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A URYSOHN TYPE LEMMA FOR GROUPOIDS

MĂDĂLINA ROXANA BUNECI

Abstract. Starting from the observation that through groupoids we can express in a
unified way the notions of fundamental system of entourages of a uniform structure on
a space X, respectively the system of neighborhoods of the unity of a topological group
that determines its topology, we introduce in this paper a notion of G-uniformity for a
groupoid G. The topology induced by a G-uniformity turns G into a topological locally
transitive groupoid.

We also prove a Urysohn type lemma for groupoids and obtain metrization theorems
for groupoids unifying in two ways the Alexandroff–Urysohn Theorem and Birkhoff-
Kakutani Theorem.

1. Introduction and preliminaries

The notion of groupoid is a natural generalization of the notion of group in the following
sense: a groupoid is a set G endowed with partially defined product operation (x, y) 7→
xy

[
: G(2) → G

]
(where G(2) ⊂ G × G) and an inversion operation x 7→ x−1 [: G→ G]

satisfying the subsequent weaker versions of the group axioms:

G1 If (x, y) ∈ G(2) and (y, z) ∈ G(2), then (xy, z) ∈ G(2), (x, yz) ∈ G(2) and (xy) z =
x (yz).

G2 (x−1)
−1

= x for all x ∈ G.

G3 For all x ∈ G, (x, x−1) ∈ G(2), and if (z, x) ∈ G(2), then (zx)x−1 = z.

G4 For all x ∈ G, (x−1, x) ∈ G(2), and if (x, y) ∈ G(2), then x−1 (xy) = y.

The maps r and d on G, defined by the formulae r (x) = xx−1 and d (x) = x−1x,
are called the range (target) map, respectively the domain (source) map. They have a
common image called the unit space of G and denoted G(0). The fibres of the range and
the domain maps are denoted Gu = r−1 ({u}) and Gv = d−1 ({v}), respectively. Also for
u, v ∈ G(0), Gu

v = Gu ∩Gv.
A topological groupoid is a groupoid G together with a topology on G such that

the product operation (x, y) 7→ xy
[
: G(2) → G

]
(where G(2) ⊂ G × G is endowed with

the topology induced by the product topology on G × G) and the inversion operation
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x 7→ x−1 [: G→ G] are continuous functions. A family {Wj}j∈J of neighborhoods of
the unit space is said to be compatible with the topology of the r-fibres (respectively,
d-fibres) if for every u ∈ G(0) and every open neighborhood U of u, there is j ∈ J such
that Wj ∩Gu ⊂ U ∩Gu and u is in the interior of Wj ∩Gu with respect to the topology
on Gu coming from G (respectively, Wj ∩Gu ⊂ U ∩Gu and u is in the interior of Wj ∩Gu

with respect to the topology on Gu coming from G).
Let us also recall that a uniform space is a set X endowed with a uniform structure. A

fundamental system of symmetric entourages of a uniform structure on X is a nonempty
familyW of subsets of the Cartesian product X ×X that satisfies the following conditions:

U1 if W is in W , then W contains the diagonal ∆ = {(x, x) : x ∈ X}.

U2 if W1 and W2 are in W , then there is W3 ∈ W such that W3 ⊂ W1 ∩W2.

U3 if W1 is in W , then there exists W2 in W such that, whenever (x, y) and (y, z) are in
W2, then (x, z) ∈ W1.

U4 if W ∈ W , then W = W−1 = {(y, x) : (x, y) ∈ W} (W is a symmetric entourage).

The uniform space X becomes a topological space by defining a subset A ⊂ X to be
open if and only if for every x ∈ A there is Wx ∈ W such that {y : (x, y) ∈ Wx} ⊂ A.

The Cartesian product X ×X can be viewed as a trivial groupoid G under the oper-
ations: (x, y) (y, z) = (x, z) and (x, y)−1. In the settings of groupoids condition U1 can
be written as ”G(0) ⊂ W ⊂ G for all W ∈ W” and condition U3 as ”for every W1 ∈ W
there is W2 ∈ W such that W2W2 ⊂ W1”.

In this paper we work with a collection of subsets of a groupoid G mimicking the
properties of fundamental system of symmetric entourages of a uniform structure on X.
Such a collection will be called in this paper G-uniformity. We prove that a G-uniformity
induces a topology on G that turns G into a topological locally transitive groupoid. Let
us recall that a topological locally transitive groupoid is a topological groupoid G with the
property that for all u ∈ G(0) the maps ru are open, where ru : Gu → G(0), ru (x) = r (x)
for all x ∈ Gu and Gu is endowed with the topology coming from G (see [12]). If we begin
with a topological groupoid (G, τ) and with a G-uniformity given by a fundamental system
of neighborhoods of the unit space, then the topology induced by de G-uniformity is finer
than τ and coincides with τ if and only if (G, τ) is locally transitive. The main result
of this paper is a Urysohn type lemma for groupoids (Theorem 2.5). The existence of a
function with properties 1− 3 in Theorem 2.5 could also be obtained taking into account
that a G-uniformity is a base for a uniform structure on G. However the topology defined
by the G-uniformity do not necessarily coincides with the groupoid topology, even if the
G-uniformity is given by a fundamental system of neighborhoods of the unit space. The
construction in Theorem 2.5 allows us to get a function with additional properties. In
particular, in the case of a topological groupoid with open range map and a G-uniformity
given by a fundamental system of neighborhoods of the unit space, our construction
allows us to put out a connection with the groupoid topology: the functions f associated
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in Theorem 2.5 with open subsets of G or with G(0) are upper semi-continuous on G and
their restrictions to the r-fibres as well as to the d-fibres of the groupoid are continuous
functions. Thus these functions can be used to construct convolutions algebras as in
[4] and possibly to extend the construction of a C∗-algebra associated to a topological
locally compact groupoid with continuous Haar system introduced in [11]. Moreover the
property 9 in Theorem 2.5 allows us to obtain metrization theorems for groupoids and
thus to express in an unified way Alexandroff–Urysohn Theorem and Birkhoff-Kakutani
Theorem as we explain below. Let us consider the following two theorems:

1.1. Theorem. [Alexandroff–Urysohn Theorem] A topological Hausdorff space X is me-
trizable if and only if its topology is given by a uniformity with countable base. [1]

1.2. Theorem. [Birkhoff-Kakutani Theorem] A topological group G is metrizable if and
only if there is a countable base for the topology at identity element in G. Furthermore,
in such a case, the distance function may be taken to be either left-invariant or right-
invariant. ([2], [6])

Let us remark that the space X, respectively the group G can be viewed as r -fibres
(as well as d-fibres) of a groupoid (X×X in the first case and G itself in the second case).
We prove in this paper that the previous two results can be express in an unified way in
the groupoid language:

1.3. Theorem. Let G be a topological groupoid. Then there are left (respectively, right)
invariant metrics compatible with the topology on r-fibres (respectively, the d-fibres) of the
groupoid if and only if there is a countable G-uniformity {Wn}n∈N compatible with the
topology of the r-fibres (respectively, d-fibres) such that

⋂
n∈N

Wn = G(0). (Proposition 3.14

and Proposition 3.15)

The proof of this theorem is based on the construction of a function on G satisfying
the hypothesis of [8, Theorem 3.26]. This function is obtained as a particular case of
Urysohn Lemma for groupoids (Theorem 2.5).

We also prove in this paper that:

1.4. Theorem. For a topological locally transitive groupoid G the following statements
are equivalent:

(a) G is metrizable

(b) For every neighborhood W of G(0) there is a neighborhood W ′ of G(0) such that W ′W ′ ⊂
W and G(0) has a countable fundamental system {Wn}n∈N of neighborhoods such that⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
.

(c) There is a countable G-uniformity {Wn}n∈N compatible with the topology of the fibres
such that

⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
. Each Wn may be taken

to be a neighborhood of the unit space.
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Moreover the distance function ρ may be taken to satisfy the following properties:

1. ρ (x, y) = ρ (x−1, y−1) for all x, y ∈ G.

2. ρ (x, r (x)) = ρ (x, d (x)) for all x ∈ G.

3. ρ (xy, r (x)) ≤ ρ (x, r (x)) + ρ (y, r (y)) for all (x, y) ∈ G(2).

4. ρ (x, y) ≤ ρ (x−1y, d (x)) for all x, y ∈ G such that r (x) = r (y).

5. ρ (d (x) , d (y)) ≤ 2ρ (x, y) and ρ (r (x) , r (y)) ≤ 2ρ (x, y) for all x,y ∈ G. (Theorem
3.16)

2. Urysohn’s lemma for groupoids

2.1. Definition. Let G be a groupoid. By a G-uniformity we mean a collection {W}W∈W
of subsets of G satisfying the following conditions:

1. G(0) ⊂ W ⊂ G for all W ∈ W.

2. If W1, W2 ∈ W, then there is W3 ⊂ W1 ∩W2 such that W3 ∈ W.

3. For every W1 ∈ W there is W2 ∈ W such that W2W2 ⊂ W1.

4. W = W−1for all W ∈ W.

2.2. Definition. Let G be a groupoid. Two G-uniformities W and W ′ are said to be
equivalent if for every W ∈ W there is W ′ ∈ W ′ such that W ′ ⊂ W and conversely, for
every W ′ ∈ W ′ there is W ∈ W such that W ⊂ W ′.

