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A NOTE ON INTERNAL OBJECT ACTION REPRESENTABILITY
OF 1-CAT GROUPS AND CROSSED MODULES

PAKO RAMASU

Abstract. The category of 1-cat groups, which is equivalent to the category of crossed
modules, has internal object actions which are representable (by internal automorphism
groups). Moreover, it is known that the crossed module, corresponding to the repre-
senting object [X] = Aut(X) associated with a 1-cat group X, must be isomorphic to
the Norrie actor of the crossed module corresponding to X. We recall the description of
Aut(X) from the author’s PhD thesis, and construct that isomorphism explicitly.

1. Introduction

There are various contexts, unified in [BJK2005a] (see also [BJK2005b]) based on old
ideas of G. M. Kelly, where one can consider the set Act(B,X) of actions of B on X,
and, moreover, make Act(−, X) a functor Cop → Sets, where C is the suitable category
of acting objects. We then might have

Act(−, X) ≈ hom(−, [X]), (1)

for some object [X] in C, and if it is the case for each object X from the category of objects
on which the objects of C act, we say that the actions are representable. This notion
of representable actions was also introduced in [BJK2005a], where the main example of
internal object actions came from the general theory of semidirect products [BJ1998].
The context we need here is what is described in Subsection 4.4 of [BJK2005a], which is:
•

• Our ground category C is the category of internal groups in a cartesian closed cat-
egory E with finite limits, and we assume C to be semi-abelian in the sense of
[JMT2002].

• An action of an object B of C on an object X of C can be identified with a
morphism h : B × X → X satisfying the usual conditions, which, expressed in
terms of generalized elements with h(b, x) written as bx, are:

0x = 0, b1(b2x) = (b1 + b2)x, b(x1 + x2) = bx1 + bx2; (2)
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note that we are using additive notation, even though our groups are not necessarily
abelian.

• In this case [X] = Aut(X), the internal automorphism group of X. As mentioned
in [BJK2005a], it is constructed in a straightforward way; however, it involves long
calculations, whose details can be found in [BCM2014].

More specifically, we are going to consider the case of E being the category of all (small)
categories, which allows us to describe C either as: •

• the category of crossed modules (see e.g. [BS1976]), or as:

• the category of 1-cat groups [L1982].

In my PhD Thesis [R2015], I was using, with help of George Janelidze, who was my PhD
supervisor then, the second description to calculate [X] = Aut(X) fully (and even to
extend it to n-cat groups, for an arbitrary natural n). The result, recalled in Section
2 below, looks very different from what K. Norrie calls the actor of a crossed module
in [N1990], and what is recalled in our Sections 3. Nevertheless, as follows from an
observation in [BJK2005a], and in fact also from the results of [N1990], there should
be no difference. More precisely, the crossed module corresponding to our calculated
[X] = Aut(X) should be isomorphic to the Norrie actor of crossed module corresponding
toX. Constructing this isomorphism explicitly (see Section 4) is the purpose of the present
paper. What seems to make this construction interesting is that the two descriptions, of
the internal automorphism group and of the Norrie actor, come from very different sources,
namely from the theory of cartesian closed categories and from homotopical algebra (for
the latter see references in [N1990], especially [L1979] and [W1948]).

2. The 1-cat presentation

Let M = {1, s, t} be the monoid in which

st = t and ts = s, (3)

and which also implies that s and t are idempotents. A 1-cat group X can be described
as an M -group X with

(sx1 = 0 = tx2)⇒ x1 + x2 = x2 + x1, (4)

for all x1, x2 ∈ X, in the additive notation. Since the category of 1-cat groups can be
identified with the category of internal groups in a cartesian closed category (of all small
categories), each 1-cat group X has its internal automorphism group Aut(X), which is
also a 1-cat group. Long but routine calculations made in [R2015] show that Aut(X) can
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be presented as the 1-cat group of maps
α : M ×X → X with

mα(m′, x) = α(mm′,mx), (5)

α(m,x1 + x2) = α(m,x1) + α(m,x2), (6)

α(m,−) : X → X is a bijection, (7)

α(1, x) = α(1, tx)− α(s, tx) + α(s, x), (8)

α(1, x) = α(t, x)− α(t, sx) + α(1, sx), (9)

for all m,m′ ∈M and x1, x2 ∈ X; the M -action on Aut(X) is defined by

(m′α)(m,x) = α(mm′, x), (10)

while the addition on Aut(X) is defined by

(α + β)(m,x) = α(m,β(m,x)), (11)

making the second projection M ×X → X the zero element of Aut(X).

