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NEW EXACTNESS CONDITIONS INVOLVING SPLIT CUBES IN
PROTOMODULAR CATEGORIES

J. R. A. GRAY AND N. MARTINS-FERREIRA

Abstract. We introduce and compare several new exactness conditions involving
what we call split cubes. These conditions are motivated by their special cases, some
which become familiar, in the pointed context, once we reformulate them with split
cubes replaced with split extensions.

1. Introduction

The main purpose of the paper is to introduce and compare several new exactness con-
ditions involving what we call split cubes. Some of these conditions can be thought of as
non-pointed analogues of known categorical conditions. In particular our conditions in-
clude non-pointed analogues of: (i) the condition introduced and studied by F. Borceux,
G. Janelidze and G. M. Kelly in [3] which they briefly called the axiom of normality of
unions; and (ii) the condition requiring that an internal graph is multiplicative as soon
as it is star multiplicative, introduced and studied by G. Janelidze in [10]. In addition to
these conditions we introduce a condition which is new even in the semi-abelian context
where it has the following consequences: (i) Huq commutativity is reflected by the change
of base functors of the fibration of points, that is, C satisfies (SSH) in the sense of T.
Van der Linden and the second author in [17] (Proposition 4.13); (ii) Huq commutators
distribute over binary joins in each fiber of the fibration of points (Corollary 3.7).

Let us begin by recalling the necessary background and then formulating our condi-
tions.

1.1. Protomodularity. In this subsection we recall the definition of a protomodular
category as defined by D. Bourn [4]. In order to do so we will introduce some notation
and terminology. For a category C, using the notation of D. Bourn, we will write Pt(C)
for the category with objects quadruples (A,B, α, β) where A and B are objects in C, and
α : A → B and β : B → A are morphisms in C such that αβ = 1B. A morphism from
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(A,B, α, β) to (A′, B′, α′, β′) in Pt(C) is a pair (f, g) where f : A → A′ and g : B → B′

are morphisms in C such that gα = α′f and fβ = β′g. We will also display such a
morphism (f, g) as a diagram

A
f //

α
��

A′

α′

��
B g

//

β

OO

B′.

β′

OO

(1)

The functor P : Pt(C)→ C defined on objects by P (A,B, α, β) = B and on morphisms by
P (f, g) = g was called the fibration of points by D. Bourn who first realized its importance
in categorical algebra. When C has finite limits (or more generally, has pullbacks of
split epimorphisms along arbitrary morphisms), this functor is a fibration with cartesian
morphisms those morphisms (1) such that the diagram obtained by removing all upward
directed arrows is a pullback. We call such a cartesian morphism a split pullback and
call a morphism (1) a split pushout if the diagram obtained by removing all downward
arrows is a pushout. Recall that for a split pullback the diagram obtained by removing all
downward directed arrows is also necessarily a pullback, while (dually) for a split pushout
the diagram obtained by removing all the upward directed arrows is a pushout. We write
Pt(B) for the fiber of the functor P above an object B and denote its objects as triples
(A,α, β) where A is an object in C and α : A → B and β : B → A are morphisms in
C such that αβ = 1B. A morphism from (A,α, β) to (A′, α′, β′) in Pt(B) is a morphism
f : A → A′ such that α = α′f and fβ = β′. For each morphism p : E → B in C we
will denote by p∗ : Pt(B) → Pt(E) the change of base functor along p which we will
also call a pullback functor. A category C is protomodular [4] if it has pullbacks of split
epimorphisms along arbitrary morphisms and each change of base functor of the fibration
of points reflects isomorphisms. This can be reformulated in the following well-known
way: a category C with pullbacks of split epimorphisms along arbitrary morphisms is
protomodular if and only if for each split pullback (1) the morphisms f and β′ are jointly
extremal-epimorphic (in the sense we will recall in Subsection 1.3 below).

1.2. Semi-abelian categories. In [11] G. Janelidze, L. Márki and W. Tholen in-
troduced the notion of a semi-abelian category, to play a similar role for the categories
of groups, algebras, and other related structures as abelian categories play for abelian
groups and modules. A category C is semi-abelian if it is pointed, has binary coproducts,
is protomodular, and is exact in the sense of M. Barr [1]. The main result of [11] was to
connect the older work (see [11] for references) beginning with S. Mac Lane’s Duality for
groups [14] to the newer work initiated by the new notion of protomodularity introduced
by D. Bourn in [4].

1.3. Normality inside unions. In this paper we will say that a cospan

X
f // Z Y,

goo (2)
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in a category C, forms a join if f and g are a pair of jointly strongly epimorphic monomor-
phisms. That is, for each diagram

X
f //

f ′

""

Z

θ
��

ϕ

��

Y,
goo

g′

||

Z ′

S

m

OO

(3)

where the solid arrows commute and m is a monomorphism, there exists (a necessar-
ily unique) morphism ϕ : Z → S making the entire diagram commute. Recall that a
cospan (2) is jointly extremal-epimorphic if it satisfies the same condition as for a jointly
strongly epimorphic span, but restricted to diagrams of the form (3) where θ is an iden-
tity morphism. Recall also that the notions of jointly strongly epimorphic and jointly
extremal-epimorphic coincide in any category with pullbacks. Note that if C has pull-
backs, then the subobjects of each object in C form a meet-semilattice. Therefore, since
in a meet-semilattice an element c is the join of a and b if and only if it is minimal
amongst elements larger than a and b, it follows that a cospan (2) forms a join in the
sense described here if and only if (Z, 1Z) is the join of (X, f) and (Y, f) as subobjects of
Z.

In [3] F. Borceux, G. Janelidze and G. M. Kelly introduced a condition, for semi-
abelian categories, that as mentioned above they briefly called the axiom of normality of
unions which (in that context) is equivalent to:

1.4. Definition. A pointed category C satisfies the normality inside unions, NU for
short, if for each square of monomorphisms in C

A
f //

g
��

B

h
��

C
i
// D

if f and g are normal monomorphisms and i and h form a join, then hf = ig is a normal
monomorphism.

1.5. Partially multiplicative graphs. Recall that a reflexive graph in a category
C is a pentuple (C1, C0, d, c, e) where C0 and C1 are objects in C, and d, c : C1 → C0

and e : C0 → C1 are morphisms in C such that de = ce = 1C0 . Given a reflexive graph
(C1, C0, d, c, e) in a category C with finite limits and an initial object 0 we may form the
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diagrams
X

ẽd̃

((

k

##
〈k,ẽd̃〉

%%
X k //

d̃
��

C1

d
��

C1 ×〈d,ck〉 X
π2

��

π1
// C1

d
��

0

ẽ

OO

!C0

// C0

e

OO

X
ck

//

〈eck,1〉
OO

C0

e

OO

where both squares are split pullbacks and 〈k, ẽd̃〉 is the unique morphism obtained
from the universal property of the right hand pullback. Extending the definition of G.
Janelidze in [10], to this slightly more general context, we will say that the reflexive graph
(C1, C0, d, c, e) admits a star multiplication if there exists a morphism p : C1×〈d,ck〉X → X
making the diagram

X
〈k,ẽd̃〉 // C1 ×〈d,ck〉 X

p

��

X
〈eck,1〉oo

X

commute. Since both the right hand square and the whole rectangle in the diagram

X

d̃
��

k

))

〈k,ẽd̃〉
// C1 ×〈d,ck〉 X

π2

��

π1
// C1

d
��

0

ẽ

OO

ẽ //

!C0

55X
ck //

〈eck,1〉
OO

C0

e

OO

are split pullbacks it follows that the left hand square is as well. This means that when,
in addition, C is protomodular the morphisms 〈k, ẽd̃〉 and 〈eck, 1〉 are jointly strongly
epimorphic and so such a p is unique (whenever it exists).

