
Theory and Applications of Categories, Vol. 34, No. 30, 2019, pp. 961–992.

BIPRODUCTS AND COMMUTATORS FOR NOETHERIAN FORMS

FRANCOIS KOCH VAN NIEKERK

Abstract. Noetherian forms provide an abstract self-dual context in which one can
establish homomorphism theorems (Noether isomorphism theorems and homological di-
agram lemmas) for groups, rings, modules and other group-like structures. In fact, any
semi-abelian category in the sense of G. Janelidze, L. Márki and W. Tholen, as well as
any exact category in the sense of M. Grandis (and hence, in particular, any abelian
category), can be seen as an example of a noetherian form. In this paper we generalize
the notion of a biproduct of objects in an abelian category to a noetherian form and
apply it do develop commutator theory in noetherian forms. In the case of semi-abelian
categories, biproducts give usual products of objects and our commutators coincide with
the so-called Huq commutators (which in the case of groups are the usual commutators
of subgroups). This paper thus shows that the structure of a noetherian form allows for
a self-dual approach to products and commutators in semi-abelian categories, similarly
as has been known for homomorphism theorems.

1. Introduction

A “noetherian form” is a mathematical structure that allows to recapture the noetherian
isomorphism theorems for groups (and other group-like structures) in a general self-dual
setting. This notion evolved through the following papers: [10], [11], [12], [13], [4]. A
noetherian form can be defined as a category C for which

• every object A is equipped with a bounded lattice subA, called the lattice of (formal)
subobjects,

• and every morphism f : A→ B induces two maps

f∗ : subA→ subB and f ∗ : subB → subA

called the direct and inverse image maps of f respectively.

The image of a morphism f is defined to be Im f = f∗1, and the kernel is defined to be
Ker f = f ∗0 (where 1 and 0 denote top and bottom elements of the subobject lattices).
Further, a subobject is called normal if it occurs as a kernel of some morphism, and it is
called conormal if it occurs as an image of some morphism. The category with this added

Partially supported by the Harry Crossley Foundation and the Erasmus+ Programme.
Received by the editors 2019-06-09 and, in final form, 2019-09-30.
Transmitted by Tim Van der Linden. Published on 2019-10-03.
2010 Mathematics Subject Classification: 18D99, 18A30.
Key words and phrases: Forms, product, commutators, Semi-abelian categories.
c© Francois Koch Van Niekerk, 2019. Permission to copy for private use granted.

961



962 FRANCOIS KOCH VAN NIEKERK

structure must also satisfy five axioms listed at the start of Section 2. The definition of
a noetherian form is self-dual in the following sense, where we extend categorical duality
to:

• f∗ is dual to f ∗, for any morphism f ;

• X ≤ Y is dual to Y ≤ X, for any two subobjects X and Y of some object A.

It follows, in particular, that ‘kernel’ is dual to ‘image’, ‘normal subobject’ is dual to
‘conormal subobject’.

Noetherian forms in which every subobject is both normal and conormal, and in
which both products and coproducts exist, turn out to be precisely the abelian categories.
In an abelian category products are the same as ‘biproducts’ — these can be seen as
simultaneous products and coproducts. In this paper (building on [17]) we generalise the
notion of a biproduct to noetherian forms, and as an application, develop commutator
theory in the context of a noetherian form (having biproducts). For any two objects A
and B, the biproduct of A and B is an object G equipped with four maps

GA B
e1

p1

e2

p2

such that p1e1 = 1A, p2e2 = 1B, Im e1 = Ker p2 and Im e2 = Ker p1, which satisfies two
further, more technical conditions. This definition is self-dual in the sense that was previ-
ously described. The definition of biproducts was inspired by one of the characterizations
of categorical biproducts in an abelian category found in [3]. The two further conditions
were added to deduce that biproducts are unique up to isomorphism, but interestingly it
turns out that under the assumption that biproducts exist, to check whether something
is a biproduct, it is sufficient to only check the four explicitly stated equalities above.

These biproducts and (categorical) products share some common properties, like both
give rise to a monoidal structure on a category. In fact, there are even relations between
them, for example, in any noetherian form with products, coproducts and biproducts
(thus necessarily pointed), the canonical morphism from the coproduct to the product
factorizes through the biproduct. Another relation is that biproducts and products coin-
cide exactly when the category is Barr-exact [1] and protomodular (in the sense of Bourn
[2]). Consequently, biproducts and products coincide in any semi-abelian category [8]
(seen as a noetherian form).

In this paper we explore the extent to which products in the context of a semi-abelian
category have a self-dual treatment as biproducts in the more general context of a noethe-
rian form. In particular, we show that this self-dual treatment is sufficient for recovering
the theory of (Huq) commutators.

Defining commutators from biproducts is analogous as to how Huq commutators (see
[7]) are defined from products. In the context of semi-abelian categories, where biproduct
are exactly products, these commutators coincide with the Huq commutators.
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For commutators, we mostly prove that results known for Huq commutators in semi-
abelian categories hold more generally for our commutators. Using commutators we also
introduce commutative objects in our context and prove that the collection of commutative
objects of a noetherian form (with biproducts) constitutes a full reflective subcategory
whose opposite category is Barr-exact and protomodular. Further, this subcategory is
isomorphic to the category of internal monoids with respect to biproducts. Dually, the
subcategory of cocommutative objects is Barr-exact and protomodular. This category
falls short of being semi-abelian due to the absence of coproducts.

Any semi-abelian category determines a noetherian form, where the subobjects of
an object are the categorical subobjects (equivalence classes of monomorphisms into the
object). And as noted before, biproducts are exactly products and the commutators
are Huq commutators. In a semi-abelian the subcategory of cocommutative objects is
the entire category, while the subcategory of commutative objects is the subcategory of
abelian objects. Another source of examples of noetherian forms is given by Grandis
exact categories [5, 6]. Since existence of biproducts forces pointedness, Grandis exact
categories having biproducts are forced to be Puppe-Mitchell exact [15, 16]. Biproducts
in these categories (when they exist) are the same as split products in the sense of Grandis
[5,6] (which in general are not quite the same as split products, as defined in the present
paper). In particular, in the category of sets and partial bijections, biproducts are given by
disjoint union, while in the category of distributive lattices and modular connections (see
[5, 6]), biproducts are the same as cartesian products of distributive lattice. In the first
example, the commutator of two subsets is their intersection, while the cocommutator
is their union. In the second example, where ‘subobjects’ of a distributive lattice are
elements of the lattice, commutator is given by meet and cocommutator by join.

In fact, more generally, we will prove that in any noetherian form within which all
conormal subobjects are normal and direct images preserve meets, commutators are given
by meets of subobjects. Both this condition and its dual hold in the last two examples,
this explains why commutators are meets and cocommutators are joins in those examples.

2. Preliminary results on noetherian forms

All the results in this section were established in [4].
We begin by listing the axioms that a noetherian form must satisfy:

(1) For any two composable morphisms f and g, (fg)∗ = f∗g∗ and (fg)∗ = g∗f ∗, and
for any identity morphism (1A)∗ = 1subA = 1∗A. Further for any morphism f , f∗ and
f ∗ forms a monotone Galois connection: for any subobject X of the domain and
subobject Y of the codomain of f ,

f∗X ≤ Y ⇔ X ≤ f ∗Y.

(2) For any morphism f and subobject X of the domain and subobject Y of the
codomain,

f∗f
∗Y = Y ∧ Im f and f ∗f∗X = X ∨ Ker f.
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(3) For any conormalX ∈ subA, there is a morphism ιX : XO → A, called the embedding
of X, such that (ιX)∗1 ≤ X and for any f into A with f∗1 ≤ X, there is a unique h
such that f = ιXh. Also, for any normal Y ∈ subA, there is a morphism πY : A→
A/Y , called the projection of Y , such that π∗Y 0 ≥ Y , and for any g from A with
g∗0 ≥ Y there is a unique morphism k such that kπY = g.

(4) Any morphism f factorizes as f = ιIm fhπKer f for some isomorphism h.