3. The Norrie presentation

Recall that a crossed module is triple (K,B, ∂), in which B and K are groups with B
acting on K, and ∂ : K → B is a group homomorphism with

∂(bk) = b+ ∂(k)− b, (12)

∂(k1)k2 = k1 + k2 − k1, (13)

for all b ∈ B and k1, k2 ∈ K.
For example, a 1-cat group X presented as in Section 2 determines a crossed module
(KX , BX , ∂X) in which:

KX = {x ∈ X|sx = 0}, (14)

BX = {x ∈ X|sx = x} = {x ∈ X|tx = x}, (15)

BX acts on KX via bk = b+ k − b, (16)

∂X : KX → BX is defined by ∂X(k) = tk. (17)

The Norrie actor A(K,B, ∂) = (D(B,K), Aut(K,B, ∂),∆) [N1990] of a crossed module
(K,B, ∂) is described as follows: •
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• Aut(K,B, ∂) is the ordinary automorphism group of (K,B, ∂), that is,

Aut(K,B, ∂) = {(κ, β) ∈ Aut(K)×Aut(B)|β∂ = ∂κ and ∀k∈K ∀b∈B κ(bk) = β(b)κ(k)};
(18)

• a map d : B → K is called a derivation (= a crossed homomorphism) if

d(b1 + b2) = d(b1) + b1d(b2), (19)

for all b1, b2 ∈ B, and such derivations form an additive (not necessarily commuta-
tive) monoid Der(B,K), whose addition is defined by

(d1 + d2)(b) = d1(∂d2(b) + b) + d2(b) = d1∂d2(b) + d2(b) + d1(b) (20)

(where the second equality follows from
d1(∂d2(b) + b) + d2(b) = d1∂d2(b) + d2(b) + d1(b)− d2(b) + d2(b))
which makes the zero map B → K the zero element of Der(B,K);

• D(B,K) is defined as the group of invertible elements of the monoid Der(B,K);

• the action of Aut(K,B, ∂) on D(B,K) is defined by

(κ, β)d = κdβ−1; (21)

• the homomorphism ∆ : D(B,K)→ Aut(K,B, ∂) is defined by
∆(d) = (∆1(d),∆2(d)), where

∆1(d)(k) = d∂(k) + k and ∆2(d)(b) = ∂d(b) + b. (22)

Note: using the maps ∆1 and ∆2 one obtains nicer forms of (19), namely

(d1 + d2)(b) = d1∆2(d2)(b) + d2(b) = ∆1(d1)d2(b) + d1(b). (23)

4. The isomorphism

In this section we fix: •

• a 1-cat group X presented as an M -group, as in Section 2;

• the corresponding crossed module (KX , BX , ∂X) = (K,B, ∂);

• the Norrie actor A(K,B, ∂) = (D(B,K), Aut(K,B, ∂),∆) of (K,B, ∂);

• the crossed module corresponding to the 1-cat group Aut(X), which will be denoted
by (K,B, ∂).

And our aim is to construct an isomorphism

(D(B,K), Aut(K,B, ∂),∆) ≈ (K,B, ∂). (24)
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4.1. Lemma.

(a) K = {α ∈ Aut(X)|∀x∈X α(s, x) = x};

(b) B = {α ∈ Aut(X)|∀x∈X α(1, x) = α(s, x) = α(t, x)};

(c) B acts on K via bk(m,x) = b(m, k(m, b(m,−)−1(x)));

(d) ∂ : K → B is defined by ∂(k)(m,x) = k(t, x).

Proof.

(a) According to (14), K = {α ∈ Aut(X)|sα = 0}, and we calculate, for any m ∈M :
(sα)(m,x) = α(ms, x) (by (10))
= α(s, x) (since ms = s for every m ∈M).
Since 0 of Aut(X) is the second projection M ×X → X, as mentioned at the end
of Section 2, this implies that sα = 0 is equivalent to ∀x∈X α(s, x) = x.