LetW be a family of subsets of a groupoid G satisfying conditions 1−4 from Definition
2.1 and let

I =

{
1

2n
, n ∈ N

}
Let W0 ∈ W and W1 ∈ W be such that W1W1 ⊂ W0. Inductively we can construct

an I-indexed family {Wi}i∈I . Suppose that for Wi ∈ W has already been built. Then
according condition 3 in Definition 2.1, there is a W ′

i ∈ W such that W ′
iW

′
i ⊂ Wi.

Let Wi/2 = W ′
i . Thus we obtain an I-indexed family {Wi}i∈I satisfying the following

properties:

1. Wi ∈ W for all i ∈ I.

2. WiWi ⊂ W2i for all i ∈ I, i ≤ 1
2
.

3. W1W1 ⊂ W0.
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Hence Wi ⊂ WiWi ⊂ W2i for all i ∈ I, i ≤ 1
2

and
...W1/2n ⊂ W1/2nW1/2n ⊂ W1/2n−1 ⊂ W1/2n−1W1/2n−1 ⊂ ...W1/2 ⊂ W1/2W1/2 ⊂ W1

Let us note that:

1. If i, j ∈ I, then i < j iff there is p ∈ N∗ such that j = 2pi.

2. If i, j ∈ I and i < j, then 2i ≤ j.

3. If i, j ∈ I and i ≤ j, then Wi ⊂ Wj.

4. If i1, i2, ..., ik ∈ I and ik ≤ ik−1 < ik−2 < ... < i1 < 1, then WikWik−1
...Wi1 ⊂ W2i1

and Wi1 ...Wik−1
Wik ⊂ W2i1 . Indeed,

WikWik−1
Wik−2

...Wi1 ⊂ Wik−1
Wik−1

Wik−2
...Wi1

⊂ W2ik−1
Wik−2

...Wi1

⊂ Wik−2
Wik−2

...Wi1

⊂ ... ⊂ W2i1

Similarly, Wi1 ...Wik−1
Wik ⊂ Wi1 ...Wik−1

Wik−1
⊂ Wi1 ...Wik−2

W2ik−1
⊂ ...W2i1 .

5. If i1, i2, ..., ik, j1, j2, ..., jm ∈ I, ik < ik−1 < ... < i1 ≤ 1, jm < jm−1 < ... < j1 ≤ 1
and ik + ik−1 + ...+ i1 ≤ jm + jm−1 + ...+ j1, then

WikWik−1
...Wi1 ⊂ WjmWjm−1 ...Wj1 .

Indeed, let us remark that ik+ ik−1 + ...+ i1 = 1
2nk

+ 1
2nk−1 + ...+ 1

2n1
is the conversion

into decimal system of the following number in base 2: b0, b1b2...bnk
where bi = 1 if

i ∈ {n1, n2, ..., nk} and bi = 0 otherwise. Thus if ik+ik−1+...+i1 = jm+jm−1+...+j1,
then m = k and ik = jk, ..., i1 = j1. If ik + ik−1 + ...+ i1 < jm + jm−1 + ...+ j1, then
there is p ∈ N∗ such that i1 = j1, ..., ip−1 = jp−1 and ip < jp. Hence

WikWik−1
...WipWip−1 ... Wi1 ⊂ W2ipWip−1 ... Wi1

⊂ WjpWip−1 ... Wi1

= WjpWjp−1 ... Wj1

⊂ WjmWjm−1 ...Wj1 .

2.3. Lemma. Let G be a groupoid, W be a G-uniformity (in the sense of Definition 2.1)
and let

I =

{
1

2n
, n ∈ N

}
.

Let us consider an I-indexed family {Wi}i∈I satisfying the following properties:

1. Wi ∈ W for all i ∈ I.
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2. WiWi ⊂ W2i for all i ∈ I, i ≤ 1
2
.

For Wik , Wik−1
, ..., Wi1 ∈ {Wi}i∈I , let us denote

s
(
WikWik−1

...Wi1

)
= ik + ik−1 + ...+ i1.

Let n ∈ N∗, and i1, i2, ..., ik ∈ I be such that ik < ik−1 < ik−2 < ... < i1 < 1. Then there
are j1, j2, ..., jr ∈ I such that

1. jr < jr−1 < ir−2 < ... < j1 ≤ max
{

1
2n−1 , 2i1

}
≤ 1

2. W1/2nWikWik−1
...Wi1 ⊂ WjrWjr−1 ...Wj1

3. 0 < s
(
WjrWjr−1 ...Wj1

)
− s

(
WikWik−1

...Wi1

)
≤ 1

2n−1

Moreover j1 < s
(
WikWik−1

...Wi1

)
+ 1

2n−1 and if jr 6= 1
2n

, then jr ≥ 1
2n−1 . Also if

1
2n
≤ ik, then s

(
WjrWjr−1 ...Wj1

)
− s

(
WikWik−1

...Wi1

)
≤ 1

2n
.

Proof. Case 1: 1
2n

< ik. Obviously, 1
2n

< ik < ik−1 < ik−2 < ... < i1 < 1 and
s
(
W1/2nWikWik−1

...Wi1

)
= s

(
WikWik−1

...Wi1

)
+ 1

2n
.

Case 2: There is m ∈ {2, 3, ..., k} such that im = 1
2n
< im−1

2
. Then

W1/2nWikWik−1
...WimWim−1 ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1 .

and we have
s
(
W1/2nW2imWim−1 ...Wi1

)
=

= s
(
Wik ...WimWim−1 ...Wi1

)
− (ik + ...+ im) + 2im +

1

2n

≤ s
(
Wik ...WimWim−1 ...Wi1

)
+ im +

1

2n

= s
(
Wik ...WimWim−1 ...Wi1

)
+

2

2n
.

Moreover ik + ... + im ≤
(

1
2k−m + 1

2k−m + ...1
2

+ 1
)
im < 2im < 2im + 1

2n
. Consequently,

s
(
W1/2nW2imWim−1 ...Wi1

)
> s

(
Wik ...WimWim−1 ...Wi1

)
.

Case 3: There is m ∈ {2, 3, ..., k} such that im = 1
2n

= im−1

2
and there is q ∈

{2, 3, ...,m− 1} such that 4iq ≤ iq−1. Let p be the greatest element of the set

{q : 2 ≤ q ≤ m− 1, 4iq ≤ iq−1} .

Then W1/2nWik ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1 ⊂ W1/2nW2ipWip−1 ...Wi1 . Moreover

s
(
W2ipWip−1 ...Wi1

)
= s

(
Wim−1 ...WipWip−1 ...Wi1

)
− (im−1 + ..+ ip) + 2ip
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= s
(
Wim−1 ...WipWip−1 ...Wi1

)
− (im−1 + 2im−1 + ...+ 2m−p−1im−1) + 2m−pim−1

= s
(
Wim−1 ...WipWip−1 ...Wi1

)
− im−1

(
2m−p − 1

)
+ im−12

m−p

= s
(
Wik ...WipWip−1 ...Wi1

)
− (ik + ...+ im) + im−1,

and since 1
2n−1 = im−1, it follows that

s
(
W1/2nW2ipWip−1 ...Wi1

)
= s

(
W2ipWip−1 ...Wi1

)
+

1

2n

= s
(
WikWik−1

...Wi1

)
− (ik + ...+ im) + im−1 +

1

2n

= s
(
WikWik−1

...Wi1

)
− (ik + ...+ im+1)−

1

2n
+

1

2n−1
+

1

2n

= s
(
WikWik−1

...Wi1

)
− (ik + ...+ im+1) +

1

2n−1
.

On the other hand, ik + ... + im ≤
(

1
2k−m+1 + 1

2k−m + ...1
2

)
im−1 < im−1 and therefore

s
(
W1/2nW2ipWip−1 ...Wi1

)
> s

(
WikWik−1

...Wi1

)
.

Case 4: There is m ∈ {2, 3, ..., k} such that im = 1
2n

= im−1

2
= im−2

22
= ... = i1

2m−1 . Then
W1/2nWik ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1 ⊂ W1/2nW2i1 and

s
(
W1/2nW2i1

)
= s (Wim ...Wi1)− (im + ..+ i1) + 2i1 +

1

2n

= s (Wim ...Wi1)− (im + 2im + ...+ 2m−1im) + 2mim +
1

2n

= s (Wim ...Wi1)− im (2m − 1) + im2m +
1

2n

= s
(
Wik ...Wim+1Wim ...Wi1

)
− (ik + ...+ im−1) + im +

1

2n

< s
(
WikWik−1

...Wi1

)
+

1

2n−1
.

Also s
(
W1/2nW2i1

)
= 1

2n
+ 2i1 > 2i1 > s

(
WikWik−1

...Wi1

)
and

j1 = 2i1 < s
(
WikWik−1

...Wi1

)
+

1

2n−1
.