(5) the join of normal subobjects is normal, and dually the meet of conormal subobjects
is conormal.

Note that, for a conormal subobject X of object A, by the notation XO we mean that
there is an embedding of X with domain XO.

We will, for convenience, mostly denote f∗X by fX, and f ∗Y by f−1Y .

2.1. Remark. In [17], a stronger version of axiom (3) was used where existence of em-
beddings/projections was required for all subobjects and not only the conormal/normal
ones.

Here is a list of useful basic properties of a noetherian form, all of which follows directly
from the axioms.

• f0 = 0 and f−11 = 1 for any morphisms f ;

• direct images preserves joins, and inverse images preserves meets;

• for any conormal subobject C, Im ιC = C, and dually for any normal subobject N ,
Ker πN = N ;

• any morphism f is a projection (of some subobject) if and only if Im f = 1, and
dually it is an embedding if and only if Ker f = 0;

• any split epi is a projection, and dually any split mono is an embedding;

• any projection is an epimorphism, and dually any embedding is a monomorphism;

• any morphism f is an isomorphism if and only if Ker f = 0 and Im f = 1;

• for any normal subobject N and projection p, pN is normal, and dually for any
conormal subobject C and embedding m, m−1C is conormal.

Although this result wasn’t explicitly stated in [4], the proof of this result was given
in their proof of the Restricted Modular Law (the proposition hereafter). Since this result
has some usefulness on its own, we make it explicit.

2.2. Proposition. For a morphism f and a subobject X below the image of f and a
normal subobject N of the codomain of f , we have

f−1(X ∨N) = f−1X ∨ f−1N.
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Proof. Suppose N = g−10, for some morphism g. We then have

f−1X ∨ f−1N = f−1X ∨ f−1g−10
= f−1X ∨ (gf)−10

= (gf)−1(gf)f−1X

= f−1g−1gff−1X

= f−1g−1gX

= f−1(X ∨ g−10)

= f−1(X ∨N).

2.3. Proposition. [Restricted Modular Law] For any three subobjects X, Y , and Z of
a object G, if Y is normal and Z is conormal (or if Y is conormal and X is normal),
then

X ≤ Z ⇒ X ∨ (Y ∧ Z) = (X ∨ Y ) ∧ Z.

Proof. Suppose Y = g−10 and Z = f1 for some morphisms g and f , and suppose X ≤ Z.
We have

X ∨ (Y ∧ Z) =X ∨ (g−10 ∧ f1)

= ff−1X ∨ ff−1g−10
= f(f−1X ∨ f−1g−10)

= ff−1(X ∨ g−10)

= (X ∨ g−10) ∧ f1

= (X ∨ Y ) ∧ Z.

2.4. Semi-abelian and related categories. From results in [10] (see also [13]),
it follows that with ordinary categorical subobjects a semi-abelian category constitutes
a noetherian form. Moreover, from [13] we know that any noetherian form in which
any subobject is conormal is a semi-abelian category. Here we are going to prove a
stronger result that any noetherian form in which inverse images of conormal subobjects
are conormal, is semi-abelian, provided that it is pointed and has products and coproducts.

An example of a noetherian form, where there are more formal subobjects than cate-
gorical subobjects, is the form over the category of groups, where formal subobjects of a
group G are pairs (X, Y ) of subgroups of G. Direct and inverse images, and meets and
joins are defined component-wise. The conormal subobjects in this form are those pairs
of subgroups where the two subgroups are equal, thus this form cannot be (isomorphic to)
the form of categorical subobjects. But here the inverse images of conormal subobjects
are conormal.



966 FRANCOIS KOCH VAN NIEKERK

2.5. Lemma. In a noetherian form with a zero object, in which all bottom subobjects 0
are conormal (or dually, all top subobjects 1 are normal), the zero objects are exactly those
objects T for which subT has exactly one element. The zero morphisms are exactly those
morphisms with kernel being 1, or equivalently, with image being 0.

Proof. Suppose T is the zero object. Let ι0 : 0 → T be the embedding of the conormal
subobject 0 of T . Since T is in particular an initial object, there exists an h : T → 0 and
ι0h = 1T . Consequently ι0 is an isomorphism. So 0 = Im ι0 = 1, and thus subT only
has one element. If subT ′ has one element for any object T ′, then the unique morphism
t : T → T ′ is necessarily an isomorphism.

If f : G → H is a zero morphism, then it factors through the zero object T , and
consequently f1 = 0 and f−10 = 1. If f has image 0, then it has to factor through the
embedding ι0 of the bottom subobject of its codomain. The domain of ι0 is a zero object.
Thus f is a zero morphism.

2.6. Corollary. In a noetherian form with zero object, all bottom subobjects are conor-
mal if and only if all top subobjects are conormal.

Proof. If either condition is satisfied then for any object there is at least one zero
morphism to it and one from it. Consequently the top subobject is normal and the
bottom subobject is conormal.

2.7. Lemma. In a noetherian form, the diagram, where m is an embedding,

B

A

C

P

f
m

n

g

has a pullback if and only if there is a largest conormal subobject f−1m1 contained in
f−1m1. The pullback is given by (g, n) where n is the embedding of f−1m1.

Proof. Suppose the pullback of m and f exists, that it is the diagram

B

A

C

P

f
m

n

g

We have
n1 ≤ f−1fn1 = f−1mg1 ≤ f−1m1.

So n1 is a conormal subobject contained in f−1m1. Suppose D is a conormal subobject
contained in f−1m1. Let ιD be the embedding of D. Then

fιD1 ≤ ff−1m1 ≤ m1.
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Since m is an embedding, there is a unique u such that mu = fιD. Since g and n is the
pullback, there is in particular an h such that nh = ιD. Consequently n1 is the largest
conormal subobject contained in f−1m1.

For the converse, suppose there is a largest conormal subobject f−1m1 contained in
f−1m1. Let n be the embedding of it. We have

fn1 = ff−1m1 ≤ ff−1m1 ≤ m1.

Thus there is a unique g such that mg = fn. Consider the diagram

B

A

C

P

W

f
m

n

g

u

v

h

where fu = mv. We have

u1 ≤ f−1fu1 = f−1mv1 ≤ f−1m1.

Thus u1 ≤ f−1m1. Since n is the embedding of f−1m1, there is a unique h such that
nh = u. We have

mgh = fnh = fu = mv.

And since m is a monomorphism, gh = v. And so g and n is the pullback of m and f .

2.8. Corollary. In a noetherian form with a zero object, where all the bottom subobjects
are conormal, f has a categorical kernel if and only if there is a largest conormal subobject
f−10 contained in f−10. In either case, the embedding of f−10 is the categorical kernel of
f .

2.9. Lemma. Any noetherian form with pullbacks along embeddings and with finite prod-
ucts is finitely complete.

Proof. Since any split monomorphism is an embedding, the lemma follows from the fact
that pullbacks along split monomorphisms and finite products implies finitely complete.

2.10. Lemma. In a noetherian form with zero object, in which normal subobjects are
conormal, the normal epimorphisms are exactly the projections. Further, the embeddings
are exactly the monomorphisms.

Proof. Suppose p is a normal epi. Then p = me for some projection e and embedding
m. Suppose p is the cokernel of f . Then mef = 0 = m0, which implies ef = 0. Thus
there is an d such that e = dp. Thus p = me = mdp, and so md = 1. Consequently m is
an isomorphism, and thus p a projection.
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Conversely, take any projection p. Since p−10 is conormal, by Corollary 2.8, p has a
categorical kernel k, which is the embedding of p−10. By the dual of Corollary 2.8, p is
then the cokernel of k (k1 is normal, p is the projection of k1, and all the top subobjects
are normal).

For the second part, we already have that any embedding is a monomorphism. Take
any monomorphism m : A → B. By Corollary 2.8, m has a kernel k : K → A. So
mk = 0 = m0, and so k = 0. So m−10 = k0 = 0, thus m is an embedding.

The following lemma is a version of the short five lemma in a noetherian form.