(b) For α ∈ Aut(X), we have:
α ∈ B ⇐⇒ sα = α (by (15))
⇐⇒ ∀m∈M ∀x∈X α(ms, x) = α(m,x) (by (10))
⇐⇒ ∀m∈M ∀x∈X α(s, x) = α(m,x) (again since ms = s for every m ∈M)
⇐⇒ ∀x∈X α(1, x) = α(s, x) = α(t, x).

(c) follows from (11) and (16).

(d) follows from (17), (10), and the fact that mt = t for every m ∈M .

4.2. Lemma. The formula
f(α)(x) = α(1, x)− x (25)

defines a group homomorphism f : K → D(B,K).

Proof. We need to prove the following:

(a) for every α ∈ K and x ∈ B, α(1, x)− x belongs to K.

(b) for every α ∈ K, the map f(α) : B → K defined by (25) is a derivation, that is, it
belongs to Der(B,K);

(c) f(α1 + α2) = f(α1) + f(α2) for all α1, α2 ∈ K;

(d) the derivations of the form f(α) above are invertible, that is, they belong to D(B,K).

Proof of (a): We have
s(α(1, x)− x) = sα(1, x)− sx (since X is an M -group)
= α(s, sx)− sx (by (5))
= sx− sx (by Lemma 4.1(a))
= 0.
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Proof of (b): According to (19), we need to prove that

α(1, x1 + x2)− (x1 + x2) = α(1, x1)− x1 + x1(α(1, x2)− x2), (26)

for all x1, x2 ∈ B. We have:
α(1, x1 + x2)− (x1 + x2) = α(1, x1) + α(1, x2)− (x1 + x2) (by (6))
= α(1, x1) + α(1, x2)− x2 − x1,
and so to prove (26) is to show that

x1 + α(1, x2)− x2 − x1 = x1(α(1, x2)− x2),

which follows from (16).

Proof of (c): For α1, α2 ∈ K and x ∈ B we have:
f(α1 + α2)(x) = (α1 + α2)(1, x)− x (by definition of f)
= α1(1, α2(1, x))− x (by (11))
= α1(1, tα2(1, x))− α1(s, tα2(1, x)) + α1(s, α2(1, x))− x (by (8) used for α2(1, x) instead

of x)
= α1(1, tα2(1, x))− tα2(1, x) + α2(1, x)− x (by Lemma 4.1(a))

and

(f(α1) + f(α2))(x) = f(α1)(tf(α2)(x) + x) + f(α2)(x) (by the first equality of (20)
and (17))

= f(α1)(t(α2(1, x)− x) + x) + α2(1, x)− x (by the definition of f)
= f(α1)(tα2(1, x)) + α2(1, x)− x (since tx = x, by (15))
= α1(1, tα2(1, x))− tα2(1, x) + α2(1, x)− x (by the definition of f).

That is, f(α1 + α2) = f(α1) + f(α2) for all α1, α2 ∈ K.

Proof of (d): Since K is a group, having proved (c) we only need to prove f(0) = 0.
For, just note: •

• K is a subgroup of Aut(X);

• the 0 of Aut(X) the second projection M × X → X, as mentioned at the end of
Section 2;

• therefore f(0)(x) = x− x = 0;

• the 0 of D(B,K)is the zero map B → K, as mentioned below (20).
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Let us put f(α) = d and try to recover α ∈ K from d. For, take an arbitrary each
x ∈ X, and observe:
•

(a) since α is in K, α(s, x) = x (by Lemma 4.1(a));

(b) α(1, sx) = d(sx) + sx and α(1, tx) = d(tx) + tx (by (25));

(c) α(t, sx) = α(t, tsx) = tα(1, sx) (by (5));

(d) α(t, sx) = td(sx) + tsx = td(sx) + sx (by (c) and (b));

(e) α(1, x) = α(1, tx)− α(s, tx) + α(s, x) = d(tx) + tx− tx+ x = d(tx) + x (where the
first equality is (8), while the second one follows from (b) and (a));

(f) α(t, x) = α(1, x)− α(1, sx) + α(t, sx) = d(tx) + x− sx− d(sx) + td(sx) + sx
= d(tx) − d(sx) + td(sx) + x − sx + sx = d(tx) − d(sx) + td(sx) + x (where: the
first equality follows from (9); the second one follows from (e), (b), and (d); and the
third one from (4), since s(x− sx) = 0 = t(−d(sx) + td(sx))).

