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STABILITY FOR INNER FIBRATIONS REVISITED

DANNY STEVENSON

Abstract. In this paper we prove a stability result for inner fibrations in terms of the
wide, or fat join operation on simplicial sets. We also prove some additional results on
inner anodyne morphisms that may be of independent interest.

1. Introduction

Recall (see [Ehlers and Porter (2000), Joyal (2002), Lurie (2009), Riehl and Verity (2015)])
that the join of simplicial sets A and B is the simplicial set A?B whose set of n-simplices
for n ≥ 0 is given by

(A ? B)n = An tBn t
⊔

i+j=n−1

Ai ×Bj.

For a fixed simplicial set A, the functor A? (−): Set∆ → (Set∆)A/ commutes with colimits
and hence admits a right adjoint. If p:A → X is an object in (Set∆)A/ then its image
under this right adjoint is the simplicial set Xp/ defined in Section 1.2.9 of [Lurie (2009)].
A fundamental result in the theory of ∞-categories is the following stability result due
to Joyal (see Theorem 3.8 of [Joyal (2002)]) and Lurie (see Proposition 2.1.2.1 of [Lurie
(2009)]).

1.1. Theorem. [Joyal (2002), Lurie (2009)] Suppose given a diagram

L
u→ X

p→ S

of simplicial sets and maps between them. Suppose that p:X → S is an inner fibration
between simplicial sets. If K ⊂ L is a subcomplex and v = u|K then the induced map

Xu/ → Xv/ ×Spv/
Spu/

is a left fibration which is a trivial Kan fibration if the inclusion K ⊂ L is inner anodyne.

There is another join construction for simplicial sets, due originally to Joyal and
developed further in [Lurie (2009)] (this notion of join also plays a prominent role in
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[Riehl and Verity (2015)]). If A and B are simplicial sets then the fat or wide join is the
simplicial set A �B defined by the pushout diagram

∂∆1 × A×B ∆1 × A×B

A tB A �B

in Set∆. It follows easily that the set (A �B)n of n-simplices of A �B is given by

(A �B)n = An t
n−1⊔
i=1

(An ×Bn) tBn.

The wide join has the advantage over the join construction described above in that it
is simple to define, and is a fairly robust construction — it is a homotopy pushout in
the Joyal model structure on simplicial sets. There is also a canonical comparison map
A�B → A?B for any simplicial sets A and B, this turns out to be a categorical equivalence
(see Proposition 4.2.1.2 of [Lurie (2009)]). In other respects, the wide join is not as
convenient as the join construction; for instance, there is an isomorphism ∆0 �∆0 ' ∆1,
but there is not an isomorphism ∆0 � ∆1 ' ∆2 — one can check that ∆0 � ∆1 has two
non-degenerate 2-simplices.

For each fixed simplicial set K, the functor K�(−): Set∆ → (Set∆)K/ preserves colimits
(see Section 4.2.1 of [Lurie (2009)]) and hence admits a right adjoint whose value on a
map p:K → X in (Set∆)K/ is the wide slice Xp/. We shall prove the following theorem
in Section 3.

1.2. Theorem. Suppose given maps

A
u→ B

f→ X
p→ Y

in Set∆. If p is an inner fibration then the induced map

Xf/ → Xfu/ ×Y pfu/ Y pf/

is a left fibration which is a trivial Kan fibration if u is inner anodyne.

This result is a strengthening of Proposition 4.2.1.6 from [Lurie (2009)] where the
result above is proven under the assumption that p:X → Y is a categorical fibration. As
far as we are aware Theorem 1.2 has not appeared in the literature before. The proof of
Theorem 1.2 will be easy, once we have

1.3. Theorem. Suppose u:A→ B and v:C → D are monomorphisms of simplicial sets.
If v is left anodyne then the canonical map

u �′ v:B � C ∪ A �D → B �D

is inner anodyne.

