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CATEGORIFICATION OF PRE-LIE ALGEBRAS AND SOLUTIONS
OF 2-GRADED CLASSICAL YANG-BAXTER EQUATIONS

YUNHE SHENG

Abstract. In this paper, we introduce the notion of a pre-Lie 2-algebra, which is the
categorification of a pre-Lie algebra. We prove that the category of pre-Lie 2-algebras
and the category of 2-term pre-Lie∞-algebras are equivalent. We classify skeletal pre-
Lie 2-algebras by the third cohomology group of a pre-Lie algebra. We prove that
crossed modules of pre-Lie algebras are in one-to-one correspondence with strict pre-
Lie 2-algebras. O-operators on Lie 2-algebras are introduced, which can be used to
construct pre-Lie 2-algebras. As an application, we give solutions of 2-graded classical
Yang-Baxter equations in some semidirect product Lie 2-algebras.

1. Introduction
Pre-Lie algebras (or left-symmetric algebras, Vinberg algebras, and etc.) arose from
the study of affine manifolds and affine Lie groups, convex homogeneous cones and de-
formations of associative algebras. They appeared in many fields in mathematics and
mathematical physics (see the survey article [9] and the references therein). The beauty
of a pre-Lie algebra is that the commutator gives rise to a Lie algebra and the left multi-
plication gives rise to a representation of the commutator Lie algebra. So pre-Lie algebras
naturally play important roles in the study involving the representations of Lie algebras
on the underlying spaces of the Lie algebras themselves or their dual spaces. For example,
they are the underlying algebraic structures of the non-abelian phase spaces of Lie algebras
[6, 18], which lead to a bialgebra theory of pre-Lie algebras [7]. They are also regarded as
the algebraic structures “behind” the classical Yang-Baxter equations (CYBE) and they
provide a construction of solutions of CYBE in certain semidirect product Lie algebras
(that is, over the “double” spaces) induced by pre-Lie algebras [5, 19]. Furthermore, pre-
Lie algebras are also regarded as the underlying algebraic structures of symplectic Lie
algebras [13], which coincides with Drinfeld’s observation of the correspondence between
invertible (skew-symmetric) classical r-matrices and symplectic forms on Lie algebras [14].
In [11], the authors studied pre-Lie algebras using the theory of operads, and introduced
the notion of a pre-Lie∞-algebra. The author also proved that the PreLie operad is Koszul.
The PreLie operad is further studied in [10] recently. Furthermore, the relation between
pre-Lie algebras, trees and cohomology operations are studied in [22].
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O-operators on a Lie algebra g associated to a representation (V ; ρ) were introduced
in [19] inspired by the study of the operator form of the CYBE. See [24] for more details.
On one hand, an O-operator could give rise to a pre-Lie algebra structure on V . On the
other hand, an O-operator could give rise to a solution of the CYBE in the semidirect
product Lie algebra gnρ∗ V .

Recently, people have paid more attention to higher categorical structures with mo-
tivations from string theory. One way to provide higher categorical structures is by
categorifying existing mathematical concepts. One of the simplest higher structure is a
2-vector space, which is a categorified vector space. If we further put Lie algebra struc-
tures on 2-vector spaces, then we obtain Lie 2-algebras [1]. The Jacobi identity is replaced
by a natural transformation, called the Jacobiator, which also satisfies some coherence
laws of its own. It is well-known that the category of Lie 2-algebras is equivalent to the
category of 2-term L∞-algebras [1]. The concept of an L∞-algebra (sometimes called a
strongly homotopy (sh) Lie algebra) was originally introduced in [21, 26] as a model for
“Lie algebras that satisfy Jacobi identity up to all higher homotopies”. The structure
of a Lie 2-algebra appears in many areas such as string theory [3, 4], higher symplectic
geometry [2], and Courant algebroids [27].

The first aim of this paper is to categorify the relation between O-operators, pre-Lie
algebras and Lie algebras. We introduce the notion of an O-operator on a Lie 2-algebra
associated to a representation and the notion of a pre-Lie 2-algebra, and establish the
following commutative diagram:

O-operators on Lie 2-algebras // pre-Lie 2-algebras // Lie 2-algebras

O-operators on Lie algebras
categorification
OO

// pre-Lie algebras
categorification
OO

// Lie algebras.
categorification
OO

In [8], the authors introduced the notion of an L∞[l, k]-bialgebra. In particular, an
L∞[0, 1]-bialgebra is a Lie 2-bialgebra, which is a certain categorification of the concept
of a Lie bialgebra. See [12, 17, 23] for more details along this direction. However, the
relation between Lie 2-algebras and Khovanov-Lauda’s famous work about categorification
of quantum groups [16] is still unclear. 2-graded classical Yang-Baxter equations were
established in [8], whose solutions could naturally generate examples of Lie 2-bialgebras.

The second aim of this paper is to construct solutions of the 2-graded CYBE. We
categorify the relation between O-operators and solutions of the CYBE, and establish the
following commutative diagram:

O-operators on Lie 2-algebras // solutions of 2-graded CYBE // Lie 2-bialgebras

O-operators on Lie algebras //

categorification
OO

solutions of CYBE
categorification

OO

// Lie bialgebras.
categorification

OO

We also find that there are pre-Lie 2-algebras behind the construction of Lie 2-bialgebras
in [8].
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The paper is organized as follows. In Section 2, we recall Lie 2-algebras and their
representations, pre-Lie algebras and their cohomologies, O-operators and solutions of
the CYBE. In Section 3, first we prove that a 2-term pre-Lie∞-algebra gives rise to a
Lie 2-algebra with a natural representation on itself. Then we introduce the notion of
a pre-Lie 2-algebra. At last, we prove that the category of 2-term pre-Lie∞-algebras
and the category of pre-Lie 2-algebras are equivalent (Theorem 3.13). In Section 4, we
study skeletal pre-Lie 2-algebras and strict pre-Lie 2-algebras in detail. Skeletal pre-Lie 2-
algebras are classified by the third cohomology group (Theorem 4.1). We find that there
is a natural 3-cocycle associated to a pre-Lie algebra with a skew-symmetric invariant
bilinear form. By this fact, we construct a natural example of skeletal pre-Lie 2-algebras
associated to a pre-Lie algebra with a skew-symmetric invariant bilinear form. We also
introduce the notion of crossed modules of pre-Lie algebras and prove that there is a
one-to-one correspondence between crossed modules of pre-Lie algebras and strict pre-Lie
2-algebras (Theorem 4.8). In Section 5, we introduce the notion of an O-operator on a
Lie 2-algebra G associated to a representation (V ; ρ), and construct a pre-Lie 2-algebra
structure on V . In Section 6, we construct solutions of the 2-graded CYBE in the strict
Lie 2-algebra G nρ∗ V∗ using O-operators (Theorem 6.3). In particular, if the strict Lie
2-algebra under consideration is given by a strict pre-Lie 2-algebra, there is a natural
solution of the 2-graded CYBE in the strict Lie 2-algebra G(A)n(L∗

0,L
∗
1)A∗ (Theorem 6.4).

At last, we give the pre-Lie 2-algebra structure behind the construction of Lie 2-bialgebras
in [8].

2. Preliminaries
2.1. Lie 2-algebras and 2-term L∞-algebras. Vector spaces can be categorified
to 2-vector spaces. A good introduction for this subject is [1]. Let Vect be the category
of vector spaces. A 2-vector space is a category in the category Vect. Thus, a 2-vector
space C is a category with a vector space of objects C0 and a vector space of morphisms
C1, such that all the structure maps are linear. Let s, t : C1 −→ C0 be the source and
target maps respectively. Let ·v be the composition of morphisms.

It is well known that the category of 2-vector spaces is equivalent to the category of 2-
term complexes of vector spaces. Roughly speaking, given a 2-vector space C, Ker(s) t−→
C0 is a 2-term complex. Conversely, any 2-term complex of vector spaces V : V1

d−→ V0
gives rise to a 2-vector space of which the set of objects is V0, the set of morphisms is
V0 ⊕ V1, the source map s and the target map t are given by

s(u+m) = u, t(u+m) = u+ dm, ∀u, v ∈ V0,m ∈ V1.

The composition of morphisms is given by

(u+m) ·v (v + n) = (u+m+ n), ∀u, v ∈ V0,m, n ∈ V1, safisfying v = u+ dm.

We denote the 2-vector space associated to the 2-term complex of vector spaces V : V1
d−→
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V0 by V:

V =
V1 := V0 ⊕ V1

s
yyt

V0 := V0.

(1)

In this paper, we always assume that a 2-vector space is of the above form. The
identity-assigning map 1 : V0 −→ V1 is given by 1u = (u, 0), for any u ∈ V0.