Case 5: There is m ∈ {2, 3, ..., k} such that im < 1
2n
< im−1

2
. Then

W1/2nWikWik−1
...WimWim−1 ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1

⊂ W1/2nW1/2nWim−1 ...Wi1

⊂ W1/2n−1Wim−1 ...Wi1 .

and

s
(
W1/2n−1Wim−1 ...Wi1

)
= s

(
Wik ...WimWim−1 ...Wi1

)
− (ik + ...+ im) +

1

2n−1

< s
(
WikWik−1

...Wi1

)
+

1

2n−1
.
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Moreover ik + ... + im ≤
(

1
2k−m + 1

2k−m + ...1
2

+ 1
)
im < 2im ≤ 1

2n
< 1

2n−1 . Consequently,
s
(
W1/2n−1Wim−1 ...Wi1

)
> s

(
Wik ...WimWim−1 ...Wi1

)
.

Case 6: There is m ∈ {2, 3, ..., k} such that im < 1
2n

= im−1

2
and there is q ∈

{2, 3, ...,m− 1} such that 4iq ≤ iq−1. If p is the greatest element of the set

{q : 2 ≤ q ≤ m− 1, 4iq ≤ iq−1} ,

then

W1/2nWikWik−1
...WimWim−1 ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1

⊂ W1/2nW1/2nWim−1 ...Wi1

⊂ W1/2n−1Wim−1 ...Wi1

⊂ W2ipWip−1 ...Wi1 .

Moreover

s
(
W2ipWip−1 ...Wi1

)
= s

(
Wim−1 ...WipWip−1 ...Wi1

)
− (im−1 + ..+ ip) + 2ip

= s
(
Wim−1 ...WipWip−1 ...Wi1

)
− (im−1 + 2im−1 + ...+ 2m−p−1im−1) + 2m−pim−1

= s
(
Wim−1 ...WipWip−1 ...Wi1

)
− im−1

(
2m−p − 1

)
+ im−12

m−p

= s
(
Wik ...WimWim−1 ...Wi1

)
− (ik + ...+ im) + im−1

= s
(
WikWik−1

...Wi1

)
− (ik + ...+ im) +

1

2n−1
.

Hence

s
(
W2ipWip−1 ...Wi1

)
< s

(
WikWik−1

...Wi1

)
+

1

2n−1
.

Since we have ik + ... + im ≤
(

1
2k−m+1 + 1

2k−m + ...1
2

)
im−1 < im−1, it follows that im−1 −

(ik + ... + im) > 0. Thus s
(
W2ipWip−1 ...Wi1

)
> s

(
Wik ...WimWim−1 ...Wi1

)
. We also have

yr = 2ip ≥ 1
2n−1 .

Case 7: There is m ∈ {2, 3, ..., k} such that im < 1
2n

= im−1

2
= im−2

22
= ... = i1

2m−1 . Then
W1/2nWik ...Wi1 ⊂ W1/2nW2imWim−1 ...Wi1 ⊂ W1/2n−1Wim−1 ...Wi1W1/2nW2i1 ⊂ ...W2i1 and

s (W2i1) = s
(
Wim−1 ...Wi1

)
− (im−1 + ..+ i1) + 2i1

= s
(
Wim−1 ...Wi1

)
− (im−1 + 2im−1 + ...+ 2m−2im−1) + 2m−1im−1

= s
(
Wim−1 ...Wi1

)
− im−1

(
2m−1 − 1

)
+ im−12

m−1 +
1

2n

= s
(
Wik ...WimWim−1 ...Wi1

)
− (ik + ...+ im) + im−1

< s
(
WikWik−1

...Wi1

)
+

1

2n−1
.
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Also s (W2i1) = 2i1 >
(

1
2k−1 + ...+ 1

2
+ 1
)
i1 ≥ ik + ik−1 + ...i1 ≥ s

(
WikWik−1

...Wi1

)
.

Moreover j1 = 2i1 = s (W2i1) < s
(
WikWik−1

...Wi1

)
+ 1

2n−1 .
Case 8: 1

2n
= i1. We have

W1/2nWikWik−1
...Wi1 ⊂ W1/2nW2i1 ,

s
(
W1/2nW2i1

)
=

1

2n
+ 2i1 ≤ s

(
WikWik−1

...Wi1

)
+

1

2n
+ i1

= s
(
WikWik−1

...Wi1

)
+

1

2n−1
.

and 1
2n

+ 2i1 > 2i1 >
(

1
2k−1 + ...+ 1

2
+ 1
)
i1 ≥ ik + ik−1 + ...i1 = s

(
WikWik−1

...Wi1

)
. We

also have j1 = 2i1 < s
(
W1/2nW2i1

)
≤ s

(
WikWik−1

...Wi1

)
+ 1

2n−1 .
Case 9: 1

2n
> i1. We have

W1/2nWikWik−1
...Wi1 ⊂ W1/2nW2i1 ⊂ W1/2nW1/2n ⊂ W1/2n−1 ,

s
(
W1/2n−1

)
=

1

2n−1
< s

(
WikWik−1

...Wi1

)
+

1

2n−1

and 1
2n−1 > 2i1 >

(
1

2k−1 + ...+ 1
2

+ 1
)
i1 ≥ ik + ik−1 + ...i1 = s

(
WikWik−1

...Wi1

)
. Moreover

j1 = 1
2n−1 < s

(
WikWik−1

...Wi1

)
+ 1

2n−1 .
Let us also remark that if 1

2n
= ik , then W1/2nWikWik−1

...Wi1 ⊂ W2imWim−1 ...Wi1 ,
where m is the greatest element of the set {q : 2 ≤ q ≤ k, 4iq ≤ iq−1} if the set is not
empty or m = 1, otherwise. We have

s
(
W2imWim−1 ...Wi1

)
= s

(
Wik ...WimWim−1 ...Wi1

)
− (ik + ...+ im) + 2im

= s
(
WikWik−1

...Wi1

)
−
(
1 + 2 + ...+ 2k−m

) 1

2n
+

2k−m+1

2n

= s
(
WikWik−1

...Wi1

)
+

1

2n
.

Moreover ik + ...+ im ≤
(

1
2k−m + 1

2k−m + ...1
2

+ 1
)
im < 2im. Consequently,

s
(
W2imWim−1 ...Wi1

)
> s

(
Wik ...WimWim−1 ...Wi1

)
.

2.4. Remark. In the preceding lemma since W1/2nWikWik−1
...Wi1 ⊂ WjrWjr−1 ...Wj1

, it

follows that
(
W1/2nWikWik−1

...Wi1

)−1 ⊂ (WjrWjr−1 ...Wj1

)−1
and consequently,

Wi1Wi2 ...WikW1/2n ⊂ Wj1Wj2 ...Wjr .
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2.5. Theorem. Let G be a groupoid,W be a G-uniformity (in the sense of Definition 2.1)
and let W ∈ W. Let us consider an I =

{
1
2n
, n ∈ N

}
-indexed subfamily WI = {Wi}i∈I of

W as in Lemma 2.3 such that W1 ⊂ W . Then for every subset A of G there is a function
f = fA,WI

: G→ [0, 1] satisfying the following conditions:

1. If n ∈ N, n ≥ 2, x ∈ G and y ∈ W1/2nxW1/2n, then |f (x)− f (y)| < 1
2n−2 .

2. f (x) = 0 for all x ∈ A.

3. f (x) = 1 for all x /∈ WAW .

4. If A = A−1, then f (x) = f (x−1) for all x ∈ G.

5. If G is endowed with a topology such that WikWik−1
...Wi1A Wi1 ...Wik−1

Wik is open
for all i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1 < 1, then f is upper semi-continuous.

6. For all n ∈ N, n ≥ 2, we have

W1/2n+1AW1/2n+1 ⊂
{
x : f (x) <

1

2n

}
⊂ W1/2n−1AW1/2n−1.

In particular, if A = G(0), then

W1/2n+1W1/2n+1 ⊂
{
x : f (x) <

1

2n

}
⊂ W1/2n−1W1/2n−1 ⊂ W1/2n−2

for all n ∈ N, n ≥ 2.

7. If A = G(0), then f (xy) ≤ 3f (x) + f (y) for all (x, y) ∈ G(2).

8. If A = G(0), then f (xy) ≤ 2 (f (x) + f (y)) for all (x, y) ∈ G(2).

9. If A = G(0), then f (x1x2...xn) ≤ 3 (f (x1) + f (x2) + ...+ f (xn)) for all n ∈ N and
x1, x2, ..., xn ∈ G such that d (xi) = r (xi+1) for all i ∈ {1, 2, ..., n− 1}.

10. If A = G(0) and for every x ∈ G \ G(0) there is ix ∈ I such that x /∈ Wix (or
equivalently,

⋂
n

W1/2n = G(0)), then f−1 ({0}) = G(0).

Proof. For each x ∈ G, let us define

i (x) = inf

{
ik + ik−1 + ...+ i1 : i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1,

x ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik

}
(with convention inf ∅ =∞) and

f (x) = min {i (x) , 1} .
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1. Let x ∈ G and y ∈ W1/2nxW1/2n . If i (x) ≥ 1 and i (y) ≥ 1, then f (x) = f (y) = 1.
Let us suppose that i (x) < 1 or i (y) < 1.