In Section 3 we shall also prove the following result, which gives an alternative char-
acterization of cocartesian morphisms.
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1.4. Theorem. Let p:X → S be an inner fibration of simplicial sets. Suppose that
u:x→ y is an edge of X. Then the following statements are equivalent:

1. u is a p-cocartesian morphism of X;

2. the induced map Xu/ → Xx/ ×Sp(x)/ Sp(u)/ is a trivial Kan fibration.

Our main technical tool for the proof of Theorem 1.3 will be the following theorem
which is of interest in its own right.

1.5. Theorem. The class of inner anodyne maps has the right cancellation property.

Recall (see [Joyal and Tierney (2007)]) that a class A of monomorphisms in Set∆ is said
to satisfy the right cancellation property if the following is true: for all monomorphisms
of simplicial sets i:A→ B and j:B → C, if i, ji ∈ A then j ∈ A.

In summary then this paper is as follows. In Section 2 we prove Theorem 1.5 and
establish some corollaries of it. In Section 3 we prove Theorem 1.3, the stability theorem
(Theorem 1.2) and we prove Theorem 1.4 giving an alternate description of cocartesian
morphisms in terms of the wide slice. For the most part we will use the notation from
[Lurie (2009)]; thus Set∆ will denote the category of simplicial sets, for instance.

2. Inner anodyne maps

The aim of this section is to prove Theorem 1.5 and explore some corollaries of it. To
begin with, we give some examples of classes of monomorphisms with the right cancellation
property. The class of anodyne maps in Set∆ has the right cancellation property (this is
a simple consequence of the 2-out-of-3 property for weak homotopy equivalences). Less
obvious is the following result due to Joyal (see Corollary 8.15 of [Joyal (2008)]) and Lurie
(see Corollary 4.1.2.2 of [Lurie (2009)]).

2.1. Proposition. [Joyal (2008), Lurie (2009)] The class of left anodyne maps in Set∆

satisfies the right cancellation property.

The right cancellation property forms part of several criteria for showing that a class
of monomorphisms contains a given class as a subclass. For example we have the following
result due to Joyal and Tierney (see Lemma 3.5 of [Joyal and Tierney (2007)])

2.2. Proposition. [Joyal and Tierney (2007)] Let A be a saturated class of monomor-
phisms in Set∆ satisfying the right cancellation property. If A contains the inclusions
In ⊂ ∆n for all n ≥ 2 then A contains every inner anodyne map.

Here In denotes the n-chain, i.e.

In = ∆{ 0,1 } ∪∆{ 1,2 } ∪ · · · ∪∆{n−1,n }.

From [Stevenson (2017)] we have an analogous criteria for left anodyne maps which we
shall make use of in the following section.
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2.3. Proposition. [Stevenson (2017)] Let A be a saturated class of monomorphisms in
Set∆ which satisfies the right cancellation property. Then the following statements are
equivalent:

1. A contains the class of left anodyne morphisms;

2. A contains the initial vertex maps ∆{ 0 } → ∆n for all n ≥ 1;

3. A contains the horn inclusions h0
n: Λn

0 ⊂ ∆n for all n ≥ 1.

We now turn our attention to the proof of Theorem 1.5. We will need the following
lemma.

2.4. Lemma. Let p:X → S be an inner fibration between simplicial sets and suppose
given a commutative diagram

(∆1 × ∂∆n) ∪ ({ 0 } ×∆n) X

∆1 ×∆n ∆n S

u

p

pr1 v

where n ≥ 1. If the edge u|∆1 × { 0 } is an equivalence in the ∞-category Xv(0) then the
square has a diagonal filler.

Here Xv(0) denotes the∞-category which is the fiber of p:X → S over the vertex v(0)
of S.

Proof. By pulling back p:X → S to ∆n via v we may suppose without loss of generality
that S and X are∞-categories. We recall some facts about the structure of the simplicial
set ∆1 × ∆n. This simplicial set can be regarded as the nerve of the category [1] × [n],
which may be pictured as

0 1 · · · n

0′ 1′ · · · n′.