2.2. Definition. [1] A Lie 2-algebra is a 2-vector space C equipped with

• a skew-symmetric bilinear functor, the bracket, J·, ·K : C × C −→ C,

• a skew-symmetric trilinear natural isomorphism, the Jacobiator,

Jx,y,z : JJx, yK , zK −→ Jx, Jy, zKK + JJx, zK , yK ,

such that the following Jacobiator identity is satisfied,

JJw,xK,y,z ·v (JJw,x,z, yK + 1) ·v (Jw,Jx,zK,y + JJw,zK,x,y + Jw,x,Jy,zK)
= JJw,x,y, zK ·v (JJw,yK,x,z + Jw,Jx,yK,z) ·v (JJw,y,z, xK + 1) ·v (Jw, Jx,y,zK + 1).

2.3. Definition. A 2-term L∞-algebra structure on a graded vector space G = g0 ⊕ g1
consists of the following data:

• a linear map d : g1 −→ g0,

• a skew-symmetric bilinear map l2 : gi × gj −→ gi+j, 0 ≤ i+ j ≤ 1,

• a skew-symmetric trilinear map l3 : ∧3g0 −→ g1,

such that for any xi, x, y, z ∈ g0 and m,n ∈ g1, the following equalities are satisfied:

(i) dl2(x,m) = l2(x, dm), l2(dm,n) = l2(m, dn),

(ii) dl3(x, y, z) = l2(x, l2(y, z)) + l2(y, l2(z, x)) + l2(z, l2(x, y)),

(iii) l3(x, y, dm) = l2(x, l2(y,m)) + l2(y, l2(m,x)) + l2(m, l2(x, y)),

(iv) the Jacobiator identity:
4∑
i=1

(−1)i+1l2(xi, l3(x1, · · · , x̂i, · · · , x4))

+
∑
i<j

(−1)i+jl3(l2(xi, xj), x1, · · · , x̂i, · · · , x̂j, · · · , x4) = 0.

Usually, we denote a 2-term L∞-algebra by (g0, g1, d, l2, l3), or simply by G. A 2-term
L∞-algebra is called strict if l3 = 0. Associated to a 2-term strict L∞-algebra, there is a
semidirect product Lie algebra g0 n g1 = (g0⊕ g−1, [·, ·]s), where the bracket [·, ·]s is given
by

[x+m, y + n]s := l2(x, y) + l2(x, n) + l2(m, y). (2)
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2.4. Definition. Let G = (g0, g1, d, l2, l3) and G ′ = (g′0, g′1, d′, l′2, l′3) be 2-term L∞-
algebras. A homomorphism F from G to G ′ consists of: linear maps F0 : g0 → g′0, F1 :
g1 → g′1 and F2 : g0 ∧ g0 → g′1, such that the following equalities hold for all x, y, z ∈
g0, a ∈ g1,

(i) F0 ◦ d = d′ ◦ F1,

(ii) F0l2(x, y)− l′(F0(x), F0(y)) = d′F2(x, y),

(iii) F1l2(x, a)− l′(F0(x), F1(a)) = F2(x, da),

(iv) F2(l2(x, y), z)+c.p.+F1(l3(x, y, z)) = l′2(F0(x),F2(y, z))+c.p.+l′3(F0(x), F0(y), F0(z)).

It is well-known that the category of Lie 2-algebras and the category of 2-term L∞-
algebras are equivalent. Thus, when we say “a Lie 2-algebra”, we mean a 2-term L∞-
algebra in the sequel.

Let V : V1
d−→ V0 be a complex of vector spaces. Define End0

d(V) by

End0
d(V) , {(A0, A1) ∈ gl(V0)⊕ gl(V1)|A0 ◦ d = d ◦ A1},

and define End1(V) , Hom(V0, V1). There is a differential δ : End1(V) −→ End0
d(V) given

by
δ(φ) , φ ◦ d + d ◦ φ, ∀ φ ∈ End1(V),

and a bracket operation [·, ·] given by the graded commutator. More precisely, for any
A = (A0, A1), B = (B0, B1) ∈ End0

d(V) and φ ∈ End1(V), [·, ·] is given by

[A,B] = A ◦B −B ◦ A = (A0 ◦B0 −B0 ◦ A0, A1 ◦B1 −B1 ◦ A1),

and
[A, φ] = A ◦ φ− φ ◦ A = A1 ◦ φ− φ ◦ A0. (3)

These two operations make End1(V) δ−→ End0
d(V) into a strict Lie 2-algebra, which we

denote by End(V). It plays the same role as gl(V ) for a vector space V ([20]).
A representation of a Lie 2-algebra G on V is a homomorphism (ρ0, ρ1, ρ2) from G to

End(V). A representation of a strict Lie 2-algebra G on V is called strict if ρ2 = 0. Given
a strict representation of a strict Lie 2-algebra G on V , there is a semidirect product strict
Lie 2-algebra GnV , in which the degree 0 part is g0⊕V0, the degree 1 part is g1⊕V1, the
differential is d+ d : g1⊕ V1 −→ g0⊕ V0, and for all x, y ∈ g0, a ∈ g1, u, v ∈ V0,m ∈ V1, l

s
2

is given by

ls2(x+ u, y + v) = l2(x, y) + ρ0(x)v − ρ0(y)u,
ls2(x+ u, a+m) = l2(x, a) + ρ0(x)m− ρ1(a)u.

2.5. Pre-Lie algebras and their representations.
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2.6. Definition. A pre-Lie algebra (A, ·A) is a vector space A equipped with a bilinear
product ·A : ⊗2A −→ A such that for any x, y, z ∈ A, the associator (x, y, z) = (x ·A y) ·A
z − x ·A (y ·A z) is symmetric in x, y, i.e.,

(x, y, z) = (y, x, z), or equivalently, (x ·A y) ·A z−x ·A (y ·A z) = (y ·A x) ·A z−y ·A (x ·A z).

Let A be a pre-Lie algebra. The commutator [x, y]A = x ·A y − y ·A x defines a Lie
algebra structure on A, which is called the sub-adjacent Lie algebra of A and denoted
by g(A). Furthermore, L : A→ gl(A) with Lxy = x ·A y gives a representation of the Lie
algebra g(A) on A. See [9] for more details.

2.7. Definition. Let (A, ·A) be a pre-Lie algebra and V a vector space. A representation
of A on V consists of a pair (ρ, µ), where ρ : A −→ gl(V ) is a representation of the Lie
algebra g(A) on V and µ : A −→ gl(V ) is a linear map satisfying

ρ(x)µ(y)u− µ(y)ρ(x)u = µ(x ·A y)u− µ(y)µ(x)u, ∀x, y ∈ A, u ∈ V. (4)

Usually, we denote a representation by (V ; ρ, µ). In this case, we will also say that
(ρ, µ) is an action of (A, ·A) on V . Define R : A −→ gl(A) by Rxy = y ·A x. Then
(A;L,R) is a representation of (A, ·A). Furthermore, (A∗; ad∗ = L∗ − R∗,−R∗) is also a
representation of (A, ·A), where L∗ and R∗ are given by

〈L∗xξ, y〉 = 〈ξ,−Lxy〉, 〈R∗xξ, y〉 = 〈ξ,−Rxy〉, ∀x, y ∈ A, ξ ∈ A∗.

The cohomology complex for a pre-Lie algebra (A, ·A) with a representation (V ; ρ, µ)
is given as follows ([15]). The set of (n+ 1)-cochains is given by

Cn+1(A, V ) = Hom(∧nA⊗ A, V ), n ≥ 0.

For all ω ∈ Cn(A, V ), the coboundary operator d : Cn(A, V ) −→ Cn+1(A, V ) is given by

dω(x1, x2, · · · , xn+1)

=
n∑
i=1

(−1)i+1ρ(xi)ω(x1, x2, · · · , x̂i, · · · , xn+1)

+
n∑
i=1

(−1)i+1µ(xn+1)ω(x1, x2, · · · , x̂i, · · · , xn, xi)

−
n∑
i=1

(−1)i+1ω(x1, x2, · · · , x̂i, · · · , xn, xi ·A xn+1)

+
∑

1≤i<j≤n
(−1)i+jω([xi, xj]A, x1, · · · , x̂i, · · · , x̂j, · · · , xn+1),

for all xi ∈ Γ(A), i = 1, 2 · · · , n+ 1.
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2.8. O-operators and solutions of the classical Yang-Baxter equations.
Let (g, [·, ·]g) be a Lie algebra and (V ; ρ) be a representation. A linear map T : V → g is
called an O-operator on g associated to the representation (V ; ρ) if T satisfies

[T (u), T (v)]g = T
(
ρ(T (u))v − ρ(T (v))u

)
, ∀ u, v ∈ V. (5)

Associated to a representation (V ; ρ), we have the semidirect product Lie algebra
g nρ∗ V ∗, where ρ∗ : g −→ gl(V ∗) is the dual representation. A linear map T : V −→ g
can be view as an element T ∈ ⊗2(g⊕ V ∗) via

T (ξ + u, η + v) = 〈T (u), η〉, ∀ ξ + u, η + v ∈ g∗ ⊕ V. (6)

Let σ be the exchanging operator acting on the tensor space, then r , T − σ(T ) is
skew-symmetric.

