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KZ-MONADIC CATEGORIES AND THEIR LOGIC

JIŘÍ ADÁMEK AND LURDES SOUSA

Abstract. Given an order-enriched category, it is known that all its KZ-monadic
subcategories can be described by Kan-injectivity with respect to a collection of mor-
phisms. We prove the analogous result for Kan-injectivity with respect to a collection
H of commutative squares. A square is called a Kan-injective consequence of H if by
adding it to H Kan-injectivity is not changed.

We present a sound logic for Kan-injectivity consequences and prove that in “reasonable”
categories (such as Pos or Top0) it is also complete for every set H of squares.

1. Introduction

Scott characterized continuous lattices in [15], 3.8 and following, as those T0 spaces that
are, in modern terminology, Kan-injective with respect to all embeddings. The Kan-
injectivity of an object X of an order-enriched category with respect to a morphism
h : A // B was defined by Escardó [8] as follows: for every morphism f : A // X we
have a commutative triangle

A h //

f
��

B

f/h~~
X

where f/h is the left Kan-extension of f along h. That is, if g : B //X fulfils f ≤ gh,
then f/h ≤ g.

Later Carvalho and Sousa [6] extended the above concept from objects to morphisms:
a morphism u : X // X ′ is Kan-injective with respect to h when X and X ′ are Kan-
injective objects and for every morphism f : A //X the following triangle

B
f/h //

(uf)/h
��

X

u~~
X ′
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Transmitted by Robert Paré. Published on 2017-02-27.
2010 Mathematics Subject Classification: 18C20, 18B35, 18D20, 54B30, 06B35, 06D22, 18A15.
Key words and phrases: order-enriched category, Kan-injectivity, KZ-monad, Kan-injectivity logic,

locally ranked category.
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commutes. Example: the morphisms of Top0 Kan-injective with respect to all embeddings
are precisely the continuous maps between continuous lattices preserving all infima. A
trivial example: in Pos Kan-injectivity with respect to

• • � � h // • •
•
�@

defines the subcategory of join-semilattices and their homomorphisms.
Moreover, in locally ranked categories, e.g., in Top0 or Pos, Kan-injectivity yields

a characterization of KZ-monadic categories in the following sense: given a class H of
morphisms, let LInj(H) be the subcategory of all objects and all morphisms Kan-injective
with respect to all members of H. Then

(1) every KZ-monadic subcategory has the form LInj(H) for some class H of morphisms,
see [6],

and

(2) for every set H of morphisms the subcategory LInj(H) is KZ-monadic, see [4].

The topic of our paper is the logic of Kan-injectivity, generalizing the logic of or-
thogonality studied in [1] and [2]. Observe first that given an ordinary category with
its trivial order-enrichment (that is, equality), then LInj(H) is nothing else than the full
subcategory H⊥ on objects X orthogonal to every member h : A //B of H (that is, each
f : A // X has a unique factorization through h). The logic of orthogonality aims to
characterize those morphisms h for which orthogonality to H implies that to h, i.e. with
H⊥ = (H ∪ {h})⊥. See Section 4 where the simple logic presented in [1] is recalled.

Analogously, we hoped to present a logic that would characterize, in order-enriched
categories, those morphisms for which Kan-injectivity with respect to H implies that with
respect to h. But we have failed so far. What saved our effort was the idea to ”enrich”
our language by considering, instead of Kan-injectivity with respect to morphisms, Kan-
injectivity with respect to commutative squares S:

A1
h1 //

a

��

B1

b
��

A2 h2
// B2

An object X is Kan-injective with respect to S if it is Kan-injective with respect to h1

and h2 and for every morphism f : A2
//X the following triangle

B1

(fa)/h1

  
b
��
B2

f/h2

// X
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commutes. And a morphism is Kan-injective with respect to S iff it is Kan-injective with
respect to h1 and h2.

For every class H of commutative squares we thus obtain a (non-full) subcategory
LInj(H) analogously to above. These categories characterize again KZ-monadicity: we
prove in Section 3 below that the above statements (1) and (2) remain valid. In other
words, this richer language does not lead to more examples! However, it enables a for-
mulation of a sound logic (see Section 4) which for sets of squares is, under mild size
conditions, also complete (see Section 5). It is our present impression that this enrich-
ment of the structure from morphisms to commutative squares is probably necessary: we
suspect that no logic for Kan-injectivity with respect to just morphisms is sound and
complete.

2. KZ-monadic subcategories

2.1. Assumption. Throughout the paper X is a category enriched over Pos. All squares
in our paper are commutative, so when stating that something is a square, we mean a
commutative one.

We introduced Kan-injectivity with respect to a morphism and a square above. Ob-
serve that the latter is a generalization of the former: for every morphism h : A //B let
S(h) be the following square

S(h) =

A
h // B

A
h
// B

Then Kan-injectivity with respect to h and S(h) is the same concept for objects and
morphisms.

2.2. Example. In Pos consider Kan-injectivity with respect to h : 0 ↪→ 1, the empty
map into the terminal poset. This means the existence (and preservation) of the least
element, ⊥. Kan-injectivity with respect to the embedding

•
• •
�@ ⊥ � � k // •

• •
�@

•
�@

⊥

characterizes existence (and preservation) of joins of pairs having a lower bound. Com-
bining those two in a square as follows

_�

��

� � h //
•⊥
_�

��

•
• •
�@ ⊥ � �

k
// •
• •
�@

•
�@

⊥
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yields by Kan-injectivity join-semilattices with ⊥ and their homomorphisms.
We have already remarked that using squares does not lead to new examples. In-

deed, join-semilattices with ⊥ are also given by Kan-injectivity with respect to h and the
following embedding

• • � � // • •
•
�@

2.3. Example. Which posets are Kan-injective with respect to all order-embeddings (i.e.,
regular monomorphisms) in Pos?

As shown in [4], these are precisely the complete lattices, and a monotone map is Kan-
injective with respect to order-embeddings iff it preserves joins. We now characterize all
squares S that are Kan-injectivity consequences of order-embeddings. That is, such that
every complete lattice and every join-preserving map between complete lattices is Kan-
injective with respect to S.

Let us denote by Ω0 the contravariant endofunctor of Pos assigning to every posed
X the posed Ω0X of all ↓-sets of X, and to every monotone function f : X // Y the
function Ω0f : Ω0Y // Ω0X forming preimages. Observe that Ω0f has a left adjoint

(Ω0f)∗ : Ω0X // Ω0Y , U 7→↓ f [U ] (for all U ∈ Ω0X).

2.4. Proposition. For every square

S =

A′ h //

a
��

B′

b
��

A
k
// B

in Pos the following conditions are equivalent:

(1) S is a Kan-injectivity consequence of order-embeddings;

(2) h and k are order-embeddings such that whenever k(z) ≤ b(y), there exists x ∈ A′
with h(x) ≤ y and z ≤ a(x);

and

(3) h and k are order-embeddings yielding a (commutative) square

Ω0B
′

(Ω0b)∗

��

Ω0h // Ω0A
′

(Ω0a)∗

��
Ω0B Ω0k

// Ω0A
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Proof. The equivalence of (1) and (2) was proved in [16].
3⇒ 2 The inequality k(z) ≤ b(y) states precisely that

z ∈ Ω0k · (Ω0b)
∗(↓ y) = (Ω0a)∗ · Ω0h(↓ y),

that is, z lies in ↓ a [Ω0h(↓ y)]. This means that an x as in (2) exists.
2⇒ 3 It is easy to verify that the inequality

(Ω0a)∗ · Ω0h ≤ (Ω0k) · (Ω0b)
∗

holds for every square S. Thus we need to show the opposite inequality only. Let V be a
↓-set of B′ and z be an element of (Ω0k)(Ω0b)

∗(V ), i.e., z ∈ k−1 [↓ b [V ]]. Then for some
y ∈ V we have k(z) ≤ b(y). Given x as in (2) we conclude z ∈ (Ω0a)∗Ω0h(V ), establishing
the required inequality.