The simplicial set ∆1 × ∆n is a union of n + 1 non-degenerate (n + 1)-simplices σ0, σ1,
. . . , σn where

σ0 = ∆{ 0,0′,...,n′ }, σ1 = ∆{ 0,1,1′,...,n′ }, . . . , σn = ∆{ 0,1,...,n,n′ }.

Following the proof of Proposition 2.1.2.6 from [Lurie (2009)], we define a chain of inclu-
sions

A(n+ 1) ⊂ A(n) ⊂ · · · ⊂ A(1) ⊂ A(0)

of ∆1 ×∆n where
A(n+ 1) = { 0 } ×∆n ∪∆1 × ∂∆n
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and where A(k) denotes the union of A(k + 1) and the simplex σk (together with all of
its faces). Then A(k) is the pushout

A(k + 1) ∪Λn+1
k

∆n+1

and A(0) = ∆1 × ∆n. Since the inclusions A(k + 1) ⊂ A(k) are inner anodyne for
1 ≤ k ≤ n we are reduced to the problem of showing that we may extend the map
Λn+1

0 → Xσ0 induced by u, over the simplex σ0 (here Xσ0 denotes the pullback of X to
σ0). By hypothesis the edge u|∆1 × { 0 } is an equivalence in Xv(0) and hence in Xσ0 ; the
result then follows from Proposition 1.2.4.3 of [Lurie (2009)].

We now give the proof of Theorem 1.5.

Proof of Theorem 1.5. Suppose that i:A→ B and j:B → C are monomorphisms of
simplicial sets such that i and ji are inner anodyne. We will prove that j is inner anodyne.
It suffices to show that j has the left lifting property against all inner fibrations.

Let p:X → Y be an inner fibration between simplicial sets X and Y and suppose
given a commutative diagram

B X

C Y.

j

u

p

v

We will show that there exists a diagonal filler for this diagram. Since ji is inner anodyne
we may choose a map φ:C → X such that pφ = v and φji = ui. Observe that φj and
u lie in the same fiber of the canonical map XB → Y B ×Y A XA. Since this map is a
trivial Kan fibration (on account of the hypothesis on i — see Corollary 2.3.2.5 of [Lurie
(2009)]) it follows that there exists a homotopy h:φj → u relative to A over Y . Thus h
determines a map h: ∆1×B → X such that h| { 0 }×B = φj, h| { 1 }×B = u, ph = vjπB,
h(1× i) = uiπA, and h|∆1 × { b } is an equivalence in Xv(b) for all vertices b of B.

Since ph = vjπB = vπC(1× j), the maps h and φ determine a map w: { 0 }×C ∪∆1×
B → X forming part of a commutative diagram

{ 0 } × C ∪∆1 ×B X

∆1 × C C Y.

w

p

πC v

Observe that w|∆1 × { b } is an equivalence in the ∞-category Xv(b) for every vertex b of
B. To finish the proof it suffices to find a diagonal filler d: ∆1×C → X for this diagram,
for then d| { 1 } × C → X is a diagonal filler for the original diagram above.

Writing C = B ∪
⋃
n≥1 sknC, where sknC denotes the n-skeleton of C and noting that

A0 = B0 = C0, we see that it suffices to prove by induction on n ≥ 0 that there is a
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diagonal filler for the induced diagrams

{ 0 } × (B ∪ skn+1C) ∪∆1 × (B ∪ sknC) X

∆1 × (B ∪ skn+1C) B ∪ skn+1C Y.

p

v

But the map B ∪ sknC → B ∪ skn+1C forms part of a pushout diagram⊔
∂∆n+1 B ∪ sknC

⊔
∆n+1 B ∪ skn+1C

where the coproduct is over the set of non-degenerate (n + 1)-simplices of C which do
not belong to B. Hence we may apply Lemma 2.4 to conclude that the required diagonal
fillers exist.