2.9. Theorem. Let T : V → g be a linear map. Then r = T − σ(T ) is a solution
of the classical Yang-Baxter equation in the Lie algebra g nρ∗ V ∗ if and only if T is an
O-operator.

2.10. Theorem. [5] Let A be a pre-Lie algebra. Then

r =
n∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei) (7)

is a solution of the CYBE in g(A)nL∗ A∗, where {ei} is a basis of A, and {e∗i } is the dual
basis.

3. 2-term pre-Lie∞-algebras and Pre-Lie 2-algebras
In this section, we show that a 2-term pre-Lie∞-algebra can give rise to a Lie 2-algebra,
and the left multiplication gives rise to a representation of the Lie 2-algebra. We introduce
the notion of a pre-Lie 2-algebra, which is a categorification of a pre-Lie algebra. We prove
that the category of 2-term pre-Lie∞-algebras and the category of pre-Lie 2-algebras are
equivalent.

3.1. 2-term Pre-Lie∞-algebras. The notion of a pre-Lie∞-algebra was introduced
in [11], which is a right-symmetric algebra1 up to homotopy. By a slight modification,
we can obtain a left-symmetric algebra (the pre-Lie algebra we use in this paper) up to
homotopy. By truncation, we obtain a 2-term pre-Lie∞-algebra.

1A right-symmetric algebra (A, ·A) is a vector space A equipped with a bilinear product ·A : ⊗2A −→ A
such that the associator satisfies (x, y, z) = (x, z, y), for all x, y, z ∈ A.
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3.2. Definition. A 2-term pre-Lie∞-algebra is a 2-term graded vector space A = A0 ⊕
A1, together with linear maps d : A1 −→ A0, · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i + j ≤ 1, and
l3 : ∧2A0 ⊗ A0 −→ A1, such that for all v, vi ∈ A0 and m,n ∈ A1, we have

(a1) d(v ·m) = v · dm,

(a2) d(m · v) = (dm) · v,

(a3) dm · n = m · dn,

(b1) v0 · (v1 · v2)− (v0 · v1) · v2 − v1 · (v0 · v2) + (v1 · v0) · v2 = dl3(v0, v1, v2),

(b2) v0 · (v1 ·m)− (v0 · v1) ·m− v1 · (v0 ·m) + (v1 · v0) ·m = l3(v0, v1, dm),

(b3) m · (v1 · v2)− (m · v1) · v2 − v1 · (m · v2) + (v1 ·m) · v2 = l3(dm, v1, v2),

(c)

v0 · l3(v1, v2, v3)− v1 · l3(v0, v2, v3) + v2 · l3(v0, v1, v3)
+l3(v1, v2, v0) · v3 − l3(v0, v2, v1) · v3 + l3(v0, v1, v2) · v3

−l3(v1, v2, v0 · v3) + l3(v0, v2, v1 · v3)− l3(v0, v1, v2 · v3)
−l3(v0 · v1 − v1 · v0, v2, v3) + l3(v0 · v2 − v2 · v0, v1, v3)− l3(v1 · v2 − v2 · v1, v0, v3)
= 0.

Usually, we denote a 2-term pre-Lie∞-algebra by (A0, A1, d, ·, l3), or simply by A. A
2-term pre-Lie∞-algebra (A0, A1, d, ·, l3) is said to be skeletal (strict) if d = 0 (l3 = 0).

Given a 2-term pre-Lie∞-algebra (A0, A1, d, ·, l3), we define l2 : Ai ∧ Aj −→ Ai+j and
l3 : ∧3A0 −→ A1 by

l2(u, v) = u · v − v · u, (8)
l2(u,m) = −l2(m,u) = u ·m−m · u, (9)

l3(u, v, w) = l3(u, v, w) + l3(v, w, u) + l3(w, u, v). (10)

Furthermore, define L0 : A0 −→ End(A0)⊕ End(A1) by

L0(u)v = u · v, L0(u)m = u ·m. (11)

Define L1 : A1 −→ Hom(A0, A1) by

L1(m)u = m · u. (12)

Define L2 : ∧2A0 −→ Hom(A0, A1) by

L2(u, v)w = −l3(u, v, w), ∀u, v, w ∈ A0. (13)
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3.3. Theorem. Let A = (A0, A1, d, ·, l3) be a 2-term pre-Lie∞-algebra. Then, we have
(A0, A1, d, l2, l3) is a Lie 2-algebra, which we denote by G(A), where l2 and l3 are given
by (8)-(10) respectively. Furthermore, (L0, L1, L2) is a representation of the Lie 2-algebra
G(A) on the complex of vector spaces A1

d−→ A0, where L0, L1, L2 are given by (11)-(13)
respectively.

Proof. By Conditions (a1)-(a3), we have

dl2(v,m) = d(v ·m−m · v) = v · dm− (dm) · v = l2(v, dm),
l2(dm,n) = (dm) · n− n · dm = m · dn− (dn) ·m = l2(m, dn).

By Condition (b1), we have

l2(v0, l2(v1, v2)) + c.p. = l2(v0, v1 · v2 − v2 · v1) + c.p.

= v0 · (v1 · v2)− (v1 · v2) · v0 − v0 · (v2 · v1) + (v2 · v1) · v0 + c.p.

= d(l3(v0, v1, v2) + l3(v1, v2, v0) + l3(v2, v0, v1))
= dl3(v0, v1, v2).

Similarly, by Conditions (b2) and (b3), we have

l2(v0, l2(v1,m)) + l2(v1, l2(m, v0)) + l2(m, l2(v0, v1))
= l2(v0, v1 ·m−m · v1) + l2(v1,m · v0 − v0 ·m) + l2(m, v0 · v1 − v1 · v0)
= v0 · (v1 ·m)− (v1 ·m) · v0 − v0 · (m · v1) + (m · v1) · v0

+v1 · (m · v0)− (m · v0) · v1 − v1 · (v0 ·m) + (v0 ·m) · v1

+m · (v0 · v1)− (v0 · v1) ·m−m · (v1 · v0) + (v1 · v0) ·m
= l3(v0, v1, dm) + l3(v1, dm, v0) + l3(dm, v0, v1)
= l3(v0, v1, dm).

At last, by Condition (c), we can get

l2(v0, l3(v1, v2, v3))− l2(v1, l3(v0, v2, v3)) + l2(v2, l3(v0, v1, v3))− l2(v3, l3(v0, v1, v2))
= l3(l2(v0, v1), v2, v3)− l3(l2(v0, v2), v1, v3) + l3(l2(v0, v3), v1, v2) + l3(l2(v1, v2), v0, v3)
−l3(l2(v1, v3), v0, v2) + l3(l2(v2, v3), v0, v1).

Thus, (A0, A1, d, l2, l3) is a Lie 2-algebra.
By Condition (a1), we deduce that L0(u) ∈ End0

d(A) for all u ∈ A0. By Conditions
(a2) and (a3), we have

δ ◦ L1(m) = L0(dm). (14)
Furthermore, we have

L0(l2(u, v))w = (u · v) · w − (v · u) · w = u · (v · w)− v · (u · w)− dl3(u, v, w)
= [L0(u), L0(v)]w − dl3(u, v, w),
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which implies that

L0(l2(u, v))− [L0(u), L0(v)] = d ◦ L2(u, v). (15)

Similarly, we have

L1(l2(u,m))− [L0(u), L1(m)] = L2(u, dm). (16)

At last, by Condition (c) in Definition 3.2, we get

− [L0(u), L2(v, w)] + L2(l2(u, v), w) + c.p.+ L1(l3(u, v, w)) = 0. (17)

By (14)-(17), we deduce that (L0, L1, L2) is a homomorphism from the Lie 2-algebra G(A)
to End(V). The proof is finished.

3.4. Example. Let V be a vector space. Denote by A0 = gl(V )⊕V and A1 = V . Define
d : A1 −→ A0, · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i+ j ≤ 1, and l3 : ∧2A0 ⊗ A0 −→ A1 by

du = u, ∀ u ∈ A1,
(A+ u) · (B + v) = AB + 1

2Av, ∀ A+ u,B + v ∈ A0,
(A+ u) · v = 1

2Av, ∀ A+ u ∈ A0, v ∈ A1,
u · (B + v) = 0, ∀ u ∈ A1, B + v ∈ A0,

l3(A+ u,B + v, C + w) = −1
4 [A,B]w, ∀ A+ u,B + v, C + w ∈ A0.