2.5. Example. The category Top0 of topological T0-spaces is order enriched via the
opposite of the specialization order. Recall that the specialization order is given by x v y
iff x ∈ {y}. Thus, for continuous functions f, g : X // Y we define

f ≤ g iff g(x) v f(x) for all x ∈ X.

Escardó and Flagg proved that Kan-injective objects with respect to topological embed-
dings (= regular monomorphisms) are precisely Scott’s continuous lattices, see [9]. Recall
that a T0-space is a continuous lattice iff for the specialization order its topology is the
Scott’s one, and it is a complete lattice with

y =
⊔

U∈nbh(y)

(uU) for all y ∈ X.

The morphisms Kan-injective with respect to topological embeddings are precisely the
continuous functions preserving meets, see [6]. We characterize the squares which are
injectivity consequences of topological embeddings. Let Ω : Top0

//Posop be the functor
assigning to a space X the poset ΩX of open sets and to a continuous function f : X //Y
the preimage function Ωf : ΩY // ΩX. By (Ωf)∗ we denote the right adjoint of Ωf : to
an open set U it assigns the union of all openV ⊆ Y with f−1(V ) ⊆ U .

2.6. Proposition. A square

S =

A′
h //

a
��

B′

b
��

A
k
// B

in Top0 is a Kan-injectivity consequence of topological embeddings iff h and k are topolog-
ical embeddings yielding the following (commutative) square

ΩA
(Ωk)∗ //

Ωa
��

ΩB

Ωb
��

ΩA′
(Ωh)∗

// ΩB′
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Proof. (a) Sufficiency. For every continuous lattice X and every embedding f : A //X
the Kan-extension f/k is, as proved in [9], given by

f/k(z) = t{uU ; U ∈ ΩX and z ∈ (Ωk)∗[Ωf(U)]}, (1)

and analogously for (fa)/h. We are to prove

(f/k) · b = (fa)/h.

Indeed, given b ∈ B′, then b(y) ∈ (Ωk)∗[Ωf(U)] means that y ∈ (Ωb)(Ωk)∗[Ωf(U)],
and, by the commutativity of the last square, this means that y ∈ (Ωh)∗[Ω(fa)(U)].
Consequently, taken into account the definitions of (f/k)(b(y)) and ((fa)/h)(y) given by
(1), we conclude the desired equality.

(b) Necessity. Since the Sierpińsky space S is Kan-injective with respect to S, k and
h are topological embeddings (see 4.3 and 4.4 of [6]). We verify the above square.

Every V ∈ ΩA defines the corresponding characteristic function fV : A // S and,
using the formula (1) above, we get (by setting V = {1})

(fV /k)(z) = 1 iff z ∈ (Ωk)∗(V ).

Since fV · a = fΩa(V ), the characteristic function of a−1(V ), we analogously get

(fV · a)/h(x) = 1 iff x ∈ (Ωh)∗(Ωa(V )).

Thus, our formula (fV · a)/h = (fV /k) · b reads:

x ∈ (Ωh)∗(Ωa(V )) iff b(x) ∈ (Ωk)∗(V )

for all x ∈ B′. That is,
(Ωh)∗(Ωa(V )) = Ωb((Ωk)∗(V )),

as desired.

2.7. Remark. A slight modification: Scott continuous domains are, as proved by Escardó
[8], precisely the T0-spaces Kan-injective with respect to dense embeddings, see [10],
Exercise 3.19. And the morphisms Kan-injective with respect to dense embeddings are
the continuous functions preserving nonempty meets (see [6]). The above corollary holds
analogously, just h and k are required to be dense embeddings.

2.8. Example. Let Loc be the category of locales and localic maps. Thus, the objects
of Loc are complete lattices with the infinite distributive law

a ∧
∨

B =
∨
{a ∧ b | b ∈ B},

and the morphisms are the monotone maps f which preserve all infima and whose left
adjoint f ∗ preserves finite meets. We recall that a localic map h is an embedding provided
that h∗h = id. Johnstone characterized the stably locally compact locales as the locales
injective with respect to flat embeddings, i.e. those preserving finite joins, see [11]. More-
over, with convenient morphisms, stably locally compact locales are precisely LInj(H) for
H = flat embeddings (see [11] and [7]).
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2.9. Proposition. A square

A′ h //

a
��

B′

b
��

A
k
// B

in Loc is a Kan-injectivity consequence of flat embeddings iff h and k are flat embeddings
yielding the following (commutative) square

A
k //

a∗

��

B

b∗

��
A′

h
// B′

Proof. Let F0, F1 and F2 be the free frames generated by the empty set, 1 = {0} and
2 = {0, 1}, respectively, and let fi : Fi // F1, i = 0, 2, be the localic maps determined
by f0(⊥) = 0, f2(0 ∨ 1) = 0 and f2(x) = ⊥ for x 6= ⊥, 0 ∨ 1. In [7] flat embeddings
were characterized as precisely those morphisms with respect to which both f0 and f2

are Kan-injective. Furthermore, it was shown there that for every finitely generated free
frame F , in particular for every Fi (i = 0, 1, 2), given a flat embedding h : A //B and a
morphism f : A // F , the map (hf ∗)∗ is localic and

f/h = (hf ∗)∗. (2)

(a) Necessity: suppose the given square is a Kan injectivity consequence of flat em-
beddings. Since we already know that flat embeddings are characterized by means of f0

and f2, we only need to prove ha∗ = b∗k.
Given x ∈ A, we want to show that b∗k(x) = ha∗(x). Let g : F1

// A be the frame
homomorphism sending 0 to x. By hypothesis, the localic map g∗ : A // F1 satisfies
(g∗/k) · b = (g∗a)/h, that is, by (2), (kg)∗b = h(g∗a)∗ = ha∗g. Consequently, by applying
the operator −∗ to the localic maps (kg)∗, b and ha∗g, we obtain b∗kg(0) = ha∗g(0), i.e.,
b∗k(x) = ha∗(x).

(b) Sufficiency: if the lower square commutes, we prove that, given f : A // Fi,
(fa)/h = (f/k)b. Indeed, from (2), deduce that

(fa)/h = [(h(fa)∗]∗ = (ha∗f ∗)∗ = (b∗kf ∗)∗ = (kf ∗)∗b = (f/k) · b.

2.10. Remark. (a) Given an order-enriched category X, by a right adjoint retraction we
mean a morphism r : X // Y with r∗ : Y //X satisfying rr∗ = id and r∗r ≥ id.

(b) Recall that a KZ-monad over X is a monad T for which

Tη ≤ ηT.
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Then T-algebras are precisely the right adjoint retractions of ηA : A // TA. Thus, XT is
a (non-full) subcategory of X.

(c) In [4] we proved that KZ-monadic subcategories are precisely the subcategories K

which are

(1) reflective, i.e., the embedding has a left adjoint,

(2) inserter-ideal, i.e., contain the inserter ins(u, v) of every parallel pair (u, v) with u
in Mor(K),

and

(3) closed under right adjoint retractions.