2.11. Lemma. In a noetherian form, consider the following commutative diagram

K

K ′

A

A′

B

B′

k

k′

f

f ′
u w v

where k and k′ are embeddings, and f and f ′ are projections, and k1 = f−10 and k′1 =
f ′−10. If u and v are projections, then so is w. Dually, if u and v are embeddings, then
so is w.

Proof. Suppose u and v are projections. We have

f ′w1 = vf1 = 1

⇒ f ′
−1

0 ∨ w1 = 1

⇒ k′1 ∨ w1 = 1

⇒ k′u1 ∨ w1 = 1

⇒wk1 ∨ w1 = 1

⇒w1 = 1.

2.12. Theorem. Any noetherian form with zero object, in which all normal subobjects
are conormal, is protomodular.

Proof. Consider the commutative diagram

K

K ′

A

A′

B

B′

k

k′

f

f ′
u w v

s

s′



BIPRODUCTS AND COMMUTATORS FOR NOETHERIAN FORMS 969

where k is the kernel of f , and k′ is the kernel of f ′, and fs = 1 and f ′s′ = 1. So k and k′

are readily embeddings, and f and f ′ are projections. By Corollary 2.8, k1 = f−10 and
k′0 = f ′−10. Then by Lemma 2.11, it follows that if u and v are isomorphisms, so is w.
Thus the category is protomodular.

2.13. Lemma. In a pointed category with products, for any product A × B, (1, 0) is the
kernel of π2 and (0, 1) is the kernel of π1.

Proof. Suppose π2k = 0. Then k = (π1k, 0) = (1, 0)(π1k). Since (1, 0) is a mono, π1k is
the unique morphism such that k = (1, 0)π1k. Since also π2(1, 0) = 0, (1, 0) is the kernel
of π2. Similarly, (0, 1) is the kernel of π1.

2.14. Lemma. In any noetherian form with a zero object and with products, in which all
normal subobjects are conormal, for any binary product, we have

• Im (1, 0) = Ker π2 and Im (0, 1) = Ker π1.

• Im (1, 0) ∨ Im (0, 1) = 1 and Ker π1 ∧ Ker π2 = 0.

• For any f and g,

Ker f × g = π−11 Ker f ∧ π−12 Ker g and Im f × g = (1, 0)Im f ∨ (0, 1)Im g.

Proof. The first part of proof follows from the above lemma and Corollary 2.8. For the
second part, we have

(1, 0)1 ∨ (0, 1)1 = (1, 0)1 ∨ π−11 0 = π−11 π1(1, 0)1 = π−11 1 = 1,

π−11 0 ∧ π−12 0 = π−11 0 ∧ (1, 0)1 = (1, 0)(1, 0)−1π−11 0 = (1, 0)0 = 0.

For the last part:

(f × g)−10 = (f × g)−1(π−11 0 ∧ π−12 0) =(f × g)−1π−11 0 ∧ (f × g)−1π−12 0

=π−11 f−10 ∧ π−12 g−10.

For the other one, first notice that (f × g)(1, 0) = (1, 0)f and (f × g)(0, 1) = (0, 1)g. This
can be demonstrated by composing with π1 and π2. Then

(f × g)1 = (f × g)((1, 0)1 ∨ (0, 1)1) = (f × g)(1, 0)1 ∨ (f × g)(0, 1)1

= (1, 0)f1 ∨ (0, 1)g1.
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2.15. Theorem. Any noetherian form with a zero object and with products, in which
inverse images of conormal subobjects are conormal and all the bottom subobjects are
conormal, is a regular category.

Proof. By Lemma 2.9, it is finitely complete. Further, regular epimorphisms are exactly
normal epimorphisms (since by Theorem 2.12, the category is protomodular, and is also
pointed). So by Lemma 2.10, the regular epimorphisms are exactly the projections.

Take the kernel pair (K, k1, k2) of morphism f : A → B. Consider the factorization
f = ep where p is a projection and e is an embedding. Then pk1 = pk2 as well. If pu = pv,
then fu = fv, so there is a unique h then such that k1h = u and k2h = v. Thus (K, k1, k2)
is also the kernel pair of projection p. Since p is a regular epi, it is the coequalizer of its
kernel pair. Thus coequalizers of kernel pairs exists.

To show that regular epimorphisms are pullback stable, take any regular epimorphism
p : B → C and morphism f : A→ C. Their pullback can be constructed as follows:

A×B B

A C

E

π2

π1

f

p

e

π2e

π1e

where e is the equalizer of fπ1 and pπ2. So we need to prove that π1e1 = 1. We have that e
is the embedding of (fπ1, pπ2)

−1(1, 1)1 = (f×p)−1(1, 1)1, since e can be constructed as the
horizontal part of the pullback of (fπ1, pπ2) and (1C , 1C). We have, using Proposition 2.2,

f(π1e1) = fπ1(f × p)−1(1, 1)1

= π1(f × p)(f × p)−1(1, 1)1

= π1((f × p)1 ∧ (1, 1)1)

= π1(((1, 0)f1 ∨ (0, 1)p1) ∧ (1, 1)1)

= π1(((1, 0)f1 ∨ (0, 1)1) ∧ (1, 1)1)

= π1(((1, 0)f1 ∨ π−11 0) ∧ (1, 1)1)

= π1((1, 0)f1 ∨ π−11 0) ∧ π1(1, 1)1)

= π1((1, 0)f1 = f1
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We also have, making again use of Proposition 2.2,

π1e1 = π1(f × p)−1(1, 1)1

≥ π1(f × p)−10
= π1(π

−1
1 f−10 ∧ π−12 g−10)

= π1(π
−1
1 f−10) ∧ π1π−12 g−10

= f−10 ∧ π1π−12 g−10

≥ f−10 ∧ π1π−12 0

= f−10 ∧ π1(1, 0)1

= f−10

Putting these two calculations together, we get π1e1 = 1.

2.16. Theorem. In any noetherian form with a zero object and products, in which all
normal subobjects are conormal, any reflexive relation (R, d1, d2, s) on any object X is
effective.

Proof. Since d1s = 1 = d2s, both d1 and d2 are projections. Since d1d
−1
2 0 = d1d

−1
2 0, the

pushout

R X

X Y

d2

d1 f ′

f

exists by the dual of Lemma 2.7, where f is the projection of d1d
−1
2 0. Notice that f =

fd1s = f ′d2s = f ′. Also notice that

d2d
−1
1 0 = d2(d

−1
1 0 ∨ d−12 0) = d2(d

−1
1 d1d

−1
2 0) = d2d

−1
1 f−10

= d2d
−1
2 f−10 = f−10 = d1d

−1
2 0.

Further notice that π1(d1, d2)d
−1
1 0 = 0, thus π−11 0 ≥ (d1, d2)d

−1
1 0 and similarly π−12 0 ≥

(d1, d2)d
−1
2 0. From all this, we have, together with the restricted modular law,

(f × f)−10 = π−11 f−10 ∧ π−12 f−10

= π−11 d1d
−1
2 0 ∧ π−12 d2d

−1
1 0

= π−11 π1(d1, d2)d
−1
2 0 ∧ π−12 π2(d1, d2)d

−1
1

= (π−11 0 ∨ (d1, d2)d
−1
2 0) ∧ (π−12 0 ∨ (d1, d2)d

−1
1 0)

= ((π−11 0 ∨ (d1, d2)d
−1
2 0) ∧ π−12 0) ∨ (d1, d2)d

−1
1 0

= ((π−11 0 ∧ π−12 0) ∨ (d1, d2)d
−1
2 0 ∨ (d1, d2)d

−1
1 0

= (d1, d2)d
−1
1 0 ∨ (d1, d2)d

−1
2 0

≤ (d1, d2)1.
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Further have,

1 = fd11

⇒ (1, 1)1 = (1, 1)fd11 = (fd1, fd1)1 = (fd1, fd2)1 = (f × f)(d1, d2)1

⇒ (f × f)−1(1, 1)1 = (d1, d2)1 ∨ (f × f)−10 = (d1, d2)1.