Then it is straightforward to prove that A = (A0, A1, d, ·, l3) is a 2-term pre-Lie∞-algebra.
By Theorem 3.3, we obtain a Lie 2-algebra G(A). Actually, this Lie 2-algebra is the

Lie 2-algebra associated to Weinstein’s omni-Lie algebra. See [25] for more details.

3.5. Definition. Let A = (A0, A1, d, ·, l3) and A′ = (A′0, A′1, d′, ·′, l′3) be 2-term pre-Lie∞-
algebras. A homomorphism (F0, F1, F2) from A to A′ consists of linear maps F0 : A0 −→
A′0, F1 : A1 −→ A′1, and F2 : A0 ⊗ A0 −→ A′1 such that the following equalities hold:

(i) F0 ◦ d = d′ ◦ F1,

(ii) F0(u · v)− F0(u) ·′ F0(v) = d′F2(u, v),

(iii) F1(u ·m)− F0(u) ·′ F1(m) = F2(u, dm), F1(m · u)− F1(m) ·′ F0(u) = F2(dm,u),

(iv) F0(u) ·′ F2(v, w)−F0(v) ·′ F2(u,w) +F2(v, u) ·′ F0(w)−F2(u, v) ·′ F0(w)−F2(v, u ·w)
+F2(u, v ·w)−F2(u · v, w) +F2(v ·u,w) + l′3(F0(u), F0(v), F0(v))−F1l3(u, v, w) = 0.

By straightforward computations, we have
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3.6. Proposition. Let A = (A0, A1, d, ·, l3) and A′ = (A′0, A′1, d′, ·′, l′3) be 2-term pre-
Lie∞-algebras, (F0, F1, F2) a homomorphism from A to A′. Then (F0, F1,F2) is a homo-
morphism from the corresponding Lie 2-algebra G(A) to G(A′), where F2 : ∧2A0 −→ A1
is given by

F2(u, v) = F2(u, v)− F2(v, u), ∀u, v ∈ A0. (18)

At the end of this subsection, we introduce composition and identity for 2-term pre-
Lie∞-algebra homomorphisms. Let F = (F0, F1, F2) : A −→ A′ and G = (G0, G1, G2) :
A′ −→ A′′ be 2-term pre-Lie∞-algebra homomorphisms. Their composition GF =
((GF )0, (GF )1, (GF )2) is defined by (GF )0 = G0 ◦ F0, (GF )1 = G1 ◦ F1, and (GF )2
is given by

(GF )2(u, v) = G2(F0(u), F0(v)) +G1(F2(u, v)). (19)

It is straightforward to verify that GF = ((GF )0, (GF )1, (GF )2) : A −→ A′′ is a 2-
term pre-Lie∞-algebra homomorphism. It is obvious that (idA0 , idA1 , 0) is the identity
homomorphism. Thus, we obtain

3.7. Proposition. There is a category, which we denote by 2preLie, with 2-term pre-
Lie∞-algebras as objects, homomorphisms between them as morphisms.

3.8. Pre-Lie 2-algebras.

3.9. Definition. A pre-Lie 2-algebra is a 2-vector space V endowed with a bilinear func-
tor ? : V× V −→ V and a natural isomorphism Ju,v,w for all u, v, w ∈ V0,

Ju,v,w : (u ? v) ? w − u ? (v ? w) −→ (v ? u) ? w − v ? (u ? w), (20)

such that the following identity is satisfied:

(0J1,2,3) ·v (−J0,21,3 + 1(0(21))3 + J0,2,13 − 1(02)(13))
·v(1(0(21))3−((21)0)3+(21)(03) + J02,1,3 − 1((02)1)3 − J20,1,3 + 1((20)1)3 + 2J0,1,3 − 21(01)3)

= (−J0,12,3 + 1(0(12))3 + J0,1,23 − 1(01)(23))
·v(J1,2,03 + 11(2(03)) + J01,2,3 − 1((01)2)3 − J10,2,3 + 1((10)2)3 + 1J0,2,3 − 11(02)3 + 1−((12)0)3+(0(12))3)
·v(−J1,2,03− 11(20)+2(10)3− J2,0,13 + 1(20)13− J0,1,23 + 1(10)23
+1(21)(03)−2(1(03))−2((01)3)+2((10)3)−1((02)3)+1((20)3)). (21)

Here, 0, 1, 2, 3 denote v0, v1, v2, v3 respectively, ij denotes vi?vj, iJj,k,l denotes vi?Jvj ,vk,vl
,

and Jj,k,li denotes Jvj ,vk,vl
? vi. Or, in terms of a commutative diagram,

0((12)3− 1(23))

−J0,12,3+1(0(12))3+J0,1,23−1(01)(23)

��

0J1,2,3 // 0((21)3− 2(13))

−J0,21,3+1(0(21))3+J0,2,13−1(02)(13)

��
P

ε

��

Q

ε

��
M

κ // N
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where

P = −((12)0)3 + (12)(03) + (0(12))3− (01)(23) + (10)(23)− 1(0(23)),
Q = (0(21))3− ((21)0)3 + (21)(03)− (02)(13) + (20)(13)− 2(0(13)),
ε = J1,2,03 + 11(2(03)) + J01,2,3 − 1((01)2)3 − J10,2,3 + 1((10)2)3 + 1J0,2,3 − 11(02)3 + 1−((12)0)3+(0(12))3,

ε = 1(0(21))3−((21)0)3+(21)(03) + J02,1,3 − 1((02)1)3 − J20,1,3 + 1((20)1)3 + 2J0,1,3 − 21(01)3,

κ = −J1,2,03− 11(20)+2(10)3− J2,0,13 + 1(20)13− J0,1,23 + 1(10)23
+1(21)(03)−2(1(03))−2((01)3)+2((10)3)−1((02)3)+1((20)3),

M = −((12)0)3 + (0(12))3 + 1(2(03)) + (21)(03)− 2(1(03))− ((01)2)3 + (2(01))3− 2((01)3)
+((10)2)3− (2(10))3 + 2((10)3)− 1((02)3) + 1((20)3)− 1(2(03)),

N = (0(21))3− ((21)0)3 + (21)(03)− ((02)1)3 + (1(02))3− 1((02)3)
+((20)1)3− (1(20))3 + 1((20)3)− 2((01)3) + 2((10)3)− 2(1(03)).

3.10. Definition. Let (V, ?, J) and (V′, ?′, J ′) be pre-Lie 2-algebras. A homomorphism
Φ : V −→ V′ consists of

• A linear functor (Φ0,Φ1) from V to V′,

• A bilinear natural transformation Φ2 : Φ0(u) ?′ Φ0(v) −→ Φ0(u ? v),

such that the following identity holds:

J ′Φ0(u),Φ0(v),Φ0(w) ·v (F2(v, u) ? 1Φ0(w) − 1Φ0(v) ? F2(u,w)) ·v (F2(v ? u, w)− F2(v, u ? w))
= (F2(u, v) ? 1Φ0(w) − 1Φ0(u) ? F2(v, w)) ·v (F2(u ? v, w)− F2(u, v ? w)) ·v F1Ju,v,w,

or, in terms of a commutative diagram:

(Φ0(u) ?′ Φ0(v)) ?′ Φ0(w)− Φ0(u) ?′ (Φ0(v) ?′ Φ0(w))

F2(u,v)?1Φ0(w)−1Φ0(u)?F2(v,w)
��

J′
Φ0(u),Φ0(v),Φ0(w)// (Φ0(v) ?′ Φ0(u)) ?′ Φ0(w)− Φ0(v) ?′ (Φ0(u) ?′ Φ0(w))

F2(v,u)?1Φ0(w)−1Φ0(v)?F2(u,w)
��

Φ0(u ? v) ? Φ0(w)− Φ0(u) ? Φ0(v ? w)

F2(u?v,w)−F2(u,v?w)
��

Φ0(v ? u) ? Φ0(w)− Φ0(v) ? Φ0(u ? w)

F2(v?u,w)−F2(v,u?w)
��

F0((u ? v) ? w)− F0(u ? (v ? w))
F1Ju,v,w // F0((v ? u) ? w)− F0(v ? (u ? w)).

The composition of two homomorphisms Φ : V −→ V′ and Ψ : V′ −→ V′′, which we
denote by ΨΦ : V −→ V′′ is defined as follows:

(ΨΦ)0 = Ψ0 ◦ Φ0, (ΨΦ)1 = Ψ1 ◦ Φ1, (ΨΦ)2(u, v) = Ψ2(Φ0(u),Φ0(v)) ·v Ψ1(Φ2(u, v)).

The identity homomorphism 1V has the identity functor as its underlying functor, together
with an identity natural transformation. It is straightforward to obtain

3.11. Proposition. There is a category, which we denote by preLie2, with pre-Lie
2-algebras as objects, homomorphisms between them as morphisms.
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3.12. The equivalence.

3.13. Theorem. The categories 2preLie and preLie2, which are given in Proposition
3.7 and Proposition 3.11 respectively, are equivalent.