That is, with every morphism p : X → Y the subcategory contains all morphisms p :
X // Y for which there exists a square with right adjoint retractions x and y as follows

X
p //

x
��

Y

y
��

X
p
// Y

(3)

(d) Every KZ-monadic subcategory K has the form K = LInj(H) for some class H of
morphisms of X ([6]). And we proved that, conversely, for “reasonable” categories X (such
as Top0 and Pos), every set H of morphisms defines a KZ-monadic subcategory LInj(H).
(The latter is not true for proper classes H in Top0 as demonstrated by an example in
[4]).

2.11. Lemma. For every class H of squares the category LInj(H) is inserter-ideal and
closed under right adjoint retractions.

Proof. A. Given a pair of morphisms u, v : X // Y and a square

A′

a
��

h′ // B′

b
��

A
h
// B

(4)

with respect to which u is Kan-injective, we prove that so is the inserter i = ins(u, v) :
I //X. We have already proved in [4] that the fact that u is Kan-injective with respect to
h and h′ implies that so is the morphism i. It remains to show that, for every f : A // I,
(f/h)b = (fa)/h′, or equivalently, since i is mono, i(f/h)b = i(fa)/h′. But the last
equality follows immediately from the fact that i is Kan-injective with respect to both h
and h′ and X is Kan-injective w.r.t. the above square.

B. Given a square (3) with the left adjoints x∗ and y∗, respectively, and such that the
morphism p : X // Y is Kan-injective with respect to the square (4), we prove that also
p is Kan-injective with respect to this square.
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(a) X is Kan-injective with respect to the above square, and for every morphism f :
A //X we have: f/h = x([x∗f ]/h).

A′

a
��

h′ // B′

b
��

A

f
��

h
// B

(x∗f)/h
��

X
x∗
// X

xoo

This last formula was proved in [6]. Analogously one proves (fa)/h′ = x([x∗fa]/h′).
Consequently, since the Kan-injectivity of X yields

[x∗fa]/h′ = ([x∗f ]/h)b

we conclude (fa)/h′ = (f/h)b.

(b) Y is Kan-injective. This is completely analogous.

(c) p is Kan-injective with respect to h and h′. This was also proved in [6].

3. The reflection chain

Throughout the rest of the paper X denotes an order-enriched category with weighted
colimits. Given a set H of squares, we associate with every object X a transfinite chain
starting in X. For “reasonable” categories we then prove that there exists a connecting
morphism from X in our chain which is the reflection of X in the subcategory LInj(H).

3.1. Definition. Let H be a set of squares. For every object X define a transfinite chain
Xi (i ∈ Ord) with connecting morphisms called xij or simply Xi

// Xj (for i ≤ j). We

proceed by transfinite recursion. In the isolated steps, given i we define Xi 99K Xi+1 99K
Xi+2, therefore, we can assume that i is an even ordinal (that is, i = 2n or i = i0 + 2n
for n < ω and i0 a limit ordinal).

(a) Initial step. X0 = X.
(b) Limit steps. If i is a limit ordinal then

Xi = colim
j<i

Xj

is the colimit of the previous chain with Xj 99K Xi forming the colimit cocone.
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(c) Isolated step i 7→ i+ 1 (i even). Consider all pairs (S, f) where

S =

A1
h1 //

a

��

B1

b
��

A2 h2
// B2

(5)

is a member of H and f : Ar //Xi a morphism with r = 1 or 2. Form the pushout of hr
along f :

Ar
hr //

f

��

Br

f̄
��

Xi
hr

// Qf

(6)

Define Xi 99K Xi+1 as the wide pushout of all the morphisms hr:

Xi

��

hr // Qf

qf||
Xi+1

(7)

ranging over all the above pairs (S, f).
Notation: put

f�hr : Br
f // Qf

qf // Xi+1 (8)

This “approximates” the desired Kan extension f/hr in the following sense: we get a
(commutative) square

Ar

f

��

hr // Br

f�hr
��

Xi
// Xi+1

(9)

(d) Isolated step i + 1 7→ i + 2 (i even). Consider all triples (S, f, g) consisting of
S ∈ H, as above, and two morphisms forming an inequality as follows:

Ar

f

��

hr //

≤
Br

g

��
Xi

// Xi+1

(r = 1 or 2)
(10)

For every decomposition of f as follows

f ≡ Ar
f ′ // Xj

// Xi (j ≤ i even) (11)
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form the coinserter of Ar
f ′�hr// Xj+1

// Xi+1 and g:

cf,g = coins(xj+1,i+1[f ′�hr], g) : Xi+1
// Cf,g. (12)

And in case r = 1 for every decomposition of f as follows

f ≡ A1
a // A2

f ′ // Xi (13)

form the coinserter of B1
b // B2

f ′�h2// Xi+1 and g:

cf,g = coins([f ′�h2].b, g). (14)

Define Xi+1 99K Xi+2 as the wide pushout of all cf,g above:

Xi+1

��

cf,g // Cf,g

tf,g||
Xi+2

(15)

3.2. Lemma. Given a morphism p0 : X0
// P where P is Kan-injective with respect to

H, there exists a unique cocone pi : Xi
// P (i ∈ Ord) of the reflection chain such that

for all pairs (S, f) in step i 7→ i+ 1 the following triangle

Ar

f�hr
��

(pif)/hr

!!
Xi+1 pi+1

// P

(16)

commutes.

Proof. We only need to prove the isolated step of the transfinite induction. Given pi, i
even, we obtain pi+1 as follows. From the following square

Ar

f
��

hr // Br

(pif)/hr
��

Xi pi
// P

we conclude that the pushout (6) yields a unique factorization morphism pf : Qf
// P .

These morphisms pf form a cocone of the wide pushout (7). Define pi+1 as the unique
factorization morphism

pi+1 · qf = pf .

It fulfils pi+1 · (f�hr) = pi+1.qf · f = pf .f = (pif)�hr. Conversely, whenever the above
triangle commutes, then pi+1 is a factorization map of the wide pushout (7).
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Next we define pi+2: since Xi+1 99K Xi+2 is a wide pushout of epimorphisms, pi+2 is
unique. And for the proof of existence we only need to verify that pi+1 factorizes through
each cf,g. That is:

(a) In case of (11) we want to verify the inequality

Br

f ′�hr
��

g //

≤

Xi+1

pi+1

��

Xj+1

��
Xi+1 pi+1

// P

The lower passage is, due to pj+1 = pi+1 · xj+1,i+1 and (16), equal to (pj.f
′)/hr. By

composing (10) with pi+1 we get
pjf

′ ≤ pi+1ghr

hence,
(pjf

′)/hr ≤ pi+1g

(b) In case of (13) we want to verify the inequality

B1

b
��

g //

≤

Xi+1

pi+1

��

B

f ′�h2
��

Xi+1 pi+1

// P

Indeed, the lower passage is, due to (16) and injectivity of P with respect to S, equal to

[(pif
′)/h2]b = (pif

′a)/h1 = (pif)/h1.

By composing (10) with pi+1 we get pif ≤ pi+1.g.h1. This proves (pif)/h1 ≤ pi+1.g as
desired.

Recall that in a category with a factorization system (E,M) an object is said to have
rank λ (a regular cardinal) if its hom-functor preserves λ-directed colimits of morphisms
in M. We use the following concept introduced in [4]:

3.3. Definition. Let X be an order-enriched category with a factorization system (E, M)
such that E ⊆ Epi and M ⊆ Order-Mono (i.e., given m ∈ M then mu ≤ mv implies
u ≤ v). We call X locally ranked if

(i) it has weighted colimits,
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(ii) it is E-cowellpowered,

and

(iii) every object has a rank.

3.4. Example. Pos is locally ranked w.r.t. E = Epi and M = Order-Embedding. Top0

is locally ranked w.r.t. E = surjective morphisms and M = subspace embeddings.