Denoting α by g(d), this gives:

g(d)(m,x) =


d(tx) + x, if m = 1;

x if m = s;
d(tx)− d(sx) + td(sx) + x, if m = t.

(27)

We can also rewrite this as{
g(d)(s, x) = x,

g(d)(m,x) = d(tx)− d(sx) +md(sx) + x, if m 6= s.
(28)

4.3. Lemma. The pair (28) of formulas defines a map g : D(B,K)→ K.

Proof. We need to prove that the map α : M ×X → X, defined by

α(m,x) =


d(tx) + x, if m = 1;

x if m = s;
d(tx)− d(sx) + td(sx) + x, if m = t;

(29)

belongs to Aut(X), that is, it satisfies (5)-(9); if so, then it will belong to K by Lemma
4.1(a). Note also, that verifying (5)-(7) we exclude the trivial case m = s.

Verification of (5). Here the case m = 1 is also trivial, and so we only need to con-
sider the case m = t. We have:

tα(1, x) = t(d(tx) + x) = td(tx) + tx = d(tx)− d(tx) + td(tx) + tx
= d(ttx)− d(stx) + td(stx) + tx = α(t, tx) = α(t1, tx);
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tα(s, x) = ts = α(s, tx) = α(ts, tx);

tα(t, x) = td(tx)− td(sx) + ttd(sx) + tx = td(tx) + tx = α(t, tx) = α(tt, tx),
(where the equality td(stx) + tx = α(t, tx) already has appeared in the first calculation
of this proof).

Verification of (6). First note that, for all b1 and b2 in
B = BX = {x ∈ X|sx = x} = {x ∈ X|tx = x}, we have

d(b1 + b2) = d(b1) + b1 + d(b2)− b1 (30)

in X, as follows from (19) and (16). Then, suppose m = 1; we have:
α(1, x1 + x2) = d(tx1 + tx2) + x1 + x2 = d(tx1) + tx1 + d(tx2)− tx1 + x1 + x2 (by (30))
= d(tx1) + tx1 − tx1 + x1 + d(tx2) + x2 (since sd(tx2) = 0 = t(−tx1 + x1))
= d(tx1) + x1 + d(tx2) + x2 = α(1, x1) + α(1, x2).

Now suppose m = t; we have:
α(t, x1 + x2) = d(tx1 + tx2)− d(sx1 + sx2) + td(sx1 + sx2) + x1 + x2

= (d(tx1) + tx1 + d(tx2)− tx1)− (d(sx1) + sx1 + d(sx2)− sx1) + t(d(sx1) + sx1 + d(sx2)−
sx1) + x1 + x2 (by (30))
= d(tx1)+tx1+d(tx2)−tx1+sx1−d(sx2)−sx1−d(sx1)+td(sx1)+sx1+td(sx2)−sx1+x1+x2

(using ts = s twice)
= d(tx1)−d(sx1)+td(sx1)+tx1+d(tx2)−tx1+sx1−d(sx2)−sx1+sx1+td(sx2)−sx1+x1+x2

(since s(tx1 +d(tx2)− tx1 +sx1−d(sx2)−sx1) = 0 = t(−d(sx1)+ td(sx1)))
= d(tx1)− d(sx1) + td(sx1) + tx1 + d(tx2)− tx1 + sx1 − d(sx2) + td(sx2)− sx1 + x1 + x2

= d(tx1)− d(sx1) + td(sx1) + tx1 + d(tx2)− tx1 + sx1 − sx1 + x1 − d(sx2) + td(sx2) + x2

(since s(−sx1 +x1) = 0 = t(−d(sx2)+td(sx2)))
= d(tx1)− d(sx1) + td(sx1) + tx1 + d(tx2)− tx1 + x1 − d(sx2) + td(sx2) + x2

= d(tx1)− d(sx1) + td(sx1) + tx1 − tx1 + x1 + d(tx2)− d(sx2) + td(sx2) + x2

(since s(d(tx2)) = 0 = t(−tx1 +x1))
= d(tx1)− d(sx1) + td(sx1) + x1 + d(tx2)− d(sx2) + td(sx2) + x2 = α(t, x1) + α(t, x2).

