,

• H ′(s ◦ p) =
∨
Ds ◦H ′(p) for any s : A→ B in Σ and any path p of codomain B.

We can immediately notice that since G is a Pos-functor:

• H ′(s ◦ s) =
∨
Ds ◦G(s) = 1G(A) = H ′(1A) for any s : A→ B in Σ,

• H ′(1A) = H ′(empty path on A) for any object A,

• H ′(g ◦f) = G(g)◦G(f) = G(gf) = H ′(gf) for any composable pair of arrows (f, g),

• H ′(q ◦ p) = H ′(q) ◦H ′(p) for any composable pair of paths (p, q) (by induction on
the size of q).

This proves that H ′(p) = H ′(p′) for any pair of equivalent paths (p, p′). Therefore, for
any path p, we have

H([p]) =
∨

[fn◦sn−1◦···◦f2◦s1◦f1]=[p]

(
G(fn) ◦

∨
Dsn−1 ◦ · · · ◦G(f2) ◦

∨
Ds1 ◦G(f1)

)
=

∨
[fn◦sn−1◦···◦f2◦s1◦f1]=[p]

H ′(fn ◦ sn−1 ◦ · · · ◦ f2 ◦ s1 ◦ f1)

=
∨

[fn◦sn−1◦···◦f2◦s1◦f1]=[p]

H ′(p)

= H ′(p).
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So, for any pair of composable paths (p, q), we have that

H([q ◦ p]) = H ′(q ◦ p) = H ′(q) ◦H ′(p) = H([q]) ◦H([p])

as desired.

4.2. Remark. Although condition (A) is necessary for the existence of a factorization
H : P0(C[1/Σ]) ⇀ D, condition (B) seems not to be so in the `lax world'. However, it
mimics the condition that G(s) should be a monomorphism for s ∈ Σ.

4.3. Remark. In [15], given a category C with pullbacks and a Σ containing isomorphisms
and stable under composition and pullbacks, the authors construct a functor Φ: C →
Sect(C,Σ) which sends elements of Σ to split monomorphisms. Moreover, a functorial
choice of retractions is given, and Φ is (strongly) universal among those functors equipped
with such a functorial choice of retractions (and satisfying a Beck-Chevalley condition).
In our category C[1/Σ], such a functorial choice is not possible since in general s ◦ t 6= ts
for s, t, ts ∈ Σ.

5. The Orthogonal Subcategory Problem

We use the following standard de�nitions (see for instance [14]).

5.1. Definition. In a category C, an object I is injective with respect to (respectively,
orthogonal to) a morphism s : A→ B if for all morphism f : A→ I, there exists (respec-
tively, there exists a unique) morphism g : B → I such that gs = f .

A
s //

∀ f
��

B

∃ g (resp. ∃! g)
��

I

In this case, we write s M I (respectively s ⊥ I).

For a class Σ of morphisms in C, we write

ΣM = {I ∈ ob(C) | s M I for all s ∈ Σ},

Σ⊥ = {I ∈ ob(C) | s ⊥ I for all s ∈ Σ}

and for a class I of objects in C, we write

IO = {s ∈ C | s M I for all I ∈ I},

I> = {s ∈ C | s ⊥ I for all I ∈ I}.

Given a class of morphisms Σ in C, the Orthogonal Subcategory Problem (OSP), which
�rst appeared in [10], deals with the question to know whether Σ⊥, considered as a
full subcategory of C, is re�ective in C. This problem has been deeply studied (see for
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instance [1, 3, 4, 6, 18, 20]) and connections with the category of fractions C[Σ−1] has been
established [11]. We recall in this section these connections. Since in [11] the condition
that Σ admits a left calculus of fractions was unnecessarily used, and since it is not known
to the author whether this easy generalization already appears in the literature, we re-
prove these results here without the left calculus of fractions assumption. The �nal goal
is to consider the weak version of Theorem 5.3 in the next section. We start with a lemma
generalizing 4.1.2 in [11]. To avoid technical size issues, we assume that Σ is a set although
this assumption might be relaxed.

