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LOCALIZATION OF ENRICHED CATEGORIES AND CUBICAL
SETS

TYLER LAWSON

Abstract. The invertibility hypothesis for a monoidal model category S asks that
localizing an S-enriched category with respect to an equivalence results in an weakly
equivalent enriched category. This is the most technical among the axioms for S to be
an excellent model category in the sense of Lurie, who showed that the category CatS of
S-enriched categories then has a model structure with characterizable fibrant objects.
We use a universal property of cubical sets, as a monoidal model category, to show that
the invertibility hypothesis is a consequence of the other axioms.

Topological categories, simplicial categories, and differential graded categories are spe-
cial types of enriched categories: the enriching category has a notion of weak equivalence
and its own homotopy theory. These have played a prominent role a diverse array of
subjects.

Getting control over the homotopy theory of some of these enriched categories and
homotopical constructions in them (such as pushouts, pullbacks, and other derived limit
and colimit constructions) is easier in the presence of model structures. If S is a monoidal
model category, Lurie gave conditions for the existence of a model structure with many
useful properties on the collection CatS of S-enriched categories [Lur09, A.3.2.4]. (In the
terminology of [BM13], this allows Lurie to assert that the canonical model structure
exists.) The cofibrations and weak equivalences in CatS have a relatively straightforward
description (see §2), but in order to get a useful characterization of the fibrations more
assumptions are required. With this goal, Lurie defined an excellent model category as
a model category S, with a symmetric monoidal structure, satisfying additional axioms
labeled (A1) through (A5). The first four of these axioms are all relatively standard
concepts or are straightforward to verify.

Axiom (A5) is called the invertibility hypothesis. It is more technical—it roughly as-
serts that inverting a weak equivalence results in a weakly equivalent enriched category—
and is more difficult to verify in practice. The fact that the category Set∆ of simplicial
sets satisfies the invertibility hypothesis is an important result of Dwyer and Kan [DK80,
10.4]. The invertibility hypothesis for differential graded categories is a consequence of
work of Toën [Toë07, 8.7], and for enrichment in simplicial model categories it is a theorem
of Dundas [Dun01, 0.9].

Our main result is the following.
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0.1. Theorem. Let S be a combinatorial monoidal model category. Assume that every
object of S is cofibrant and that the collection of weak equivalences in S is stable under
filtered colimits. Then S satisfies the invertibility hypothesis of [Lur09, A.3.2.12].

Combinatoriality is Lurie’s axiom (A1), cofibrance of all objects is a consequence of
axiom (A2), stability of weak equivalences under filtered colimits is axiom (A3), and the
model structure being monoidal is axiom (A4). (Lurie also asks as part of the definition
that the model category be symmetric monoidal.)

Our method is the following. We will first show that the category Set� of cubical sets,
with a model structure due to Cisinski [Cis06], admits a monoidal left Quillen functor
out to essentially any monoidal model category S with cofibrant unit: the choice of such
a functor is essentially a choice of cylinder object for the monoidal unit. Second, we will
show (in a method adapted from [Lur09, A.3.2.20, A.3.2.21]) that this left Quillen functor
allows the model category S to inherit the invertibility hypothesis from Set�.

This gives cubical sets a useful universal property. However, some good properties
of simplicial sets are lost: the monoidal structure on cubical sets is not symmetric, and
understanding the homotopy theory of cubical sets requires hard theorems.

Approaches to the homotopy theory of enriched categories other than Lurie’s have
also been studied, e.g. by Berger–Moerdijk [BM13] and Muro [Mur15]. Due to the
complementary nature of their work and assumptions with Lurie’s, it does not seem that
the results of this paper bring new results to their framework.

The author would like to thank Adeel Khan for discussion related to this paper and
the anonymous referee for several helpful comments.

1. Cubical sets

We’ll begin with preliminaries on the category of cubical sets; much of what we discuss
in the following appears in Cisinski’s work [Cis06, §8.4].