Case 1: i (x) < 1. Then there are i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1 < 1
such that x ∈ WikWik−1

...Wi1A Wi1 ...Wik−1
Wik and ik + ik−1 + ... + i1 < i (x) + 1

2n
. By

Lemma 2.3, there are j1, j2, ..., jr ∈ I, jr < jr−1 < ir−2 < ... < j1 ≤ 1 such that
W1/2nWikWik−1

...Wi1 ⊂ WjrWjr−1 ...Wj1
and

0 < (jr + ...+ j1)− (ik + ik−1 + ...+ i1) <
3

2n

Hence

ik + ik−1 + ...+ i1 ≤ jr + ...+ j1 < i (x) +
1

2n−2

and since

y ∈ W1/2nxW1/2n ⊂
⊂ W1/2nWikWik−1

...Wi1AWi1 ...Wik−1
WikW1/2n

⊂ WjrWjr−1 ...Wj1
AWj1Wj2 ...Wjr

it follows that i (y) < i (x) + 1
2n−2 . If i (y) < 1, then since y ∈ W1/2nxW1/2n is equivalently

to x ∈ W1/2nyW1/2n it follows that i (x) < i (y) + 1
2n−2 . Therefore |f (x)− f (y)| =

|i (x)− i (y)| < 1
2n−2 . If i (y) ≥ 1, then |f (x)− f (y)| = |i (x)− 1| = 1 − i (x) ≤ i (y) −

i (x) < 1
2n−2 .

Case 2: i (y) < 1. Since y ∈ W1/2nxW1/2n is equivalently to x ∈ W1/2nyW1/2n , the case
i (y) < 1 can be treated similarly as the case i (x) < 1.

2. Let us prove that f (x) = 0 for all x ∈ A. Since A ⊂ W1/2nAW1/2n for all n, it
follows that i (x) = 0, and consequently, f (x) = 0 for all x ∈ A.

3. Let us prove that f (x) = 1 for all x /∈ WAW . Let x /∈ WAW . By contradiction, let
us suppose f (x) < 1. We necessarily have i (x) < 1, and hence there are i1, i2, ..., ik ∈ I,
ik < ik−1 < ... < i1 < 1 such that

x ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik ⊂ W2i1AW2i1

⊂ W1AW1 ⊂ WAW

This is in contradiction to the hypothesis x /∈ WAW .
4. Since A = A−1, it follows that(

WikWik−1
...Wi1A Wi1 ...Wik−1

Wik

)−1
= WikWik−1

...Wi1A Wi1 ...Wik−1
Wik .

Thus x ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik if and only if

x−1 ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik .

Therefore f (x) = f (x−1) for all x ∈ G.
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5. Let α ∈ R and let us consider the set

Uα = {x ∈ G : f (x) < α} .

If α > 1, then Uα = G, hence Uα is an open set. Let us consider α ≤ 1 and let
x ∈ Uα. Then f (x) < 1. Thus i (x) < 1, and hence there are i1, i2, ..., ik ∈ I,
ik < ik−1 < ... < i1 < 1 such that

x ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik

ik + ik−1 + ...+ i1 < α.

For all y ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik we have i (y) < α . Consequently,

x ∈ WikWik−1
...Wi1A Wi1 ...Wik−1

Wik ⊂ Uα.

Therefore Uα is open.
6. If x ∈ W1/2n+1AW1/2n+1 , then i (x) ≤ 1

2n+1 . Thus f (x) ≤ 1
2n+1 <

1
2n

. If f (x) < 1
2n
<

1, then i (x) < 1
2n

and there are i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1 < 1 such that
x ∈ WikWik−1

...Wi1A Wi1 ...Wik−1
Wik and ik + ik−1 + ... + i1 < i (x) + 1

2n
< 1

2n−1 . Hence
i1 <

1
2n−1 and therefore x ∈ W2i1AW2i1 ⊂ W1/2n−1AW1/2n−1 .

7. Let (x, y) ∈ G(2). If 3f (x) + f (y) ≥ 1, then obviously, f (xy) ≤ 3f (x) + f (y).
Let us suppose that 3f (x) + f (y) < 1 or equivalently, 3i (x) + i (y) < 1 (consequently,
i (x) < 1

3
and i (y) < 1). Let ε > 0 such that ε < 1 − 3i (x) − i (y). Then there are

i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1 ≤ 1
4

such that x ∈ WikWik−1
...Wi1Wi1 ...Wik−1

Wik ,
ik + ik−1 + ... + i1 < i (x) + ε

3
and there are j1, j2, ..., jm ∈ I, jm < jm−1 < ... < j1 ≤ 1

2

such that y ∈ WjmWjm−1 ...Wj1Wj1 ...Wjm−1Wjm , jm + jm−1 + ... + j1 < i (y) + ε
3
. By

Lemma 2.3, there are q11, q12, ..., q1r1 ∈ I, q1r1 < q1r1−1 < q1r1−2 < ... < q11 ≤ 1 such that
WikWjmWim−1 ...Wj1 ⊂ Wq1r1

Wq1r1−1
...Wq1

1
,

0 <
(
q1r1 + ...+ q11

)
− (jm + jm−1 + ...+ j1) ≤ 2ik.

and q11 ≤ jm+jm−1+ ...+j1+2ik < i (y)+ ε
3
+2i (x)+ 2ε

3
< 1. Repeatedly applying Lemma

2.3, for p = 2, 3, ..., k there are qp1, qp2, ..., qprp ∈ I, qprp < qprp−1 < qprp−2 < ... < qp1 ≤ 1 such
that Wik−p+1

Wqp=1
rp=1

Wqp−1
rp−1−1

...Wqp−1
1
⊂ Wqprp

Wqprp−1
...Wqp1

,

0 ≤
(
qprp + ...+ qp1

)
−
(
qp−1rp−1

+ ...+ qp−11

)
≤ 2ik−p+1.

and

qp−11 < qp−1rp−1
+ ...+ qp−11 + 2ik−p+1

< qp−2rp−2
+ ...+ qp−21 + 2ik−p + 2ik−p+1

........

< jm + jm−1 + ...+ j1 + 2ik + ...+ 2ik−p + 2ik−p+1

< i (y) +
ε

3
+ 2i (x) +

2ε

3
< 1.
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Applying again Lemma 2.3, there are qk+1
1 , qk+1

2 , ..., qk+1
rk+1
∈ I, qk+1

rk+1
< qk+1

rk+1−1 < qk+1
rk+1−2 <

... < qk+1
1 ≤ 1 such that Wi1Wqkrk

Wqkrk−1
...Wqk

1
⊂ Wqk+1

rk+1
Wqk+1

rk+1−1
...Wqk+1

1
and

0 <
(
qk+1
rk+1

+ ...+ qk+1
1

)
−
(
qkrk + ...+ qk1

)
< i1

Moreover qk+1
rk+1
≥ i1. Hence Wi1Wi1Wi2 ...WikWjmWim−1 ...Wj1 ⊂ Wqk+1

rk+1
Wqk+1

rk+1−1
...Wqk+1

1

and

0 <
(
qk+1
rk+1

+ ...+ qk+1
1

)
− (jm + jm−1 + ...+ j1)

< 2 (ik + ik−1 + ...+ i1) + i1.

Thus Wik ...Wi2Wi1Wi1Wi2 ...WikWjmWim−1 ...Wj1 ⊂ Wik ...Wi2Wqk+1
rk+1

Wqk+1
rk+1−1

...Wqk+1
1

. Con-

sequently,

xy ∈ Wik ...Wi2Wi1Wi1Wi2 ...WikWjmWjm−1 ...Wj1Wj1 ...Wjm

⊂ Wik ...Wi2Wqk+1
rk+1

Wqk+1
rk+1−1

...Wqk+1
1
Wqk+1

1
...Wqk+1

rk+1
Wi2 ...Wik

and ik < ik−1 < ... < i2 < qk+1
rk+1

< qk+1
rk+1−1 < qk+1

rk+1−2 < ... < qk+1
1 ≤ 1. Hence

i (xy) ≤ ik + ik−1 + ...+ i2 +
(
qk+1
rk+1

+ ...+ qk+1
1

)
< ik + ik−1 + ...+ i2 + 2 (ik + ik−1 + ...+ i1) + i1 + (jm + jm−1 + ...+ j1)

≤ 3 (ik + ik−1 + ...+ i1) + (jm + jm−1 + ...+ j1)

< 3i (x) + i (y) +
4

3
ε

for all ε > 0. Therefore i (xy) ≤ 3i (x) + i (y) for all (x, y) ∈ G(2). Thus f (xy) ≤
3f (x) + f (y) for all (x, y) ∈ G(2).

8. Let (x, y) ∈ G(2). We proved in 7 that

f (xy) ≤ 3f (x) + f (y) .

On the other hand we have f (x−1) = f (x), f (y−1) = f (y) and

f (xy) = f
(
y−1x−1

)
≤
7

3f
(
y−1
)

+ f
(
x−1
)

= 3f (y) + f (x) .

Adding the last inequalities we obtain

2f (xy) ≤ 3 (f (x) + f (y)) + f (x) + f (y) = 4 (f (x) + f (y)) .
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9. We prove the inequality by mathematical induction. For n = 2 is true, since by 7 we
have f (x1x2) ≤ 3f (x1) + f (x2) ≤ 3f (x1) + 3f (x2). Let us suppose that the inequality
is true for some n and let us prove that it is true for n+ 1. Using 7 we obtain

f (x1x2...xnxn+1) ≤
7

3f (x1) + f (x2...xnxn+1)

≤ 3f (x1) + 3 (f (x2) + f (x3) + ...+ f (xn)) .