3.5. Remark. Let X be locally ranked and let (Xi) be a transfinite chain with con-
necting morphisms Xi

// Xj (i ≤ j). By Proposition 4.1 of [12] there exists a chain

(Yi) of monomorphisms in M, a join-preserving function ϕ : Ord // Ord and natural
transformations

Xi
γi // Yi

βi // Xϕ(i+1) (i ∈ Ord)

such that for all i:

(1) βiγi is the connecting morphism Xi
// Xϕ(i+1) ;

(2) the composite Yi
βi // Xϕ(i+1)

// Xj lies in M for all j ≥ ϕ(i+ 1);

and

(3) if i is a limit ordinal, then a colimit of the chain (Yj)j<i is given by the following
cocone

Yj
βj // Xϕ(j+1)

// Xϕ(i)

Moreover, given such a function ϕ, every join-preserving function ϕ′ ≥ ϕ works too.
Consequently, we can clearly choose ϕ so that ϕ(i) is even for all ordinals i.

3.6. Theorem. Let X be a locally ranked order-enriched category. For every set H of
squares the subcategory LInj(H) is reflective: the reflection of every object X is given by
X 99K Xk (in Definition 3.1) where k is a suitable cardinal.

Proof. Apply the above remark to the chain of Definition 3.1, using notation î = ϕ(i+1).
Since H is a set, there exists a cardinal λ such that for every square in H all the four
objects involved have rank λ. The cardinal k of our theorem is chosen to be

k = ϕ(λ).

(1) We first prove that the object Xk is Kan-injective with respect to every square in
H:

S =

A1

a

��

h1 // A2

b
��

B1 h2
// B2
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(a) Kan extensions modulo h1 and h2 exist. Indeed, every morphism f0 : Ar //Xk (r =
1, 2) has, since Ar has rank λ, a factorization f through some colimit injection of the
colimit Xk = colimj<λ Yj of Remark 3.5(3):

Ar
f

tt
f ′

xx
f0
��

Yj βj
// Xĵ

// Xk

Put f ′ = βjf . We use Notation (8) and prove that the desired Kan extension is

f0/hr ≡ Ar
f ′�hr// Xĵ+1

// Xk . (17)

Indeed, from (9) we get f0 = (f0/hr) · hr via f ′ = (f ′�hr) · hr:

(f0/h) · hr ≡ Ar
f ′ // Xĵ+1

// Xk

Next, let g0 = Br
//Xk fulfil

f0 ≤ g0hr.

Since Br has rank λ, we can find an analogous factorization:

Br

g

ss
g′

xx

g0

��
Yi βi

// Xî
// Xk

for some ordinal i < k. Without loss of generality, j ≤ i. The above inequality yields the
following one:

Ar

f

��

hr // Br
g // Yi

βi
��

≤ Xî

��
Yj

yji

��

βj
// Xĵ

��

// Xk

Xî

>>

Yi

βi

>>
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Since by Remark 3.5 the colimit morphisms lie in M, (thus, they are order-monomorphisms)
this proves

yji · f ≤ g · hr
which by composition with βi yields the inequality

Ar

f ′

��

hr // Br

g′

��
Xĵ

��

≤ Xî

��
Xî

// Xî+1

This is an instance of (10) and (11) with respect to xî,̂i+1 ·g′. Let cf,g′ be the corresponding
coinserter (12). Since the map Xî+1 99K Xî+2 factorizes through cf,g′ , we obtain the
following inequality

Br

f ′�hr
��

g′ // Xî
// Xî+1

��

Xĵ+1

��

≤

Xî+1
// Xî+2

Composed with Xî+2 99K Xk this states that

xĵ+1,k · (f
′�hr) ≤ xîk · g

′

which is the desired inequality
f0/hr ≤ g0.

(b) It remains to prove that for every f0 : A2
//Xk we have

(f0a)/h1 = (f0/h2)b.

Put f̂0 = f0a and factorize it analogously as f0 above, assuming (without loss of generality)
that the same colimit injection can be applied:

Ar
f̂

tt
f̂ ′xx

f̂0
��

Yj βj
// Xĵ

// Xk
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Thus the equality to be proved is, due to (16), the following square

B1

b
��

f̂ ′�h1 // Xĵ+1

��

B2

f ′�h2
��

Xĵ+1
// Xk

(18)

Since xĵk ·βj is monic by Remark 3.5, the equality f̂0 = f0a clearly implies f̂ = f ·a which

multiplied by βj yields f̂ ′ = f ′ · a. From (9) we thus get the square

A1

a

��

h1 // B1

f̂ ′�h1

��

A2

f ′

��
Xĵ

// Xĵ+1

This is an instance of (10) and (13). Let cf,g be the corresponding coinserter. Since the
map Xĵ+1 99K Xĵ+2 factorizes through it, we obtain the following inequality

B1

b
��

f̂ ′�h1 //

≤

Xĵ+1

��

B2

f ′�h2
��

Xĵ+1
// Xĵ+2

which multiplied by Xĵ+2 99K Xk yields ”almost” the desired square (18): indeed, the
opposite inequality (f0/h2) · b ≥ (f0a)/h1 is trivial.

(2) For every morphism p : X0
// P where P lies in LInj(H) we prove that the

morphism pk : Xk
// P in Lemma 3.2 is Kan-injective with respect to H. The proof is

entirely analogous to that of Part (2) of the proof of Theorem 6.10 of [4]. The proof that
the extension of the morphism p via X 99K Xk is unique in LInj(H) is entirely analogous
to Part (3) of the proof mentioned above.

3.7. Remark. (a) The ordinal k above depends on the choice of the object X. However,

given two objects X and X̃, we can find an ordinal k such that both of the reflection
chains for X and X̃ yield reflections in LInj(H) after k steps. This follows from the choice
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k = ϕ(λ) made in the above proof, since the same function ϕ can be used for both chains.
(This can be deduced from the fact that we can always use any function ϕ′ ≥ ϕ preserving
joins.)

(b) Denote by
R : X // LInj(H)

the reflector, i.e., the left adjoint of the embedding. And by ηX : X //RX the reflection
morphisms. We have just proved that for all objects X we have

ηX ≡ X 99K Xk

How is R characterized on morphisms u : X // X̃?

We prove below that
Ru = uk : Xk

// X̃k

for the following natural transformation ui : Xi
// X̃i (i ∈ Ord). Here X̃i denotes the

reflection chain for X̃ (and we use the obvious notation Q̃f , C̃f,g, etc.).

3.8. Notation. Let u : X //X̃ be a morphism of X. We define a natural transformation
ui : Xi

// X̃i (i ∈ Ord) of the reflection chains of X and X̃ by the following transfinite
induction:

Initial step: u0 = u.

Limit step: this is automatic from naturality.

Isolated step i 7→ i + 1 (i even): every pair (S, f) with respect to Xi defines a pair

(S, ui · f) with respect to X̃i. For the corresponding pushouts Qf and Q̃uif , see (6), we
get a unique factorization f ∗ as follows:

Ar

f

��

hr // Br

f
��

Br

ũif

��

Xi

ui
��

hr

// Qf

f∗

!!

