Witt vectors and truncation posets

Vigleik Angeltveit

One way to define Witt vectors starts with a truncation set $S \subset N$. We generalize Witt vectors to truncation posets, and show how three types of maps of truncation posets can be used to encode the following six structure maps on Witt vectors: addition, multiplication, restriction, Frobenius, Verschiebung and norm.

Keywords: Witt vectors, truncation posets, Tambara functors

2010 MSC: 13F35

Theory and Applications of Categories, Vol. 32, 2017, No. 8, pp 258-285.

Published 2017-02-10.

http://www.tac.mta.ca/tac/volumes/32/8/32-08.pdf

TAC Home