Since R is a relation, (d1, d2) is a monomorphism. Since the category is pointed and
normal subobjects are conormal, (d1, d2) is an embedding. From the above calculations,
(d1, d2) is the embedding of (f × f)−1(1, 1)1, thus (d1, d2) is the equalizer of fπ1 and fπ2.
Thus (R, π1(d1, d2), π2(d1, d2)) is the pullback of f and f , that is (R, d1, d2) is the kernel
pair of f .

Putting everything together, we get

2.17. Theorem. Any noetherian form with zero object, products and coproducts, in which
inverse images of conormal subobjects are conormal and 0 is conormal, is semi-abelian.

3. Biproducts

Throughout this section, we assume that we are working in a noetherian form.

3.1. Introduction to biproducts.

3.2. Definition. A split product of A and B is an object G equipped with four maps

GA B
e1

p1

e2

p2

such that

Kerp1 = Ime2, p1e1 = 1
Kerp2 = Ime1, p2e2 = 1

Sometimes we will just refer to G as a split product of A and B, and assume that
their respective embeddings are given by e1 and e2, and their respective projections are
given by p1 and p2.

The two additional conditions on a split product in the following definition were sug-
gested to the author by Zurab Janelidze.

3.3. Definition. A biproduct of A and B is a split product G of A and B such that for
the following diagrams

GA B

W

p1 p2

f g
GA B

W ′

e1 e2

f ′ g′
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the left one has a limit for any f and g, and the right one has a colimit for any f ′ and g′.

To make it easier to refer to those diagrams in the definition, the left one will be
denoted by LG(f, g) and the right one by CG(f ′, g′). The subscript G may be dropped
when it is clear to which biproduct we are referring to.

Note that both the notions of a split- and biproduct are self-dual.
Some trivial properties of split products:

3.4. Proposition. If G is a split product of A and B, then we have

(1) e11 ∨ e21 = 1 = p−11 0 ∨ p−12 0;

(2) e11 ∧ e21 = 0 = p−11 0 ∧ p−12 0;

Proof. (1) Since p2e21 = 1, we have

e11 ∨ e21 = p−12 0 ∨ e21 = p−12 p2e21 = p−12 1 = 1.

(2) is the dual of (1).

3.5. Corollary. If the split product of any two object exists, then the top subobject 1 is
normal and the bottom subobject 0 is conormal for any object.

Proof. By (1) of the previous proposition, 1 in A ⊕ A is normal, since it is the join of
normal subobjects. Since p1 : A⊕ A → A is a projection, 1 = p11 is normal. Dually 0 is
a conormal subobject of A.

Having biproducts forces pointedness:

3.6. Theorem. If the biproduct of any two objects exists in a non-empty noetherian form,
then the category is pointed.

Proof. Take any object G. By Corollary 3.5, 1 = G is a normal subobject of G. Let
T = G/G. We have

1T = πGπ
−1
G 1 = πG1 = 0T .

Thus subT has exactly one element. Let B be a biproduct of T and T . Then

1 = e11 ∨ e21 = e10 ∨ e20 = 0.

Thus subB also has one element. From this in particular follows that both e1 and e2 are
isomorphisms. For any object A, there is at least a morphism from T to A, for example
compose the embedding from T to a biproduct of T and A with the projection from the
same biproduct to A. We would like to show that there is at most one morphism from
T → A. Consider any f, g : T → A. Let (C, e : A→ C,m : B → C) be a colimit (or even
a cocone) of CB(f, g). Since sub (T ) only has one element, both f and g are embeddings
of 0 in A. Thus there exists an isomorphism h : T → T such that fh = g. We have

me2 = eg = efh = me1h,
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and since m is (trivially) an embedding, e2 = e1h. Consequently fe−11 = ge−12 for any
f, g : T → A. In the case when f = g = 1T , e1 = e2. So in the general case, f, g : T → A
implies f = g. So T is an initial object. With dual arguments, one can show that T is
also a terminal object. Thus T is a zero object.

The remaining results of this section are some general properties of biproducts.

3.7. Proposition. Suppose G is a biproduct of A and B. For any f : A → W and
g : B → W , if (C, e : W → C,m : G→ C) is a colimit of C(f, g), then e is a projection.

Proof. Suppose (C, e,m) is a colimit of C(f, g). Let I = Im e, and let n : I ′ → C be an
embedding corresponding to I. We have the following diagram

GA B

C I ′

W

e1 e2

f g

m

e

b

a

n

k

Morphism a exists such that na = e, since n is an embedding and Im e ≤ Imn. We
(always) have Imm ≤ I, since

m1 = m(e11 ∨ e21) = me11 ∨me21 = ef1 ∨ eg1 ≤ Im e = I.

Thus morphism b exists such that nb = m.
We have

nbe1 = me1 = ef = naf

Which implies be1 = af , since n is a monomorphism. Similarly be2 = ag. Thus
(I ′, a, b) is a cocone of C(f, g). Since C is a colimit, there exists a morphism k : C → I ′

such that ke = a and km = b. Composing k and n, we get a morphism nk : C → C such
that (nk)e = e and (nk)m = m. But 1C : C → C is the unique such morphism. Thus
nk = 1C , and thus n is a projection. Consequently e is a projection.

3.8. Proposition. If G is a biproduct of A and B, then e1 and e2 are jointly epi, and
dually p1 and p2 are jointly mono.

Proof. Suppose (C, e : G → C,m : G → C) is a colimit of CG(e1, e2). Since (G, 1G, 1G)
is a cocone, there is an h : C → G such that he = 1G and hm = 1G, consequently e
is an embedding. By Proposition 3.7, e is also a projection, thus e is an isomorphism.
Consequently h is also an isomorphism, and (G, 1G, 1G) is also a colimit of C(e1, e2).
Suppose for some u, v : G→ W , ue1 = ve1 and ue2 = ve2. Then (W,u, v) forms a cocone
of C(e1, e2). Thus there is an h : G→ W such that u = h1G and v = h1G, from which we
get u = v.
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3.9. Proposition. Suppose G is a biproduct of A and B. For any f : A → W and
g : B → W , any cocone (C, e : W → C,m : G→ C) of C(f, g) is a colimit if and only if

• e is a projection;

• for any cocone (D, d : W → D,n : G→ D) we have Kere ≤ Kerd.

Proof. Suppose (C, e,m) is a colimit. Then by Proposition 3.7, e is a projection. For
the second point, since C is a colimit, there is an h such that he = d from which it follows.

Conversely suppose there is such a cocone (C, e,m) with those properties. Let

(D, d : W → D,n : G→ D)

be another cocone. Since e is a projection and Kere ≤ Kerd, there is a unique h : C → D
such that he = d. We further have

hme1 = hef = df = ne1,

and similarly hme2 = ne2. By Proposition 3.8, e1 and e2 are jointly epi, and thus hm = n.
Thus (C, e,m) is indeed a colimit of C(f, g).

3.10. Biproducts of morphisms. The following theorem is the main theorem of this
subsection.

3.11. Theorem. Suppose G is a biproduct of A and B, and H is a split product of C and
D. For any pair of morphisms f : A → C and g : B → D, there is a unique morphism
h : G→ H such that

he1 = e1f , p1h = fp1
he2 = e2g, p2h = gp2.

Furthermore

Imh = e1Imf ∨ e2Img,
Kerh = p−11 Kerf ∧ p−12 Kerg.

Proof. Let (L, e : H → L,m : G → L) be a colimit of CG(e1f, e2g). The following
commutative diagram just makes it easier to follow:

HC D

GA B

L

e1 e2

e1 e2

f g
m

e

The aim will be to deduce that e is an isomorphism, then h = e−1m is our desired
morphism. Both (C, p1 : H → C, fp1 : G → C) and (D, p2 : H → Dfp2 : G → D) are
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cocones of C(e1f, e2g). So Kere ≤ Kerp1,Kerp2, thus Ker e = 0. By Proposition 3.7, e is
a projection and thus an isomorphism. Let h = e−1m. By choice of h, he1 = e1f and
he2 = e2g. We further have

p1he1 = p1e1f = f = fp1e1 and p1he2 = p1e2g = 0 = fp1e2.