For a reflexive graph (C1, C0, d, c, e) and a morphism j : I → C0 we will say that
(C1, C0, d, c, e) admits (I, j)-multiplicative structure if ((C1, ej), (C0, j), d, c, e) admits a
star multiplication in (I ↓ C). Explicitly, this means forming the diagrams

X

ẽd̃

((

k

##
〈k,ẽd̃〉

%%
X k //

d̃
��

C1

d
��

C1 ×〈d,ck〉 X
π2

��

π1
// C1

d
��

I

ẽ

OO

j
// C0

e

OO

X
ck

//

〈eck,1〉
OO

C0

e

OO

where both squares are split pullbacks and 〈k, ẽd̃〉 is the unique morphism obtained from
the universal property of the right hand pullback, there exists a morphism p : C1 ×〈d,ck〉
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X → X making the diagram

X
〈k,ẽd̃〉 // C1 ×〈d,ck〉 X

p

��

X
〈eck,1〉oo

X

commute. Recall that if C is protomodular with finite limits, then (I ↓ C) is protomodular
with finite limits and an initial object. This means that in the protomodular context such
a morphism p is unique (whenever it exists). We will call such a reflexive graph (I, j)-
multiplicative.

For a protomodular category we introduce the following condition (generalizing the
condition mentioned in Remark 4.7 of [10] and studied further by T. Van der Linden and
the second author in [16]).

1.6. Condition. For each reflexive graph (C1, C0, d, c, e) and each monomorphism j :
I → C0, the reflexive graph (C1, C0, d, c, e) is multiplicative if and only if it is (I, j)-
multiplicative.

1.7. Conditions on split cubes. In this subsection we introduce several further new
conditions. To do so it is convenient to introduce some terminology.

Throughout the rest of this paper by a split cube we will mean a diagram

X
h1

~~ χ

��

h2 // D2
i2

~~
δ2

��

D1 i1
//

δ1

��

A

α

��

I
f2

//

f1~~

η

OO

E2

ε2

OO

g2~~
E1

ε1

OO

g1
// B

β

OO
(4)

with αβ = 1B, δ1ε1 = 1E1 , δ2ε2 = 1E2 , and χη = 1I , such that the diagrams obtained by
removing all upward and all downward directed arrows, respectively, commute. In this
paper we will say that a split cube (4) is:

(i) of type LE1 if the two back faces are split pullbacks (i.e. (X, h1, χ) and (X, h2, χ)
are pullbacks of δ1 and f1, and δ2 and f2, respectively);

(ii) of type LE2 if it is of type LE1 and the two front faces are split pullbacks (i.e. it
is of type LE1, and (D1, i1, δ1) and (D2, i2, δ2) are pullbacks of α and g1, and α and
g2, respectively);
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(iii) of type RE if A together with the morphisms i1, i2 and β is the colimit of the diagram

X
h1

~~

h2 // D2

D1

I
f2

//

f1~~

η

OO

E2

ε2

OO

g2}}
E1

ε1

OO

g1
// B.

(5)

For a category C we compare the conditions:

1.8. Condition. For each split cube (4) of type LE1 such that g1 and g2 form a join, if
i1 and i2 form a join, then (4) is of type LE2.

1.9. Condition. For each split cube (4) of type LE1 such that g1 and g2 form a join, if
i1 and i2 are monomorphisms and (4) is of type RE, then it is of type LE2.

1.10. Condition. For each split cube (4) such that g1 and g2 form a join, if (4) is of
type LE2, then it is of type RE.

1.11. Remark. The Conditions 1.8, 1.9, and 1.10 might be thought of as algebraic ver-
sions of Van Kampen type conditions and could be phrased using an analogous functor to
the functor Kg1,g2 defined in Section 1 of [6]. We choose not to do so here since our more
explicit conditions seem easier to work with when comparing these conditions to other
categorical algebraic conditions.

In the final section of the paper we give examples of categories satisfying Conditions
1.6, 1.8, 1.9 and 1.10. These categories include the category of groups, commutative
rings, unital commutative rings, rings, unital rings, associative algebras, unital associative
algebras and Lie algebras. Nevertheless, we end this section by directly showing that the
category of commutative unital rings satisfies Condition 1.8.

1.12. Proposition. The category of commutative unital rings satisfies Condition 1.8.

Proof. Suppose that (4) is a split cube of type LE1 in the category of commutative
unital rings such that g1 and g2, and i1 and i2 form joins. Without loss of generality we
may assume that i1, i2, g1, g2, ε1, ε2 and β are inclusions. Let κ : K → X be the kernel of
χ (in the category of commutative rings). Since (4) is of type LE1 it follows that λ1 = h1κ
and λ2 = h2κ are kernels of δ1 and δ2, respectively. We will prove that θ = i1h1κ is the
kernel of α and then use this to derive the desired conclusion. By adjusting K and κ if
necessary we may again assume that λ1, λ2 and θ are inclusions. Suppose that a is an
element of A such that α(a) = 0. We will show that a is in K. Since A is the join of D1
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and D2 it follows that for some positive integer n there exist d1, ..., dn in D1 and d′1, ..., d
′
n

in D2 such that

a =
n∑
t=1

dtd
′
t.

Setting et = δ1(dt), e
′
t = δ2(d

′
t), kt = dt− et and k′t = d′t− e′t we have that dt = kt + et and

d′t = k′t + e′t. Accordingly via distributivity we obtain

a =
n∑
t=1

[ktk
′
t + kte

′
t + etk

′
t + ete

′
t]

Therefore, since K is an ideal of D1 and D2, and kt and k′t are in K it follows that etk
′
t

and kte
′
t are in K. This means that

a =
n∑
t=1

[ktk
′
t + kte

′
t + etk

′
t] +

n∑
t=1

ete
′
t =

n∑
t=1

[(ktk
′
t + kte

′
t + etk

′
t]

where the last equality follows from the fact that α(a) = 0 and α(K) = {0} and hence∑n
t=1 ete

′
t = α(

∑n
t=1 ete

′
t) = α(a) = 0. It follows that a is in K and hence K is the kernel

of α as desired. Now suppose that u : C → E1 and v : C → A are morphisms such that
g1u = αv. Since α(v(c) − u(c)) = 0 it follows that v(c) − u(c) is in K and hence in D1.
Therefore since u(c) is also in D1 it follows that v factors through i1 and so (D1, δ1, i1) is
a pullback of g1 and α. Similarly (D2, δ2, i2) is a pullback of g2 and α and (4) is a split
cube of type LE2 as required.

