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CHARACTERIZATION OF LEFT COEXTENSIVE VARIETIES OF
UNIVERSAL ALGEBRAS

DAVID NEAL BROODRYK

Abstract. An extensive category can be defined as a category C with finite coprod-
ucts such that for each pair X,Y of objects in C, the canonical functor +: C/X ×
C/Y // C/(X + Y ) is an equivalence. We say that a category C with finite products is
left coextensive if the dual canonical functor × : X/C×Y/C // (X×Y )/C is fully faith-
ful. We then give a syntactical characterization of left coextensive varieties of universal
algebras.

An extensive category can be defined as a category C with finite coproducts such that
for each pair X, Y of objects in C, the canonical functor +: C/X × C/Y // C/(X + Y )
is an equivalence. A category that satisfies the dual condition is called coextensive.
According to [1], the term “extensive category” was first used by W. F. Lawvere and S.
Schanuel, although “categories with disjoint and universal coproducts” were considered
by A. Grothendieck a long time ago, and there are related papers of various authors.
Examples of extensive categories include the category Cat of all small categories and the
category Top of topological spaces. An example of a coextensive category is the category
CRing of commutative rings.

1. Definition. A category C with finite products is called left coextensive if for each pair
X, Y of objects in C, the canonical functor × : X/C × Y/C // (X × Y )/C is fully faithful.
Equivalently let L be the left adjoint of × and let ε be the counit of this adjunction, then
L : (X × Y )/C // X/C × Y/C sends v : (X × Y ) // Z to the pair of canonical maps
(i1, i2) : (X, Y ) // (X +X×Y Z, Y +X×Y Z) and C is left coextensive if and only if ε is a
natural isomorphism.

The use of the counit ε in this definition is the motivation for the name left coextensive.
Furthermore, as follows from the proof of Proposition 2.2 of [1], C is left coextensive if
and only if for any A,B ∈ C and any pair of morphisms f × g : X × Y // A × B the
following diagram is a pushout.

A×B Ap1
//

X × Y

A×B

f×g

��

X × Y X
π1 // X

A

f

��
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Let C be a variety of universal algebras and let F (X) denote the free algebra in C on
the set X. In particular we shall use F ({x}) which is the algebra consisting of terms of at
most one variable. We shall also use F (∅) which is the algebra consisting of all constant
terms and is the initial object in C. When C is left coextensive we have that F (∅) is
non-empty which can be seen by taking X = Y = B = F (∅) in the above diagram. We
shall fix a constant 0 ∈ F (∅).

2. Proposition. Let C be a variety, the following statements are equivalent:

1. C is left coextensive.

2. For all X, Y in C and any x ∈ X and y ∈ Y , ((x, y), (x, 0)) ∈ C where C is the
congruence on X × Y generated by the relation R = {((a, b), (a, c)) ∈ F (∅)4| b =
0 or c = 0}.

3. There exists a natural number n such that ((x, x), (x, 0)) ∈ Qn, where Q is the
reflexive homomorphic relation on F ({x})× F ({x}) generated by R.

Proof. First note that by Proposition 4.1 of [1] we need only consider X = Y = F (∅) in
the above diagram. Then the diagram is a pushout if and only if for any m : A×B //C
and n : X // C with m(f × g) = nπ1 there exists a unique φ : A // C with φp1 = m
and φf = n. However, for X = Y = F (∅) to give such a pair (n,m) is simply to
give m such that m(a, b) = m(a, 0) for all (a, b) ∈ F (∅)2. Such a φ exists exactly when
m(a, b) = m(a, 0) for all (a, b) ∈ A × B. Therefore C is left coextensive if and only if
for any A,B and m : A × B // C we have that m(a, b) = m(a, 0) for all (a, b) ∈ F (∅)2
implies that m(a, b) = m(a, 0) for all (a, b) ∈ A×B. Written in terms of congruences this
is simply statement 2 of the proposition. To attain statement 3 from statement 2 note
that it is sufficient to consider A = B = F ({x}) and that the congruence generated by
some symmetric relation R is simply the transitive closure of the reflexive homomorphic
relation generated by R.