5.2. Lemma. Let Σ be a set of morphisms in a category C. Given any map [p] : A → K
in C[Σ−1] where K ∈ Σ⊥, there exists a unique morphism f : A → K in C such that
FΣ−1(f) = [p].

Proof. Let us �rst prove existence. The map [p] : A → K is represented by a path
fn ◦ sn−1 ◦ · · · ◦ s1 ◦ f1 in GΣ−1 . We are going to construct morphisms gi : Bi → K in C
for each 1 6 i 6 n satisfying

• gn = 1K and

• gisi = gi+1fi+1 for all 1 6 i < n.

A=A1

f1 ##

A2

s1~~ f2   

· · · An

sn−1||

fn

##
B1

s1
>>

g1

88B2

g2

44· · · Bn−1

sn−1

<<

gn−1

// Bn=K gn
bb

We �rst construct gn = 1K . Now, suppose gi+1 is constructed for some 1 6 i < n. Since
K ∈ Σ⊥ and si ∈ Σ, there exists a unique morphism gi : Bi → K such that gisi = gi+1fi+1.
We now claim that FΣ−1(g1f1) = [p], proving the existence:

[p] = [fn] ◦ sn−1 ◦ · · · ◦ s1 ◦ [f1]

= FΣ−1(gnfn) ◦ FΣ−1(sn−1)−1 ◦ FΣ−1(fn−1) ◦ · · · ◦ FΣ−1(f2) ◦ FΣ−1(s1)−1 ◦ FΣ−1(f1)

= FΣ−1(gn−1sn−1) ◦ FΣ−1(sn−1)−1 ◦ FΣ−1(fn−1) ◦ · · · ◦ FΣ−1(f2) ◦ FΣ−1(s1)−1 ◦ FΣ−1(f1)

= FΣ−1(gn−1fn−1) ◦ FΣ−1(sn−2)−1 ◦ FΣ−1(fn−2) ◦ · · ·FΣ−1(f2) ◦ FΣ−1(s1)−1 ◦ FΣ−1(f1)

= · · ·
= FΣ−1(g1f1)

For uniqueness, we consider the full inclusion I : Σ⊥ ↪→ C and its shape V-category [8]
SI for a bigger universe V 3 U . This SI has the same objects as C, and morphisms A→ B
in SI are natural transformations C(B, I(−)) ⇒ C(A, I(−)). Composition is simply the
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composition of natural transformations. The functor

D : C −→SI
A 7−→A

f 7−→C(f, I(−))

sends elements of Σ to isomorphisms by de�nition of Σ⊥. Therefore, D factorizes uniquely
through FΣ−1 . So, if f, f ′ : A→ K are such that FΣ−1(f) = FΣ−1(f ′), then D(f) = D(f ′).
As usual, this implies

f = D(f)K(1K) = D(f ′)K(1K) = f ′

proving uniqueness.

5.3. Theorem. Let Σ be a set of morphisms in a category C. Denote by I : Σ⊥ ↪→ C the
full inclusion functor and FΣ−1 : C → C[Σ−1] the category of fractions with respect to Σ.

Σ⊥nN
I

~~

FΣ−1◦I

$$
C

FΣ−1

// C[Σ−1]

The following statements are equivalent:

(i) I has a left adjoint R for which the unit is inverted by FΣ−1;

(ii) FΣ−1 has a fully faithful right adjoint;

(iii) FΣ−1 ◦ I is essentially surjective on objects;

(iv) FΣ−1 ◦ I is an equivalence.

In this case, we have

{f ∈ C |FΣ−1(f) is an isomorphism} = {f ∈ C |R(f) is an isomorphism} = Σ⊥>

and this class of morphisms admits a left calculus of fractions as introduced in [11].