2. Basic consequences and reformulations

In this section we explain how the conditions on split cubes above are related to each
other and what consequences they have for arbitrary protomodular categories (admitting
certain colimits). In addition we give several reformulations of these conditions.

Let us begin by noting that since, for each category C and each object B in C,
connected limits and colimits in (B ↓ C) and (C ↓ B) are calculated as in C and since,
when C is finitely complete, a cospan in either (B ↓ C) or (C ↓ B) is jointly strongly
epimorphic if and only if the underlying cospan is jointly strongly epimorphic in C we
obtain:

2.1. Proposition. Let C be a finitely complete category. If the category C satisfies any
of Conditions 1.6, 1.8, 1.9 or 1.10, then for each B in C the categories (B ↓ C), (C ↓ B)
and Pt(B) satisfy the same conditions.

2.2. Proposition. Let C be a protomodular category with finite colimits. If C satisfies
Condition 1.9, then C satisfies Condition 1.10
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Proof. Given a split cube (4) of type LE2 such that g1 and g2 form a join, consider the
diagram

X

h1

��

χ

��

h2 // D2

i2
��

δ2

��

i′2

ww
A′

α′

��

j
  

D1 i1
//

δ1

��

i′1
33

A

α

��

I
f2

//

f1
��

η

OO

E2

ε2

OO

g2

��

g2

vv
B

β′

OO

E1

ε1

OO

g1
//g1

33

B

β

OO

(6)

where A′ together with i′1, i
′
2 and β′ is the colimit of (5), and α′ and j are the unique

morphisms such that α′β′ = 1B, α′i′1 = g1δ1 and α′i′2 = g2δ2, and jβ′ = β, ji′1 = i1 and
ji′2 = i2, respectively. Since i′1 and i′2 are monomorphisms (since i1 and i2 are) it follows
from Condition 1.9 that the inner split “cube” is of type LE2. The claim is completed by
noting that by protomodularity this means that j is an isomorphism and hence (4) is of
type RE.

2.3. Proposition. Let C be a regular category with finite colimits. The category C
satisfies Condition 1.9 if and only if it satisfies Condition 1.8.

Proof. The “only if” part follows from the observation that each split cube (4) of type RE
such that g1 and g2 are jointly strongly epimorphic must have i1 and i2 jointly extremal-
epimorphic and hence jointly strongly epimorphic. Indeed, for each subspan as displayed
at the top of the commutative diagram

S

m
��

D1 i1
//

u
>>

A D2

v
aa

i2
oo

E1 g1
//

δ1

OO

B

β

OO
ϕ

ZZ

E2,

δ2

OO

g2
oo

since g1 and g2 are jointly strongly epimorphic there exists a morphism ϕ : B → S such
that mϕ = β. Since m is a monomorphism it follows that S together with the morphism
u, v and ϕ is a subcone of a colimiting cone. This means that m is an isomorphism as
required. Conversely given a split cube (4) of type LE1 such that g1 and g2 form a join,
and i1 and i2 form a join, consider the diagram (6) constructed as in Proposition 2.2.
Since i1 and i2 are jointly strongly epimorphic it follows that j is a regular epimorphism.
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Now, consider the diagram

D1
j̃1
~~ δ1

��

i′1 // A′
j

��
α′

��

D̃1
ĩ1

//

δ̃1

��

A
α

��

E1 g1
//

ε1

OO

B

β′

OO

E1

ε̃1

OO

g1
// B

β

OO

where (D̃1, δ̃1, ĩ1) is the pullback of g1 and α, and j̃1 and ε̃1 are the unique morphisms
making the diagram into a split cube. Since ĩ1j̃1 = ji′1 = i1 and i1 is a monomorphism it
follows that j̃1 is a monomorphism. On the other hand, since by Condition 1.9 (D1, δ1, i

′
1)

is the pullback of g1 and α′ it follows that j̃1 is the pullback of j and hence an isomorphism.
From this it easily follows that (4) is of type LE2.

2.4. Remark. The above proposition still holds if in its statement “regular category” is
replaced by “finitely complete protomodular category”. The only modification to the proof
would be to note that j is no longer a regular epimorphism but is a strong epimorphism,
and to replace “and hence an isomorphism. From this it easily follows that” beginning
on the second last line by “and hence, by protomodularity, j is a monomorphism. This
means that j is an isomorphism and hence”.

Recall that a category C is unital [2] if it is pointed, finitely complete and for each
pair of objects X and Y in C the morphisms

X
〈1,0〉 // X × Y Y

〈0,1〉oo

are jointly strongly epimorphic. Recall also that a pair of morphisms f : A → C and
g : B → C in a unital category Huq-commute (going back to [9]) if there exists a morphism
ϕ : A×B → C such that the diagram

A
〈1,0〉 //

f ,,

A×B
ϕ

��

B
〈0,1〉oo

grrC

commutes. In [17] T. Van der Linden and the second author considered the condition on
a category, which they denoted by (SSH), requiring that each change of base functor of
the fibration of points reflects Huq commuting pairs of morphisms. It was shown that this
condition implies the condition (SH) requiring the coincidence (in a certain sense) of the
Smith and Huq commutators. In addition, in a previous paper [16] of the same authors, it
was shown for a semi-abelian category, that (SH) is equivalent to the condition requiring
that every star multiplicative graph is multiplicative. Here we show that Condition 1.10
implies that each change of base functor along a monomorphism reflects Huq commuting
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pairs, and also implies Condition 1.6. In Sections 3 and 4 we will show under additional
conditions that Condition 1.10 implies (SSH) and that Condition 1.6 is equivalent to the
condition requiring that every star multiplicative graph is multiplicative.

2.5. Proposition. Let C be a protomodular category. If the category C satisfies Con-
dition 1.10, then each change of base functor, along a monomorphism, of the fibration of
points reflects Huq commuting pairs.

Proof. Let p : E → B be a monomorphism in C and let f1 : (A1, α1, β1) → (A,α, β)
and f2 : (A2, α2, β2) → (A,α, β) be a pair of morphisms in Pt(B) such that p∗(f1) :
(C1, γ1, δ1) → (C, γ, δ) and p∗(f2) : (C2, γ2, δ2) → (C, γ, δ) Huq-commute. Consider the
diagram

C1

q1

��

γ1

��

〈1,δ2γ1〉 //

p∗(f1)

''
C1 ×E C2

q1×q2

��

π2

��

ϕ
// C

q

��
A1 〈1,β2α1〉

//

α1

��

f1

''
A1 ×B A2

π2

��

// A

E
δ2

//

p

��

δ1

OO

C2

〈δ1γ2,1〉

OO

q2
��

p∗(f2)

LL

B

β1

OO

β2
// A2

〈β1α2,1〉

OO

f2

LL

where q, q1 and q2 are pullback projections involved in the definition of p∗, and ϕ is the
unique morphism exhibiting that p∗(f1) and p∗(f2) Huq-commute. The desired morphism
ψ : A1 ×B A2 → A is obtained using the fact that by Condition 1.10 the split cube is of
type RE (i.e. ψ is the unique morphism such that ψ〈1, β2α1〉 = f1, ψ〈β1α2, 1〉 = f2 and
ψ(q1 × q2) = qϕ).