X̃i
h̃r

// Q̃uif

(19)

Then (q̃uif · f ∗)h̄r = x̃i,i+1 · ui is independent of f . Therefore we can define ui+1 via the
following squares (for all (S, f)):

Qf

qf

��

f∗ // Q̃uif

q̃uif
��

Xi+1 ui+1

// X̃i+1

(20)
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Observe also that (uif)�hr is the composite of f�hr and ui+1:

Br

f

��
f�hr

//

Br

ũif ��

(uif)�hr

oo

Qf

qf

��

f∗ // Q̃uif

q̃uif
��

Xi+1 ui+1

// X̃i+1

(21)

Isolated step i+ 1 7→ i+ 2 (i even). Every triple (S, f, g) in the definition of Xi+2 yields

a triple (S, f̃ , g̃) with respect to X̃i+2 as follows:

f̃ ≡ Ar
f // Xi

ui // X̃i and g̃ ≡ Br
g // Xi+1

ui+1 // X̃i+1

The naturality of (uj) guarantees that every factorization (11) of f yields the correspond-
ing factorization

f̃ ≡ Ar
f ′ // Xj

uj // X̃j
// X̃i

of f̃ . And we prove below that this leads to a unique morphism df,g forming the following
square

Xi+1

ui+1

��

cf,g // Cf,g

df,g
��

X̃i+1 c̃
f̃ ,g̃

// C̃f̃ ,g̃

(22)

Analogously, every factorization (13) of f yields one for f̃ and we again obtain a square
(22). We define ui+2 via the following squares (for all (S, f, g)):

Cf,g

tf,g

��

df,g // C̃f,g

t̃
f̃ ,g̃
��

Xi+2 ui+2

// X̃i+2

(23)

3.9. Proposition. The above natural transformation ui : Xi
// X̃i (i ∈ Ord) is well

defined, and uk = Ru for every morphism u : X // X̃.

Proof. (1) Firstly, given an even ordinal i, the morphisms quif · f ∗ form a cocone of the
wide pushout (7) defining Xi 99K Xi+1, hence, in (21) the morphism ui+1 is unique. We
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need to verify the naturality square. For that observe that the following diagram

Xi

��

hr

!!

ui // X̃i

h̃r

||

��

Qf

qf
}}

f∗ // Q̃uif

q̃uif ""

Xi+1 ui+1

// X̃i+1

commutes.

(2) Next we verify the existence of df,g in (22). In case (11) this is equivalent to
proving that c̃f̃ ,g̃ ui+1 satisfies the following inequality:

Ar

f ′�hr
��

g // Xi+1

ui+1

��

Xj+1

��

≤ X̃i+1

c̃
f̃ ,g̃
��

Xi+1 ui+1

// X̃i+1 c̃
f̃ ,g̃

// C̃f̃ ,g̃

Indeed, this follows from the definition of c̃f̃ ,g̃ and (21). And in case (13) we need the
inequality

B1

b

��

g // Xi+1

ui+1

��

B

f ′�h2
��

≤ X̃i+1

c̃
f̃ ,g̃
��

Xi+1 ui+1

// X̃i+1 c̃
f̃ ,g̃

// C̃f̃ ,g̃

which also follows from the definition of c̃f̃ ,g̃ and (21). The morphisms

Cf,g
df,g // C̃f̃ ,g̃

t̃
f̃ ,g̃ // X̃i+2

form a cocone of the wide pushout (15) due to (22):

t̃f̃ ,g̃ · df,g · cf,g = tf̃ ,g̃ · c̃f̃ ,g̃ · ui+1 = x̃i+1,i+2 · ui+1.
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Thus (23) defines ui+2 uniquely. Moreover, the naturality square now follows:

Xi+1

��

cf,g

!!

ui+1 // X̃i+1

c̃
f̃ ,g̃

}}

��

Cf,g

tf,g}}

df,g // C̃f̃ ,g̃
t̃
f̃ ,g̃

!!

Xi+1 ui+2

// X̃i+2

(3) Consequently, for every morphism u : X // X̃ the ordinal k of Theorem 3.6 provides
a square

X

u
��

ηX // RX Xk

uk
��

X̃ η
X̃

// RX̃ X̃k

To prove uk = Ru, we only need to verify that uk is a morphism of LInj(H). That is, for
every square

A1

a

��

h1 // B1

b
��

A2 h2
// B2

in H and every morphism f0 : Ar //Xk the triangle

Br

(ukf0)/hr   

f0/hr // Xk

uk
��

X̃k

commutes. We use (17) for f0/hr, and we assume without loss of generality that the same
ordinal j can be used for (ukf0)/hr. Then the triangle above commutes due to (21):

Ar

(uĵf
′)�hr   

f ′�hr// Xĵ+1

uĵ+1

��

// Xk

uk
��

X̃ĵ+1
// X̃k
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3.10. Remark. In the following diagram (see (19))

Ar

f

��

hr // Br

f
��

Xi

ui
��

hr // Qf

f∗

��

X̃i
h̃r

// Q̃uif

the lower square is a pushout. This follows from the fact that both the composite and
the upper square are pushouts.

4. Kan-injectivity logic

We now introduce a sound logic for deriving a square S from a given class H of squares
of X. (Recall that “square” means a commutative one throughout.) Soundness means
that every object and every morphism Kan-injective with respect to members of H is also
Kan-injective with respect to squares derived from H. In the subsequent section we prove
that our logic is also complete if H is small and the base category is locally ranked.

Since for ordinary categories Kan-injectivity w.r.t. a morphism is just the usual or-
thogonality, it is not surprising that our logic is very close to the orthogonality logic
presented in [1]. Let us recall this logic here shortly. Firstly, every isomorphism s has the
property that all objects are orthogonal to s. Hence that logic has one axiom

AXIOM
s

for s an isomorphism.

The deduction rules are such that whenever an object is orthogonal to the assumptions
(above the horizontal line), then it is orthogonal also to the conclusion. We have the
following deduction rules:

COMPOSITION
h1 h2

h2 · h1

for morphisms
h1 // h2 //

PUSHOUT
h
k

for a pushout
h //

�� ��
k
//
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WIDE PUSHOUT
hi (i ∈ I)

k
for a wide pushout

hi //

k ��
h̄i
��

(i∈I)

COEQUALIZER
k
c

for a coequalizer
k

��
g2 //

g1
//

c //

and a morphism k with g1k = g2k

WEAK CANCELLATION
h3 · h2 h2 · h1

h1
for morphisms

h1 // h2 // h3 //

This logic is sound in every category X with colimits. And for small sets of morphisms H
it is complete, i.e., every morphism h such that H⊥ = (H ∪ {h})⊥ can be derived from
H (and the isomorphisms) provided that X is locally ranked, see [1]. This means that for
some factorization system (E,M)

(a) X is cocomplete and E-cowellpowered

and

(b) every object X has a rank, i.e., an infinite cardinal λ such that X(X,−) preserves
λ-directed colimits of M-monics.

The logic presented below deals with collections H of squares and the following concept:

4.1. Definition. A square S is said to be a Kan-injectivity consequence of a class H of
squares provided that every object and every morphism Kan-injective with respect to the
members of H is also Kan-injective with respect to S. Shortly:

LInj(H) = LInj(H ∪ {S}).

4.2. Example. If H = ∅, we are speaking about squares w.r.t. everything is Kan-
injective. Let us call a square

A1
h1 //

a

��

B1

b
��

A2 h2
// B2

(24)

split if h1 and h2 are left adjoint sections and the Beck-Chevalley condition holds. That
is, we have a commutative square

A1

a

��

B1

h∗1oo

b
��

A2 B2h∗2

oo

(25)



360 JIŘÍ ADÁMEK AND LURDES SOUSA

with h∗ihi = id and hih
∗
i ≤ id for i = 1, 2.

Each such square has the property that every object is Kan-injective with respect to
it. Indeed, given f : Ar //X for r = 1, 2 the formula for the Kan extension is easily seen
to be

f/hr = f · h∗r
from which this fact is obvious. Moreover, this formula implies also that every morphism
is Kan-injective w.r.t. S.