10. If x ∈ G(0) then by 2, f (x) = 0. Conversely, if f (x) = 0, then for all n, we have
i (x) < 1

2n
. Thus there are i1, i2, ..., ik ∈ I, ik < ik−1 < ... < i1 ≤ 1

2n
such that x ∈

WikWik−1
...Wi1Wi1 ...Wik−1

Wik and ik + ik−1 + ...+ i1 <
1
2n

. Since WikWik−1
...Wi1 ⊂ W2i1 ,

it follows that x ∈ W4i1 ⊂ W1/2n−2 for all n ≥ 2. Thus x ∈
⋂
n

W1/2n = G(0).

2.6. Proposition. Let G be a groupoid, W be a G-uniformity and f : G → [0, 1] be a
function satisfying conditions 2, 4, 9 and 10 in Theorem 2.5 (f associated to A = G(0)).
Then there is a function freg : G→ [0, 1] satisfying the following conditions:

1. 1
3
f ≤ freg ≤ f .

2. freg(x) = freg(x
−1) for all x ∈ G.

3. freg (xy) ≤ freg (x) + freg (y) for all (x, y) ∈ G(2).

4. |freg (sxt)− freg (x)| ≤ freg (s) + freg (t) for all s, t, x ∈ G with x ∈ Gd(s)
r(t) .

5. W1/2n+1 ⊂ W1/2n+1W1/2n+1 ⊂
{
x : freg (x) < 1

2n

}
⊂ W1/2n=3W1/2n−3 ⊂ W1/2n−4 for all

n ∈ N, n ≥ 2.

Proof. In the spirit of [8, Theorem 3.26] let us define freg : G→ [0, 1] by

freg (x) = inf

{
n∑
i=1

f (xi) : x1x2...xn = x

}
for all x ∈ G.

Then freg obviously satisfies conditions 1− 3.

4. Let s, t, x ∈ G such that x ∈ Gd(s)
r(t) . Then freg (sxt) ≤ freg (s) + freg (x) + freg (t)

and consequently, freg (sxt) − freg (x) ≤ freg (s) + freg (t). On the other hand freg (x) =
freg (s−1sxtt−1) ≤ freg (s−1) + freg (sxt) + freg (t−1) = freg (s) + freg (sxt) + freg (t) and
therefore freg (x)− freg (sxt) ≤ freg (s) + freg (t).

5. Let x ∈ W1/2n+1W1/2n+1 . Then freg (x) ≤ f (x) < 1
2n

. Conversely, let x be such that
freg (x) < 1

2n
. Then 1

4
f (x) ≤ 1

3
f (x) ≤ freg (x) < 1

2n
. Hence f (x) < 1

2n−2 and therefore
x ∈ W1/2n−3W1/2n−3 .
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3. A groupoid generalization of Alexandroff–Urysohn Theorem

As we remark in [5, p. 57], if G is a topological groupoid whose unit space is a T1-space
(the points are closed in G(0)), then the topologies of the r-fibres, as well as the topologies
of the d-fibres, are determined by a fundamental system of neighborhoods {W}W∈W of
G(0). More precisely, for each u ∈ G0 and each x ∈ Gu (respectively, x ∈ Gu), {xW}W∈W
(respectively, {Wx}W∈W ) is a local basis for x with respect to the topology induced by
G on Gu (respectively, Gu). We also prove in [5, p. 59] that if W satisfies the conditions
imposed to a G-uniformity, then there is a topology denoted τ rW (respectively, τ dW) on G
such that for all x ∈ G, Vr (x) (respectively, Vd (x)) is a neighborhood basis for x, where

Vr (x) = {V ⊂ G : there is W ∈ W such that xW ⊂ V } .

respectively,

Vd (x) = {V ⊂ G : there is W ∈ W such that Wx ⊂ V } .

Unlike the case of a group, a groupoid G (that isn’t a group) is generally not a
topological groupoid with respect to τ rW or τ dW . That is why we define a new topology
associated to a G-uniformity.

3.1. Definition. Let G be a groupoid endowed with a G-uniformity W. The topology
τW induced by the G-uniformity W is the topology on G defined in the following way: A ∈
τW if and only if for every x ∈ A there is Wx ∈ W such that WxxWx ⊂ A.

For each x ∈ G let us write

V (x) = {V ⊂ G : there is W ∈ W such that WxW ⊂ V } .

In order to see that τW is indeed a topology it is enough to prove that for all V ∈ V (x),
there is U ∈ V (x) such that V ∈ V (y) for all y ∈ U . Since V ∈ V (x), it follows that
there is Wx ∈ W such that WxxWx ⊂ V . Let W ′

x ∈ W such that W ′
xW

′
x ⊂ Wx. If we

take U = W ′
xxW

′
x, then for all y ∈ U there is s ∈ W ′

x ∩ Gd(x) and t ∈ W ′
x ∩ Gr(x)) such

that y = txs and

W ′
xyW

′
x = W ′

xtxsW
′
x ⊂ W ′

xW
′
xxW

′
xW

′
x ⊂ WxxWx.

Alternatively, we can note that τW is the topology on G induced by the following uniform
structure UW associated with the G-uniformityW : U ∈ UW if and only if there is W ∈ W
such that {x} ×WxW ⊂ U for all x ∈ G.

Let us remark that for two equivalent G-uniformities W and W ′ in the sense of Defi-
nition 2.2 we have τW = τW ′ .

In [5] we introduced the notions of left uniform continuity on fibres and right uniform
continuity on fibres reformulating the definition of left and right uniform continuity
[3, Definition 3.1/p. 39] in the setting of a groupoid endowed with a family of subsets
satisfying the conditions imposed to a G-uniformity. Let us define a new notion of uniform
continuity with respect to a G-uniformity.
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3.2. Definition. Let G be a groupoid endowed with a G-uniformity W, A ⊂ G and E
be a Banach space. The function h : A→ E is said to be uniformly continuous on fibres
(with respect to W) if and only if for each ε > 0 there is Wε ∈ W such that:

‖h (x)− h (sxt)‖ < ε for all s, t ∈ Wε and x ∈ A ∩Gd(s)
r(t) such that sxt ∈ A.

3.3. Remark. The function f defined in Theorem 2.5 as well as the function freg in
Proposition 2.6 are uniformly continuous on fibres with respect to the corresponding G-
uniformity.

We will prove (Proposition 3.8) that if there is an appropriate connection between the
G-uniformity and the topology of G, then the restrictions of a uniformly continuous on
fibres function to r-fibres as well as to d-fibres are continuous functions.

3.4. Definition. Let G be a groupoid endowed with a topology τ . Let {Wj}j∈J be a

collection of subsets of G such that for all j ∈ J , G(0) ⊂ Wj and Wj = W−1
j . The

collection {Wj}j∈J is said to be compatible with the topology of the r-fibres (respectively,

d-fibres) if for every u ∈ G(0) and every open neighborhood U of u, there is j ∈ J such
that Wj ∩ Gu ⊂ U ∩ Gu and u is in the interior of Wj ∩ Gu with respect to the topology
on Gu coming from (G, τ) (respectively, Wj ∩ Gu ⊂ U ∩ Gu and u is in the interior of
Wj ∩Gu with respect to the topology on Gu coming from (G, τ)).

The collection {Wj}j∈J is said to be compatible with the topology of the fibres if it is
compatible with the topology of the r-fibres and d-fibres.

3.5. Remark. If G is groupoid endowed with a topology τ such that the inverse map is
continuous, then a collection {Wj}j∈J is compatible with the topology of the r-fibres if
and only if it is compatible with the topology of the d-fibres.

If G is a topological groupoid and G(0) is a T1-space (the points are closed in G(0)),
then any fundamental system of symmetric neighborhoods of G(0) is compatible with the
topology of the fibres. Indeed, let u ∈ G(0). Since G(0) is a T1-space, G\Gu is open for all
u. If U is an open subset of G containing u, then U ∪ (G \Gu) is an open neighborhood
of G(0). Thus there is W ∈ W such that W ⊂ U ∪ (G \Gu), and W ∩Gu ⊂ U ∩Gu.

If G is a topological groupoid and {Wj}j∈J is compatible with the topology of the
r-fibres (and hence to d-fibres), then the topologies of the r-fibres and d-fibres are deter-
mined by {Wj}j∈J : for each u ∈ G0 and each x ∈ Gu (respectively, x ∈ Gu), {xWj}j∈J
(respectively, {Wjx}j∈J ) is a local basis for x with respect to the topology induced by
G on Gu (respectively, Gu).

3.6. Proposition. If G is a groupoid endowed with a topology such that for all x ∈ G the

map y 7→ xyx−1
[
: G

d(x)
d(x) → G

r(x)
r(x)

]
is continuous at d (x) and if W is compatible with the

topology of the r- fibres or d-fibres, then for every W1 ∈ W and x ∈ G there is W2 ∈ W
such that W2 ∩Gd(x)

d(x) ⊂ x−1W1x (or equivalently, xW2x
−1 ⊂ W1).
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Proof. Let W1 ∈ W and x ∈ G. Since xr (x)x−1 ∈ W1 ∩ Gr(x)
r(x), it follows that there is

an open neighborhood V of d (x) such that xV x−1 ⊂ W1 ∩Gr(x)
r(x). Let W2 ∈ W such that

W2 ∩Gd(x) ⊂ V ∩Gd(x) or W2 ∩Gd(x) ⊂ V ∩Gd(x). Then xW2x
−1 ⊂ xV x−1 ⊂ W1.