• The cube category � has, as objects, the n-cubes �n for n ≥ 0.

• The maps �n → �m are in bijective correspondence with the set of maps [0, 1]n →
[0, 1]m which are composites of coordinate projections (x1, .., xn) 7→ (x1, .., x̂i, .., xn)
and face inclusions (x1, . . . , xn) 7→ (x1, . . . , xi−1, ε, xi, . . . , xn) for ε ∈ {0, 1}.

• There is a monoidal product ⊗ : � × � → � such that �n ⊗ �m = �n+m, corre-
sponding to the isomorphism [0, 1]n × [0, 1]m ∼= [0, 1]n+m. (This monoidal product
is not symmetric.)

Write �≤1 for the full subcategory of � spanned by �0 and �1. In this subcategory,
there are two maps j0, j1 : �0 → �1 and a map r : �1 → �0, and these satisfy rj0 =
rj1 = id�0 ; moreover, these maps and these relations generate all maps and relations in
�≤1.

The category � is generated by �≤1 and the monoidal structure in the following sense.
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1.1. Proposition. [Cis06, 8.4.6] Suppose C is a monoidal category. For any functor
F : �≤1 → C such that F (�0) is the monoidal unit I, there exists an extension to a
functor F̃ : � → C which is monoidal. This monoidal extension is unique up to natural
isomorphism.

A cubical set is a functor �op → Set, and Set� is the category of cubical sets. The
covariant Yoneda embedding θ : �→ Set� satisfies the following property.

1.2. Proposition. Suppose C is cocomplete. For any functor F : �→ C, the “singular
cubical set” functor HomC(F (�•),−) has a left adjoint F̃ : Set� → C (the associated
realization functor) extending F . This extension is unique up to natural isomorphism.

The monoidal structure on � gives rise to a Day convolution product ⊗ on Set�.
More specifically, given X, Y : �op → Set, the tensor X ⊗ Y is the left Kan extension
of X × Y : �op × �op → Set × Set → Set along the functor ⊗ : �op × �op → �op. The
universal property of left Kan extension gives this (nonsymmetric) monoidal product a
universal property as well.

1.3. Proposition. [Cis06, 8.4.23] Suppose C is a cocomplete category with a monoidal
structure that preserves colimits in each variable separately. For any monoidal functor
F : �→ C, the colimit-preserving extension F̃ : Set� → C is also monoidal.

We now consider monoidal model categories. Recall that for maps f1 : A1 → B1 and
f2 : A2 → B2 in a cocomplete monoidal category C, the pushout-product f1 � f2 is the
map

A1 ⊗B2

∐
A1⊗A2

B1 ⊗ A2 → B1 ⊗B2.

Write i for the map j0 q j1 : �0
∐

�0 → �1 in Set�. The pushout-product allows us to
define cubical sets ∂�n (for n ≥ 0) and un(k,ε) (for 1 ≤ k ≤ n and ε ∈ {0, 1}) as the sources
of the following pushout-product maps:

(i� · · ·� i) : ∂�n → �n (1)

(i� · · ·� jε � · · ·� i) : un(k,ε) → �n (2)

(We will use the convention that, when n = 0, the map ∂�0 → �0 of Equation (1) is the
map ∅ → �0 from the initial object.)

We will require the following result of Cisinski.

1.4. Theorem. [Cis06, 8.4.38], [Jar06, §7] There exists a combinatorial, left proper model
structure on Set� with generating cofibrations the maps of Equation (1) and generating
acyclic cofibrations the maps of Equation (2). There is a monoidal left Quillen equivalence
Set� → Set∆, given by the cubical realization functor which sends �n to (∆1)n.
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1.5. Corollary. Suppose C is a monoidal model category in the sense of [Hov99, §4].
Let F : �≤1 → C be a functor sending �0 to the unit, and let F̃ : Set� → C be an extension
to a monoidal left adjoint. Then F̃ is a left Quillen functor if and only if the unit of C is
cofibrant and the maps F (j0), F (j1) express F (�1) as a cylinder object for the unit of C.
In particular, such a monoidal left Quillen functor exists.