This explains why in the following deduction system the split squares can serve as
axioms.

The following logic has as formulas (commutative) squares in a given category. Recall
that every morphism h : A //B is represented by the square

S(h) =

A
h // B

A
h
// B

.

4.3. Definition. The Kan-injectivity Logic consists of one

AXIOM
S for split squares S

and the following deduction rules:

COMPOSITION
S1 , S2

S
for a composite S, horizontal or vertical,
of S1 and S2

PUSHOUT

h1 //

�� ��
h2
//

hr //
a
�� ��//

for a pushout of hr, r = 1 or 2, along an
arbitrary morphism a
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WIDE PUSHOUT

h //
bi (i∈I)
��

bih
//

h // bj //
b̄j��

h
//
k
//

for any wide pushout
h
�� bi //

k ��
b̄i
��

(i∈I)

and any j ∈ I

COINSERTER S , S0 , S
k′ //

c
��

k′
//
c
//

for a coinserter
k

��
g2 //

g1
//

c // ,

a morphism k with g1k ≤ g2k, and a
commutative diagram

S

k //

��

g1 //

��

S0

//

S

// c //

h0

OO OO
k′
OO

RIGHT

CANCELLATION

S , S(h) , S(k)
S0

for S =
//

S0��

h //

�� ��//
k
//

UPPER

CANCELLATION

Si , Si (i ∈ I)
S

for Si =

hi //
ai Si��

bi��//
a S�� b��

h
//

with (bi)i∈I collectively epic

By a deduction of a square S from a collection H of squares is, as usual, meant a
sequence of squares obtained by the application of the above rules where S is the last
square and the assumptions are (a) members of H, (b) axiom instances or (c) squares
already deduced.

4.4. Proposition. (Soundness of the Kan-Injectivity Logic) Let X have weighted colim-
its. Every square deduced from a class of squares is a Kan-injectivity consequence of that
class.

Proof. For the soundness of axiom see Example 4.2. Therefore, all we need to prove is
that for every deduction rule in Definition 4.3 the deduced square S is a Kan-injectivity
consequence of the assumptions of that rule. To do so we take an object X Kan-injective
with respect to each of the assumptions and verify that X is Kan-injective with respect
to S. By doing so we actually give a formula for the Kan extensions needed.
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We leave out the verification that also morphisms u : X // X ′ Kan-injective with
respect to all assumptions are Kan-injective with respect to S. Indeed, due to the formula
presented for objects this verification is in each case trivial.

(1) composition. (a) Horizontal composition:

A1

a

��

h // B1

b
��

h′ // C1

c

��
A2

f
��

k
// B2

f/k

}}

k′
// C3

(f/k)/k′
vv

X

Let X be Kan-injective with respect to both of the above squares. We prove for all
f : A2

//X the formula
f/(k′k) = (f/k)/k′.

Clearly,
[(f/k)/k′] k′k = f.

Given g with f ≤ gk′k, we conclude f/k ≤ gk′, hence (f/k)/k′ ≤ g. Analogously,

f/(h′h) = (f/h)/h′ for all f : A1
//X.

The formula [fa] /(h′h) = [f/(k′k)] · c easily follows.

(b) For a vertical composition:

A′′

a1

��

h′′ //

S1

B′′

b1

��
A′

a2

��

h′ //

S2

B′

b2

��
A

f
��

h
// B

f/h
��

X

we prove that (fa2a1)/h′′ = (f/h)b2b1 easily from (fa2)/h′ = (f/h)b2 and [(fa2)a1] /h′′ =
[(fa2)/h′] · b1.

(2) Pushout. (a) Suppose X is Kan-injective w.r.t.

h1 //

�� ��
h2
//

. Let r = 1 and f :
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A1
//X be given:

A1

a

��

h1 // B1

b

��
(fa)/h1

��

A1

f

''

h1

// B1
f/h1

  
X

For the square formed by f and (fa)/h1 we have a unique factorization, let us call it
f/h1. This is justified by the lower triangle above together with the implication

f ≤ gh1 implies f/h1 ≤ g

which we verify easily. The above pushout is conical so to prove f/h1 ≤ g we only
need a verification when precomposed by h1 (this is our assumption) and by b. To prove
(f/h1)b ≤ gb, that is, (fa)h1 ≤ gb, we just observe that our assumption implies fa ≤ gbh1

due to bh1 = h1a.
The required rule (f/h1)/b = (fa)/h1 is the right-hand triangle above.
(b) The proof for r = 2 is completely analogous.

(3) Wide pushout. Let X be Kan-injective w.r.t. each of the squares

h //
bi��

bih
//

. Given

a morphism f : A //X

A
h // B

bi // Bi

bi
��

A

f
��

h
// B

k
// P

X

we know that f/h and f/(bih) exist and fulfil

(f/(bih))bi = f/h.

Consequently, for the given wide pushout P there exists a unique morphism

f̂ : P //X with f̂ bi = f/(bih) for i ∈ I.

We prove
f/(kh) = f̂ .

Firstly
f̂kh = f̂ bibih = [f/(bih)] bih = f.
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Next if f ≤ gkh, we prove f̂ ≤ g. It suffices to observe that for all i we have f̂ bi ≤ gbi,
and use that our wide pushout is conical. Indeed, we have

f̂ bi = f/(bih) ≤ gbi

or, equivalently,
f ≤ gbibih

by assumption.
The desired formula

(f/(kh)) · bj = f/(bjh)

now follows from f̂ bj = f/(bjh).

(4) coinserter. We are given a diagram

A
k // B

g2 //

g1
// C

c // D

with g1k ≤ g2k and c = coins(g1, g2), and a commutative diagram

A

S

k //

a
��

B
g1=h′b//

b
��

C

A0

S0

h // B0

S

h′ // C

R

h0

OO

R

OO

R

k′

OO

Observe that k′ = h′hh0. If X is Kan-injective with respect to S, S0 and S, we prove
Kan-injectivity with respect to the following square:

R
h0 // A0

h // B0
h′ // C

c

��
R

h0 // A0
h // B0

h′ // C
c // D

Kan-injectivity with respect to S yields

f̂ = f/(h′hh0) with f̂h′ = f/(hh0) (26)

We prove below that
f̂ g1 ≤ f̂ g2 (27)

which means that f̂ factorizes through c = coins(g1, g2). This concludes the proof: the
factorization

f̃ : C //X with f̂ = f̃ c
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is the desired f/(ch′hh0). Indeed,

f̃ ch′hh0 = f̂(h′hh0) = f

and given t with f ≤ tch′hh0, then f̂ = f/(h′hh0) ≤ tc. Thus f̃ c ≤ tc which implies
f̃ ≤ t. The desired equality

[f/(ch′hh0)] · c = f/(h′hh0)

in other words
f̂ = f̃ c = f/(h′hh0)

is the definition of f̂ .
In order to prove (27) first recall that X is Kan-injective with respect to S0 and S,

hence, f/h0 and (f/h0)/h exist. From this we easily deduce

f/(hh0) = (f/h0)/h

and then (26) yields
f̂h′ = (f/h0)/h. (28)

By Kan-injectivity with respect to S this implies

f̂ g1 = f̂h′b = [(f/h0)/h] · b = [(f/h0) · a] /k. (29)

Next recall that coinserter also assumes g1k ≤ g2k, thus f̂ g1k ≤ f̂ g2k, and then, using
(29), we obtain (27).

(5) Right cancellation. Let X be Kan-injective with respect to the squares

S =

A′

a
��

k′ // B′

b
��

k // C ′

c
��

A
h′
// B

h
// C

, S(h) =

B
h // C

B
h
// C

and S(k) =

B′
k // C ′

B′
k
// C ′

.