Proof. We �rst suppose (i). Let R : C → Σ⊥ be the left adjoint of I, η : 1C ⇒ IR the
unit and ε : RI ⇒ 1Σ⊥ the counit. Since I is fully faithful, ε is an isomorphism. Moreover,
by assumption, 1FΣ−1 ? η is an isomorphism. Given any s : A→ B in Σ⊥>,

A
s //

ηA

��

B

ηB

��

f

zz
R(A)

R(s) // R(B)
g
oo
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since R(A) ∈ Σ⊥, there exists a unique f : B → R(A) such that fs = ηA. Moreover, since
R(B) ∈ Σ⊥, R(s)f = ηB. Using the universality of ηB, there exists a unique g : R(B) →
R(A) such that gηB = f . These identities imply gR(s)ηA = ηA and R(s)gηB = ηB,
which in turn imply that R(s) is an isomorphism with inverse g. This proves Σ⊥> ⊆
{f ∈ C |R(f) is an isomorphism}. Conversely, if s : A → B is such that R(s) is an
isomorphism and h : A→ K is a map with codomain K ∈ Σ⊥,

A
s //

ηA

��

h

||

B

ηB

��
K R(A)

R(s)

∼= //
k
oo R(B)

there exists a unique k : R(A) → K such that kηA = h. So kR(s)−1ηBs = h. For
uniqueness, if x : B → K is such that xs = h, there exists a unique y : R(B) → K with
yηB = x. But yR(s)ηA = h = kηA implies that yR(s) = k and so x = yηB = kR(s)−1ηB.
We have thus proved that

{f ∈ C |R(f) is an isomorphism} = Σ⊥>

and in particular elements of Σ are sent by R to isomorphisms. Therefore, there is a
unique functor R̂ : C[Σ−1]→ Σ⊥ such that R̂ ◦ FΣ−1 = R.

Σ⊥nN
I

~~

FΣ−1◦I

$$

C
FΣ−1

//
R

>>

C[Σ−1]
R̂

dd
`

Using again the universal property of FΣ−1 , there exists a unique natural transformation
α : FΣ−1 ◦ I ◦ R̂ ⇒ 1C[Σ−1] such that α ? 1FΣ−1 = (1FΣ−1 ? η)−1. Moreover, since FΣ−1

is surjective on objects, α itself is an isomorphism. But we also have R̂ ◦ FΣ−1 ◦ I =
R ◦ I ∼= 1Σ⊥ , proving that FΣ−1 ◦ I is an equivalence with pseudo-inverse R̂. Then,
FΣ−1

∼= (FΣ−1 ◦ I) ◦ R has I ◦ R̂ as right adjoint which is fully faithful since I and R̂
are. We have thus proved (i) ⇒ (ii) + (iii) + (iv). Moreover, R̂ being an equivalence, we
already know that

{f ∈ C |FΣ−1(f) is an isomorphism} = {f ∈ C |R(f) is an isomorphism} = Σ⊥>.

By Proposition 5.3.1 in [4], this class of morphisms admits a left calculus of fractions.
Assume now (ii). Let G : C[Σ−1] → C be the fully faithful right adjoint of FΣ−1 with

unit η : 1C ⇒ G ◦ FΣ−1 and isomorphism counit α : FΣ−1 ◦ G ⇒ 1C[Σ−1]. We now prove
that for each object C of C[Σ−1] (i.e., of C), G(C) ∈ Σ⊥. This would prove (ii) ⇒ (iii).
So we consider s : A → B in Σ and f : A → G(C) any morphism in C. By the universal
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property of αC , we know there exists a unique g : B → G(C) such that αCFΣ−1(g) =
αCFΣ−1(f)FΣ−1(s)−1.

FΣ−1(B)
FΣ−1 (s)−1

//

FΣ−1 (g)

��

FΣ−1(A)
FΣ−1 (f)

// FΣ−1G(C)

αC

��
FΣ−1G(C) αC

// C

But this identity is equivalent to αCFΣ−1(gs) = αCFΣ−1(f), which, again by the universal
property of αC , is equivalent to gs = f , proving that G(C) ∈ Σ⊥ and so (ii) ⇒ (iii).

By Lemma 5.2, we know that FΣ−1 ◦ I is fully faithful, proving the equivalence (iii)⇔
(iv) (under the axiom of choice).