Proof. In order for F̃ to be a left Quillen functor, it must take the acyclic cofibrations j0

and j1 to acyclic cofibrations and the cofibration i to a cofibration; this happens precisely
when F (�1) is expressed as a cylinder object. It also must take the map ∅ → �0 to a
cofibration, so the unit must be cofibrant.

Conversely, suppose that F expresses F (�1) as a cylinder object, so that the map
F̃ (i) is a cofibration and that the maps F̃ (jε) are both acyclic cofibrations. Then the fact
that F̃ is monoidal and colimit-preserving implies that F̃ (f1 � · · · � fn) is the pushout-
product F̃ (f1)� · · ·� F̃ (fn) for n ≥ 1. This makes the map F̃ (i� · · ·� i) into an iterated
pushout-product of cofibrations, and makes the map F̃ (i � · · · � jε � · · · � i) into an
iterated pushout-product of several cofibrations and one acyclic cofibration. When n = 0,
the map F (∅)→ F (∂�0) is sent to the map from the initial object to the unit. As C is a
monoidal model category with cofibrant unit, F̃ then preserves the generating cofibrations
and generating acyclic cofibrations, and hence is a left Quillen functor.

2. Enriched categories

Suppose that S is a monoidal model category with unit I, that every object of S is
cofibrant, and that the collection of weak equivalences in S is stable under filtered colimits.
For such S, Lurie constructs a left proper combinatorial model structure on CatS in [Lur09,
A.3.2.4] which we will review now.

Following the notation of [Lur09, §A.3.2], we define the following four special examples
of enriched categories:

• Let ∅ be the trivial enriched category with no objects.

• Let [0]S be the category with a single object 0 and MapC(0, 0) = I.

• Let [1]A be the category with objects 0 and 1, such that Map[1]A
(0, 1) = A,

Map[1]A
(i, i) = I, and Map[1]A

(1, 0) = ∅. If A = I, we simply write [1]S for [1]I.

• Let [1]S̃ be the category with objects 0 and 1, such that Map[1]S̃
(i, j) = I for all i

and j.

The model structure on CatS is defined by the following requirements:

• An enriched functor F : C→ D is a weak equivalence if the map hC→ hD of homo-
topy categories, obtained by applying [I,−]hS to morphism objects, is an equivalence,
and if for all c, c′ ∈ C the map MapC(c, c′)→ MapD(Fc, Fc′) is an equivalence in S.



LOCALIZATION OF ENRICHED CATEGORIES AND CUBICAL SETS 1217

• The set {
[1]S → [1]S′ | S → S ′ a generating cofibration

}
∪
{
∅ → [0]S

}
is a set of generating cofibrations.

As a consequence, a monoidal left Quillen functor F : S → S′ between such categories
gives rise to a left Quillen functor CatS → CatS′ , which is a left Quillen equivalence if F
was [Lur09, A.3.2.6].

In the following, we will write Cat� for the category CatSet� of categories enriched in
cubical sets, and similarly Cat∆ for the category CatSet∆

of categories enriched in simplicial
sets.

2.1. Definition. Let C ∈ Cat� be a category enriched in cubical sets. Given morphisms
f, g : c → c′ in the underlying category C, classified by maps f, g : �0 → MapC(c, c′), a
homotopy from f to g identity is a morphism H : �1 → MapC(c, c′) such that H ◦ j0 = f
and H ◦ j1 = g.

Let H ∈ Cat� be universal among cubically enriched categories possessing morphisms
u : c→ c′ and v : c′ → c together with a homotopy from v · u to the identity idc. We refer
to H as the homotopy inverse category.