We give some corollaries. First we have

2.5. Lemma. Suppose given a commutative diagram

A1 A2 A3

B1 B2 B3

f1

u

f2 f3

v

of simplicial sets where f1, f2, f3 are inner anodyne and u, v are monomorphisms. If the
left hand square is a pullback, then the induced map

A1 ∪A2 A3 → B1 ∪B2 B3

is inner anodyne.

Proof. The induced map factors as

A1 ∪A2 A3 → A1 ∪A2 B3 ' A1 ∪A2 B2 ∪B2 B3 → B1 ∪B2 B3.

The first map in this composite is inner anodyne since it is the pushout of an inner anodyne
map. The induced map A1 ∪ B2 = A1 ∪A2 B2 → B1 is inner anodyne by Theorem 1.5.
It follows that the second map in the composite above is also the pushout of an inner
anodyne map.

2.6. Corollary. Suppose that u:A → B is an inner anodyne map in Set∆. Then the
induced map u � C:A � C → B � C is inner anodyne for any simplicial set C.

Proof. This follows from two applications of Lemma 2.5 and the definition of the wide
join.
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3. Stability of inner fibrations

In this section we prove Theorems 1.2, 1.3 and 1.4. We begin with the following observa-
tion: if A ⊂ C and B ⊂ D are subcomplexes, then A � B is naturally a subcomplex of
C �D — this follows from the description of the set of n-simplices of the wide join given
in the Introduction.

Next, we prove the following proposition.

3.1. Proposition. Suppose that u:A → B and v:C → D are monomorphisms of sim-
plicial sets. If u is inner anodyne then so is the canonical map

u �′ v:A �D ∪B � C → B �D.

Proof. We have a commutative diagram

A � C A �D

B � C B �D

in which the vertical maps are inner anodyne by Corollary 2.6. It follows that the canonical
map

A �D → A �D ∪B � C
is inner anodyne, since it is the pushout of an inner anodyne map. Now the composite
map

A �D → A �D ∪B � C → B �D
is inner anodyne, and so is the left hand map. Therefore the right hand map, i.e. the map
u �′ v, is inner anodyne by Theorem 1.5.

Our aim now is to prove Theorem 1.3.

Proof of Theorem 1.3. We make a series of reductions to progressively simpler cases.
We show first it suffices to prove the proposition in the special case when A = ∅. Assuming
the truth of the proposition in this case for the moment, we see that in the commutative
diagram

A � C ∪C D B � C ∪C D

A �D B �D.
the vertical maps are inner anodyne. The composite map

B � C ∪C D → B � C ∪ A �D → B �D

is inner anodyne, and the left hand map in this composite is inner anodyne since it
is a pushout of an inner anodyne map. Therefore, by the right cancellation property
(Theorem 1.5) of inner anodyne maps it follows that u �′ v is also inner anodyne.
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Assume now that A = ∅. Since the class of inner anodyne maps is weakly saturated,
and the functors (−) �C: Set∆ → (Set∆)C/ and (−) �D: Set∆ → (Set∆)D/ are compatible
with colimits (see Section 1), a standard argument using the skeletal filtration of B and
Lemma 2.5 shows that we may reduce to the special case in which u is the inclusion
∅ ⊂ ∆n for some n ≥ 0. If n ≥ 2 let In ⊂ ∆n denote the inclusion of the n-chain. In the
commutative diagram of monomorphisms

In � C ∪C D ∆n � C ∪C D

In �D ∆n �D

the horizontal maps are inner anodyne by Corollary 2.6. Therefore, by the right cancella-
tion property of inner anodyne maps (Theorem 1.5) it suffices to prove that the left hand
vertical map is inner anodyne. Therefore we are reduced (by Lemma 2.5) to the special
case in which u is the inclusion ∅ ⊂ ∆0 or ∅ ⊂ ∆1. In the case where u is the inclusion
∅ ⊂ ∆1, the map

∆1 � C ∪C D → ∆1 �D
is isomorphic to the map

D ∪D×∆1

((
∆0 � C ∪C D

)
×∆1

)
→ D ∪D×∆1

((
∆0 �D

)
×∆1

)
.