Given a morphism f : A //X, put

f/h′ = [f/(hh′)] · h.

Then (f/h′) · h′ = f is clear. And if f ≤ gh′, then, recalling Kan-injectivity with respect
to S(h), we get g = (g/h)h, hence

f ≤ (g/h)(hh′)

which implies
f/(hh′) ≤ g/h

and yields
[f/(h′h)] · h ≤ g
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as desired. Analogously, (fa)/k′ = [(fa)/(kk′)] · k and this yields

(f/h′) · b = (fa)/k′

as required.

(6) Upper cancellation. Let X be Kan-injective w.r.t. the squares Si and com-
posites of Si with S (i ∈ I). Given a morphism f as follows

Ai

ai
��

hi //

Si

Bi

bi
��

A

a
��

k //

S

B

b
��

A′

f

��

h
// B′

f/h

��
X

we have f/h satisfying
(f/h)bbi = (faai)/hi (i ∈ I).

The desired equality
(fa)/k = (f/h) · b

follows, since (bi) is collectively epic, from

[(fa)/k] · bi = (faai)/hi by Kan-injectivity with respect to S
= (f/h)(bbi) by Kan-injectivity with respect to the composite.

This concludes the proof of soundness.

4.5. Lemma. The following deduction rules are consequences of the Kan-injectivity Logic:

S-RULE

h1 //

�� ��
h2
//

S(hr)

for r = 1 or 2

and

TRANSFER

//

�� ��
h
//

//

��
h
��

h
//
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Proof. S-rule is a special case of pushout: S(hr) is a pushout square. Transfer
follows by applying right cancellation as follows:

S(h) = h

��

h //

h
//

4.6. Lemma. The following deduction rule is a consequence of the Kan-Injectivity Logic:

COEQUALIZER

k //
a
��

b1��
h
//

k //
a
��

b2��
h
//

h //
c
��

ch
//

for c = coeq(b1, b2)

Proof. Form coinserters

k1 = coins(b1, b2) and k2 = coins(b2, b1).

Then we apply coinserter to the following diagrams

k //

a S��
bi
��

bi //

A h //

S0

B B

A A

h

OO

A

hS

OO (i = 1, 2)

where S0 follows by transfer and S by S-rule, and we deduce the squares below from
the above assumptions:

A h // B

k1
��

A
k1h
// K1

and

A h // B

k2
��

A
k2h
// K2

The coequalizer c is clearly a pushout of k1 and k2:

B
k1
~~

k2
  

c

��

K1

  

K2

~~
C
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By applying wide pushout with s = h we derive

h //

c

��
ch
//

4.7. Remark. Let Xi (i < λ) be an α-chain with connecting maps xij. We can construct
its colimit using wide pushouts as follows:

First form a wide pushout of all x0i

X0

p0 !!

x0i // Xi

pi
��

(i < α)

P

(30)

For all pairs i ≤ i′ < α form the following coequalizer

Xi

pi //
pi′xii′

// P
cii′ // Cii′ (31)

Finally, the wide pushout of all these coequalizers is formed

P

g
!!

cii′ // Cii′

cii′
��
K

(32)

Then K is the colimit of the given diagram with the following colimit cocone:

Xi
pi // P

g // K (i < α).

Indeed, since g merges the parallel pair in (31), all gpi form a cocone.
Let yi : Xi

// Y (i < α) be another cocone. Then the unique y : P // Y with
yi = ypi (i < α) clearly merges the parallel pair of (31). Hence, y factorizes through each
cii′ . Consequently, y = yg for a unique y : K // Y . This is the desired factorization:

yi = ypi = y(gpi) for i < α.

The uniqueness of this factorization is easy to verify.
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4.8. Lemma. (Transfinite Composition) Let (Xi)i∈α be an α-chain with connecting mor-
phisms Xi 99K Xj and a colimit ki : Xi

// K (i < α). The following deduction rule
follows, for every j < α, from the Kan-Injectivity Logic.

TRANSFINITE

COMPOSITION

X0
// Xj

��
X0

// Xk

(j ≤ k ≤ α)

X0
// Xj

kj
��

X0 k0
// K

Proof. We can assume ki = gpi for all i, see the above remark. By applying wide
pushout to the premisses of our rule we get, for every i < α, the deduction of the square

X0
// Xi

pi
��

X0 p0
// P

(33)

This makes it possible to apply coequalizer to (30) to derive

Xb
p0 // P

cii′

��
X0 cii′p0

// Cii′

(34)

for all i ≤ i′ < α. Next apply wide pushout to (34) with h = p0 to derive

X0
p0 // P

cii′ // Cii′

cii′
��

X0 p0
// P g

// K

.

For i = i′ = j we can put cjj = id in (31), thus g = cjj in (32). Hence we have derived
the following square

X0
p0 // P

g

��
X0 p0

// P g
// K

Vertical composition with (33) (for i = j) yields the desired square:
X0

// Xj

hj=gpj
��

X0 h=gp0
// K
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5. Proof of Completeness

Throughout this section H is a set of squares in a locally ranked order-enriched category
X. We prove that the Kan-Injectivity Logic is complete.

First a preliminary result. Recall the reflection chain from Section 3.

5.1. Lemma. For all ordinals m ≤ i the squares

X0
// Xm

��
X0

// Xi

(35)

can be deduced from H.

Proof. We proceed by transfinite induction in i.
Initial step. Use axiom on the split square

X0 X0

X0 X0

Limit step. This follows from transfinite composition, see Lemma 4.8.
For m = i, S(X0 99K Xi) is obtained by S-rule (Lemma 4.5).
Isolated step i 7→ i+ 1 (i even). Given a square

A1

a

��

h1 //

S

B1

b
��

A2 h2
// B2

in H and a morphism f : Ar //Xi (r = 1 or 2), we have the following deduction:

S
pushout

f

��

hr //

f

��
hr

//
(36)

transfer
(Lemma 4.5)

Xi Xi

hr��
Xi

hr

// Qf
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wide pushout

Xi
hr // Qf

qf
��

Xi
// Xi+1

(37)

transfer
(Lemma 4.5)

Xi Xi

��
Xi

// Xi+1

(38)

By induction hypothesis, (35) are given. Our task is to verify, for every m ≤ i + 1, the
corresponding square. Horizontal composition of (38) with (35) for m = i deduces

X0
// Xi

��
X0

// Xi+1

and vertical composition of (38) with (35), m ≤ i, yields the desired square

X0
// Xk

��
X0 Xi

��
X0

// Xi+1

(39)

For m = i+ 1, we deduce the square S(X0 99K Xi+1) by (39) via S-rule (Lemma 4.5).
Isolated step i+ 1 7→ i+ 2 (i even). We first observe that the square (9) of Definition

3.1 is deduced from H by composition applied to (36) and (37):

Ar

f

��

hr // Br

f
��

f�hr





Xi
hr

// Qf

qf

��
Xi

// Xi+1

(40)

For every coinserter (12) we can thus apply coinserter to k = hr and the following
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diagram

Ar
hr //

f ′ S
��

Br
//

f ′�hr
��

Xj
// Xj+1

// Xi+1

cf,g // Cf,g

X0

S0

OO

X0

S

OO

X0

OO

Indeed, the assumptions are S, by (40), S0, which is (35) for m = j and i = j + 1, and
S, which is (35) with m = j + 1 and i+ 1 in the place of i. Consequently, we deduce the
square

X0
// Xi+1

cf,g

��
X0

// Xi+1 cf,g
// Cf,g

(41)

For every coinserter (14), first observe that the square

S =

A1
h1 //

a S ′
��

B1

b
��

A2 h2
//

f ′

��

B2

f ′�h2
��

Xi
// Xi+1

is deduced from S ′ and (40) by composition. We apply coinserter to k = h1 and the
following diagram

A1
h1 //

S
��

B1
//

��

Xi+1

Xi
// Xi+1 Xi+1

cf,g // Cf,g

X0

S0

OO

X0

S

OO

X0

OO

where the second and last assumptions of coinserter are just instances of (35) which
are deduced from H by induction hypothesis. Thus we again deduce the square (41).