Thus, in the following sections, a 2-term pre-Lie∞-algebra will be called a pre-Lie
2-algebra.

Proof. We only give a sketch of the proof. First we construct a functor T : 2preLie −→
preLie2.

Given a 2-term pre-Lie∞-algebra A = (A0, A1, d, ·, l3), we have a 2-vector space A
given by (1). More precisely, we have A0 = A0, A1 = A0 ⊕ A1. Define a bilinear functor
? : A× A −→ A by

(u+m) ? (v + n) = u · v + u · n+m · v + dm · n, ∀ u+m, v + n ∈ A1 = A0 ⊕ A1.

Define the Jacobiator J : ⊗3A0 −→ A1 by

Ju,v,w = (u · v) · w − u · (v · w) + l3(x, y, z).

By the various conditions of A being a 2-term pre-Lie∞-algebra, we deduce that (A, ?, J)
is a pre-Lie 2-algebra. Thus, we have constructed a pre-Lie 2-algebra A = T (A) from a
2-term pre-Lie∞-algebra A.

For any homomorphism F = (F0, F1, F2) form A to A′, next we construct a pre-Lie
2-algebra homomorphism Φ = T (F ) from A = T (A) to A′ = T (A′). Let Φ0 = F0, Φ1 =
F0 ⊕ F1, and Φ2 be given by

Φ2(u, v) = F0(u) ·′ F0(v) + F2(u, v).

Then Φ2(u, v) is a natural isomorphism from Φ0(u)·′Φ0(v) to Φ0(u·v), and Φ = (Φ0,Φ1,Φ2)
is a homomorphism from A to A′.

One can also deduce that T preserves the identity homomorphisms and the compo-
sition of homomorphisms. Thus, T constructed above is a functor from 2pre-Lie to
preLie2.

Conversely, given a pre-Lie 2-algebra A, we construct the 2-term pre-Lie∞-algebra
A = S(A) as follows. As a complex of vector spaces, A is obtained as follows: A0 =
A0, A1 = Ker(s), and d = t|Ker(s), where s, t are the sauce map and the target map in the
2-vector space A. Define a multiplication · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i+ j ≤ 1, by

u · v = u ? v, u ·m = 1u ? m, m · u = m ? 1u, ∀u, v ∈ A0, m, n ∈ A1.

Define l3 : ∧2A0 ⊗ A0 −→ A1 by

l3(u, v, w) = Ju,v,w − 1s(Ju,v,w).

The various conditions of A being a pre-Lie 2-algebra imply that A is 2-term pre-Lie∞-
algebra.
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Let Φ = (Φ0,Φ1,Φ2) : A −→ A′ be a pre-Lie 2-algebra homomorphism, and S(A) =
A, S(A′) = A′. Define S(Φ) = F = (F0, F1, F2) as follows. Let F0 = Φ0, F1 = Φ1|A1=Ker(s)
and define F2 by

F2(u, v) = Φ2(u, v)− 1s(Φ2(u,v)).

It is not hard to deduce that F is a homomorphism between 2-term pre-Lie∞-algebras.
Furthermore, S also preserves the identity homomorphisms and the composition of ho-
momorphisms. Thus, S is a functor from preLie2 to 2pre-Lie.

We are left to show that there are natural isomorphisms α : T ◦ S =⇒ idpreLie2 and
β : S ◦ T =⇒ id2preLie. For a pre-Lie 2-algebra (A, ?, J), applying the functor S to A, we
obtain a 2-term pre-Lie∞-algebra A = (A0, A1, d = t|Ker(s), ·, l3), where A0 = A0, A1 =
Ker(s). Applying the functor T to A, we obtain a pre-Lie 2-algebra (A′, ?′, J ′), with the
space A0 of objects and the space A0 ⊕ Ker(s) of morphisms. Define αA : A′ −→ A by
setting

(αA)0(u) = u, (αA)1(u+m) = 1u +m.

It is obvious that αA is an isomorphism of 2-vector spaces. Furthermore, since ? is a
bilinear functor, we have 1u ? 1v = 1u?v, and

m ? n = (m ·v 1dm) ? (10 ·v n) = (m ? 10) ·v (1dm ? n) = 1dm ? n.

Therefore, we have

αA((u+m) ?′ (v + n)) = αA(u · v + u · n+m · v + dm · n)
= αA(u ? v + 1u ? n+m ? 1v + 1dm ? n)
= 1u?v + 1u ? n+m ? 1v + 1dm ? n

= 1u ? 1v + 1u ? n+m ? 1v + 1dm ? n

= αA(u+m) ? αA(v + n),

which implies that αA is also a pre-Lie 2-algebra homomorphism with (αA)2 the identity
isomorphism. Thus, αA is an isomorphism of pre-Lie 2-algebras. It is also easy to see that
it is a natural isomorphism.

For a 2-term pre-Lie∞-algebra A = (A0, A1, d, ·, l3), applying the functor S to A, we
obtain a pre-Lie 2-algebra (A, ?, J). Applying the functor T to A, we obtain exactly
the same 2-term pre-Lie∞-algebra A. Thus, βA = idA = (idA0 , idA1) is the natural
isomorphism from T ◦ S to id2preLie. This finishes the proof.

3.14. Remark. We can further obtain 2-categories 2preLie and preLie2 by introducing
2-morphisms and strengthen Theorem 3.13 to the 2-equivalence of 2-categories. We omit
details.

4. Skeletal and strict pre-Lie 2-algebras
In this section, we study skeletal pre-Lie 2-algebras and strict pre-Lie 2-algebras in detail.
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Let (A0, A1, d = 0, ·, l3) be a skeletal pre-Lie 2-algebra. Condition (b1) in Definition
3.2 implies that (A0, ·) is a pre-Lie algebra. Define ρ and µ from A0 to gl(A1) by

ρ(u)m = u ·m, µ(u)m = m · u, ∀ u ∈ A0, m ∈ A1. (22)

Condition (b2) and (b3) in Definition 3.2 implies that (A1; ρ, µ) is a representation of the
pre-Lie algebra (A0, ·). Furthermore, Condition (c) exactly means that l3 is a 3-cocycle
on A0 with values in A1. Summarize the discussion above, we have

4.1. Theorem. There is a one-to-one correspondence between skeletal pre-Lie 2-algebras
and triples ((A0, ·), (A1; ρ, µ), l3), where (A0, ·) is a pre-Lie algebra, (A1; ρ, µ) is a repre-
sentation of (A0, ·), and l3 is a 3-cocycle on (A0, ·) with values in A1.

Recall that a skew-symmetric bilinear form ω : ∧2A −→ A on a pre-Lie algebra (A, ·A)
is called invariant if

ω(u ·A v − v ·A u,w) + ω(v, u ·A w) = 0, ∀u, v, w ∈ A. (23)

Equivalently, ω([u, v]A, w) + ω(v, u ·A w) = 0, where [·, ·]A is the Lie bracket in the sub-
adjacent Lie algebra of A.

4.2. Lemma. Let ω be a skew-symmetric invariant bilinear form on a pre-Lie algebra
(A, ·A). Then we have

ω(u ·A v, w) = ω(u,w ·A v). (24)

Proof. By (23), we have

ω(u ·A w − w ·A u, v) + ω(w, u ·A v) = 0. (25)

Since ω is skew-symmetric, by (23) and (25), we have

−ω(w ·A u, v)− ω(v ·A u,w) = 0,

which implies that ω(u ·A v, w) = ω(u,w ·A v).

Define ϕ : ∧2A⊗ A −→ R by

ϕ(u, v, w) = ω(u ·A v − v ·A u,w). (26)

4.3. Proposition. Let ω be a skew-symmetric invariant bilinear form on a pre-Lie al-
gebra (A, ·A). Then ϕ defined by (26) is a 3-cocycle on A with values in R, i.e. dϕ = 0.
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Proof. For any u, v, w, p ∈ A, by (23) and (24), we have

dϕ(u, v, w, p) = −ϕ(v, w, u ·A p) + ϕ(u,w, v ·A p)− ϕ(u, v, w ·A p)
−ϕ([u, v]A, w, p) + ϕ([u,w]A, v, p)− ϕ([v, w]A, u, p)

= −ω([v, w]A, u ·A p) + ω([u,w]A, v ·A p)− ω([u, v]A, w ·A p)
−ω([[u, v]A, w]A + c.p., p)

= ω(w, v ·A (u ·A p))− ω(w, u ·A (v ·A p)) + ω(w, [u, v]A ·A p)
= ω(w, v ·A (u ·A p)− u ·A (v ·A p) + (u ·A v) ·A p− (v ·A u) ·A p)
= 0,

which finishes the proof.