A topological groupoid is said to be locally transitive (see [12]) if for all u ∈ G(0) the
maps ru are open, where ru : Gu → G(0) is defined by ru (x) = r (x) for all x ∈ Gu and
Gu is endowed with the topology coming from G. Hence the maps du are open, where
du : Gu → G(0), du (x) = d (x) for all x ∈ Gu and Gu is endowed with the topology
coming from G. Topological groups and pair groupoids X×X (X topological space) are
topological locally transitive groupoids. More general any trivial groupoid X × G × X
(X topological space and G topological group) is locally transitive. Any transitive Polish
groupoid with open range map is locally transitive [10] (see [9, p. 8] for transitive locally
compact second countable groupoids with open range maps).

3.7. Proposition. Let G be a groupoid and W be a G-uniformity such that for every
W1 ∈ W and x ∈ G there is W2 ∈ W such that W2 ∩ Gd(x)

d(x) ⊂ x−1W1x (or equivalently,

xW2x
−1 ⊂ W1). Then G is a topological locally transitive groupoid with respect to the

topology τW induced by the G-uniformityW (in the sense of Definition 3.1). The topologies
τ rW and τ dW are finer than τW . However the topologies induced by τ rW and τW on r-fibres
(respectively, by τ dW and τW on d-fibres) coincide.

Proof. Let us show that the inversion map and the product map are continuous with
respect to τW . The fact that (WxW )−1 = Wx−1W (x ∈ G and W ∈ W) implies that the
inversion is a homeomorphism. For all W ∈ W , there is W1 ∈ W such that W1W1 ⊂ W
and for all y ∈ G there is Wy ∈ W such that Wy ⊂ W and Wy ∩ Gr(y)

r(y) ⊂ yW1y
−1 or

equivalently, y−1Wyy ⊂ W1. If W
′
y ∈ W is such that W

′
yW

′
y ⊂ Wy and x ∈ Gr(y), then

W
′

yxW
′

yW
′

yyW
′

y ⊂ W
′

yxyy
−1WyyW

′

y ⊂ W
′

yxyW1W
′

y ⊂ WxyW ,

Therefore the product map is continuous.
Obviously, the topologies τ rW and τ dW are finer than τW (xW ⊂ WxW and Wx ⊂

WxW ). For every u ∈ G(0), x ∈ Gu and W ∈ W there is W1 ∈ W such that W1W1 ⊂ W

and there is Wx ∈ W such that Wx ⊂ W1 and Wx ∩ Gr(x)
r(x) ⊂ xW1x

−1 or equivalently,

x−1Wxx ⊂ W1. Thus

WxxWx ∩Gu = xx−1WxxWx ⊂ xW1Wx ⊂ xW .

Hence the topologies induced by τ rW and τW on r-fibres coincide. Similarly, the topologies
induced by τ dW and τW on d-fibres coincide.

Let u ∈ G(0). In order to prove that du : Gu → G(0) is open it suffices to note that if
x ∈ Gu and W ∈ W , then

du (Gu ∩WxW ) = du
(
Gd(x) ∩W

)
= (Wd (x)W ) ∩G(0).
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3.8. Proposition. Let (G, τ) be a topological groupoid and W be a G-uniformity com-
patible with the topology of the fibres. Then:

1. The topology τW (induced by the G-uniformity W) is finer than τ (the original
topology of G).

2. The topologies induced by τ and τW on r-fibres (respectively, on d-fibres) coincide.

3. If (G, τ) is locally transitive, then the topology τW coincides with τ on G.

Proof. 1. Let U be an open subset of G with respect to τ and let x ∈ U . Since xd (x) ∈ U ,
it follows that there is an open neighborhood U1 ∈ τ of x and an open neighborhood V1 ∈ τ
of d (x) such that U1V1 ⊂ U . Moreover since r (x)x ∈ U1, it follows that there is an open
neighborhood V2 ∈ τ of r (x) such that V2x ⊂ U1. Hence V2xV1 ⊂ U . Let W1 ∈ W such
that W1 ∩Gd(x) ⊂ V1 ∩Gd(x), W2 ∈ W such that W2 ∩Gr(x) ⊂ V2 ∩Gr(x) and let W ∈ W
such that W ⊂ W1 ∩W2. Then WxW ⊂ V2xV1 ⊂ U . Thus U is open with respect to τW .

2. Since τW is finer than τ , it suffices to prove that for all u ∈ G(0), x ∈ Gu (respectively,
x ∈ Gu) and all W ∈ W , WxW ∩ Gu (respectively, WxW ∩ Gu) is a neighborhood of x
with respect to the topology on Gu (respectively, Gu) induced by τ . Since the map y 7→
xy
[
: Gd(x) → Gr(x)

]
(respectively, y 7→ yx

[
: Gr(x) → Gd(x)

]
) is a homeomorphism (with

respect to τ), it follows that x
(
W ∩Gd(x)

)
= xW (respectively,

(
W ∩Gr(x)

)
x = Wx) is

a neighborhood of x in Gr(x) (respectively, Gd(x)) with respect to the topology induced by
τ . Therefore WxW ∩Gu ⊃ xW (respectively, WxW ∩Gu ⊃ Wx) is a neighborhood of x
with respect to the topology on Gu (respectively, Gu) induced by τ .

3. Let us assume that (G, τ) is locally transitive, or equivalently, that for all u ∈ G(0),
du : Gu → G(0) (du (x) = d (x)) is open. Since τW is finer than τ , in order to show
that τW = τ it suffices to prove for all x ∈ G and all W ∈ W , x is in the interior of
WxW with respect to τ . For each u ∈ G(0) let W u be the interior of Gu ∩W seen as
a subset of the topological space Gu and let W0 =

⋃
u∈G(0)

W u and W1 =
⋃

u∈G(0)

(W u)−1.

Then G(0) ⊂ W0 ⊂ W and G(0) ⊂ W1 ⊂ W . We prove that W1xW0 is open with respect
to τ . Let s ∈ W1, t ∈ W0 and (yi)i be a net in G converging to sxt (with respect to
τ). Then d (yi) → d (t) = dr(t) (t). Since dr(t) : Gr(t) → G(0) is open, we may pass to a
subnet and assume that there are ti ∈ Gr(t) such that ti → t and d (ti) = d (yi) for all i. If
si = yit

−1
i x−1, then si → sxtt−1x−1 = s. Since ti → t ∈ W0∩Gr(t) and si → s ∈ W1∩Gr(x),

it follows that si are eventually in W1 and ti are eventually in W0. Therefore yi = sixti is
eventually in W1xW0. Thus x is in the interior of WxW .

3.9. Proposition. Let G be a groupoid endowed with a pseudometric ρ satisfying the
following conditions:

1. ρ (x, r (x)) = ρ (x−1, d (x)) for all x ∈ G.

2. ρ (xy, r (x)) ≤ ρ (y, r (y)) + ρ (x−1, d (x)) for all (x, y) ∈ G(2).
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For every n ∈ N let

Wn :=

{
x ∈ G : ρ (x, r (x)) <

1

2n

}
.

Then W = {Wn}n is a G-uniformity compatible with the topology of r-fibres (induced
by the pseudometric ρ).

Proof. Obviously, satisfies condition 1, 2 and 4 from Definition 2.1. Also let us note that
Wn+1Wn+1 ⊂ Wn for all n (since ρ (xy, r (x)) ≤ ρ (y, r (y)) + ρ (x−1, d (x)) = ρ (y, r (y)) +
ρ (x, r (x)) for all (x, y) ∈ G(2)). Since for all u, Wn ∩Gu = B

(
u, 1

2n

)
∩Gu, it follows that

W is compatible with the topology of r-fibres.

3.10. Proposition. Let G be a groupoid endowed with a pseudometric ρ satisfying the
following conditions:

1. ρ (x, d (x)) = ρ (x−1, r (x)) for all x ∈ G.

2. ρ (xy, d (y)) ≤ ρ (x, d (x)) + ρ (y−1, r (y)) for all (x, y) ∈ G(2).

For every n ∈ N let

Wn :=

{
x ∈ G : ρ (x, d (x)) <

1

2n

}
.

Then W = {Wn}n is a G-uniformity compatible with the topology of d-fibres (induced
by the pseudometric ρ).

Proof. The proof is similar to the proof of Proposition 3.9.

3.11. Definition. Let G be a groupoid endowed with a pseudometric ρ satisfying con-
ditions 1 and 2 in Proposition 3.9 or in Proposition 3.10. Then the G-uniformity con-
structed in Proposition 3.9 as well as the G-uniformity constructed in Proposition 3.10
will be called the G-uniformity associated to the pseudometric ρ.

3.12. Remark. If ρ is a left invariant pseudometric on a groupoid G (in the sense that
ρ (zx, zy) = ρ (x, y) for all x, y, z ∈ G with d (z) = r (x) = r (y)), then ρ (xy, r (x)) ≤
ρ (x−1, d (x))+ρ (y, r (y)) for all (x, y) ∈ G(2) and ρ (x, r (x)) = ρ (x−1, d (x)) for all x ∈ G.
Indeed, ρ (xy, r (x)) = ρ (xy, xx−1) = ρ (y, x−1) ≤ ρ (y, r (y))+ρ (x−1, r (y)) = ρ (y, r (y))+
ρ (x−1, d (x)) for all (x, y) ∈ G(2). Also ρ (x, r (x)) = ρ (xd (x) , xx−1) = ρ (d (x) , x−1) for
all x ∈ G.