Since the pushout of an inner anodyne map is inner anodyne, we are finally reduced to
the special case in which u is the inclusion ∅ ⊂ ∆0.

Let A be the class of monomorphisms v:C → D in Set∆ for which u �′ v is inner
anodyne. To complete the proof of the proposition it suffices to show that A contains every
left anodyne map. Clearly A is saturated, and satisfies the right cancellation property by
Theorem 1.5. Therefore, by Proposition 2.3 it suffices to check that A contains the initial
vertex maps ∆{ 0 } → ∆n for all n ≥ 0. If v is the initial vertex map ∆{ 0 } → ∆n, then
u �′ v is isomorphic to the canonical inclusion

i: (∆1 × { 0 }) ∪ ({ 1 } ×∆n) ↪→ ∆0 �∆n.

The simplicial set ∆0 �∆n = (∆1×∆n)∪{ 0 }×∆n ∆0 is the union of the simplicial subsets
S0 = σ0, S1, . . . , Sn where

S1 = σ1 ∪∆{ 0,1 } ∆0, S2 = σ2 ∪∆{ 0,1,2 } ∆0, . . . , Sn = σn ∪∆{ 0,...,n } ∆0,

and where the σi are the non-degenerate (n + 1)-simplices of ∆1 × ∆n described in
Lemma 2.4 above. Let us write T0 = S0 and Ti = Ti−1 ∪ Si for i ≥ 1. Then we have a
sequence of inclusions

T0 ⊂ T1 ⊂ · · · ⊂ Tn = ∆0 �∆n.

The map i above factors as

(∆1 × { 0 }) ∪ ({ 1 } ×∆n) ↪→ T0 ↪→ Tn = ∆0 �∆n
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and the inclusion (∆1 × { 0 }) ∪ ({ 1 } ×∆n) ↪→ T0 is clearly inner anodyne. To complete
the proof we need to show that T0 ⊂ Tn is inner anodyne. Clearly it suffices to prove that
Ti−1 ⊂ Ti is inner anodyne for i = 1, . . . , n. For each i ≥ 1 we have a pushout diagram

Si ∩ Ti−1 Ti−1

Si Ti

with
Si ∩ Ti−1 = ∆{ 0,...,i−1,i′,...,n′ } ∪∆{ 0,...,i−1 } ∆0.

It suffices to prove that the map Si ∩Ti−1 → Si is inner anodyne for each i ≥ 1. This can
be done using Theorem 1.5 and the fact that the maps

∆{ 0,...,i−1 } ∪∆{ i−1,i′,...,n′ } → ∆{ 0,...,i−1,i′,...,n′ }

and
∆{ 0,...,i } ∪∆{ i,i

′,...,n′ } → ∆{ 0,...,i,i′,...,n′ }

are inner anodyne.

We now prove Theorem 1.2.

Proof of Theorem 1.2. By adjointness, it suffices to show that p has the right lifting
property against every map of the form

u �′ v:B � C ∪ A �D → B �D

where v:C → D is left anodyne. But u �′ v is inner anodyne by Theorem 1.3. The case
where u is inner anodyne follows from Proposition 3.1.

The remainder of the paper is devoted to the proof of Theorem 1.4. Let us say that
an edge u: ∆1 → X is wide p-cocartesian if the induced map Xu/ → Xx/ ×Sp(x)/ Sp(u)/ is
a trivial Kan fibration. Thus to prove Theorem 1.4 we must prove that an edge of X is
p-cocartesian if and only if it is wide p-cocartesian.

Suppose first that u: ∆1 → X is a wide p-cocartesian edge. We need to show that u is
p-cocartesian. Therefore we need to show that in any commutative diagram of the form

∆{ 0,1 }

Λn+2
0 X

∆n+2 S

u

p
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where n ≥ 0 the indicated map exists making the diagram commute. Since u is wide
p-cocartesian we may find the indicated diagonal filler in the diagram

∆1 � ∂∆n ∪ { 0 } �∆n Λn+2
0 X

∆1 �∆n ∆n+2 S.

p

We claim that the map j: ∆1 � ∂∆n ∪ { 0 } � ∆n → Λn+2
0 is a categorical equivalence.