We now prove (iv) ⇒ (i). So suppose we have a pseudo-inverse H : C[Σ−1] → Σ⊥ for
FΣ−1◦I equipped with natural isomorphisms α : FΣ−1◦I◦H ⇒ 1C[Σ−1] and ε : H◦FΣ−1◦I ⇒
1Σ⊥ satisfying 1H ? α = ε ? 1H and α ? 1FΣ−1◦I = 1FΣ−1◦I ? ε. For each object C in C,

α−1
FΣ−1 (C) : FΣ−1(C)→ FΣ−1IHFΣ−1(C)

is a morphism in C[Σ−1] whose codomain is in Σ⊥. By Lemma 5.2, there exists a unique
morphism ηC : C → IHFΣ−1(C) in C such that FΣ−1(ηC) = α−1

FΣ−1 (C). The naturality of

α and the uniqueness part of Lemma 5.2 show that this de�nes a natural transformation
η : 1C ⇒ I ◦H ◦ FΣ−1 inverted by FΣ−1 . We then have

(ε ? 1H◦FΣ−1 )(1H◦FΣ−1 ? η) = (ε ? 1H◦FΣ−1 )(1H ? α
−1 ? 1FΣ−1 ) = 1H◦FΣ−1

and
(1FΣ−1◦I ? ε)(1FΣ−1 ? η ? 1I) = (1FΣ−1◦I ? ε)(α

−1 ? 1FΣ−1◦I) = 1FΣ−1◦I

proving once again by Lemma 5.2 that (1I ? ε)(η ? 1I) = 1I . Therefore I has a left adjoint
H ◦ FΣ−1 with unit η inverted by FΣ−1 .

In general, Σ⊥ may be re�exive in C without the unit being inverted by FΣ−1 (an
example can be found in [7]). But in that case, we have the following corollary.

5.4. Corollary. Let Σ be a set of morphisms in a category C such that Σ⊥> is also a
set. Denote by I : Σ⊥ ↪→ C the full inclusion functor and F(Σ⊥>)−1 : C → C[(Σ⊥>)−1] the
category of fractions with respect to Σ⊥>.

Σ⊥nN
I

~~

F
(Σ⊥>)−1◦I

&&
C

F
(Σ⊥>)−1

// C[(Σ⊥>)−1]

The following statements are equivalent:
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(i) I has a left adjoint R;

(ii) F(Σ⊥>)−1 has a fully faithful right adjoint;

(iii) F(Σ⊥>)−1 ◦ I is essentially surjective on objects;

(iv) F(Σ⊥>)−1 ◦ I is an equivalence.

In this case, we have

{f ∈ C |F(Σ⊥>)−1(f) is an isomorphism} = {f ∈ C |R(f) is an isomorphism} = Σ⊥>

and this class of morphisms admits a left calculus of fractions.

Proof. It su�ces to use Theorem 5.3 with Σ⊥> instead of Σ since Σ⊥>⊥ = Σ⊥. Notice
that when I has a left adjoint, the universal property of the unit η exactly means that
ηC ∈ Σ⊥> for all objects C in C.

6. An application: the Injective Subcategory Problem

As an application of Theorem 4.1, we prove in this �nal section the weak version of
Theorem 5.3. The weak version of the OSP is the Injective Subcategory Problem (ISP)
and deals with the question to know whether ΣM is weakly re�ective in C. As we are
going to show, this is linked with the existence of some sort of weak adjunction involving
F1/Σ : C → C[1/Σ].

6.1. Theorem. Let Σ be a set of morphisms in a category C. Denote by J : ΣM ↪→ C the
full inclusion functor.

ΣMnN
J

}}

F1/Σ◦J

$$
C

F1/Σ

// C[1/Σ]

The following statements are equivalent:

(i) each object C ∈ C has a weak re�ection nC : C → J(D) along J with nC ∈ Σ;

(ii) there exists

• a lax-Pos-functor G : P0(C[1/Σ]) ⇀ P0(C),
• a natural Pos-transformation η : 1P0(C) → G ◦ P0(F1/Σ) and

• a Pos-transformation ε : P0(F1/Σ) ◦G 1P0(C[1/Σ])

satisfying

• for all object C ∈ C, ηC = {nC} for some nC ∈ Σ,
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• 1G(D) 6 G(εD) ◦ ηG(D) for all object D in C[1/Σ];

(iii) there exist G, η and ε as in (ii) and satisfying, in addition to the above,

• G is almost complete,

• εP0(F1/Σ)(C) ◦ P0(F1/Σ)(ηC) = 1P0(F1/Σ)(C) for any object C in C.