The category H is sometimes called the walking deformation retract. It can be de-
scribed as an iterated pushout diagram in Cat� as follows.

[1]∅

τ

��

// [1]�

u

��

[1]∂�1 //

vu
∐
id

��

[1]�1

H
��

[1]� v
// P P //H

(In the left-hand square, the functors [1]∅ → [1]� are the standard functor and the unique
“twist” functor τ that switches the objects.) The category P classifies a pair of morphisms
u and v in opposing directions, and the pushout defining H adjoins a homotopy from v ·u
to idc. These pushouts allow us to deduce the following properties.

2.2. Proposition. The functors ` : [1]� → H and r : [1]� → H, classifying the func-
tions u and v respectively, are cofibrations. A functor of enriched categories [1]� → C,
classifying a map f : c→ c′ in C, has an extension along ` if and only if f admits a left
homotopy inverse, and has an extension along r if and only if f admits a right homotopy
inverse.

2.3. Definition. We define the category E ∈ Cat� as the pushout in the diagram

[1]�
` //

r
��

H

��
H // E.



1218 TYLER LAWSON

The category E is sometimes called the walking homotopy equivalence. There is a
unique factorization [1]� → E → [1]�̃, which expresses that invertible maps have homo-
topy inverses.

2.4. Lemma. Suppose C ∈ Cat� is fibrant, and f : [1]� → C classifies a map which
becomes an isomorphism in the homotopy category hC. Then f extends to a map E→ C.

Proof. We need to show that f extends along the maps `, r : [1]� → H. First assume
that f has a left inverse g: we will show that it extends over `.

We note that since C is a fibrant Set�-enriched category, the objects MapC(c, c′) are
fibrant for all c and c′ (cf. the proof of [Lur09, A.3.2.24]). Therefore, because f : �0 →
MapC(c, c′) has a left inverse in the homotopy category, the left inverse has a representative
g in the form of a map g : �0 → MapC(c′, c). More, since the composite g · f becomes
equal to idc as maps �0 → MapC(c, c) in the homotopy category of S, these maps are
left homotopic. In particular, as �1 is a cylinder object for �0 in Set�, there exists an
extension in the following diagram:

∂�1 g·f
∐
idc //

��

MapC(c, c).

�1

H

66

The description of the map ` : [1]� → H by its universal property then produces precisely
the desired extension.

The extension over r is symmetric. (Note that it is the proof itself that is symmetric:
we cannot, for example, argue by taking the opposite category of H because cubically
enriched categories do not have a natural opposite category.)

We now consider what happens when the map f is inverted.

2.5. Definition. Suppose we have a map g in an S-enriched category C, represented by a
functor i : [1]S → C. The localization C〈g−1〉 is the pushout in the diagram of S-enriched
categories

[1]S
i //

��

C

j
��

[1]S̃
// C〈g−1〉.

We refer to j : C→ C〈g−1〉 as the localization functor.

2.6. Proposition. Let E〈f−1〉 be the localization of E obtained by inverting the map f .
Then in the diagram

E→ E〈f−1〉 → [1]�̃,

which is determined by the universal property of the localization, both maps are weak
equivalences in Cat�.
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Proof. Because there is a monoidal left Quillen equivalence L : Cat� → Cat∆, which
preserves pushouts and localizations, it suffices to show that these maps of cubically
enriched categories becomes equivalences of simplicially enriched categories.

The category L(E) is the universal simplicial category with a morphism f together with
a homotopy left inverse and a homotopy right inverse; moreover, the map [1]∆ → L(E)
classifying f is a cofibration (as the image of a cofibration under L).

We may then apply work of Dwyer and Kan [DK80, 10.4], which shows that the
localization map L(E) → L(E)〈f−1〉 that inverts f is a weak equivalence of simplicially
enriched categories.