3. Theorem. A variety of universal algebras C is left coextensive if and only if there exist
(n + m)-ary terms u0, . . . , uk, unary terms t0, . . . , tm, t

′
0, . . . , t

′
m ∈ F ({x}), and constants

e0, . . . , en, e
′
0, . . . , e

′
n, e
′′
0, . . . , e

′′
n ∈ F (∅) such that u0 = x, uk = 0 and for all 0 ≤ i < k the

following identities hold:

ui(t1, t2, . . . , tm, e1, e2, . . . , en) = x

ui(t
′
1, t
′
2, . . . , t

′
m, e

′
1, e
′
2, . . . , e

′
n) = ui+1(t

′
1, t
′
2, . . . , t

′
m, e

′′
1, e
′′
2, . . . , e

′′
n)

Proof. By Proposition 2, C is left coextensive if and only if ((x, x), (x, 0)) ∈ Qn for
some natural n, which is true if and only if there exist a0, . . . , ak ∈ F ({x}) such that
a0 = x, ak = 0 and ((x, ai), (x, ai+1)) ∈ Q for i < k. But ((x, ai), (x, ai+1)) ∈ Q
if and only if for some term ui, terms t0, . . . , tmi

, t′0, . . . , t
′
mi
∈ F ({x}), and constants

e0, . . . , eni
, e′0, . . . , e

′
ni
, e′′0, . . . , e

′′
ni
∈ F (∅) we have the following equalities:
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(x, ai) = ui((t1, t
′
1), . . . , (tmi

, t′mi
), (e1, e

′′
1), . . . , (eni

, e′′ni
))

(x, ai+1) = ui((t1, t
′
1), . . . , (tmi

, t′mi
), (e1, e

′
1), . . . , (eni

, e′ni
))

Furthermore we can assume that the t, t′, e, e′, e′′ terms are the same for each i. Using
this simplified notation gives, for all 0 ≤ i < k:

ui(t1, . . . , tm, e1, . . . , en) = x

ui(t
′
1, . . . , t

′
m, e

′
1, . . . , e

′
n) = ai+1 = ui+1(t

′
1, . . . , t

′
m, e

′′
1, . . . , e

′′
n)

as required.

4. Example. Let C be a variety of universal algebras and suppose that the algebraic
theory of C has constants 0 and 1 and a binary term u with u(x, 0) = 0 and u(x, 1) = x.
Then let t1 = t′1 = x, e1 = e′′1 = 1, e′1 = 0, u0 = x, u1 = u, u2 = 0. Then we have that
the required syntactic condition holds and so C is left coextensive. Clearly this is true
when C is the variety of rings. However, unlike the variety of rings, C is not co-extensive
in general, i.e., × : X/C × Y/C // (X × Y )/C is fully faithful but not necessarily an
equivalence. Therefore left coextensivity is different to coextensivity.

5. Remark. It should be noted that this characterization is similar in a sense to [2] in
spite of the fact that the varieties which satisfy the conditions characterized in each paper
are completely different. It should also be noted that the paper [3] gives a syntactic char-
acterization of coextensive varieties, however the meaning of syntactic characterization in
[3] is different from the meaning in this paper.
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Gabriella Böhm, Wigner Research Centre for Physics: bohm.gabriella (at) wigner.mta.hu

Valeria de Paiva: Nuance Communications Inc: valeria.depaiva@gmail.com
Richard Garner, Macquarie University: richard.garner@mq.edu.au
Ezra Getzler, Northwestern University: getzler (at) northwestern(dot)edu

Kathryn Hess, Ecole Polytechnique Fédérale de Lausanne: kathryn.hess@epfl.ch
Dirk Hoffman, Universidade de Aveiro: dirk@ua.pt
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