In this case, we have

ΣMO = {f ∈ C |F1/Σ(f) is a split monomorphism}

and this class of morphisms contains all split monomorphisms, is closed under composition
and given any span f : A→ B, g : A→ C in C with f ∈ ΣMO,

A
f∈ΣMO

//

g

��

B

g′

��
C

f ′∈ΣMO
// D

one can �nd f ′ and g′ in C such that f ′ ∈ ΣMO and f ′g = g′f .

Proof. Suppose (i). By Theorem 3.6, we know P0(J) has an almost complete weak left
adjoint R : P0(C) ⇀ P0(ΣM) given by

R(f) = {g : R(A)→ R(B) | J(g)nA = nBf}

A
f //

nA

��

B

nB

��
JR(A)

J(g)
// JR(B)

for any f : A→ B in C. It comes equipped with a natural Pos-transformation η : 1P0(C) →
P0(J)◦R given by ηC = {nC} for C ∈ C and a Pos-transformation θ : R◦P0(J) 1P0(ΣM)

such that P0(J)(θK) ◦ ηP0(J)(K) = 1P0(J)(K) for each K ∈ ΣM. Now, let us check R satis�es
conditions (A) and (B) of Theorem 4.1. Given any s : A→ B in Σ,

A
s //

nA

��

B

nB

��

k

yy
JR(A) JR(B)

d
oo

since R(A) ∈ ΣM, there exists an k : B → JR(A) such that ks = nA. Since (R(B), nB) is
a weak re�ection, there exists d : R(B) → R(A) such that dnB = k. Given f : C → A in
C and g ∈ R(sf), then dg ∈ R(f) since

dgnC = dnBsf = ksf = nAf
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proving condition (A). Now, given f, f ′ : C → A such that R(sf) = R(sf ′), h : A → D
and l ∈ R(hf), we need to prove l ∈ R(hf ′).

C
f //
f ′

//

nC

��

A
s //

h

&&
nA

��

B

nB

��

D

nD

��

JR(C)

l ,,

g

,,
JR(A)

m
%%

JR(B)
d

oo

JR(D)

Pick any g ∈ R(sf) = R(sf ′) and any m ∈ R(h). By condition (A), we already know
that dg ∈ R(f). We then have l ∈ R(hf ′) since

lnC = nDhf = mnAf = mdgnC = mdnBsf
′ = mnAf

′ = nDhf
′

proving condition (B). Therefore, by Theorem 4.1, there exists an almost complete lax-
Pos-functor R′ : P0(C[1/Σ]) ⇀ P0(ΣM) such that R′ ◦ P0(F1/Σ) = R.

P0(ΣM)kKP0(J)

yy

P0(F1/Σ)◦P0(J)

''

P0(C)
P0(F1/Σ)

//
R

5

P0(C[1/Σ])
R′

b

Let G = P0(J) ◦R′. Since G ◦ P0(F1/Σ) = P0(J) ◦R′ ◦ P0(F1/Σ) = P0(J) ◦R, the natural
Pos-transformation η : 1P0(C) → P0(J) ◦ R is the required one. Now, given any object
D ∈ C[1/Σ], we de�ne

εD = {e ∈ C[1/Σ](JR(D), D) | e ◦ [nD] = 1D}.

This set is non-empty since [nD] ∈ εD. Hence, this de�nes a Pos-transformation
ε : P0(F1/Σ) ◦ G  1P0(C[1/Σ]) satisfying εP0(F1/Σ)(C) ◦ P0(F1/Σ)(ηC) = 1P0(F1/Σ)(C) for each
object C in C. To prove the inequality in (ii), we consider, for any object D ∈ C[1/Σ], a
morphism d : RJR(D)→ R(D) such that dnJR(D) = 1JR(D).