2.6. Proposition. Let C be a protomodular category. If C satisfies Condition 1.10, then
it satisfies Condition 1.6
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Proof. Let (C1, C0, d, c, e) be a reflexive graph which is (I, j)-multiplicative for some
monomorphism j : I → C0. Consider the diagram

X

k

��

d̃

��

〈k,ẽd̃〉 //

1X

((
C1 ×〈d,ck〉 X

1×k

��

π2

��

p
// X

k

��
C1 〈1,ed〉

//

d

��

1C1

((
C1 ×〈d,c〉 C1

π2

��

// C1

I
ẽ

//

j

��

ẽ

OO

X

〈eck,1〉

OO

k

��

1X

KK

C0

e

OO

e
// C1

〈ec,1〉

OO

1C1

KK

where all the objects and morphisms are defined as in the second half of Subsection 1.5.
The existence of a multiplication C1 ×〈d,c〉 C1 → C1 now follows from Condition 1.10.

The final part of this section is devoted to giving reformulations of Conditions 1.9 and
1.10 for regular protomodular categories with pushouts. To obtain these reformulations
we will use several lemmas. Recall that a category C is Mal’tsev (see e.g. [2]) if it has
finite limits and satisfies either (and hence both) of the equivalent conditions:

(i) every relation in C is difunctional;

(ii) for each object B in C the category Pt(B) is unital.

The following fact might be known but we couldn’t find a reference.

2.7. Lemma. Let C be a Mal’tsev category and

C
p //

γ
��

A

α
��

D q
//

δ

OO

B

β

OO

(7)

be a morphism of split epimorphisms. If p is a regular epimorphism and (7) is a split
pullback, then (7) is a split pushout. This means that, when C is in addition regular
with finite colimits, the change of base functor q∗ : Pt(B) → Pt(D), along a regular
epimorphism q : D → B, has a left adjoint left inverse.



1042 J. R. A. GRAY AND N. MARTINS-FERREIRA

Proof. Consider the diagram

C ×A C
π1 //

π2
//

γ×γ
��

C〈1,1〉oo p //

γ

��

A

α

��
D ×B D

π1 //

π2
//

δ×δ

OO

D〈1,1〉oo
q
//

δ

OO

B

β

OO

where (C1 ×A C1, π1, π2), (D ×B D, π1, π2) are the kernel pairs of p and q respectively,
γ × γ and δ × δ are the canonical morphisms between these kernel pairs. It is easy to
check that in such a situation the diagram

C ×A C
π1 //

γ×γ
��

C

γ

��
D ×B D π1

// D

is a pullback. Therefore, since C is Mal’tsev and hence Pt(D) is unital, the morphisms
δ × δ : D ×B D → C ×A C and 〈1, 1〉 : C → C ×A C (being appropriate product
inclusions in Pt(D)) are jointly strongly epimorphic. Now suppose that u : C → W and
v : B → W are morphisms such that vq = uδ. Since uπ1〈1, 1〉 = u = uπ2〈1, 1〉 and
uπ1(δ × δ) = uδπ1 = vqπ1 = vqπ2 = uδπ2 = uπ2(δ × δ) it follows that uπ1 = uπ2 and
hence that there is a unique morphism w : A → W such that wp = u. The proof is
completed by noting that q is necessarily an epimorphism and hence wβ = v.

2.8. Remark. The above lemma still holds if C is weakly Mal’tsev, [15], since in the
proof we only use that the morphisms δ × δ and 〈1, 1〉 are jointly epimorphic.

2.9. Lemma. [4] Let C be a protomodular category. For each diagram consisting of mor-
phisms of split epimorphisms

A1 f1
//

α1

��

f

((
A2 f2

//

α2

��

A3

α3

��
B1

g1 //

β1

OO

g

66B2
g2 //

β2

OO

B3

β3

OO

(8)

if the left hand square as well as the outer rectangle are split pullbacks, then the right hand
square is a split pullback.

2.10. Lemma. Let C be a regular Mal’tsev category. For each diagram consisting of
morphisms of split epimorphisms (8) such that the square on the left is a split pullback,
if f is a monomorphism, and f2 is a regular epimorphisms, then the outer rectangle is
a split pullback. Furthermore if C is protomodular, then the right hand square is a split
pullback.
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Proof. Consider the diagram

A1 f1
//

α1

��

f

,,
u1

''

A2 f2
//

α2

��

u2

''

A3

α3

��

A′1

α′1
{{

p1 // A′2

p2
55

α′2{{
B1

g1 //

β1

OO

g

22

β′1
;;

B2
g2 //

β2

OO

β′2
;;

B3

β3

OO

where

- (A′2, α
′
2, p2) is the pullback of g2 and α3;

- (A′1, α
′
1, p1) is the pullback of g1 and α′2;

- β′2 and β′1 are the canonical splittings of α′2 and α′1 respectively;

- u1 and u2 are the canonical morphisms into the two pullbacks.

Since C is a regular category and α3f2 = g2α2 is a regular epimorphism, it follows that g2
is a regular epimorphism. Accordingly, since C is a regular Mal’tsev category, it follows
that u2 is a regular epimorphism (see e.g. Lemma 2.5.6 in [2]). Therefore, since u1 is
obtained by pullback from u2 it is also a regular epimorphism. However since f is a
monomorphism it follows that u1 is as well, and hence must be an isomorphism. This
means that the outer rectangle is the composite of two pullbacks and hence a pullback.
The final conclusion follows from Lemma 2.9.

2.11. Proposition. Let C be a regular protomodular category with pushouts. The cat-
egory C satisfies Condition 1.9 if and only if each split cube (4) of type LE1 where the
bottom is a pushout, and g1 and g2 are monomorphisms, if i1 and i2 are monomorphisms
and the top is a pushout, then (4) is of type LE2.

Proof. The “only if” part follows from the fact that given a split cube (4) where the
bottom is a pushout, one easily checks that it is of type RE if and only if the top is a
pushout. Conversely given a split cube (4) of type RE and of type LE1 such that g1 and
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g2 form a join, and i1 and i2 are monomorphisms, consider the diagram

X

h1

��

χ

��

h2 // D2

i2
��

δ2

��

i′2

ww
A′

α′

��

p
  

D1 i1
//

δ1

��

i′1
33

A

α

��

I
f2

//

f1

��

η

OO

E2

ε2

OO

g2

��

g′2

ww
B′

β′

OO

q   
E1

ε1

OO

g1
//

g′1
33

B

β

OO

where (B′, g′1, g
′
2) and (A, i′1, i

′
2) are pushouts of f1 and f2, and h1 and h2 respectively.