Also if ρ is a right invariant pseudometric on a groupoid G (in the sense that ρ (xz, yz)
=ρ (x, y) for all x, y, z ∈ G with r (z) = d (x) = d (y)), then ρ (xy, d (x)) ≤ ρ (x, d (x)) +
ρ (y−1, r (y)) for all (x, y) ∈ G(2)and ρ (x, d (x)) = ρ (x−1, r (x)) for all x ∈ G.

3.13. Remark. Any topological groupoid that is paracompact admits a fundamental
system W of neighborhoods that is a G-uniformity compatible with the topology of
fibres [10]. The same is true for a topological groupoid with paracompact unit space [5].
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3.14. Proposition. Let G be a groupoid andW = {Wn}n∈N be a countable G-uniformity.
Then G can be endowed with a pseudometric ρ satisfying the following conditions:

1. ρ is left invariant in the sense that ρ (zx, zy) = ρ (x, y) for all x, y, z ∈ G with
d (z) = r (x) = r (y).

2. ρ induces a G-uniformity equivalent to W.

3. For every u ∈ G(0) the restriction of ρ to Gu is compatible with the topology induced
by τ rW on Gu.

4. If
⋂
n∈N

Wn = G(0), then ρ is a metric.

Proof. Let I =
{

1
2n
, n ∈ N

}
. Let W0 ∈ {Wn}n∈N and W ′

1 ∈ W be such that W ′
1W

′
1 ⊂ W0

and W ′
1 ⊂ W1. Inductively we construct an I-indexed family {W ′

i}i∈I . Suppose that for
W ′

1/2n ∈ W has already been built. Then there is a W ′′ ∈ W such that W ′′W ′′ ⊂ W ′
1/2n

and W ′′ ⊂ Wn+2. Let W ′
1/2n+1 = W ′′. Thus we obtain an I-indexed family W ′ = {W ′

i}i∈I
as in Theorem 2.5 and if

⋂
n∈N

Wn = G(0), then G(0) =
⋂
i∈I
W ′
i . Let f = fG(0),W ′ be the

function defined in Theorem 2.5 and freg the function associated to f in Proposition 2.6.
Thus as in [8] we may define the following distance ρ (x, y) = freg (x−1y) if r (x) = r (y)
and ρ (x, y) = 1 otherwise. Let n ∈ N, n ≥ 4 and u ∈ G(0). For x ∈ Gu we have

B

(
x,

1

2n

)
=

{
y ∈ Gu : freg

(
x−1y

)
<

1

2n

}
⊂ xW ′

1/2n−4

On the other hand according Proposition 2.6 W ′
1/2n+1 ⊂

{
z : freg (z) < 1

2n

}
. Hence

xW ′
1/2n+1 ⊂

{
y : freg (x−1y) < 1

2n

}
= B

(
x, 1

2n

)
. Thus the topologies induced by τ rW and

the metric ρ|Gu on Gu coincide.

3.15. Proposition. Let G be a groupoid andW = {Wn}n∈N be a countable G-uniformity.
Then G can be endowed with a pseudometric ρ satisfying the following conditions:

1. ρ is right invariant in the sense that ρ (xz, yz) = ρ (x, y) for all x, y, z ∈ G with
r (z) = d (x) = d (y).

2. ρ induces a G-uniformity equivalent to W.

3. For every u ∈ G(0) the restriction of ρ to Gu is compatible with the topology induced
by τ dW on Gu.

4. If
⋂
n∈N

Wn = G(0), then ρ is a metric.

Proof. Similar as in the proof of Proposition 3.14 we may define the following distance
ρ (x, y) = freg (xy−1) if d (x) = d (y) and ρ (x, y) = 1 otherwise.
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3.16. Theorem. A topological locally transitive groupoid. The following statements are
equivalent:

(a) G is metrizable

(b) G is paracompact and G(0) has a countable fundamental system {Wn}n∈N of neighbor-
hoods such that

⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
.

(c) For every neighborhood W of G(0) there is a neighborhood W ′ of G(0) such that W ′W ′ ⊂
W and G(0) has a countable fundamental system {Wn}n∈N of neighborhoods such that⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
.

(d) There is a countable G-uniformity {Wn}n∈N compatible with the topology of the fibres
such that

⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
. Each Wn may be taken

to be a neighborhood of the unit space.

Moreover the distance function ρ may be taken to satisfy the following properties:

1. ρ (x, y) = ρ (x−1, y−1) for all x, y ∈ G.

2. ρ (x, r (x)) = ρ (x, d (x)) for all x ∈ G.

3. ρ (xy, r (x)) ≤ ρ (x, r (x)) + ρ (y, r (y)) for all (x, y) ∈ G(2).

4. ρ (x, y) ≤ ρ (x−1y, d (x)) for all x, y ∈ G such that r (x) = r (y).

5. ρ (d (x) , d (y)) ≤ 2ρ (x, y) and ρ (r (x) , r (y)) ≤ 2ρ (x, y) for all x,y ∈ G.

Proof. (a) ⇒ (b). Let us assume that G is a metrizable locally transitive topological
groupoid. Then G is paracompact topological groupoid. According to [10, p. 361-362], for
each neighborhood W of G(0), there is a neighborhood W ′ of G(0) such that W ′W ′ ⊂ W .
Then the family W of symmetric neighborhoods of the unit space is a G-uniformity.
By Proposition 3.8, the topology τW induced by the G-uniformity W coincides with the
topology of G. Applying [7, Metrization Theorem 13, p. 186] G is pseudometrizable if
and only if its uniformity has a countable base. Since a base for the uniform structure
UW induced the topology τW is {UW}W∈W , where

UW = {(x, y) ∈ G×G : y ∈ WxW}

there is a countable family {W ′
n}n∈N such that each W ′

n is a neighborhood of G(0) and for
each W ∈ W there is n ∈ N such that UW ′n ⊂ UW or equivalently, W ′

nxW
′
n ⊂ WxW for

all x ∈ G. In particular, for each W ∈ W there is n ∈ N such that W ′
nW

′
n ⊂ WW . Since

for each W ∈ W , there is W1 ∈ W such that W1W1 ⊂ W and for W1 there is n1 ∈ N
such that W ′

n1
W ′
n1
⊂ W1W1, it follows that in fact for each for each W ∈ W , there is
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n1 ∈ N such that W ′
n1
⊂ W ′

n1
W ′
n1
⊂ W . Thus {W ′

n}n∈N is a fundamental system of
neighborhoods of G(0). Since G is Hausdorff, for each x /∈ G(0) there is a neighborhood
V of r (x) such that x /∈ V . Furthermore x /∈ V ∪

(
G \Gr(x)

)
and V ∪

(
G \Gr(x)

)
is a

neighborhood of G(0). Thus
⋂

W∈W
W = G(0) and therefore

⋂
n∈N

W ′
n = G(0). Let u, v ∈ G(0)

be such that u 6= v. Since G is Hausdorff, Gu
v is closed and G \ Gu

v is a neighborhood of
G(0). Hence

⋂
W∈W

(r, d) (W ) = diag
(
G(0)

)
. Consequently,

⋂
n∈N

(r, d) (W ′
n) = diag

(
G(0)

)
.

(b) => (c) Since G is a paracompact topological groupoid, [10, p. 361-362], for each
neighborhood W of G(0), there is a neighborhood W ′ of G(0) such that W ′W ′ ⊂ W .

(c) => (d) Let {Wn}n∈N be a fundamental system of neighborhoods of G(0) such that⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
. Replacing Wn with Wn ∩W−1

n , we may

assume that Wn = W−1
n for all n. Let W ′

0 = W0. Inductively we construct a G-uniformity
{W ′

n}n∈N consisting in neighborhoods of G(0). Suppose a symmetric neighborhood W ′
n

of G(0) has already been built. Let W ′′ be a symmetric neighborhood of G(0) such that
W ′′W ′′ ⊂ W ′

n. Let W ′
n+1be a neighborhood of G(0) such that W ′

n+1 ⊂ W ′′ ∩Wn+1. Thus
{W ′

n}n∈N is a G-uniformity. Moreover {W ′
n}n∈N is a fundamental system of neighborhoods

of G(0). Therefore it is compatible with the topology of the fibres and
⋂
n∈N

W ′
n = G(0) as

well as
⋂
n∈N

(r, d) (W ′
n) = diag

(
G(0)

)
.

(d) => (a). Let W = {Wn}n∈N be countable G-uniformity compatible with the
topology of the fibres such that

⋂
n∈N

Wn = G(0) and
⋂
n∈N

(r, d) (Wn) = diag
(
G(0)

)
. Let

I =
{

1
2n
, n ∈ N

}
. Let Wn0 ∈ W be such that Wn0Wn0 ⊂ W0. Let W ′

0 = Wn0 . Inductively
we construct an I-indexed family {W ′

i}i∈I . Suppose that W ′
1/2n ∈ W has already been

built. Since W is a G-uniformity, there is a Wmn ∈ W such that WmnWmn ⊂ W ′
1/2n .