Proposition 4.2.1.2 of [Lurie (2009)] implies that the maps ∆1 � ∂∆n → ∆1 ? ∂∆n and
{ 0 } � ∆n → { 0 } ? ∆n are categorical equivalences. Therefore, since the Joyal model
structure is left proper, it suffices to prove that the canonical map

∆1 � ∂∆n ∪{ 0 }�∂∆n { 0 } ? ∂∆n → ∆1 ? ∂∆n

is a categorical equivalence. This map forms part of the composite map

∆1 � ∂∆n → ∆1 � ∂∆n ∪{ 0 }�∂∆n { 0 } ? ∂∆n → ∆1 ? ∂∆n

and hence it suffices to prove that the first map in this composite is a categorical equiva-
lence. But this map is a pushout of the categorical equivalence { 0 } � ∂∆n → { 0 } ? ∂∆n

along the inclusion { 0 } � ∂∆n → ∆1 � ∂∆n and hence is a categorical equivalence since
the Joyal model structure is left proper.

It follows that we may factor the map j as j = qi where i: ∆1 � ∂∆n ∪ { 0 } �∆n → A
is an acyclic cofibration in the Joyal model structure and q:A → Λn+2

0 is a trivial Kan
fibration. Let

∆1 � ∂∆n ∪ { 0 } �∆n A

∆1 �∆n B

i

denote the pushout diagram and note that in the induced diagram

A Λn+2
0

B ∆n+2

q

the map B → ∆n+2 is a categorical equivalence by Proposition 4.2.1.2 of [Lurie (2009)]
and the fact that the canonical map ∆1 � ∆n → B in the diagram above is an acyclic
cofibration. We have another commutative diagram

A Λn+2
0 X

B ∆n+2 S

p
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where the map B → X is the canonical map from the pushout. Factor the map B → ∆n+2

as B → B′ → ∆n+2, where B → B′ is inner anodyne and B′ → ∆n+2 is an inner fibration
(and hence a categorical fibration). It follows that B′ → ∆n+2 is a trivial Kan fibration.
Since B → B′ is inner anodyne and p:X → S is an inner fibration, we may find a map
B′ → X forming part of a commutative diagram

A Λn+2
0 X

B′ ∆n+2 S

p

To complete the proof that the edge u is p-cocartesian it suffices to prove that Λn+2
0 →

∆n+2 is a retract of A→ B′. Since A→ Λn+2
0 is a trivial Kan fibration we may choose a

section Λn+2
0 → A. Similarly, since B′ → ∆n+2 is a trivial Kan fibration, we may extend

the induced map Λn+2
0 → B′ along the inclusion Λn+2

0 → ∆n+2 to obtain a section of
B′ → ∆n+2, which exhibits the desired retraction.

Suppose now that u: ∆1 → X is p-cocartesian. We need to show that u is wide p-
cocartesian. Therefore we need to show that the indicated diagonal filler exists in every
commutative diagram of the form

∆1

∆1 � ∂∆n ∪∆{ 0 } �∆n X

∆1 �∆n S.

u

p

A short calculation shows that ∆1 � ∂∆n ∪∆{ 0 } �∆n is isomorphic to

∆1 × A(n+ 1) ∪∂∆1×A(n+1) ∆1 t∆n

using the notation from the proof of Lemma 2.4. So the lifting problem above may be
re-phrased as the problem of finding the indicated diagonal filler in the diagram

∆1

∆1 × A(n+ 1) ∪∂∆1×A(n+1) ∆1 t∆n X

∆1 × A(0) ∪∂∆1×A(0) ∆1 t∆n S.

u

p

Since the maps A(n + 1 − i) → A(n − i) are inner anodyne for all i = 0, 1, . . . , n − 1 it
follows from Lemma 2.5 that we are reduced to proving that the indicated diagonal filler
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exists in the diagram