Since e1 and e2 are jointly epic by Proposition 3.8, p1h = fp1. Similarly p2h = gp2. To
compute the image of h, we have

Imh = h1 = h(e11 ∨ e21) = he11 ∨ he21 = e1f1 ∨ e2g1 = e1Im f ∨ e2Im g.

By a dual argument, we get the formula for the kernel of h.

3.12. Corollary. Biproducts are unique up to isomorphisms.

Proof. Let both G and H be biproducts of A and B. Take f = 1A and g = 1B. Then
the induced morphism h in the proposition above, is an isomorphism which commutes
with the projections and with the embeddings.

3.13. Notation. The biproduct of A and B will be denoted by A ⊕ B. For f : A → C
and g : B → D, the unique h : A⊕ B → C ⊕D in the statement of Theorem 3.11 will be
denoted by f ⊕ g.

The following follows immediately from Theorem 3.11:

3.14. Corollary. The following holds for any morphisms:

• 1A ⊕ 1B = 1A⊕B;

• (f ⊕ g)(u⊕ v) = fu⊕ gv, whenever the compositions are defined.

Further basic results that follows from Theorem 3.11:

3.15. Proposition. In any biproduct A⊕B, we have:

(1) For normal subobjects N of A and M of B, p−11 N ∧ p−12 M is a normal subobject of
A⊕B.

(2) For conormal subobjects C of A and D of B, e1C ∨ e2D is a conormal subobject of
A⊕B.

(3) if N is a normal subobject of A, then e1N is a normal subobject of A⊕B;

(4) if C is a conormal subobject of A⊕B, then p−11 C is a conormal subobject of A;

(5) For any X ∈ subA and Y ∈ subB, if X is a normal or conormal subobject, or Y is
a normal or conormal subobject, then

e1X ∨ e2Y = p−11 X ∧ p−12 Y.
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Proof. (1) The subobject p−11 N ∧ p−12 M is normal, since it is the kernel of πN ⊕ πM .
(2) is the dual of (1).
(3) Since p1e1 = 1, we get N = 1−1N = e−11 p−11 N . Then we have

e1N = e1e
−1
1 p−11 N = e11 ∧ p−11 N = p−11 N ∧ p−12 0,

thus e1N is normal by (1).
(4) is the dual of (3).
(5) As already noticed in the proof of (3), e1X = e11 ∧ p−11 X and similarly e2Y =

e21∧ p−12 Y . These are in particular just special cases of (5) for Y = 0 or X = 0. Suppose
X is normal. Then we have, making use of the restricted modular law twice,

e1X ∨ e2Y
= (e11 ∧ p−11 X) ∨ (e21 ∧ p−12 Y )

= ((e11 ∧ p−11 X) ∨ e21) ∧ p−12 Y

= (p−11 X ∧ (e11 ∨ e21)) ∧ p−12 Y

= p−11 X ∧ p−12 Y.

The second equality follows, since p−12 Y ≥ p−12 0 = e11 ≥ e11∧p−11 X, and e11∧p−11 X =
e1X is normal by (3) and e21 is conormal. The third follows, since p−11 X ≥ p−11 0 = e21,
and e21 is normal and e11 is conormal.

So for X normal the result is true. By duality it is also true if X is conormal. The
case for when Y is normal or conormal is similar.

The remaining results of this subsection, is about when an object is a biproduct of
two other objects. All this still relies on Theorem 3.11.

3.16. Theorem. For any A and B, any split product of A and B is a biproduct, assuming
the biproduct of A and B exists.

Proof. Let G be a split product of A and B. Theorem 3.11 guarantees an isomorphism
h (taking f = 1A and g = 1B) between G and A⊕B which commutes with the projections
and with the embeddings. From this, it can be readily checked that the split product G
will satisfy the remaining biproduct conditions.

3.17. Corollary. If G has two subobjects A and B such that

• A and B are both normal and conormal;

• A ∨B = 1 and A ∧B = 0,

then, G ∼= AO ⊕ BO, assuming AO ⊕ BO exists, where AO and BO are the domains of
embeddings of A and B respectively.



978 FRANCOIS KOCH VAN NIEKERK

Proof. Let e1 = ιA : AO → G and e2 = ιB : BO → G. Notice that

πBιA1 = πBA = πB(A ∨B) = πB1 = 1,

and
ι−1A π−1B 0 = ι−1A B = ι−1A (A ∧B) = ι−1A 0 = 0.

Thus πBιA is an isomorphism. Denote the inverse by h1. Similarly πAιB is an isomorphism.
Denote the inverse by h2. Define p1 = h1πB and p2 = h2πA. A straightforward verification
shows that G together with e1, e2, p1, and p2 forms a splitproduct of AO and BO, thus a
biproduct of AO and BO by the above theorem.

3.18. Corollary. If f : B → A has a right inverse s : A → B, and Ims is normal and
Kerf is conormal, then B ∼= (Ims)O ⊕ (Kerf)O, assuming that biproduct exists.

Proof. Both Im s and Ker f is both normal and conormal. We have

f−10 ∨ s1 = f−1fs1 = f−11 = 1 and f−10 ∧ s1 = ss−1f−10 = s0 = 0.

Thus by Corollary 3.17 the result follows.

3.19. Comparison with categorical products and coproducts.

3.20. Proposition. Consider any noetherian form that has biproducts, (categorical)
products and coproducts. For any pair of objects A and B, the canonical morphism
I : A+B → A×B (that is πiIιj = δi,j) factors as

A+B A⊕B A×Be m

I

where e is a projection and m is an embedding, such that eι1 = e1, eι2 = e2, p1 = π1m,
and p2 = π2m.

Proof. Let e be the unique morphism A + B → A ⊕ B such that eιi = ei for i = 1, 2.
Then

1 = e11 ∨ e21 = eι11 ∨ eι21 = e(ι11 ∨ ι21) ≤ e1 ≤ 1.

Thus e is a projection.
Dually, the unique morphism m : A ⊕ B → A × B such that πim = pi for i = 1, 2, is

an embedding. Furthermore, we have

πimeιj = piej = δi,j.

Thus me is the canonical morphism.
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3.21. Theorem. For any noetherian form C with biproducts and (categorical) products,
the following are equivalent

(1) For any two objects, their biproduct and product coincide.

(2) Inverse images of conormal subobjects are conormal.

(3) Normal subobjects are conormal.

(4) For any product, (1, 0) and (0, 1) are jointly extremal epimorphic

Whenever any of the above holds, C is protomodular and Barr exact.

Proof. (1) ⇒ (2): Take a morphism f : A → B and a conormal subobject X of B.
Consider the biproduct A⊕B. Since it is a product, there is a morphism h : A→ A⊕B
such that p1h = 1 and p2h = f . By Proposition 3.15(4), p−12 X is conormal. Since h is a
split mono, it is an embedding, from which it follows that

f−1X = h−1p−12 X

is conormal.
(2) ⇒ (3): Since biproducts exist, all bottom subobjects 0 are conormal, from which

it follows that all normal subobjects are conormal.
(3) ⇒ (4): Consider any product A × B. Take any monomorphism f : W → A × B

such that (1, 0) and (0, 1) factor through f , that is (1, 0) = fa and (0, 1) = fb, for some
morphisms a and b. By Lemma 2.10, f is an embedding. Further by Lemma 2.14, we
have

f1 ≥ fa1 ∨ fb1 = (1, 0)1 ∨ (0, 1)1 = 1.

Thus f is an isomorphism.
(4) ⇒ (1): Consider the morphism m = (p1, p2) : A⊕B → A×B. Since me1 = (1, 0)

and me2 = (0, 1), and m is a monomorphism, m is an isomorphism.
For the last part, if either of the above points hold, then by Theorems 2.12, 2.15, and

2.16, C is protomodular and Barr exact.

3.22. Corollary. Any noetherian form with a zero object, biproducts, products and
coproducts is semi-abelian if and only if the inverse image of any conormal subobject is
conormal.