Let W ′
1/2n+1 ∈ W be such that W ′

1/2n+1 ⊂ Wmn ∩Wn+1. Thus we obtain an I-indexed

family W ′ = {W ′
i}i∈I as in Theorem 2.5 that in addition satisfies G(0) =

⋂
i∈I
W ′
i and⋂

i∈I
(r, d) (W ′

i ) = diag
(
G(0)

)
. Moreover W ′ = {W ′

i}i∈I is compatible with the topology

of the fibres. Thus for every x ∈ G and every W ′
i ∈ W ′ there is W ′

ix ∈ W
′ such that

xW ′
ix
−1 ⊂ W ′

i . Let freg be the function associated in Proposition 2.6 to f = fG(0),W ′ ,
where f = fG(0),W ′ is the function constructed in Theorem 2.5. For all x,y ∈ G, let us
define

ρ (x, y) :=
1

2
inf
{
freg

(
x−1sy

)
+ freg (s) : s ∈ Gr(x)

r(y)

}
,

if G
r(x)
r(y) 6= ∅ and ρ (x, y) := 1 otherwise. Let us note that G

r(y)
r(x) 6= ∅ if and only if
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G
r(x)
r(y) 6= ∅ and

ρ (x, y) =
1

2
inf
{
freg

(
x−1sy

)
+ freg (s) : s ∈ Gr(x)

r(y)

}
=

1

2
inf
{
freg

(
y−1s−1x

)
+ freg

(
s−1
)

: s ∈ Gr(x)
r(y)

}
=

1

2
inf
{
freg

(
y−1tx

)
+ freg (t) : t ∈ Gr(y)

r(x)

}
= ρ (y, x) .

Thus ρ (x, y) = ρ (y, x).
Let us prove that if r (x) = r (y), then ρ (x, y) ≤ 1

2
freg (x−1y). Indeed,

ρ (x, y) ≤ 1

2

(
freg

(
x−1r (x) y

)
+ freg (r (x))

)
=

1

2
freg

(
x−1y

)
.

If x = y, then ρ (x, y) ≤ 1
2
freg (x−1y) = 0.

Let x, y, z ∈ G and let us prove that ρ (x, z) ≤ ρ (x, y) + ρ (y, z). If ρ (x, y) = 1
or ρ (y, z) = 1, then obviously, ρ (x, z) ≤ 1 ≤ ρ (x, y) + ρ (y, z). If ρ (x, y) < 1 and

ρ (y, z) < 1, then for every ε > 0 there are s1 = s1 (ε) ∈ Gr(x)
r(y) and s2 = s2 (ε) ∈ Gr(y)

r(z) such

that ρ (x, y) > 1
2
freg (x−1s1y) + 1

2
freg (s1)− ε and ρ (y, z) > 1

2
freg (y−1s2x) + 1

2
freg (s2)− ε.

Furthermore

ρ (x, z) ≤ 1

2
freg

(
x−1s1s2z

)
+

1

2
freg (s1s2)

≤ 1

2
freg

(
x−1s1yy

−1s2z
)

+
1

2
freg (s1) +

1

2
freg (s2)

≤ 1

2
freg

(
x−1s1y

)
+

1

2
freg

(
y−1s2z

)
+

1

2
freg (s1) +

1

2
freg (s2)

< ρ (x, y) + ρ (y, z) + 2ε.

Therefore ρ (x, z) ≤ ρ (x, y) + ρ (y, z).
Let us show that if ρ (x, y) = 0, then x = y. If ρ (x, y) = 0, for every n there is

sn ∈ G
r(x)
r(y) such that freg (sn) < 1

2n
and freg (x−1sny) < 1

2n
. Taking into account that

freg (sn) < 1
2n

applying Proposition 2.6, it follows that sn ∈ W ′
1/2n−4 and consequently,

(r (x) , r (y)) = (r, d) (sn) ∈ (r, d)
(
W ′

1/2n−4

)
. Since

⋂
n∈N

(r, d)
(
W ′

1/2n

)
= diag

(
G(0)

)
,

it follows that r (x) = r (y). Moreover since freg (x−1sny) < 1
2n

, it follows that y ∈
W ′

1/2n−4xW ′
1/2n−4 for all n ≥ 4. Let W ′

x,n ∈ W ′ be such that x−1W ′
x,nx ⊂ W ′

1/2n+1

and W ′
x,n ⊂ W ′

1/2n+1 . We have y ∈ W ′
x,nxW

′
x,n. Consequently, y ∈ xx−1W ′

x,nxW
′
x,n ⊂

xW ′
1/2n+1W ′

1/2n+1 ⊂ xW ′
1/2n . Hence x−1y ∈

⋂
n∈N

W ′
1/2n = G(0). Thus x = y.

We have proved that ρ is a metric on G. Let us prove that the topology defined
by ρ coincides with the topology induced by the G-uniformity W ′ and consequently,
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with the topology of G. Let y ∈ B
(
x, 1

2n

)
, n ∈ N, n ≥ 6. Then there is s ∈ G

r(x)
r(y)

such that freg (s) < 1
2n−2 and freg (x−1sy) < 1

2n−2 . By Proposition 2.6, it follows that
s ∈ W ′

1/2n−6 and x−1sy ∈ W ′
1/2n−6 . Therefore y ∈ W ′

1/2n−6xW ′
1/2n−6 and B

(
x, 1

2n

)
⊂

W ′
1/2n−6xW ′

1/2n−6 . On the other hand for every n and x, if y ∈ W ′
1/2nxW

′
1/2n , then there

are s, t ∈ W ′
1/2n such that y = sxt. Hence freg (x−1s−1y) = freg (x−1xt) = freg (t) < 1

2n−1 .

Also ρ (x, y) ≤ 1
2

(freg (x−1s−1y) + freg (s−1)) = 1
2

(freg (t) + freg (s)) < 1
2n−3 . Therefore

W ′
1/2nxW

′
1/2n ⊂ B

(
x, 1

2n−3

)
.

Let us prove that ρ (x, y) = ρ (x−1, y−1) for all x,y ∈ G. We have G
r(x)
r(y) = ∅ if

and only if G
r(x−1)
r(y−1) = ∅. Thus if G

r(x)
r(y) = ∅, then ρ (x, y) = 1 = ρ (x−1, y−1). Let us

assume that G
r(x)
r(y) 6= ∅. Then for every ε > 0 there is sε ∈ G

r(x)
r(y) such that ρ (x, y) >

1
2
freg (x−1sεy) + 1

2
freg (sε) − ε. Let t = x−1sεy. Then ρ (x−1, y−1) ≤ 1

2
freg (xty−1) +

1
2
freg (t) = 1

2
freg (sε) + 1

2
freg (x−1sεy) ≤ ρ (x, y) + ε. Similarly, ρ (x, y) ≤ ρ (x−1, y−1) + ε.

Hence ρ (x, y) = ρ (x−1, y−1).
Let us show that ρ (x, r (x)) = ρ (x−1, d (x)) = ρ (x, d (x)) = 1

2
freg (x) for all x ∈

G. We have ρ (x, r (x)) ≤ 1
2
freg (x−1r (x)) = 1

2
freg (x). For all s ∈ G

r(x)
r(x) we have

1
2
freg (x) = 1

2
freg (x−1) = 1

2
freg (x−1sr (x) s−1) ≤ 1

2
freg (x−1sr (x)) + 1

2
f
1/2
reg (s−1). Thus

ρ (x, r (x)) = 1
2
freg (x).

Also ρ (x−1, d (x)) = 1
2
freg (x−1) = 1

2
freg (x) = ρ (x, r (x)). Moreover ρ (x, d (x)) =

ρ (x−1, d (x)) for all x ∈ G.
For all (x, y) ∈ G(0) we have ρ (xy, r (x)) = 1

2
freg (xy) ≤ 1

2
freg (x) + 1

2
freg (y) =

ρ (x, r (x)) + ρ (y, r (y)).

If r (x) = r (y), then ρ (x, y) ≤ 1
2
f
1/2
reg (x−1y) = ρ (x−1y, d (x)) = ρ (y−1x, d (y)).

Let us prove that ρ (d (x) , d (y)) ≤ 2ρ (x, y) and ρ (r (x) , r (y)) ≤ 2ρ (x, y) for all

x,y ∈ G. Obviously, if G
r(x)
r(y) = ∅, then ρ (d (x) , d (y)) = ρ (r (x) , r (y)) = ρ (x, y) = 1. If

G
r(x)
r(y) 6= ∅, then for every ε > 0 there is sε ∈ Gr(x)

r(y) such that ρ (x, y) > 1
2
freg (x−1sεy) +

1
2
freg (sε)−ε. Let t = x−1sεy. Then ρ (d (x) , d (y)) ≤ 1

2
freg (t)+ 1

2
freg (t) = freg (x−1sεy) ≤

freg (x−1sεy) + freg (sε) < 2ρ (x, y) + 2ε. Hence ρ (d (x) , d (y)) ≤ 2ρ (x, y). We also have

ρ (r (x) , r (y)) = ρ
(
d
(
x−1
)
, d
(
y−1
))
≤ ρ

(
x−1, y−1

)
= ρ (x, y)

for all x,y ∈ G.
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