The arrows α′, β′, p and q are obtained by the universal properties of the pushouts and
make the inner part into a split “cube” of type LE1 and p and q together a morphism
of split epimorphisms. As mentioned in the previous part of the proof the assumptions
on the inner split cube make it of type RE which together with assumption that (4) is of
type RE, makes the right hand square of the diagram

D1
i′1

//

ε1
��

i1

%%
A′

α′

��

p
// A

α

��
E1

g′1 //

g1

99

δ1

OO

B′

β′

OO

q // B

β

OO

a split pushout. Indeed, just note that the universal property of A′ implies that pairs
of morphisms u : A′ → W and v : B → W such that uβ′ = vq are in bijection with
cones over (5). Since q is necessarily a regular epimorphism (g1 and g2 are jointly strongly
epimorphic) it follows that p is too being a pushout of q. The claim now follows from
Lemma 2.10 applied to previous diagram (since the left hand square is by assumption a
split pullback).

2.12. Proposition. Let C be a regular protomodular category with pushouts. The cat-
egory C satisfies Condition 1.10 if and only if each split cube (4) of type LE1 where the
bottom is a pushout and g1 and g2 are monomorphisms, if (4) is of type LE2, then the
top is a pushout.

Proof. As in the proof of Proposition 2.11 the “only if” part follows from the fact that
given a split cube (4) where the bottom is a pushout, one easily checks that it is of type
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RE if and only if the top is a pushout. Conversely given a split cube (4) of type LE2
where g1 and g2 form a join, consider the diagram

X

h1

��

χ

��

h2 // D2

i2
��

δ2

��

i′2

ww
A′

α′

��

p
  

D1 i1
//

δ1

��

i′1
33

A

α

��

I
f2

//

f1

��

η

OO

E2

ε2

OO

g2

��

g′2

ww
B′

β′

OO

q   
E1

ε1

OO

g1
//

g′1
33

B

β

OO

where (B′, g′1, g
′
2) is a pushout of f1 and f2, and (A′, α′, p) is the pullback of q and α.

The arrows β′, i′1 and i′2 are obtained by the universal property of the pullback (A′, α′, p)
and make the inner part into a split “cube” and p and q together a morphism of split
epimorphisms. It follows by assumption and the remark at the beginning of the proof
that the inner split cube is of type RE. Since g1 and g2 are jointly strongly epimorphic it
follows that q is a regular epimorphism. This means that p being a pullback of q is also
a regular epimorphism. Therefore, since by construction the diagram

A′

α′

��

p // A

α
��

B′

β′

OO

q
// B

β

OO

is a split pullback it follows by Lemma 2.7 that it is a split pushout. One easily checks
that this forces (4) to be of type RE.

3. Pointed categories and categories with initial objects

The main purpose of this section is to explain what each of the Conditions 1.6, 1.8 and
1.10 mean when the underlying category is pointed, and finitely complete and cocomplete.
We have:

3.1. Proposition. Let C be a protomodular category with initial object. The category C
satisfies any one of Conditions 1.8, 1.9 or 1.10 if and only if it satisfies the restriction of
the same condition to those split cubes where I is the initial object.
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Proof. For each split cube (4) and each morphism of split epimorphisms

X ′
u //

χ′

��

X

χ

��
I ′ v

//

η′

OO

I,

η

OO

(9)

note that the split cube (4) is of type RE if the cube

X ′
h′1

}} χ′

��

h′2 // D2
i2

~~
δ2

��

D1 i1
//

δ1

��

A

α

��

I ′
f ′2

//

f ′1}}

η′

OO

E2

ε2

OO

g2~~
E1

ε1

OO

g1
// B

β

OO
(10)

with h′j = fju and f ′j = fjv is of type RE. Note also that the converse holds when u and
η are jointly epimorphic. Now, since C is protomodular this means that if (9) is a split
pullback, then (4) is of type RE, if and only if (10) is of type RE. The claim now follows,
using this last observation where I ′ is an initial object and (9) is obtained by pulling back
along the unique morphism I ′ → I. To see why just note that the front faces of the split
cubes (4) and (10) are the same and that, by Lemma 2.9, (10) is of type LE1 if and only
if (4) is of type LE1.

3.2. Remark. The previous proposition would remain true if “protomodular” was re-
placed by “finitely complete” and Condition 1.9 was dropped from the list of conditions.

3.3. Proposition. Let C be a pointed protomodular category. The category C satisfies
Condition 1.6 if and only if reflexive graphs in C are multiplicative as soon as they are
star multiplicative.

Proof. It is sufficient to show that if a reflexive graph (C1, C0, d, c, e) admits an (I, j)-
multiplicative structure for some j : I → C0, and v : I ′ → I is a morphism, then it
admits an (I ′, jv)-multiplicative structure. Given a reflexive graph (C1, C0, d, c, d, e) and
morphisms j : I → C0 and v : I ′ → I we can form the split pullbacks

X
k //

d̃
��

C1

d
��

C1 ×〈d,ck〉 X
π2 //

π1

��

X

ck
��

〈eck,1〉
oo

I

ẽ

OO

j
// C0

e

OO

C1

d // C0
e

oo

X ′
k′ //

d̃′

��

C1

d
��

C1 ×〈d,ck′〉 X ′
π2 //

π1

��

X ′

ck′

��

〈eck′,1〉
oo

I ′

ẽ′

OO

jv
// C0

e

OO

C1

d // C0.
e

oo

Accordingly there are unique morphisms

u : X ′ → X and 1× u : C1 ×〈eck′,1〉 X ′ → C1 ×〈d,ck〉 X
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such that d̃u = vd̃′, ku = k′ and π1(1× u) = π1 and π2(1× u) = uπ2. Now suppose

p : C1 ×〈d,ck〉 X → X

is an (I, j)-multiplicative structure for (C1, C0, d, c, e). Since one can show by protomod-
ularity that d̃p = d̃π2, it follows that the outer arrows of the diagram

C1 ×〈d,ck′〉 X ′
1×u //

d̃′π2

��

p′

��

C1 ×〈d,ck〉 X
p

��
X ′ u //

d̃′

��

X

d̃
��

I ′ v
// I

commute and hence since the lower rectangle is a pullback we obtain a unique mor-
phism p′ making the diagram commute. An easy calculation shows that p′ is an (I ′, jv)-
multiplicative structure for (C1, C0, d, c, e).