4.4. Example. Let ω be a skew-symmetric invariant bilinear form on a pre-Lie algebra
(A, ·A). Consider the graded vector space A = A0 ⊕ A1 where A0 = A,A1 = R. Define
d : R −→ A, · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i+ j ≤ 1, and l3 : ⊗A0 −→ A1 by

d = 0,
u · v = u ·A v,
u ·m = m · u = 0,

l3(u, v, w) = ϕ(u, v, w),

for any u, v, w ∈ A and m ∈ A1. By Proposition 4.3, it is straightforward to verify that
A = (A,R, d = 0, ·, l3 = ϕ) is a pre-Lie 2-algebra. Furthermore, ω ia a closed 2-form on
the Lie algebra g(A), i.e.

ω([u, v]A, w) + ω([v, w]A, u) + ω([w, u]A, v) = 0,

which implies that l3(u, v, w)+ l3(v, w, u)+ l3(w, u, v) = 0. Thus, the skeletal Lie 2-algebra
G(A) is strict.

Now we turn to the study on strict pre-Lie 2-algebras. First we introduce the notion
of crossed modules of pre-Lie algebras, which can give rise to crossed modules of Lie
algebras.

4.5. Definition. A crossed module of pre-Lie algebras is defined to be a quadruple
((A0, ·0), (A1, ·1), d, (ρ, µ)) where (A0, ·0) and (A1, ·1) are pre-Lie algebras, d : A1 −→ A0
is a homomorphism of pre-Lie algebras, and (ρ, µ) is an action of (A0, ·0) on A1 such that
for all u ∈ A0 and m,n ∈ A1, the following equalities are satisfied:

(C1) d(ρ(u)m) = u ·0 dm, d(µ(u)m) = (dm) ·0 u,

(C2) ρ(dm)n = µ(dn)m = m ·1 n.

4.6. Example. Let (A, ·A) be a pre-Lie algebra and B ⊂ A an ideal. Then it is straight-
forward to see that ((A, ·), (B, ·|B), i, (ρ, µ)) is a crossed module of pre-Lie algebras, where
i is the inclusion, and (ρ, µ) are given by ρ(u)v = u·Av, µ(u)v = v·Au, for all u ∈ A, v ∈ B.
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4.7. Proposition. Let ((A0, ·0), (A1, ·1), d, (ρ, µ)) be a crossed module of pre-Lie alge-
bras. Then we have

ρ(u)(m ·1 n) = (ρ(u)m) ·1 n+m ·1 ρ(u)n− (µ(u)m) ·1 n, (27)
µ(u)(m ·1 n) = µ(u)(n ·1 m) +m ·1 µ(u)n− n ·1 µ(u)m. (28)

Consequently, there is a pre-Lie algebra structure · on the direct sum A0 ⊕ A1 given by

(u+m) · (v + n) = u ·0 v + ρ(u)n+ µ(v)m+m ·1 n. (29)

Proof. Since (ρ, µ) is an action of A0 on A1, we have

ρ(u)ρ(dm)n = ρ(u ·0 dm)n− ρ(dm ·0 u)n+ ρ(dm)ρ(u)n
= ρ(dρ(u)m)n− ρ(dµ(u)m)n+ ρ(dm)ρ(u)n.

The second equality is due to (C1). By (C2), we obtain (27). (28) can be obtained
similarly. The other conclusion is obvious.

4.8. Theorem. There is a one-to-one correspondence between strict pre-Lie 2-algebras
and crossed modules of pre-Lie algebras.
Proof. Let (A0, A1, d, ·, l3 = 0) be a strict pre-Lie 2-algebra. We construct a crossed
module of pre-Lie algebras as follows. Obviously, (A0, ·) is a pre-Lie algebra. Define a
multiplication ·1 on A1 by

m ·1 n = (dm) · n = m · dn. (30)

Then by Conditions (a1) and (b2) in Definition 3.2, we have

m ·1 (n ·1 p)− (m ·1 n) ·1 p− n ·1 (m ·1 p) + (n ·1 m) ·1 p
= (dm) · ((dn) · p)− d((dm) · n) · p− (dn) · ((dm) · p) + d((dn) ·m) ·1 p
= (dm) · ((dn) · p)− ((dm) · dn) · p− (dn) · ((dm) · p) + ((dn) · dm) ·1 p = 0,

which implies that (A1, ·1) is a pre-Lie algebra. Also by Condition (a1), we deduce that d
is a homomorphism between pre-Lie algebras. Define ρ, µ : A0 −→ gl(A1) by

ρ(u)m = u ·m, µ(u)m = m · u. (31)

By Conditions (b2) and (b3) in Definition 3.2, it is straightforward to deduce that (ρ, µ)
is an action of (A0, ·) on A1. By Conditions (a1) and (a2), we deduce that Condition
(C1) hold. Condition (C2) follows from the definition of ·1 directly. Thus, the data
((A0, ·), (A1, ·1), d, (ρ, µ)) constructed above is a crossed module of pre-Lie algebras.

Conversely, a crossed module of pre-Lie algebras ((A0, ·), (A1, ·1), d, (ρ, µ)) gives rise to
a strict pre-Lie 2-algebra (A0, A1, d, ·, l3 = 0), where · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i + j ≤ 1
is given by

u · v = u ·0 v, u ·m = ρ(u)m, m · u = µ(u)m.
The crossed module conditions give various conditions for a strict pre-Lie 2-algebra. We
omit details.
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A pre-Lie algebra has its sub-adjacent Lie algebra. Similarly, a crossed module of pre-
Lie algebras has its sub-adjacent crossed module of Lie algebras. Recall that a crossed
module of Lie algebras is a quadruple (h1, h0, dt, φ), where h1 and h0 are Lie algebras,
dt : h1 −→ h0 is a Lie algebra homomorphism and φ : h0 −→ Der(h1) is an action of Lie
algebra h0 on Lie algebra h1 as a derivation, such that

dt(φX(A)) = [X, dt(A)]h0 , φdt(A)(B) = [A,B]h1 , ∀X ∈ h0, A,B ∈ h1.

4.9. Proposition. Let ((A0, ·0), (A1, ·1), d, (ρ, µ)) be a crossed module of pre-Lie algebras
and g(A0), g(A1) the corresponding sub-adjacent Lie algebras of (A0, ·0), (A1, ·1) respec-
tively. Then (g(A0), g(A1), d, ρ− µ) is a crossed module of Lie algebras.

Proof. The fact that d is a homomorphism between pre-Lie algebras implies that d is
also a homomorphism between Lie algebras. Since (A1; ρ, µ) is a representation of (A0, ·0),
(A1; ρ−µ) is a representation of the Lie algebra g(A0). By (C1), we have d((ρ−µ)(u)m) =
[u, dm]0. By (C2), we have (ρ − µ)(dm)n = [m,n]1. Thus, (g(A0), g(A1), d, ρ − µ) is a
crossed module of Lie algebras.

5. Categorification of O-operators
Let G = (g0, g1, d, l2, l3) be a Lie 2-algebra and (ρ0, ρ1, ρ2) be a representation of G on a
2-term complex of vector spaces V = V1

d−→ V0.

5.1. Definition. A triple (T0, T1, T2), where T0 : V0 −→ g0, T1 : V1 −→ g1 is a chain
map, and T2 : ∧2V0 −→ g1 is a linear map, is called an O-operator on G associated to
the representation (ρ0, ρ1, ρ2), if for all u, v, vi ∈ V0 and m ∈ V1 the following conditions
are satisfied:

(i) T0
(
ρ0(T0u)v − ρ0(T0v)u

)
− l2(T0u, T0v) = dT2(u, v);

(ii) T1
(
ρ1(T1m)v − ρ0(T0v)m

)
− l2(T1m,T0v) = T2(dm, v);

(iii)

l2(T0(v1), T2(v2, v3)) + T2
(
v3, ρ0(T0v1)v2 − ρ0(T0v2)v1

)
+T1

(
ρ1(T2(v2, v3))v1 + ρ2(T0v2, T0v3)v1

)
+ c.p.+ l3(T0v1, T0v2, T0v3) = 0.

5.2. Example. Let A = (A0, A1, d, ·, l3) be a pre-Lie 2-algebra. Then, (T0 = idA0 , T1 =
idA1 , T2 = 0) is an O-operator on the Lie 2-algebra G(A) associated to the representation
(L0, L1, L2) given in Theorem 3.3.

Define a degree 0 multiplication · : Vi ⊗ Vj −→ Vi+j, 0 ≤ i+ j ≤ 1, on V by

u · v = ρ0(T0u)v, u ·m = ρ0(T0u)m, m · u = ρ1(T1m)u. (32)
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Define l3 : ∧2V0 ⊗ V0 −→ V1 by

l3(v1, v2, v3) = −ρ1(T2(v1, v2))v3 − ρ2(T0v1, T0v2)v3. (33)

Now, Condition (iii) in Definition 5.1 reads

l2(T0(v1), T2(v2, v3)) + T2(v3, v1 · v2 − v2 · v1)− T1(l3(v1, v2, v3)) + c.p.