3.23. Monoidality of biproducts. Throughout this subsection, we are working in a
noetherian form.

3.24. Notation. For a : A→ C and b : A→ D, if there is a morphism h : A→ C ⊕D
such that p1h = a and p2h = b, then it is unique by Proposition 3.8, and h will be denoted
by (a, b).

Notice that any morphism h : A→ C ⊕D can be written as h = (p1h, p2h).
Some basic properties:
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3.25. Proposition. For any morphisms a, b, f , and g, we have, whenever the composites
are defined:

(1) (a, b)f = (af, bf);

(2) f ⊕ g = (fp1, gp2);

(3) (f ⊕ g)(a, b) = (fa, gb).

(4) (p1, p2) = 1 for the projections of any biproduct.

Proof. Since p1 and p2 are jointly monic, we only need to verify that both sides are equal
when composing with p1 and p2 on both sides.

(1) p1(a, b)f = af = p1(af, bf) and p2(a, b)f = p2(af, bf).

(2) p1(f ⊕ g) = fp1 = p1(fp1, gp2) and p2(f ⊕ g) = p2(fp1, gp2).

(3) (f ⊕ g)(a, b) = (fp1, gp2)(a, b) = (fp1(a, b), gp2(a, b)) = (fa, gb).

(4) p1 = p1(p1, p2) and p2 = p2(p1, p2).

The dual of the above will be:

3.26. Notation. For a : A → C and b : B → C, if there is a morphism h : A⊕ B → C
such that he1 = a and he2 = b, it is unique, and h will be denoted by [a, b].

We also have dual properties, which are true by duality:

3.27. Proposition. For any morphisms a, b, f , and g, we have, whenever the composites
are defined:

(1) f [a, b] = [fa, fb];

(2) f ⊕ g = [e1f, e2g];

(3) [a, b](f ⊕ g) = [af, bg];

(4) [e1, e2] = 1 for the embeddings of any biproduct.

3.28. Lemma. For any objects A, B, and C the morphism

α = ((p1, p1p2), p2p2) = [e1e1, [e1e2, e2]] : A⊕ (B ⊕ C)→ (A⊕B)⊕ C

exists. Moreover, α is a natural isomorphism.
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Proof. Consider the following diagram:

A⊕ (B ⊕ C)A⊕B C
1⊕ p1

1⊕ e1 e2e2

p2p2

We have (1⊕ p1)(1⊕ e1) = 1A ⊕ 1B = 1A⊕B and p2p2e2e2 = 1C . Further

Ker (1⊕ p1)
= p−11 0 ∧ p−12 p−11 0

= e21 ∧ p−12 p−11 0

= e2e
−1
2 p−12 p−11 0

= e2p
−1
1 0

= e2e21 = Im (e2e2),

Im (1⊕ e1)
= e11 ∨ e2e11
= p−12 0 ∨ e2e11
= p−12 p2e2e11

= p−12 e11

= p−12 p−12 0 = Ker (p2p2).

Thus the above diagram is a split product, thus a biproduct. By Theorem 3.11 (selecting
f = 1A⊕B and g = 1C) there is morphism α : A⊕ (B ⊕ C)→ (A⊕B)⊕ C such that

p1α = (1⊕ p1) and p2α = p2p2

By the same theorem, α is furthermore an isomorphism. We have

α = (p1α, p2α) = (1⊕ p1, p2p2) = ((p1, p1p2), p2p2).

We also have

p1αe1 = (1⊕ p1)e1 = e1 = p1e1e1 and p2αe1 = p2p2e1 = 0 = p2e1e1.

Thus αe1 = e1e1. And also

p1αe2 = (1⊕ p1)e2 = e2p1 = p1(e2 ⊕ 1) and p2αe2 = p2p2e2 = p2 = p2(e2 ⊕ 1).

Thus αe2 = e2 ⊕ 1. Consequently

α = [e1e1, e2 ⊕ 1] = [e1e1, [e1e2, e2]].

To verify naturality, we must show that the following diagram commutes for any f , g,
and h:

A⊕ (B ⊕ C) (A⊕B)⊕ C

X ⊕ (Y ⊕ Z) (X ⊕ Y )⊕ Z

α

α

f ⊕ (g ⊕ h) (f ⊕ g)⊕ h
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It does indeed commute:

α(f ⊕ (g ⊕ h))

= ((p1, p1p2), p2p2)(f ⊕ (g ⊕ h))

= ((p1(f ⊕ (g ⊕ h)), p1p2(f ⊕ (g ⊕ h))), p2p2(f ⊕ (g ⊕ h)))

= ((fp1, p1(g ⊕ h)p2), p2(g ⊕ h)p2)

= ((fp1, gp1p2), hp2p2)

= ((f ⊕ g)(p1, p1p2), hp2p2)

= ((f ⊕ g)⊕ h)((p1, p1p2), p2p2)

= ((f ⊕ g)⊕ h)α.

3.29. Theorem. Any noetherian form C with biproducts forms a monoidal category

〈C,⊕, 0, α, p0⊕−2 , p−⊕01 〉.

Proof. Corollary 3.14 shows that ⊕ forms a functor from C× C to C.
We already know that having biproducts forces pointedness, thus the zero object 0

exists.
For any object A, p0⊕A2 : 0⊕A→ A is a natural isomorphism: It is a projection, since

it is a split epi. Also
p−12 0 = e11 = e10 = 0.

Thus it is also an embedding, thus an isomorphism. For naturality, take any f : A→ X.
We must show that the diagram

0⊕ A

0⊕X

A

X

p2

p2
1⊕ f f

commutes. Indeed it does by the definition of 1 ⊕ f . Similarly, pA⊕01 : A ⊕ 0 → A is a
natural isomorphism for any object A.

What is still left, is to prove that two certain diagrams commute. The first one, for
any objects A and C, the following diagram commutes:

A⊕ (0⊕ C) (A⊕ 0)⊕ C

A⊕ C A⊕ C

α

1
1⊕ p2 p1 ⊕ 1
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Indeed:

(p1 ⊕ 1)α = (p1 ⊕ 1)((p1, p1p2), p2p2) = (p1(p1, p1p2), 1p2p2)

= (p1, p2p2) = (1⊕ p2)(p1, p2) = 1⊕ p2.

The second diagram, for any A, B, C, and D, the following diagram commutes:

A⊕ (B ⊕ (C ⊕D)) (A⊕B)⊕ (C ⊕D) ((A⊕B)⊕ C)⊕D

A⊕ ((B ⊕ C)⊕D) (A⊕ (B ⊕ C))⊕D

α α

α

1⊕ α α⊕ 1

Indeed:

(α⊕ 1)α(1⊕ α)

= (αp1, p2)α(1⊕ α)

= (((p1, p1p2), p2p2)p1, p2)α(1⊕ α)

= (((p1p1, p1p2p1), p2p2p1), p2)α(1⊕ α)

= (((p1p1α, p1p2p1α), p2p2p1α), p2α)(1⊕ α)

= (((p1, p1p1p2), p2p1p2), p2p2)(1⊕ α)

= (((p1(1⊕ α), p1p1p2(1⊕ α)), p2p1p2(1⊕ α)), p2p2(1⊕ α))

= (((p1, p1p1αp2), p2p1αp2), p2αp2)

= (((p1, p1p2), p1p2p2), p2p2p2)

= ((p1α, p1p2α), p2p2α)

= ((p1, p1p2), p2p2)α

=αα

3.30. Remark. The monoidal structure given by biproducts is in fact a ‘monoidal sum
structure’ in the sense of [9]. This follows from Theorem 3.29 and Proposition 3.8.

4. Commutators

Throughout this section we are working in a noetherian form with biproducts.

4.1. The general theory.

4.2. Definition. For a object G and conormal subobjects X and Y , the commuta-
tor [X, Y ]G is defined as follows: If (C, e : G → C,m : XO ⊕ YO → C) is a colimit of
CXO⊕YO

(ιX , ιY ), then [X, Y ]G = Ker e.