It follows from Lemma 2.9 and Proposition 3.1 that, when C is a pointed protomodular
category, Condition 1.8 is equivalent to the following condition. For each diagram

D1

ε1 //

i1
��

E1
δ1
oo

g1
��

X

h1
>>

h2   

A
α // B
β

oo

D2

ε2 //

i2

OO

E2
δ2
oo

g2

OO (11)

where ε1δ1 = 1E1 , ε2δ2 = 1E2 , αβ = 1B, h1 and h2 are the kernels of ε1 and ε2 respectively,
and g1 and g2 form a join, if i1 and i2 form a join, then the composite i1h1 is the kernel
of α. As we shall show, an equivalent statement can be formulated by replacing “i1h1
is the kernel of α” by “i1h1 is a normal monomorphism”. To prove this it is sufficient
to show that for a diagram (11) with ε1δ1 = 1E1 , ε2δ2 = 1E2 , αβ = 1B, h1 and h2 being
the kernels of ε1 and ε2, respectively, and the pairs g1 and g2, and i1 and i2 forming
joins, the morphism α is necessarily the cokernel of i1h1. However, in such a situation,
if f : A → C is a morphism such that fi1h1 = 0, then since fβαi1h1 = 0 = fi1h1 and
fβαi1δ1 = fβαβg1 = fβg1 = fi1δ1, and similarly fβαi2h2 = fi2h2 and fβαi2δ2 = fi2δ2
it follows by protomodularity that fβαi1 = fi1 and fβαi2 = fi2. This means, since i1
and i2 are jointly epimorphic, that f = fβα and hence, since αi1h1 = 0 and α is an
epimorphism, that α is the cokernel of i1h1.

3.4. Theorem. Let C be a semi-abelian category (more generally an exact pointed pro-
tomodular category with binary joins of subobjects.) The category C satisfies Condition
1.8 if and only if C satisfies NU.
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Proof. It easily follows from the discussion directly proceeding the statement of the
theorem that NU implies Condition 1.8. Conversely, given a square

X k //

k′
��

E

g

��
E ′

g′
// B

where k and k′ are normal monomorphisms and g and g′ form a join. We will show that
gk is a normal monomorphism. Consider the diagram

R′
r′1 //

i′zz

(g′×g′)r′

��

E ′
s′

oo

g′~~

g′

��

X

h′
22

h &&

gk

��

A
α //

l

��

B
β

oo

R
r1 //i

::

(g×g)r
$$

E
s

oo
g

>>

g

%%
B

〈0,1〉 // B ×B
π1 // B
〈1,1〉

oo

where

- (R, r1, r2) and (R′, r′1, r
′
2) are the associated equivalence relations of k and k′ (i.e. the

kernel pairs of the respective morphisms which k and k′ are the kernel of);

- h and h′ are kernels of r1 and r′1, respectively;

- r = 〈r1, r2〉, r′ = 〈r′1, r′2〉;

- (A, l) is the join of (R, (g × g)r) and (R′, (g′ × g′)r′) in B ×B;

- i and i′ are the respective inclusions into the join;

- α = π1l;

- β is the (unique) morphism such that βg = is, βg′ = i′s′, and lβ = 〈1, 1〉 obtained
using the fact that g′ and g are jointly strongly epimorphic.

Note that αβ = 1B, gr1 = αi and g′r′1 = αi′. Now, since i and i′ form a join it follows,
from the reformulation of Condition 1.8 directly proceeding the proposition, that ih is the
kernel of α and hence the diagram

X
ih //

gk
��

A

l
��

B
〈0,1〉

// B ×B
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is pullback. Therefore, since l : A → B × B is a reflexive relation and hence an effective
equivalence relation it follows that gk is a normal monomorphism as desired.

3.5. Remark. Note that according to Proposition 3.1 for a pointed protomodular category
Condition 1.10 is equivalent to requiring for each diagram (11) where ε1δ1 = 1E1, ε2δ2 =
1E2, αβ = 1B, g1 and g2 form a join, and h1, h2 and i1h1 are the kernels of ε1, ε2 and
α, respectively, the object A together with the morphisms i1, i2, β is the colimit of the
diagram

D1 E1
δ1oo

g1
��

X

h1
>>

h2   

B

D2 E2.
δ2oo

g2

OO

3.6. Proposition. Let C be a pointed protomodular category satisfying Condition 1.10.
For each commutative diagram

T1
n1

{{ i1xx
S m // X Tnoo

T2n2

cc i2
ff

of monomorphisms, if i1 and i2 form a join and m commutes with n1 and n2, then m
commutes with n.

Proof. Let ϕ1 : S × T1 → X and ϕ2 : S × T2 → X be the unique morphisms exhibiting
that m and n1, and m and n2 commute. Since the split cube in the diagram

S
〈1,0〉

��

��

〈1,0〉 // S × T2
1×i2

��

π2

��

ϕ2

��
S × T1 1×i1

//

π2

��

ϕ1

''
S × T

π2

��

// X

0 //

��

OO

T2

〈0,1〉

OO

i2
��

T1

〈0,1〉

OO

i1
// T

〈0,1〉

OO

n

MM

satisfies the appropriate conditions it follows from Condition 1.10 that it is of type RE
and hence there exists a unique morphism ϕ : S × T → X such that ϕ(1 × i1) = ϕ1,
ϕ(1× i2) = ϕ2 and ϕ〈0, 1〉 = n. It easily follows that m and n commute.
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Recall that a pointed category C is algebraically cartesian closed (as considered in [7]
and named in [5]) when for each object B in C the pullback functor (B → 1)∗ : C→ Pt(B)
has a right adjoint. A category C is fiberwise algebraically cartesian closed when for
each object B in C the category Pt(B) is algebraically cartesian closed. In [5] it was
shown that a pointed regular unital category is algebraically cartesian closed if and only
if it admits centralizers. In [8], for semi-abelian categories, it was shown that algebraic-
cartesian-closedness implies the distributivity of Huq commutators, and furthermore the
two conditions are equivalent under conditions that hold for every variety of universal
algebras. Here we obtain:

3.7. Corollary. Let C be an exact protomodular category with finite colimits. If C
satisfies Condition 1.10, then for each object B in C, Huq commutators in the category
Pt(B) distribute over binary joins.

Proof. Since for each B in C the category Pt(B) is semi-abelian and by Proposition
2.1 satisfies Condition 1.10, it is sufficient to prove that Huq commutators distribute
over binary joins in a semi-abelian category satisfying Condition 1.10. According to the
previous proposition we see for subobjects (S,m), (T1, n1) and (T2, n2) of X in C if m
commutes with n1 and n2, then m commutes with the join of n1 and n2. The proof
of Theorem 1.1 in [8] shows that this last condition implies distributivity of the Huq
commutator in C.

4. Categories in which each object has global support

In this section we consider the Conditions 1.6, 1.8, 1.9 and 1.10 in (not necessarily pointed)
contexts with finite limits where objects have global support. For a category C with
finite limits recall that an object B in C has global support if the unique morphism
into the terminal object 1 is an effective descent morphism (that is, the change of base
functor C → (C ↓ B) is monadic [12]). Examples of categories in which each object has
global support include pointed categories with finite limits (since, for each B, the unique
morphism B → 1 being a split epimorphism is necessarily an effective descent morphism,
see [13]) and exact categories with an initial object in which the unique morphism from
the initial object to the terminal object is a regular epimorphism (since this forces each
morphism with codomain 1 to be a regular epimorphism and exactness implies that regular
epimorphisms are effective descent morphisms).