+l3(T0v1, T0v2, T0v3) = 0. (34)

5.3. Theorem. Let (ρ0, ρ1, ρ2) be a representation of G on V and (T0, T1, T2) an O-
operator on G associated to the representation (ρ0, ρ1, ρ2). Then, (V0, V1, d, ·, l3) is a pre-
Lie 2-algebra, where the multiplication “·” and l3 are given by (32) and (33) respectively.
Proof. By the fact that d ◦ ρ(x) = ρ(x) ◦ d for all x ∈ g0, we deduce that

d(u ·m) = dρ0(T0u)m = ρ0(T0u)dm = u · dm.

By the fact that both (T0, T1) and (ρ0, ρ1) are chain maps, we have

d(m · u) = d(ρ1(T1m)u) = δ(ρ1(T1m))u = ρ0(dT1m)u = ρ0(T0dm)u = (dm) · u.

Similarly, we have

(dm) · n = ρ0(T0dm)n = ρ0(dT1m)n = δ(ρ1(T1m))n = ρ1(T1m)(dn) = m · (dn).

Thus, Conditions (a1)-(a3) in Definition 3.2 hold. For all u, v, w ∈ A0, we have

u · (v · w)− (u · v) · w − v · (u · w) + (v · u) · w
= ρ0(T0u)ρ0(T0v)w − ρ0(T0(ρ0(T0u)v))w − ρ0(T0v)ρ0(T0u)w + ρ0(T0(ρ0(T0v)u))w

= [ρ0(T0u), ρ0(T0v)]w − ρ0

(
T0(ρ0(T0u)v)− T0(ρ0(T0v)u)

)
w

= ρ0(l2(T0u, T0v))w − dρ2(T0u, T0v)w − ρ0

(
T0(ρ0(T0u)v)− T0(ρ0(T0v)u)

)
w

= −ρ0(dT2(u, v))w − dρ2(T0u, T0v)w
= −dρ1(T2(u, v))w − dρ2(T0u, T0v)w
= dl3(u, v, w),

which implies that Condition (b1) in Definition 3.2 holds. Similarly, Conditions (b2) and
(b3) also hold.
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The left hand side of Condition (c) is equal to

ρ0(T0v0)l3(v1, v2, v3)− ρ0(T0v1)l3(v0, v2, v3) + ρ0(T0v2)l3(v0, v1, v3)
+ρ1(T1l3(v1, v2, v0))v3 − ρ1(T1l3(v0, v2, v1))v3 + ρ1(T1l3(v0, v1, v2))v3

+ρ1(T2(v1, v2))(v0 · v3) + ρ2(T0v1, T0v2)(v0 · v3)− ρ1(T2(v0, v2))(v1 · v3)
−ρ2(T0v0, T0v2)(v1 · v3) + ρ1(T2(v0, v1))(v2 · v3) + ρ2(T0v0, T0v1)(v2 · v3)
+ρ1(T2(ρ0(T0v0)v1 − ρ0(T0v1)v0, v2))v3 + ρ2(T0(ρ0(T0v0)v1 − ρ0(T0v1)v0), T0v2)v3

−ρ1(T2(ρ0(T0v0)v2 − ρ0(T0v2)v0, v1))v3 − ρ2(T0(ρ0(T0v0)v2 − ρ0(T0v2)v0), T0v1)v3

+ρ1(T2(ρ0(T0v1)v2 − ρ0(T0v2)v1, v0))v3 + ρ2(T0(ρ0(T0v1)v2 − ρ0(T0v2)v1), T0v0)v3

= −ρ0(T0v0)ρ1(T2(v1, v2))v3 − ρ0(T0v0)ρ2(T0v1, T0v2)v3

+ρ0(T0v1)ρ1(T2(v0, v2))v3 + ρ0(T0v1)ρ2(T0v0, T0v2)v3

−ρ0(T0v2)ρ1(T2(v0, v1))v3 − ρ0(T0v2)ρ2(T0v0, T0v1)v3

+ρ1(T1l3(v1, v2, v0))v3 − ρ1(T1l3(v0, v2, v1))v3 + ρ1(T1l3(v0, v1, v2))v3

+ρ1(T2(v1, v2))ρ0(v0)v3 + ρ2(T0v1, T0v2)ρ0(v0)v3 − ρ1(T2(v0, v2))ρ0(v1)v3

−ρ2(T0v0, T0v2)ρ0(v1)v3 + ρ1(T2(v0, v1))ρ0(v2)v3 + ρ2(T0v0, T0v1)ρ0(v2)v3

+ρ1(T2(ρ0(T0v0)v1 − ρ0(T0v1)v0, v2))v3 + ρ2(T0(ρ0(T0v0)v1 − ρ0(T0v1)v0), T0v2)v3

−ρ1(T2(ρ0(T0v0)v2 − ρ0(T0v2)v0, v1))v3 − ρ2(T0(ρ0(T0v0)v2 − ρ0(T0v2)v0), T0v1)v3

+ρ1(T2(ρ0(T0v1)v2 − ρ0(T0v2)v1, v0))v3 + ρ2(T0(ρ0(T0v1)v2 − ρ0(T0v2)v1), T0v0)v3

=
(
− [ρ0(T0v0), ρ1(T2(v1, v2))] + c.p.

)
v3 +

(
− [ρ0(T0v0), ρ2(T0v1, T0v2)] + c.p.

)
v3

+
(
ρ1(T1l3(v0, v1, v2)) + c.p.

)
v3 +

(
ρ1T2(v0 · v1 − v1 · v0, v2) + c.p.

)
v3

+
(
ρ2(T0(v0 · v1 − v1 · v0), T0v2) + c.p.

)
v3

=
(
− ρ1l2(T0v0, T2(v1, v2)) + ρ2(T0v0, dT2(v1, v2)) + c.p.

)
v3

+
(
− [ρ0(T0v0), ρ2(T0v1, T0v2)] + c.p.

)
v3 +

(
ρ1(T1l3(v0, v1, v2)) + c.p.

)
v3

+
(
ρ1T2(v0 · v1 − v1 · v0, v2) + c.p.

)
v3 +

(
ρ2(T0(v0 · v1 − v1 · v0), T0v2) + c.p.

)
v3.

By Condition (ii) in Definition 5.1, we have

ρ2(T0v0, dT2(v1, v2))+c.p.+ρ2(T0(v0·v1−v1·v0), T0v2)+c.p. = ρ2(l2(T0v0, T0v1), T0v2)+c.p..

By the fact that (ρ0, ρ1, ρ2) is a representation, we have

[ρ0(T0v1), ρ2(T0v2, T0v3)] + c.p.− ρ2(l2(T0v1, T0v2), T0v3) + c.p. = ρ1l3(T0v1, T0v2, T0v3).

By (34), we deduce that Condition (c) in Definition 3.2 holds. Thus, (V0, V1, d, ·, l3) is a
pre-Lie 2-algebra. This finishes the proof.
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5.4. Corollary. Let (ρ0, ρ1, ρ2) be a representation of the Lie 2-algebra G on V and
(T0, T1, T2) be an O-operator on G associated to the representation (ρ0, ρ1, ρ2). Then
(T0, T1, T2) is a homomorphism from the Lie 2-algebra G(V) to G.

6. Solutions of 2-graded Classical Yang-Baxter Equations
Let G = (g0, g1, d, l2) be a strict Lie 2-algebra and r ∈ g0 ⊗ g1 ⊕ g1 ⊗ g0 and r ∈ g1 ⊗ g1.
Denote by R = r − (d⊗ 1 + 1⊗ d)r.

6.1. Definition. ([8]) The classical Yang-Baxter equation for R in the semidirect product
Lie algebra g0 n g1 = (g0 ⊕ g1, [·, ·]s) together with (d⊗ 1− 1⊗ d)R = 0 are called the 2-
graded classical Yang-Baxter Equations (2-graded CYBE) in the strict Lie 2-algebra
G, where [·, ·]s is the semidirect product Lie algebra structure given by (2).

More precisely, the 2-graded CYBE reads:
(a) R is skew-symmetric,

(b) [R12, R13]s + [R13, R23]s + [R12, R23]s = 0,

(c) (d⊗ 1− 1⊗ d)r = 0.
For R = ∑

i
ai ⊗ bi,

R12 =
∑
i

ai ⊗ bi ⊗ 1; R13 =
∑
i

ai ⊗ 1⊗ bi; R23 =
∑
i

1⊗ ai ⊗ bi. (35)

Let (ρ0, ρ1) be a strict representation of the Lie 2-algebra G = (g0, g1, d, l2) on the 2-term
complex of vector space V : V1

d−→ V0. We view ρ0 ⊕ ρ1 a linear map from g0 ⊕ g1 to
gl(V0 ⊕ V1) by

(ρ0 ⊕ ρ1)(x+ a)(u+m) = ρ0(x)(u) + ρ0(x)m+ ρ1(a)u. (36)

By straightforward computations, we have

6.2. Lemma. With the above notations, ρ0⊕ρ1 : g0⊕g1 −→ gl(V0⊕V1) is a representation
of (g0 ⊕ g1, [·, ·]s) on V0 ⊕ V1. Furthermore, (T0, T1) is an O-operator on G associated to
the representation (ρ0, ρ1) if and only if

(a) T0 + T1 : V0 ⊕ V1 −→ g0 ⊕ g1 is an O-operator on the Lie algebra (g0 ⊕ g1, [·, ·]s)
associated to the representation ρ0 ⊕ ρ1,

(b) T0 ◦ d = d ◦ T1.