∆1

∆1 × A(1) ∪∂∆1×A(1) ∆1 t∆n X

∆1 × A(0) ∪∂∆1×A(0) ∆1 t∆n S.

u

p

Observe that the canonical map ∂∆1 × A(0)→ ∆1 t∆n induces a pushout diagram

∆1 × A(1) ∪ ∂∆1 × A(0) ∆1 × A(1) ∪∂∆1×A(1) ∆1 t∆n

∆1 × A(0) ∆1 × A(0) ∪∂∆1×A(0) ∆1 t∆n

and that the induced map { 0 } ×∆1 × { 0 } → X is isomorphic to the map u: ∆1 → X
(here { 0 }×∆1×{ 0 } is thought of as a subcomplex of ∂∆1×A(0) in the obvious way).
Therefore, it suffices to show that the indicated diagonal filler exists in every commutative
diagram of the form

∆1 × A(1) ∪ ∂∆1 × A(0) X

∆1 × A(0) S.

p

in which the induced map { 0 } × ∆1 × { 0 } → X represents a p-cocartesian edge of X.
Therefore, since the map A(1)→ A(0) is obtained as a pushout of Λn+1

0 → ∆n+1, we are
finally reduced to proving the following lemma.

3.2. Lemma. Let n ≥ 1 and suppose given a commutative diagram

∆1 × Λn
0 ∪ ∂∆1 ×∆n X

∆1 ×∆n S.

u

p
f

of simplicial sets where p:X → S is an inner fibration. If u| { 0 }×∆{ 0,1 } is a p-cocartesian
edge of X then the indicated diagonal filler exists.

Proof. We remark first that

∆1 × ∂i∆n = ∂i+1σ0 ∪ · · · ∪ ∂i+1σi−1 ∪ ∂iσi+1 ∪ · · · ∪ ∂iσn.

where ∂i∆
n denotes the i-th face of ∆n (i.e. ∂i∆

n = ∆{ 0,...,̂i,...,n }), and where ∂iσj denotes
the i-th face of the (n+ 1)- simplex σj.
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Write B(n+ 1) = ∆1×Λn
0 ∪ ∂∆1×∆n, and assuming that B(i+ 1) has been defined,

let B(i) equal the union of B(i+ 1) and the (n+ 1)-simplex σn−i, together with all of its
faces. Thus B(0) = ∆1 ×∆n and for each i = 0, 1, . . . , n we have a pushout diagram

B(i+ 1) ∩ σn−i B(i+ 1)

σn−i B(i).

We construct the diagonal filler f from the statement of the lemma by descending induc-
tion on n. By the remark above we have an identification

B(n+ 1) ∩ σ0 =
⋃
i 6=1

∂iσ0

so that the inclusion B(n + 1) ∩ σ0 ⊂ σ0 is isomorphic to the inclusion Λn+1
1 ⊂ ∆n+1. It

follows that the extension f |B(n) exists since p:X → S is an inner fibration.
Assume that f |B(i+ 1) has been constructed for 0 < i < n. We have

B(i+ 1) ∩ σn−i =
⋃

j 6=0,n−i+1

∂jσn−i

and
B(i+ 1) ∩ ∂0σn−i =

⋃
j 6=n−i

∂j∂0σn−i.

Thus the inclusion B(i+1)∩∂0σn−i ⊂ ∂0σn−i is isomorphic to the inner anodyne inclusion
Λn
n−i ⊂ ∆n. Since p is an inner fibration, it follows that f |B(i + 1) extends to a map

f |B(i+ 1) ∪ ∂0σn−i. We now have

(B(i+ 1) ∪ ∂0σn−i) ∩ σn−i =
⋃

j 6=n−i+1

∂jσn−i

and it follows that the desired extension f |B(i) exists, using the fact that p is an inner
fibration again. Finally, we have

B(1) ∩ σn =
⋃
j 6=0

∂jσn

and hence the extension f exists because u|∆{ 0,1 } is p-cocartesian.
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