Recall, as explained above, if a finitely complete category C satisfies any of the condi-
tions in Subsections 1.5 and 1.7 then for each B in C the category Pt(B) satisfies the same
condition. For regular protomodular categories in which each object has global support
and for Conditions 1.6, 1.8 and 1.10 we obtain converses. To obtain these converses we
will use several results some of which seem to be interesting in their own right.

4.1. Proposition. Let 〈T, η, µ〉 be a monad on a category C with binary joins of sub-
objects. If T preserves binary joins (or more generally preserves those jointly strongly
epimorphic cospans consisting of monomorphisms), then the forgetful functor U from the
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category CT of algebras over the monad T to the category C preserves and reflects binary
joins.

Proof. The fact that U reflects binary joins follows from the fact that it preserves
monomorphisms and reflects isomorphisms. Now, suppose that

(A,α) i // (C, γ) (B, β)
joo

is a cospan forming a join in CT and let (S,m) be the join of (A, i) and (B, j) as subobjects
of C (in C) as displayed in the diagram

S

m
��

A
i
//

u

??

C B.
j

oo

v

``

Since T (u) and T (v) are jointly strongly epimorphic (by assumption), the diagram

T (A)
T (u) //

uα

$$

T (S)

σ

��

γT (m)
��

T (B)
T (v)oo

vβ

zz

C

S

m

OO

commutes, and m is a monomorphism, it follows that there is a unique morphism σ such
that mσ = γT (m). Using again the fact that m is a monomorphism we see that (S, σ) is
an algebra over the monad. Therefore, since the diagram

(S, σ)

m

��
(A,α)

i
//

u
::

(C, γ) (B, β)
j

oo

v
dd

commutes in CT , it follows that m is an isomorphism proving that i and j form a join in
C.

4.2. Proposition. Let U : X → C be a functor preserving binary joins, and reflecting
and preserving limits. If C satisfies Condition 1.8, then X satisfies the same condition.

Proof. Suppose that (4) is a split cube of type LE1, in X, such that both g1 and g2, and
i1 and i2 form joins. Since U preserves binary joins and limits it follows by Condition 1.8
that the image of (4) under U is of type LE2. However since U reflects limits this means
that (4) is of type LE2 as required.
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4.3. Proposition. Let 〈T, η, µ〉 be a monad on a category C with finite limits and binary
joins of subobjects. If T preserves binary joins (or more generally preserves those jointly
strongly epimorphic cospans consisting of monomorphisms), and C satisfies Condition
1.10, then CT satisfies the same condition.

Proof. Suppose that (4) is a split cube of type LE2 in CT such that g1 and g2 form a
join. Since the forgetful functor U from CT to C preserves limits and binary joins (by
Proposition 4.1) it follows by Condition 1.10 that the image of (4) under U is of type
RE. An easy calculation using the fact that TU(i1) and TU(i2) are jointly (strongly)
epimorphic shows that under these conditions (4) is of type RE in CT .

4.4. Proposition. Let 〈T, η, µ〉 be a monad on a protomodular category C with finite
limits, let ((C0, γ0), (C1, γ1), d, c, e) be a reflexive graph in CT and let j : (I, ι)→ (C0, γ0) be
a morphism in CT . If T preserves binary joins (or more generally preserves those jointly
strongly epimorphic cospans consisting of monomorphisms), then ((C0, γ0), (C1, γ1), d, c, e)
is ((I, ι), j)-multiplicative if and only if (C0, C1, d, c, e) is (I, j)-multiplicative.

Proof. The “only if” part follows from the fact that the forgetful functor U from the CT

to C preserves limits. Using the notation from Subsection 1.5 the “if” part follows easily
from the fact that the morphisms

T (X)
T (〈k,ẽd̃〉) // T (C1 ×〈d,ck〉 X) T (X)

T (〈eck,1〉)oo

are jointly (strongly) epimorphic.

4.5. Lemma. Let C be a regular Mal’tsev category with terminal object 1. If

X
f // Z Y

goo

is a cospan such that f and g forms a join and X → 1 is a regular epimorphism, then for
each W in C such that W → 1 is a regular epimorphism the cospan

W ×X 1×f //W × Z W × Y1×goo

forms a join.

Proof. Suppose that
S

〈s1,s2〉
��

W ×X
1×f

//

u

88

W × Z W × Y
1×g
oo

v

ff

is a monomorphism of cospans. We will begin by showing that s2 is a regular epimorphism.
Since π2 : W × X → X and π2 : W × Y → Y are regular epimorphisms (both being
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pullbacks of W → 1) it follows that the cospan at the bottom of the diagram

S

s2
��

W ×X
fπ2

//

u

;;

Z W × Ygπ2
oo

v

cc

is jointly strongly epimorphic, and so s2 is a regular epimorphism as desired. Now, consider
the diagram

(W ×X)× S

u×1

��

w

��

〈s1π2,π2π1〉 //W ×X
u

��
D

d3 //

〈d1,d2〉
��

S

〈s1,s2〉
��

S × S
〈s1π2,s2π1〉

//W × Z

where the bottom rectangle is a pullback and w is the unique morphism making the
diagram commute. Writing δ for the morphism exhibiting that S is difunctional, it follows
that the diagram

(W ×X)× S
π1×1

��

w // D
δ //

〈s1d1,s2d2〉 ##

S

〈s1,s2〉
��

W × S
1×s2

//W × Z

commutes. However, since both π1×1 and 1×s2 are regular epimorphisms (being pullbacks
of the regular epimorphisms X → 1 and s2 : S → Z respectively), it follows that their
composite is an extremal epimorphism and hence 〈s1, s2〉 is an isomorphism.

As a corollary we obtain:

4.6. Lemma. Let C be a regular Mal’tsev category such that each object has global sup-
port. For each B in C the functor T forming part of the monad 〈T, η, µ〉 induced by the
adjunction f ! a f ∗ : C → (C ↓ B), where f is the unique morphism B → 1, preserves
binary joins.

Proof. The claim follows from the previous lemma by noting that T is defined on an
object (A,α) by T (A,α) = (B × A, π1) and on a morphism f : (A,α) → (A′, α′) by
T (f) = 1× f .

4.7. Lemma. Let C be a regular Mal’tsev category such that each object has global support.
For each B in C the functor P from (B ↓ C) to Pt(B) sending (C, δ) to (B×C, π1, 〈1, δ〉)
is monadic, and the functor T which is part of the induced monad 〈T, η, µ〉 on Pt(B)
preserves binary joins.



1054 J. R. A. GRAY AND N. MARTINS-FERREIRA

Proof. Let B be an object in C and let (C, γ) be an object in (B ↓ C). Since by
assumption the unique morphism f : C → 1 in C is an effective descent morphism it
follows (directly or from Theorem 16 of [18] with Γ the constant functor onto B) that
f : (C, γ)→ (1, fγ) is an effective descent morphism in (B ↓ C). This means that (B ↓ C)
is a regular Mal’tsev category such that each object has global support. The claim now
follows from the previous lemma since the diagram

(B ↓ C) P //

∼=
��

Pt(B)

((B ↓ C) ↓ (1, f))
f∗
// ((B ↓ C) ↓ (B, 1B)),

∼=

OO

in which the vertical arrows are canonical isomorphisms, commutes.