The commutator [1, 1]G will be denoted by [G,G]G instead.
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4.3. Proposition. For any f : A→ W and g : B → W , if (C, e : W → C,m : A⊕ B →
C) is a colimit of CA⊕B(f, g), then Ker e = [Im f, Im g]W .

Proof. Let Im f = X and Im g = Y . Factorize f = ιXa and g = ιY b, where a and b are
projections of the kernels of f and g respectively. Consider the following diagram, where
(L, d, n) is a colimit of CXO⊕YO

(ιX , ιY ), and (C, e,m) is a colimit of CA⊕B(f, g)

A⊕BA B

XO YOXO ⊕ YO

W

L C

e1 e2

e1 e2

a ba⊕ b

ιX ιY
d

n

e

m′

The unlabelled arrow A⊕B → C is m.
Since (L, d, n(a⊕ b)) forms a cocone of CA⊕B(f, g), Ker e ≤ Ker d. Notice, by Proposi-

tion 3.15 (5),
Ker (a⊕ b) = p−11 Ker a ∧ p−12 Ker b = e1Ker a ∨ e2Ker b.

Using this, we have

m(a⊕ b)−10 = m(e1a
−10 ∨ e2b−10) = me1a

−10 ∨me2b−1

= efa−10 ∨ egb−10 = 0.

So Kerm ≥ Ker a ⊕ b. Since a ⊕ b is a projection, there is a unique m′ : XO ⊕ YO → C
such that m′(a⊕ b) = m. Then we have

m′e1a = m′(a⊕ b)e1 = me1 = ef = eιXa.

Since a is a projection, it is an epi, thus m′e1 = eιX . Similarly m′e2 = eιY . Thus
(C, e,m′) is a cocone of CXO⊕YO

(ιX , ιY ). Consequently Ker d ≤ Ker e, and thus Ker e =
Ker d = [X, Y ]W .

We establish some basic properties.

4.4. Proposition. If A, B, X, and Y are conormal subobjects of G, with X ≤ A and
Y ≤ B, then

[X, Y ] ≤ [A,B].

Proof. Since X ≤ A there is a unique k such that ιAk = ιX . Similarly, there is a
unique l such that ιBl = ιY . Suppose (C, e : G → C,m : AO ⊕ BO → C) is a col-
imit of CAO⊕BO

(ιA, ιB). Then (C, e : G → C,m(k ⊕ l) : XO ⊕ YO → C) is a cocone of
CXO⊕YO

(ιX , ιY ). Thus [X, Y ] ≤ Ker e = [A,B].
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4.5. Proposition. For any conormal subobjects X and Y of G, we have [X, Y ] ≤ N
where N is a normal subobject containing X. In particular if there is a smallest normal
subobject X containing X, then [X, Y ] ≤ X.

Proof. We have that (G/N, πN : G → G/N, πN ιY p2 : XO ⊕ YO → G/N) is a cocone of
CXO⊕YO

(ιX , ιY ). Consequently N = Ker πN ≥ [X, Y ].

4.6. Proposition. For any morphism f : G→ H and conormal subobjects X and Y of
G, we have

(1) f [X, Y ] ≤ [fX, fY ];

(2) [fX, fY ] ≤ N for any normal subobject N ≥ f [X, Y ].

Proof. (1) Suppose (C, e : H → C,m : XO ⊕ YO → C) is a colimit of C(fιX , fιY ). Then
(C, ef,m) is a cocone of C(ιX , ιY ). Consequently

[X, Y ] ≤ f−1e−10 = f−1[fX, fY ] ⇒ f [X, Y ] ≤ [fX, fY ].

(2) Suppose (C, e : G→ C,m : XO⊕YO → C) is a colimit of C(ιX , ιY ). Since f [X, Y ] ≤
N , we have [X, Y ] ≤ f−1N , and so Ker e ≤ Ker πNf . Thus there is an h such that
he = πNf . One can then readily observe that (H/N, πN , hm) is a cocone of C(fιX , fιY ).
From this it follows that [fX, fY ] ≤ N .

4.7. Corollary. We have the following immediate consequences

(1) if there is a smallest normal subobject f [X, Y ] containing f [X, Y ], then f [X, Y ] =
[fX, fY ];

(2) if f is a projection, then f [X, Y ] = [fX, fY ].

Proof. (1) Since [fX, fY ] is normal which contains f [X, Y ], we have

[fX, fY ] ≤ f [X, Y ] ≤ [fX, fY ],

from which equality follows.
(2) If f is a projection, then f [X, Y ] is normal. Then from (1) the result follows.

Here is another corollary.

4.8. Corollary. If any commutator of any two conormal subobjects is their meet, then
any direct image preserves meets of conormal subobjects and any conormal subobject is
normal.
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Proof. The last part is clear: take any conormal subobject X, then [X,X] = X∧X = X,
and consequently X is normal.

Take any two conormal subobjects X and Y of the same object A. It is sufficient to
prove that their meet is preserved under embeddings and projections. Let d : A → B be
an embedding, when we have

d(ιX1 ∧ ιY 1) = d(ιXι
−1
X ιY 1) = dιXι

−1
X d−1dιY 1 = dιX1 ∧ dιY 1.

If d : A→ B is a projection, we use the corollary above:

d(X ∧ Y ) = d[X, Y ] = [dX, dY ] = dX ∧ dY.

4.9. Proposition. If direct images preserve meets of conormal subobjects, then the com-
mutator of any two conormal subobjects contains their meet.

Proof. For conormal subobjects X and Y of A, let (C, e : A→ C,m : XO ⊕ YO → C) be
the colimit of C(ιX , ιY ). We have

e(X ∧ Y ) = eX ∧ eY = eιX1 ∧ eιY 1 = me11 ∧me21 = m(e11 ∧ e21) = m0 = 0.

Thus X ∧ Y ≤ Ker e = [X, Y ].

4.10. Proposition. The commutator of any conormal subobjects X and Y is X ∧ Y if
and only if the direct images preserves the meet of conormal subobjects and all conormal
subobjects are normal.

Proof. The one direction is given by the corollary above.
For the converse, by Proposition 4.5, the commutator of X and Y is contained in

X ∧ Y . And also by the proposition above, X ∧ Y is contained in the commutator. Thus
the commutator is X ∧ Y .

Commutators in biproducts can be computed component-wise as in:

4.11. Proposition. If A,C are conormal subobjects of G, and B,D are conormal sub-
objects of H, then

[e1A ∨ e2B, e1C ∨ e2D]G⊕H = [e1A, e1C]G⊕H ∨ [e2B, e2D]G⊕H

= e1[A,C]G ∨ e2[B,D]H .

Proof. Since [A,C]G is normal, so is e1[A,C]G by Proposition 3.15 (3), thus by Corol-
lary 4.7 (1) we have e1[A,C]G = [e1A, e1C]G⊕H . Similarly e2[B,D]H = [e2B, e2D]G⊕H .
By Proposition 3.15 (2) both e1A ∨ e2B and e1C ∨ e2D are conormal. Further, from
Proposition 4.4 it follows that

[e1A ∨ e2B, e1C ∨ e2D]G⊕H ≥ [e1A, e1C]G⊕H ∨ [e2B, e2D]G⊕H .
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Notice that

AO ⊕BO (AO ⊕ CO)⊕ (BO ⊕DO) CO ⊕DO

e1 ⊕ e1

p1 ⊕ p1

e2 ⊕ e2

p2 ⊕ p2

Is a split product by Theorem 3.11 and Proposition 3.15(5), thus a biproduct of AO⊕BO

and CO ⊕ DO. Suppose (L1, d1 : G → L1, n1 : AO ⊕ CO → L1) is a colimit of C(ιA, ιC),
and (L2, d2 : H → L2, n2 : BO ⊕DO → L2) is a colimit of C(ιB, ιD). Then (L1 ⊕ L2, d1 ⊕
d2, n1 ⊕ n2) is a cocone of C(ιA ⊕ ιB, ιC ⊕ ιD). Consequently

[e1A ∨ e2B, e1C ∨ e2D] = [Im (ιA ⊕ ιB), Im (ιC ⊕ ιD)]

≤ Ker (d1 ⊕ d2)
= e1d

−1
1 0 ∨ e2d−12 0 = e1[A,C] ∨ e2[B,D].