Verification of (7). Let β : M × X → X be the map defined in the same way as α
but with d replaced with its inverse e in the group D(B,K). We have:
α(1, β(1, x)) = α(1, e(tx) + x) = d(t(e(tx) + x)) + e(tx) + x
= d(te(tx) + tx) + e(tx) + x = (d+ e)(tx) + x (by the first equality of (20) and (17))
= g(d+ e)(1, x) (by (27))
= x (which easily follows from d+ e = 0),
and similarly β(1, α(1, x)) = x, which proves that α(1,−) : X → X is a bijection.

Next, we have:
α(t, β(t, x)) = α(t, e(tx)− e(sx) + te(sx) + x)
= d(t(e(tx)− e(sx) + te(sx) +x))−d(s(e(tx)− e(sx) + te(sx) +x)) + td(s(e(tx)− e(sx) +
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te(sx) + x)) + e(tx)− e(sx) + te(sx) + x
= d(te(tx)− te(sx) + te(sx) + tx)−d(se(tx)− se(sx) + te(sx) + sx) + td(se(tx)− se(sx) +
te(sx) + sx) + e(tx)− e(sx) + te(sx) + x
= d(te(tx) + tx) − d(te(sx) + sx) + td(te(sx) + sx) + e(tx) − e(sx) + te(sx) + x (using

the fact that se(tx) = 0 = se(sx) twice)
= d(te(tx) + tx) + e(tx)− e(sx)− d(te(sx) + sx) + t(d(te(sx) + sx)) + te(sx) + x (since

s(+e(tx)− e(sx)) = 0 = t(−d(te(sx) + sx) + t(d(te(sx) + sx))))
= d(te(tx) + tx) + e(tx)− (d(te(sx) + sx) + e(sx)) + t(d(te(sx) + sx) + e(sx)) + x
= (d+ e)(tx)− (d+ e)(sx) + t(d+ e)(sx) + x (by the first equality of (20) and (17))
= g(d+ e)(t, x) (by (27))
= x (since d+ e = 0 again).
After that we conclude that α(m,−) : X → X is a bijection in the same way as we did
for α(1,−).

Verification of (8) and (9) . We have:
α(1, tx)− α(s, tx) + α(s, x) = d(tx) + tx− tx+ x = d(tx) + x = α(1, x),

and

α(t, x)− α(t, sx) + α(1, sx) = d(tx)− d(sx) + td(sx) + x− (d(tsx)− d(ssx) + td(ssx) +
sx) + d(tsx) + sx
= d(tx)− d(sx) + td(sx) + x− sx− td(sx) + d(sx) + sx
= d(tx)− d(sx) + td(sx)− td(sx) + d(sx) + x− sx+ sx (since s(x− sx) = 0

= t(−td(sx) + d(sx)))
= d(tx) + x = α(1, x).

4.4. Lemma. The maps f : K → D(B,K) and g : D(B,K) → K, of Lemmas 4.2 and
4.3, are inverse of each other.

Proof. gf = 1K by the definition of g. For fg, any d ∈ D(B,K) , and any x ∈ B, we
have:

((fg))(d)(x) = (f(g(d))(x) = g(d)(1, x)− x = d(tx) + x− x (by (27))
= d(tx) = d(x) (since x is in B).

That is, fg(d) = d (for any d ∈ D(B,K)), and so fg = 1D(B,K).

4.5. Lemma. The assignment

p(α) = (p1(α), p2(α)), where p1(α)(k) = α(1, k) and p2(α)(b) = α(1, b), (31)

defines a map p : B → Aut(K,B, ∂).