Apply wide pushout to (15) with h ≡ X0 99K Xi+1 to deduce all the squares

X0
// Xi+1

cf,g // Cf,g

tf,g
��

X0
// Xi+1

// Xi+2

(42)
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A vertical composition with (41) deduces

X0
// Xi+1

��
X0

// Xi+2

which vertically composed with (39) yields

X0
// Xm

��
for all m ≤ i+ 1.

X0
// Xi+2

The remaining case m = i+ 2 is then deduced by S-rule.

5.2. Theorem. (Kan-Injectivity Logic is Complete and Sound) A square is a Kan-
injectivity consequence of a set of squares iff it can be deduced from that set.

Proof. For soundness see Proposition 4.4. Let H be a set of squares and let the following
square

S ≡
A1

a

��

h1 // B1

b
��

A2 h2
// B2

be a Kan-injectivity consequence of H. We find a deduction of S from H.
Let R : X // LInj(H) denote the reflector, RX = Xk and Ru = uk (see Proposition

3.9).
(1) We first use the fact that RA1 and RA2 are Kan-injective with respect to S, thus,

ηA1/h1 and ηA2/h2 exist, and we prove that they form a square as follows:

B1

b
��

ηA1
/h1// RA1

Ra
��

B2
ηA2

/h2

// RA2

Indeed, the morphism Ra is Kan-injective with respect to h1, thus

Ra · (ηA1/h1) = (Ra · ηA1)/h1 = (ηA2 · a)/h1

and, since RA2 is Kan-injective with respect to S, we have

(ηA2 · a)/h1 = (ηA2/h2) · b.
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(2) The morphism Rh1 : RA1
// RB1 is a left adjoint section. (This was proved in

[6] but we include the short proof for he convenience of the reader.) Indeed, since RA1

is Kan-injective with respect to h1 (being Kan-injective with respect to S), using the
universal property of ηA1 , we have ηA1/h1 = h∗1 · ηB1

A1

ηA1

��

h1 // B1

ηA1
/h1

||

ηB1

��
RA1

Rh1 //
RB1

h∗1

oo

for a unique h∗1 in LInj(H). This is the desired morphism with

h∗1 ·Rh1 = id and Rh1 · h∗1 ≤ id.

Indeed, both composites lie in LInj(H), thus, it is sufficient to verify (a) h∗1 ·Rh1 ·ηA1 = ηA1

- see the above diagram, and (b) Rh1 · h∗1 · ηB1 ≤ ηB1 . We use the trivial inequality
(ηB1 · h1)/h1 ≤ ηB1 and the above diagram to see that (b) holds.

(3) The square

R(S) ≡
RA1

Ra
��

Rh1 // RB1

Rb
��

RA2 h2
// RB2

splits. (This is Lemma 3.4 in [16]; here we present a different proof.) Indeed, we have
h∗1 : RB1

// RA1 in (2) and, analogously, h∗2 : RB2
// RA2. It remains to verify the

following square

RB1

Rb
��

h∗1 // RA1

Ra
��

RB2 h∗2

// RA2

It lies in LInj(H), thus, it is sufficient to prove that it commutes when precomposed
by ηB1 :

RB1

Rb

��

h∗1 // RA1

Ra

��

B1

ηB1

bb

b
��

ηA1
/h1

<<

B2ηB2

||

ηA2
/h2

""
RB2 h∗2

// RA2
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Indeed, use the square in (1) above.
(4) In part (5) we are going to prove that every naturality square of η, in particular

A1

a

��

ηA1 // RA1

Ra
��

A2 ηA2

// RA2

can be deduced from H. Due to axiom, the square R(S) of part (3) is also deducible,
and their horizontal composite yields

A1

a

��

ηA1 // RA1
Rh1 // RB1

Rb
��

A2 ηA2

// RA2 Rh2
// RB2

which is the same square as the following composite

A1

a

��

h1 //

S

B1

b
��

ηB1 // RB1

Rb
��

A2 h2
// B2 ηB2

// RB2

Thus, S is deduced via right cancellation, since the right-hand square is deducible
(being, again, a naturality square of η). This concludes the proof.

(5) To prove that naturality squares of η are deducible from H, we consider the squares

X

u
��

// Xi

ui
��

X̃ // X̃i

(43)

for all ordinals i and prove their deducibility by transfinite induction. By Proposition 3.9
the case i = k is the desired square.

Initial step: the square
X

u
��

X

u
��

X̃ X̃

is split, we can apply axiom .
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Limit step: Given a limit ordinal i, such that (43) is deducible for every m < i in place
of i, compose (43) vertically with (35) to get a deducible (outward) square as follows:

X0
// Xm

��
X

u
��

// Xi

ui
��

X̃ // X̃i

The upper square is deducible by Lemma 5.1, and all Xm
// Xi are collectively epic,

hence, the desired lower square is deduced by upper cancellation .
Isolated step i 7→ i+ 1 (i even). We are going to derive the square

Xi

ui
��

// Xi+1

ui+1

��
X̃i

// Xi+1

and compose it horizontally with the square assumed by induction hypothesis.
For that take all pairs (S, f) defining the step i 7→ i + 1. Then we apply upper

cancellation to the following diagram

Xi
hr // Qf

qf

��
Xi

ui
��

// Xi+1

ui+1

��

X̃i
// X̃i+1

The upper squares are deduced, see (37), and all qf are collectively epic, thus, we only
need a deduction of the composite square. This is, by the definition of ui+1 in Remark
3.7 the square

Xi

ui

��

hr // Qf

f∗

��

Q̃uif

q̃uif
��

X̃i
// X̃i+1

(44)
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Now in order to derive (44), recall the pushout

Xi

ui S0
��

hr // Q′f

f∗

��

X̃i
h̃r

// Q̃uif

from Notation 3.8 and compose it vertically with the square

X̃i
h̃r // Q̃uif

q̃uif
��

X̃i
// X̃i+1

The former square can be deduced from (36) via pushout, for the latter one see (37).
Thus (44) is deducible.

Isolated step i+ 1 7→ i+ 2 (i even). Using (42), we can again apply upper cancel-
lation :

X // Xi+1

cf,g // Cf,g

cf,g
��

X

u
��

// Xi+2

ui+2

��

X̃ // X̃i+2

(45)

We only need to deduce the composite square.
The following composite

X

u
��

// Xi+1

ui+1

��

X̃ // X̃i+1

��

X̃ // X̃i+2

is deducible due to Lemma 5.1, and the right-hand vertical morphism is

Xi+1

cf,g // Cf,g
df,g // C̃f̃ ,g̃

t̃f̃ ,g̃ // X̃i+2
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by (22). Thus we have deduced the following composite

X // Xi+1

cf,g

��
X

u

��

// Xi+1 cf,g
// Cfg

df,g
��

C̃f̃ ,g̃

t̃f̃ ,g̃
��

X̃ // X̃i+2

The upper square is (41). Moreover, cf,g is an epimorphism (being a coinserter). Thus
upper cancellation yields the deduction of the lower square. This is the desired
composite square (45): indeed, see (23).

References
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