We now need to show that the map L(E)〈f−1〉 → [1]∆̃ is an equivalence. This local-
ization is still an iterated pushout, but as its two objects are now isomorphic it may be
reinterpreted: it is the universal example of a simplicial category with two objects c and
c′, an isomorphism c→ c′, two maps g1, g2 : c→ c, and two homotopies H1 : g1 ' idc and
H2 : g2 ' idc. To show that this is equivalent to [1]∆̃, we must show that the mapping
spaces in L(E)〈f−1〉 are all weakly equivalent to ∆0.

The full subcategory E′ ⊂ L(E)〈f−1〉 spanned by the object c is equivalent to this one.
As it has one object, E′ is determined completely by the simplicial monoid Map(c, c),
which is the free simplicial monoid with two elements gi and paths from gi to the identity.
This monoid is the James construction J(∆1 ∨∆1) on the based simplicial set ∆1 ∨∆1,
and as such it is weakly equivalent to ∆0: its realization J([0, 1] ∨ [0, 1]) as a topological
space is contractible.

We note that for this result to hold, it is important that the construction of E not ask
for the left and right inverses of f to be the same map: in the final step we would instead
obtain J(S1) ' ΩS2 rather than a contractible space if we did so.

2.7. Corollary. The map [1]� → E is a cofibrant replacement for [1]� → [1]�̃ in Cat�.

3. The invertibility hypothesis

We now recall the precise statement of the invertibility hypothesis [Lur09, A.3.2.12].

3.1. Definition. Let S be a combinatorial monoidal model category. Assume that every
object of S is cofibrant and that the collection of weak equivalences in S is stable under
filtered colimits. We say that S satisfies the invertibility hypothesis when, for any isomor-
phism in the homotopy category hC classified by a cofibration f : [1]S → C, the localization
map j : C→ C〈f−1〉 is a weak equivalence.

We will now prove our main result.

Proof of Theorem 0.1. Let f : [1]S → C be a cofibration as in Definition 3.1. As
noted in [Lur09, A.3.2.13], it suffices to verify that this condition is satisfied in the case
where C is a fibrant S-enriched category: in particular, we may assume that the mapping
objects in C are fibrant.
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By Corollary 1.5, there exists a monoidal left Quillen functor L : Set� → S from the
category of cubical sets, sending �1 to a cylinder object for the monoidal unit. This
induces a left Quillen functor L : Cat� → CatS with right adjoint R. The right adjoint
preserves homotopy categories:

HomhC(c, c′) = HomhS([1]S,MapC(c, c′))

= HomhS(L[1]�,MapC(c, c′))
∼= HomhSet�([1]�, RMapC(c, c′))

= HomhRC(c, c′)

The map f becomes an isomorphism in the homotopy category of C, so Lemma 2.4
implies that the map [1]� → RC classifying f extends to a map E→ RC. The adjoint is
an extension [1]S → L(E)→ C.

Now factor L(E) → C into a cofibration L(E) → C′ followed by an acyclic fibration
C′ → C. The functor [1]S → L(E) → C′ is a composite of cofibrations, and the functor
[1]S → C is a cofibration by assumption. In any model category, pushouts of A → B
along cofibrations A→ X preserve weak equivalences in X (for example, by Ken Brown’s
lemma), and hence the functor C′〈f−1〉 → C〈f−1〉 induced by pushing out along [1]S → [1]S̃
is an equivalence. Thus, by replacing C with C′ we may assume without loss of generality
that L(E)→ C is a cofibration.

Consider the following diagram.

[1]S //

��

L(E) //

��

C

��
[1]S̃

// L(E〈f−1〉) // C〈f−1〉

The top right map is a cofibration. As L is a left Quillen functor, it preserves pushouts and
hence localizations; this means that both squares are pushout squares. Proposition 2.6
implies that the center vertical map is an equivalence. As the model structure on CatS is
left proper, the right-hand vertical map is also an equivalence.
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Clemens Berger, Université de Nice-Sophia Antipolis: cberger@math.unice.fr
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