Proof. Let us write p(α) = (κ, β). First of all, for k ∈ K, we have
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s(κ(k)) = sα(1, k) = α(s, sk) (by (5))
= α(s, 0) (by (14))
= 0 (the fact that α(s,−) preserves zero follows from (6)),

and, for b ∈ B, we have

sβ(b) = sα(1, b) = α(s, sb) (as above)
= α(s, b) (by (15))
= α(1, b) (by Lemma 4.1(b))
= β(b);
that is, κ(k) and β(b) belong to K and B, respectively. After that (6) (together with
(11)) and (7) tell us that (κ, β) belongs to Aut(K)×Aut(B), and we only need to prove
that β∂ = ∂κ and κ(bk) = β(b)κ(k) for all k ∈ K and b ∈ B. We have:

β∂(k) = β(tk) (by (17))
= α(1, tk) (by (31))
= α(t, tk) (by Lemma 4.1(b))
= tα(1, k) (by (5))
= ∂κ(k),

κ(bk) = α(1, bk) = α(1, b+ k − b) (by (16))
= α(1, b) + α(1, k)− α(1, b) (by (6))
= β(b) + κ(k)− β(b) = β(b)κ(k) (by (16)),

and so (κ, β) belongs to Aut(K,B, ∂) as desired.

4.6. Lemma. The map p : B → Aut(K,B, ∂) is a group homomorphism.

Proof. For α1 and α2 in B, k in K, and b in B, we have to prove that
p1(α1 + α2)(k) = p1(α1)(p1(α2)(k)) and p2(α1 + α2)(b) = p2(α1)(p2(α2)(b)),
that is, to prove that
(α1 + α2)(1, k) = α1(1, α2(1, k)) and (α1 + α2)(1, b) = α1(1, α2(1, b)),
but both of these equalities are special cases of (11).

4.7. Lemma. The formula

q(κ, β)(m,x) = κ(x− sx) + β(sx) (32)

defines a map q : Aut(K,B, ∂)→ B.

Proof. First of all, the expression κ(x− sx) + β(sx) is well-defined, which follows from
(14) and (15), since s(x−sx) = 0 and s(sx) = sx. Next, it is independent of m, as needed
according to Lemma 4.1(b). After that we write α(m,x) = κ(x − sx) + β(sx), and we
have to prove that conditions (5)-(9) are satisfied.
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Verification of (5). The case m = 1 is trivial. We have
sα(m′, x) = sκ(x− sx) + sβ(sx)
= β(sx) (by (14) and (15), since κ(x− sx) ∈ K and β(sx) ∈ B)
= κ(sx− ssx) + β(ssx) = α(sm′, sx);

tα(m′, x) = tκ(x− sx) + tβ(sx)
= ∂κ(x− sx) + β(sx) (using (17) and the fact that β(sx) is in B)
= β∂(x− sx) + β(sx) (since (κ, β) is in Aut(K,B, ∂))
= β(tx− sx) + β(sx) (by (17))
= β(tx)− β(sx) + β(sx) (since β is in Aut(B), and both tx and sx are in B)
= β(tx) = κ(tx− stx) + β(stx) = α(tm′, tx).

Verification of (6). We have
α(m,x1+x2) = κ(x1+x2−s(x1+x2))+β(s(x1+x2)) = κ(x1+x2−sx2−sx1)+β(sx1+sx2)
= κ(x1− sx1 + sx1 + x2− sx2− sx1) + β(sx1) + β(sx2) (since both sx1 and sx2 are in B,

we can indeed write β(sx1 + sx2) = β(sx1) +β(sx2))
= κ(x1 − sx1 + (sx1)(x2 − sx2)) + β(sx1) + β(sx2) (by (16))
= κ(x1−sx1)+κ((sx1)(x2−sx2))+β(sx1)+β(sx2) (since both x1−sx1 and (sx1)(x2−sx2))
are in K, we can indeed write κ(x1− sx1 + (sx1)(x2− sx2)) = κ(x1− sx1) + κ((sx1)(x2−
sx2)))
= κ(x1 − sx1) + β(sx1)κ(x2 − sx2) + β(sx1) + β(sx2) (since (κ, β) is in Aut(K,B, ∂))
= κ(x1 − sx1) + β(sx1) + κ(x2 − sx2)− β(sx1) + β(sx1) + β(sx2) (by (16))
= κ(x1 − sx1) + β(sx1) + κ(x2 − sx2) + β(sx2)
= α(m,x1) + α(m,x2).