Let (ρ∗0, ρ∗1) be the dual representation of (ρ0, ρ1). Then we have the semidirect product
Lie 2-algebra Ḡ = G n(ρ∗

0,ρ
∗
1) V∗, where Ḡ0 = g0 ⊕ V ∗1 , Ḡ1 = g1 ⊕ V ∗0 , and d̄ = d⊕ d∗. It is

obvious that
T0 + T1 ∈ V ∗0 ⊗ g0 ⊕ V ∗1 ⊗ g1 ∈ (Ḡ1 ⊗ Ḡ0)⊕ (Ḡ0 ⊗ Ḡ1),

where T0 and T1 are given by (6).
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6.3. Theorem. Let (ρ0, ρ1) be a strict representation of the Lie 2-algebra G = (g0, g1, d, l2)
on the 2-term complex of vector space V : V1

d−→ V0, and T0 : V0 −→ g0, T1 : V1 −→ g1
linear maps. Then, (T0, T1) is an O-operator on the Lie 2-algebra G associated to the
representation (ρ0, ρ1) if and only if T0 + T1 − σ(T0 + T1) is a solution of the 2-graded
CYBE in the semidirect product Lie 2-algebra Ḡ.
Proof. It is obvious that (ρ0 ⊕ ρ1)∗ = ρ∗0 ⊕ ρ∗1 : g0 ⊕ g1 −→ gl(V ∗1 ⊕ V ∗0 ). By Lemma
6.2 and Theorem 2.9, (T0, T1) is an O-operator on the Lie 2-algebra G if and only if
T0 + T1 − σ(T0 + T1) is a solution of the CYBE in the semidirect product Lie algebra
(g0 n g1) nρ∗

0⊕ρ
∗
1

(V ∗1 ⊕ V ∗0 ), and T0 ◦ d = d ◦ T1. Note that the semidirect product Lie
algebra (g0ng1)nρ∗

0⊕ρ
∗
1
(V ∗1 ⊕V ∗0 ) is exactly the same as the semidirect product Lie algebra

Ḡ0 n Ḡ1. Furthermore, T0 ◦ d = d ◦ T1 if and only if (d̄ ⊗ 1 − 1 ⊗ d̄)(T0 + T1) = 0. Thus,
(T0, T1) is an O-operator on the Lie 2-algebra G associated to the representation (ρ0, ρ1)
if and only if T0 + T1 − σ(T0 + T1) is a solution of the 2-graded CYBE in the semidirect
product Lie 2-algebra Ḡ.

Let A = (A0, A1, d, ·) be a strict pre-Lie 2-algebra. Then, G(A) = (A0, A1, d, l2) is a
strict Lie 2-algebra, where l2 is given by (8) and (9). Furthermore, (L0, L1) is a strict
representation of the Lie 2-algebra G(A) on the complex of vector spaces A1

d−→ A0,
where L0, L1 are given by (11) and (12) respectively. Let {ei}1≤i≤k and {ej}1≤j≤l be the
basis of A0 and A1 respectively, and denote by {e∗i }1≤i≤k and {e∗j}1≤j≤l the dual basis.

6.4. Theorem. With the above notations,

R =
k∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei) +
l∑

j=1
(ej ⊗ e∗j − e∗j ⊗ ej) (37)

is a solution of the 2-graded CYBE in the strict Lie 2-algebra G(A) n(L∗
0,L

∗
1) A∗.

Proof. It is obvious that (T0 = idA0 , T1 = idA1) is an O-operator on G(A) associated to
the representation (L0, L1). By Theorem 6.3,

T0 + T1 − σ(T0 + T1) =
k∑
i=1

(ei ⊗ e∗i − e∗i ⊗ ei) +
l∑

j=1
(ej ⊗ e∗j − e∗j ⊗ ej)

is a solution of the 2-graded CYBE in the strict Lie 2-algebra G(A) n(L∗
0,L

∗
1) A∗.

At the end of this section, we consider the construction of strict Lie 2-bialgebras in [8,
Proposition 4.4]. In fact, there are pre-Lie 2-algebras behind the construction.

Let (A, ·A) be a pre-Lie algebra. Then (A;L,R) is a representation of (A, ·A). Fur-
thermore, (A∗;L∗−R∗,−R∗) is also a representation of (A, ·A). Let A0 = A and A1 = A∗.
Define a multiplication · : Ai ⊗ Aj −→ Ai+j, 0 ≤ i+ j ≤ 1, by

x · y = x ·A y, x · ξ = ad∗xξ, ξ · x = −R∗xξ, ∀x, y ∈ A, ξ ∈ A∗. (38)
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On the other hand, consider its sub-adjacent Lie algebra g(A). Define a skew-symmetric
operation l2 : Ai ∧ Aj −→ Ai+j, 0 ≤ i+ j ≤ 1, by

l2(x, y) = [x, y]A = x ·A y − y ·A x, l2(x, ξ) = −l2(ξ, x) = L∗xξ. (39)

6.5. Proposition. Let (A, ·A) be a pre-Lie algebra, and d : A∗ −→ A a linear map. If
(A,A∗, d, ·) is a pre-Lie 2-algebra, then (g(A), A∗, d, l2) is a Lie 2-algebra, where · and l2
are given by (38) and (39) respectively.

Conversely, if (g(A), A∗, d, l2) is a Lie 2-algebra, in which d : A∗ −→ A is skew-
symmetric, then (A,A∗, d, ·) is a pre-Lie 2-algebra.
Proof. If (A,A∗, d, ·) is a pre-Lie 2-algebra, then we have

d(ad∗xη) = x · dη, d(−R∗yξ) = (dξ) · y, ad∗dξη = −R∗dηξ, ∀x, y ∈ A, ξ, η ∈ A∗.

Therefore, we have

dl2(x, η) = dL∗xη = ad∗xη +R∗xη = x · dη − (dη) · x = l2(x, dη),
l2(dξ, η) = L∗dξη = ad∗dξη +R∗dξη = ad∗dξη − ad∗dηξ = l2(ξ, dη).

Since L∗ is a representation of the Lie algebra g(A) on A∗, it is obvious that the other
conditions in the definition of a Lie 2-algebra are also satisfied. Thus, (g(A), A∗, d, l2) is
a Lie 2-algebra.

Conversely, if (g(A), A∗, d, l2) is a Lie 2-algebra, we have

dl2(x, η) = l2(x, dη), l2(dξ, η) = l2(ξ, dη),

which implies that
dL∗xη = Lxdη −Rxdη, L∗dξη = −L∗dηξ.

If d is skew-symmetric, then we can obtain

〈dR∗xη, ξ〉 = 〈R∗xη,−dξ〉 = 〈η,Rxdξ〉
= 〈η, Lxdξ − dL∗xξ〉 = 〈dL∗xη − Lxdη, ξ〉
= 〈−Rxdη, ξ〉,

which implies that
d(η · x) = (dη) · x. (40)

Furthermore, we have
d(ad∗xη) = d(L∗xη −R∗xη) = Lxdη,

which implies that
d(x · η) = x · dη. (41)
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Also by the fact that d is skew-symmetric, we have

〈ad∗dξη, x〉 = 〈η, Lxdξ −Rxdξ〉 = 〈dL∗xη − dR∗xη, ξ〉
= 〈Lxdη −Rxdη +Rxdη, ξ〉
= 〈Rdηx, ξ〉 = 〈x,−R∗dηξ〉,

which implies that ad∗dξη = −R∗dηξ, i.e.

(dξ) · η = ξ · (dη). (42)

By (40)-(42), we deduce that Conditions (a1)-(a3) in Definition 3.2 hold. It is obvious
that the other conditions also hold. Thus, (A,A∗, d, ·) is a pre-Lie 2-algebra.

By Proposition 6.5 and Proposition 4.4 in [8], we have

6.6. Corollary. Let (A,A∗, d, ·) be a pre-Lie 2-algebra, where · is given by (38) and d
is skew-symmetric. Then r given by (7) is a solution of the 2-graded CYBE in the strict
Lie 2-algebra (g(A), A∗, d, l2), where l2 is given by (39).
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