Thus the result is true.

4.12. Corollary. For objects A and B, we have

[A⊕B,A⊕B]A⊕B = e1[A,A]A ∨ e2[B,B]B.

Proof. We have

[A⊕B,A⊕B] = [e1A ∨ e2B, e1A ∨ e2B] = e1[A,A] ∨ e2[B,B].

4.13. Trivial commutators.

4.14. Lemma. For any pair of morphisms f : A→ W and g : B → W , if [Im f, Im g] = 0,
then there exists a unique h : A ⊕ B → W such that he1 = f and he2 = g; that is [f, g]
exists. Conversely, if [f, g] exists, then [Im f, Im g] = 0.

Proof. Suppose (C, e : W → C,m : A ⊕ B → C) is a colimit of C(f, g). Suppose
[Im f, Im g] = 0. Then Kere = 0 by Proposition 4.3, and since e is a projection by
Proposition 3.7, e is an isomorphism. Then the required h is e−1m. The converse also
follows easily from Proposition 4.3.

4.15. Proposition. For any object G and conormal subobjects X and Y such that X ∨
Y = 1, if [X, Y ] = 0, then both X and Y are normal subobjects of G.

Proof. Since [Im ιX , Im ιY ] = [X, Y ] = 0, by Lemma 4.14 there is a morphism

h : XO ⊕ YO → G

such that he1 = ιX and he2 = ιY . Notice that h is a projection, since

h1 = h(e11 ∨ e21) = he11 ∨ he21 = X ∨ Y = 1.

Since e11 and e21 are normal subobjects of XO⊕YO, he11 and he21 are normal subobjects
of G, that is, X and Y are normal subobjects of G.
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Usually in group theory, a normal subgroup X of G is defined to be a subgroup such
that for any g ∈ G, gXg−1 ⊆ X, or equivalently [X,G] ≤ X. The above result allows to
prove the same here:

4.16. Corollary. For any object G and conormal subobject X, X is a normal subobject
if and only if [X,G] ≤ X.

Proof. By Proposition 4.5, if X is normal then [X,G] ≤ X.
For the converse, consider the projection p = π[X,G]. We have [pX, pG] = p[X,G] = 0,

and pX ∨ pG = 1, and pX and pG are conormal subobjects. Thus by Proposition 4.15,
pX is a normal subobject of G/[X,G]. Since X contains the kernel of p, X = p−1pX.
Consequently X is normal as well.

4.17. Remark. If we apply this corollary to semi-abelian categories seen as noetherian
forms, we recover the main result Theorem 6.3 of [14].

One can readily observe that [e11, e21] = 0 for the embeddings of any biproduct.
Another way to recognize whether an object is a biproduct of two subobjects:

4.18. Theorem. If object G has conormal subobjects A and B such that

• A ∨B = 1,

• A ∧B = 0,

• [A,B]G = 0,

then G ∼= AO ⊕BO.

Proof. By Proposition 4.15, the first and the last points implies that both A and B are
normal subobjects. Then the result follows from Corollary 3.17.

4.19. Commutative objects.

4.20. Definition. An object A is called commutative when [A,A]A = 0.

From previous results on commutators, we have the following list of basic properties
of commutative objects:

• for projection p : A→ B, if A is commutative, then so is B;

• for embedding e : B → A, if A is commutative, then so is B;

• any conormal subobject of a commutative object is normal;

• A⊕B is commutative if and only if both A and B are commutative.

4.21. Theorem. For any noetherian form C with biproducts, the full subcategory A of
all commutative objects is a reflective subcategory.
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Proof. Take any object G in C. We have

[G/[G,G], G/[G,G]] = [π[G,G]G, π[G,G]G] = π[G,G][G,G] = 0.

Thus G/[G,G] is commutative. Take any morphism f : G→ A, where A is commutative.
Then we have

f [G,G] ≤ [fG, fG] = 0.

Thus Ker f ≥ [G,G], and thus there is a unique h : G/[G,G]→ A such that f = hπ[G,G].
Consequently, A is a full reflective subcategory of C.

There is another way of getting this full subcategory of commutative objects:

4.22. Theorem. The internal monoids (with respect to ⊕) are exactly the commutative
objects. The internal monoid structure is uniquely determined on every commutative ob-
ject. Further any morphism between commutative objects preserves the monoid structures.

Proof. Suppose (M,m : M × M → M,u : 0 → M) is an internal monoid. Then in
particular the following diagram commutes

0⊕M M ⊕M

M

u⊕ 1

p0⊕M2

m

We have
meM⊕M2 = m(u⊕ 1)e0⊕M2 = p0⊕M2 e0⊕M2 = 1M .

Similarly we get thatmeM⊕M1 = 1M . Thus (M, 1M : M →M,m : M⊕M →M) is a cocone
of CM⊕M(1M , 1M). Since it is a cocone with least possible kernel, by Proposition 3.9 it is
a colimit, and thus [M,M ] = [Im 1M , Im 1M ] ≤ Ker1M = 0. So M is commutative. Notice
that we were forced to have m = [1, 1], so if an object is an internal monoid, it is uniquely
so.

Conversely, take any commutative object M . By Lemma 4.14 there is a unique mor-
phism m = [1, 1] : M ⊕ M → M such that me1 = 1 = me2. There is also a unique
morphism u : 0→M . The following diagram commutes:

0⊕M M ⊕M

M

M ⊕ 0
u⊕ 1

p0⊕M2

m

1⊕ u

pM⊕01

since
m(u⊕ 1) = [1, 1](u⊕ 1) = [u, 1] = p0⊕M2 .



990 FRANCOIS KOCH VAN NIEKERK

and similarly the other triangle commutes. Further, the following diagram also commutes:

M ⊕ (M ⊕M) (M ⊕M)⊕M M ⊕M

M ⊕M M

α m⊕ 1

1⊕m
m

m

Recalling from Section 3.23, α = [e1e1, [e1e2, e2]]. We have

m(m⊕ 1)α

=m(m⊕ 1)[e1e1, [e1e2, e2]]

=m[(m⊕ 1)e1e1, [(m⊕ 1)e1e2, (m⊕ 1)e2]]

=m[e1me1, [e1me2, e2]]

=m[e1, [e1, e2]]

=m[e1, 1]

= [me1,m]

= [me1,me2m]

=m[e1, e2m]

=m(1⊕m).

For the morphism part: take any f : A→ B between two commutative objects A and
B. As demonstrated before (A, [1A, 1A], uA) and (B, [1B, 1B], uB) are the unique internal
monoid structures on A and B respectively. Trivially fuA = uB, since 0 is an initial
object. Also

[1B, 1B](f ⊕ f) = [f, f ] = f [1A, 1A].

Thus f is an internal monoid morphism from A to B.

4.23. Remark. Commutative objects defined above are precisely the indiscrete objects in
the sense of Definition 2.8.1 of [9]. Although we have included the proof of Theorem 4.22, it
is actually a simple corollary of Theorem 2.8.2 of [9]. Furthermore, it is easy to show that
biproducts give a symmetric monoidal structure and hence, by Theorem 2.8.3 of [9], the
unique internal monoid structure on each commutative object is an internal commutative
monoid structure, which answers the question posed to the author by Tim Van der Linden.

The result below generalizes the fact that split extensions of abelian groups is the
product.

4.24. Proposition. For any commutative objects A, X, and B, if

XA B
g f

s

satisfies Kerf = Img, g is an embedding and fs = 1B, then X ∼= A⊕B.
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Proof. The image of s is normal, since the image of s is conormal and X is commutative.
Further, the kernel of f is conormal, since it is the image of g. Thus, by Corollary 3.18,
we have

X ∼= (Ker f)O ⊕ (Im s)O = A⊕B.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Kate Ponto, University of Kentucky: kate.ponto (at) uky.edu

Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
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