4.8. Theorem. Let C be a regular protomodular category with binary joins of subobjects
such that each object has global support. For n equal to 1.6, 1.8 or 1.10, the following are
equivalent:

(a) the category C satisfies Condition n;

(b) for each B in C the category (B ↓ C) satisfies Condition n;

(c) for each B in C the category Pt(B) satisfies Condition n.

When in addition C has an initial object 0, these conditions are equivalent to

(d) the category Pt(0) satisfies Condition n.

Proof. The implications (a) ⇒ (b) and (b) ⇒ (c) follow from Proposition 2.1. The
implication (b) ⇒ (a) follows easily from the discussion before Proposition 2.1, since a
split cube (4) can be thought of as a split cube in (I ↓ C). The implications (c) ⇒ (b)
and (d) ⇒ (a) (when C has an initial object) follow from Lemma 4.7 and Propositions
4.4, 4.2 and 4.3, when n is 1.6, 1.8 or 1.10, respectively. Finally when C has an initial
object (c) trivially implies (d).

4.9. Remark. Note that for n equal to 1.6, according to Proposition 3.3, “Condition n”
in both (c) and (d) could be replaced by “the condition that star multiplicative graphs are
multiplicative”. When in addition C is exact, for n equal to 1.8, according to Theorem
3.4, “Condition n” in both (c) and (d) could be replaced by “NU”.

Note that the idea of studying non-pointed categories as categories of algebras over
monads on pointed categories is not new. The first author learnt of this approach in
private communication with G. Janelidze about his series of talks at the Australian
Category Seminar on unpublished joint work with A. Carboni, G. M. Kelly and S. Lack.

Next we show that for a regular protomodular category, in which each object has
global support, Condition 1.10 implies that change of base functors of the fibration of
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points reflect Huq commutativity. To do so we need some preliminary facts. Recall that
for a descent morphism p : E → B (i.e. a pullback stable regular epimorphism) the
comparison functor from (C ↓ B) to the category of descent data associated to p is full
and faithful [12]. Here we will use the following consequence:

4.10. Lemma. Suppose C is a category with finite limits and p : E → B is a descent
morphism with kernel pair π1, π2 : E ×B E → E. Let p∗ : Pt(B) → Pt(E) and π∗1, π

∗
2 :

Pt(E) → Pt(E ×B E) be the associated pullback functors, and φ : π∗1p
∗ → π∗2p

∗ be
the canonical isomorphism. For objects (A,α, β) and (A′, α′, β′) in Pt(B), and for a
morphism h : p∗(A,α, β)→ p∗(A′, α′, β′) in Pt(E), if the diagram

(π∗1p
∗)(A,α, β)

π∗1(h)//

φ(A,α,β)
��

(π∗1p
∗)(A′, α′, β′)

φ(A′,α′,β′)
��

(π∗2p
∗)(A,α, β)

π∗2(h)// (π∗2p
∗)(A′, α′, β′)

commutes, then there exists a unique morphism g : (A,α, β)→ (A′, α′, β′) in Pt(B) such
that h = p∗(g).

4.11. Lemma. Let F : C → D and G1, G2 : D → E be finite limit preserving functors
between unital categories, and let φ : G1F → G2F be a natural transformation, such that if
h : F (C)→ F (C ′) is a morphism with φC′G1(h) = G2(h)φC, then there exists g : C → C ′

such that F (g) = h. If F is faithful, then the functor F reflects Huq commuting pairs.

Proof. Let f : A → C and g : B → C be morphisms in C such that F (f) commutes
with F (g). Since F preserves limits this means that there exists a unique morphism
θ : F (A×B)→ F (C) such that the diagram

F (A)
F (〈1,0〉)//

F (f) ..

F (A×B)

θ
��

F (B)
F (〈0,1〉)oo

F (g)ppF (C)
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commutes. Since the morphisms G1F (〈1, 0〉) and G1F (〈0, 1〉) are jointly (strongly) epi-
morphic it follows that the diagram

G1F (A)
G1F (〈1,0〉) //

G1F (f)
//

φA

yy

G1F (A×B)

G1(θ)

��

φA×Byy

G1F (B)
G1F (〈0,1〉)oo

G1F (g)
oo

φByy
G2F (A)

G2F (〈1,0〉)
//

G2F (f)
//

G2F (A×B)

G2(θ)

��

G2F (B)
G2F (〈0,1〉)

oo

G2F (g)
oo

G1F (C)

φCyy
G2F (C)

commutes, and hence there exists a morphism ψ : A × B → C such that F (ψ) = θ.
Since F is a faithful, F (f) = θF (〈1, 0〉) = F (ψ)F (〈1, 0〉) = F (ψ〈1, 0〉) and similarly
F (g) = F (ψ〈0, 1〉) it follows that f and g commute in C.

As a corollary of the last two lemmas we obtain:

4.12. Proposition. Let C be a Mal’tsev category with finite limits. If p : E → B is a
descent morphism, then p∗ : Pt(B)→ Pt(E) reflects Huq commuting pairs.

Proof. Just apply Lemma 4.11 to the functors and natural transformations of Lemma
4.10.

Combining this last proposition with Proposition 2.5 we obtain:

4.13. Theorem. Let C be a regular protomodular category such that each object has
global support. If C satisfies Condition 1.10, then (SSH) holds in C (i.e. change of base
functors of the fibration of points reflect Huq commutativity).

Proof. Let p : E → B be a morphism in C. Since the diagram

E
p //

〈1,p〉 ))
B

E ×B
π2

55

commutes, 〈1, p〉 is a monomorphism and π2 is regular epimorphism it follows by Propo-
sitions 2.5 and 4.12 that the functor p∗ ∼= 〈1, p〉∗π∗2 reflects Huq commutativity.

5. Examples

In this section we give pointed and non-pointed examples satisfying the conditions above.
Recall that every category of interest in the sense of [19] is a semi-abelian category satisfy-
ing NU (see [3]). Therefore, according to Theorem 3.4, every category of interest satisfies



NEW EXACTNESS CONDITIONS IN PROTOMODULAR CATEGORIES 1057

Condition 1.8. In particular this means that the categories of groups, not necessarily
unital rings and various types of algebras over a ring such as Lie, associative, commuta-
tive, and Leibniz all satisfy Condition 1.8. Furthermore, Proposition 4.2 implies that, any
sub-category X of a category of interest C such that the forgetful functor X→ C reflects
limits and binary joins will also satisfy Condition 1.8. Amongst others this means that
the categories of unital rings, of unital associative algebras over a fixed ring, and of unital
Boolean rings (= Boolean algebras) also satisfy Condition 1.8. Further examples can be
obtained, according to Proposition 2.1, by forming comma, (co)comma and categories of
points in each of the previous examples. Finally according to Propositions 2.2, 2.3, 2.6
and Theorem 4.13 all of the previously mentioned categories also satisfy Conditions 1.6,
1.9, 1.10 and (SSH).
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