JR(D)
nJR(D)//

1JR(D)

��

JRJR(D)

dxx
JR(D)
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In particular, dnJR(D)nD = nD, proving that {d} ◦ R(nDf) ⊆ R(f) for any f ∈ C(D′, D)
by the above argument. By the construction of R′ given in Theorem 4.1, this immediately
shows that d ∈ R′([nD]). Therefore,

G(εD) ◦ ηG(D) = P0(J)(R′(εD)) ◦ {nJR(D)}
⊇ P0(J)(R′([nD])) ◦ {nJR(D)}
3 d ◦ nJR(D)

= 1JR(D)

= 1G(D)

proving (iii).
(iii)⇒ (ii) being trivial, let us prove (ii)⇒ (i). Let us �rst prove that if C is an object

of C[1/Σ] (i.e., of C), then G(C) ∈ ΣM. Let s : A→ B in Σ and f : A→ G(C) in C.

A
s //

f

��

nA
((

B
nB

""
G(A)

G(P0(F1/Σ)(s))
////

��

G(P0(F1/Σ)(f))

��

G(B)mm

G([s])

mm

G(C)

G(P0(F1/Σ)(G(C)))

hh

G(εC)

hh

We know that

G([s]) ◦G(P0(F1/Σ)(s)) ◦ ηA ⊆ G([s] ◦ P0(F1/Σ)(s)) ◦ ηA
= G(1A) ◦ ηA
= G(P0(F1/Σ)(1A)) ◦ ηA
= ηA ◦ 1A

= ηA.

Since ηA is the singleton {nA}, this proves that G([s]) ◦ G(P0(F1/Σ)(s)) ◦ ηA = ηA. We
can thus compute

G(εC) ◦G(P0(F1/Σ)(f)) ◦G([s]) ◦ ηB ◦ {s}
= G(εC) ◦G(P0(F1/Σ)(f)) ◦G([s]) ◦G(P0(F1/Σ)(s)) ◦ ηA
= G(εC) ◦G(P0(F1/Σ)(f)) ◦ ηA
= G(εC) ◦ ηG(C) ◦ {f}
3 f
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where the last line is deduced from 1G(C) ∈ G(εC) ◦ ηG(C). Therefore, there must exist
g ∈ G(εC)◦G(P0(F1/Σ)(f))◦G([s])◦ηB such that gs = f , proving that G(C) ∈ ΣM. Now,
nC : C → G(C) = JG(C) is a weak re�ection for C along J since nC ∈ Σ. We have thus
proved (i).

Now, let us suppose these conditions hold. We use the notation of the proof of
(i) ⇒ (iii). For any f : A→ B ∈ ΣMO, there exists k : B → JR(A) such that kf = nA.

A
f //

nA

��

B

k{{
JR(A)

We thus have
[nA] ◦ F1/Σ(k) ◦ F1/Σ(f) = [nA] ◦ F1/Σ(nA) = 1A

in C[1/Σ], proving that F1/Σ(f) is a split monomorphism. Conversely, if f ∈ C(A,B) is
such that F1/Σ(f) is a split monomorphism, choose [p] ∈ C[1/Σ](B,A) such that
[p] ◦ F1/Σ(f) = 1A. Given any x ∈ R′([p]) and any g ∈ R(f), we have

xg ∈ x ◦R(f) ⊆ R′([p]) ◦R′(F1/Σ(f)) ⊆ R′([p] ◦ F1/Σ(f)) = R′(1A) = R(1A).

This means xgnA = nA. Now, given any k ∈ C(A, J(K)) with K ∈ ΣM, we know there
exists h : R(A)→ K such that hnA = k.

A
f //

nA

��

k

zz

B

nB

��
J(K) JR(A)

h
oo

g // JR(B)
x
oo

Then, we have
hxnBf = hxgnA = hnA = k

proving that f ∈ ΣMO. Hence we have

ΣMO = {f ∈ C |F1/Σ(f) is a split monomorphism}

and this class of morphisms obviously contains split monomorphisms and is closed under
composition.

Finally, let f : A → B and g : A → C in C with f ∈ ΣMO. Since R(C) ∈ ΣM, this
implies that there exists g′ : B → JR(C) making the diagram

A
f //

g

��

B

g′

��
C nC

// JR(C)

commutative. This proves the required condition since nC ∈ Σ ⊆ ΣMO.
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