Verification of (7). We define a map γ : X → X by γ(x) = κ−1(x − sx) + β−1(sx),
and calculate
γ(α(m,x)) = κ−1(α(m,x)− sα(m,x)) + β−1(sα(m,x))
= κ−1(k(x− sx) + β(sx)− s(κ(x− sx) + β(sx))) + β−1(s(κ(x− sx) + β(sx)))
= κ−1(k(x− sx)) + β−1(β(sx)) (since sκ(x− sx) = 0 and sβ(sx) = β(sx), which follows

from (14) and 15), respectively)
= x− sx+ sx
= x,
which tells us that the composite γα(m,−) is the identity map of X; similarly, so is
α(m,−)γ. This proves (7).

Verification of (8) and (9): just use the fact that α(m,x) is independent of m.

4.8. Lemma. The maps p : B → Aut(K,B, ∂) and q : Aut(K,B, ∂) → B, of Lemmas
4.5 and 4.7, are inverse of each other.

Proof. To prove that pq is the identity map of Aut(K,B, ∂) is to prove that, for each
(κ, β) ∈ Aut(K,B, ∂), we have
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p1q(κ, β) = κ and p2q(κ, β) = β,

which means that, for each k ∈ K and each b ∈ B, we have

κ(k − sk) + β(sk) = κ(k) and κ(b− sb) + β(sb) = β(b).

The first of these two formulas follows from (14), while the second one follows from (15).

To prove that qp is the identity map of B is to prove that, for each α ∈ B, we have

qp(α) = α,

which means that, for each (m,x) ∈M ×X, we have

α(1, x− sx) + α(1, sx) = α(m,x).

Indeed,
α(1, x− sx) + α(1, sx) = α(1, x) (by (6)), and α(1, x) = α(m,x) (by Lemma 4.1(b)).

4.9. Lemma. The diagram

K

f
��

∂ // B

p

��
D(B,K) ∆ // Aut(K,B, ∂)

(33)

commutes.

Proof. To prove that diagram (33) commutes, is to prove that, for each α ∈ K, we have

p1(∂(α)) = ∆1(f(α)) and p2(∂(α)) = ∆2(f(α)),

which means that, for each k ∈ K and each b ∈ B, we have

α(t, k) = f(α)∂(k) + k and α(t, b) = ∂f(α)(b) + b,

or, equivalently (by (17) and our definition of f),

α(t, k) = α(1, tk)− tk + k and α(t, b) = tα(1, b)− tb+ b.

The first of these two formulas follows from (8) and Lemma 4.1(a), while the second one
follows from (5) and tb = b (by (15)).
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4.10. Lemma. For every k ∈ K and every b ∈ B, we have f(bk) = p(b)f(k).

Proof. For any x ∈ B, we have
(p(b)f(k))(x) = (p1(b)f(k)p2(b)−1)(x) (by (21))
= (p1(b)f(k))(b(1,−)−1(x)) (by (31))
= p1(b)(k(1, b(1,−)−1(x))− b(1,−)−1(x)) (by (25))
= b(1, k(1, b(1,−)−1(x)))− b(1,−)−1(x) (by (31))
= b(1, k(1, b(1,−)−1(x)))− b(1, b(1,−)−1(x)) (by (6))
= b(1, k(1, b(1,−)−1(x)))− x = bk(1, x)− x (by Lemma 4.1(c))
= f(bk)(x) (by (25)).

Putting these lemmas together, we obtain the desired isomorphism (24). More pre-
cisely, we obtain

4.11. Theorem. Let f, g, p, and q be defined as in Lemmas 4.2, 4.3, 4.5, and 4.7, respec-
tively. Then

(f, p) : (K,B, ∂) −→ (D(B,K), Aut(K,B, ∂),∆)

is an isomorphism of crossed modules, whose inverse is (g, q).
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hoffman, Universidade de Aveiro: dirk@ua.pt
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