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LINEAR STRUCTURES ON LOCALES

PEDRO RESENDE AND JOÃO PAULO SANTOS

Abstract. We define a notion of morphism for quotient vector bundles that yields
both a category QVBun and a contravariant global sections functor C : QVBunop → Vect
whose restriction to trivial vector bundles with fiber F coincides with the contravariant
functor Topop → Vect of F -valued continuous functions. Based on this we obtain a linear
extension of the adjunction between the categories of topological spaces and locales:
(i) a linearized topological space is a spectral vector bundle, by which is meant a mildly
restricted type of quotient vector bundle; (ii) a linearized locale is a locale 4 equipped
with both a topological vector space A and a 4-valued support map for the elements of
A satisfying a continuity condition relative to the spectrum of 4 and the lower Vietoris
topology on SubA; (iii) we obtain an adjunction between the full subcategory of spectral
vector bundles QVBunΣ and the category of linearized locales LinLoc, which restricts to
an equivalence of categories between sober spectral vector bundles and spatial linearized
locales. The spectral vector bundles are classified by a finer topology on SubA, called
the open support topology, but there is no notion of universal spectral vector bundle for
an arbitrary topological vector space A.

1. Introduction

A quotient vector bundle [22] over a topological space X is a triple (π,A, q) that consists
of a fiberwise linear quotient of a trivial complex vector bundle π2 : A × X → X by an
open map q, where A can be any complex topological vector space:

A×X

π2
##

q // E

π~~
X

The continuous and open map π : E → X is then a topological vector bundle of a very
general kind, which in particular does not have to be locally trivial and can have variable
or infinite rank.

Such a bundle has enough sections in the sense that for any e ∈ E there is a continuous
section s : X → E such that e = s(π(e)); for each e = q(a, π(e)) just take s to be the
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section â defined by â(x) = q(a, x) for all x ∈ X. As an example, any Banach bundle
π : E → X on a locally compact Hausdorff space X can be made a quotient vector
bundle by taking A to be the space C0(π) of continuous sections that vanish at infinity,
with the supremum norm topology, where q : C0(X) × X → E is the evaluation map
q(s, x) = eval(s, x) = s(x).

Quotient vector bundles are classified by continuous maps κ : X → SubA, where SubA
is the set of all the linear subspaces of A topologized with the lower Vietoris topology
[16, 26] (with subclasses of bundles being classified by finer topologies such as the Fell
topology). We shall refer to SubA as the spectrum of the topological vector space A. An
aspect of SubA has been ignored in [22], namely its complete lattice structure, which has
an important role to play. In order to introduce this idea, for each continuous section s
of π let us write supp◦ s to denote the interior of the support of s,

supp◦ s = int{x ∈ X | s(x) 6= 0} ,

and let us consider two maps,

σ : SubA→ Ω(X) ,

γ : Ω(X)→ SubA ,

respectively called support map and restriction map, where Ω(X) is the topology of X.
These maps are defined, for all V ∈ SubA and U ∈ Ω(X), by1

σ(V ) =
⋃
a∈V

supp◦ â ;

γ(U) = span{a ∈ A | supp◦ â ⊂ U} .

The topology Ω(X) is another complete lattice under inclusion of open sets, and it is clear
that we have an equivalence

σ(V ) ⊂ U ⇐⇒ V ⊂ γ(U)

for all V ∈ SubA and U ∈ Ω(X). This means that the support map is left adjoint to
the restriction map, and it immediately follows that they preserve suprema and infima,
respectively:

σ
(
span

⋃
α

Vα
)

=
⋃
α

σ(Vα) ,

γ
(
int
⋂
α

Uα
)

=
⋂
α

γ(Uα) .

We shall regard the triple (A, σ, γ) as a structure on the locale Ω(X) in its own right,
and, accordingly, we shall define the notion of linearized locale A = (4, A, σ, γ) to consist

1span added 2016-12-07
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of a locale 4 together with a topological vector space A and a map σ : SubA → 4
with right adjoint γ, such that the restriction of γ to the prime spectrum Σ(4) of 4
is a continuous map into SubA. The latter means that the restricted map is the kernel
map of a quotient vector bundle Σ(A), which we regard as a linear generalization of the
spectrum of the locale 4, and which, accordingly, we refer to as the spectrum of A (see [1]
for analogous terminology whereby a line bundle is the spectrum of a C*-category). The
spectrum Σ(A) will be seen to be a quotient vector bundle of a special kind, in particular
such that for all a ∈ A the set

{p ∈ Σ(4) | â(p) 6= 0}

is open and thus coincides with the open support supp◦ â.
We shall see that from each quotient vector bundle A = (π : E → X,A, q) we obtain

a linearized locale Ω(A) = (Ω(X), A, σ, γ) as described above provided that the above
openness condition holds with 4 = Ω(X) for all a ∈ A, together with an additional
continuity condition related to the spectrum of the locale Ω(X): the restriction of γ to
the prime spectrum Σ Ω(X) must be continuous. Hence, such quotient vector bundles
will be termed spectral (quotient) vector bundles.

We shall also compare spectral vector bundles and linearized locales by looking at
Σ Ω(A) and Ω Σ(A) for each spectral vector bundle A and each linearized locale A. In
some cases we may obtain A ∼= Σ Ω(A) and A ∼= Ω Σ(A) according to obvious notions
of isomorphism, but this leaves out many examples which, despite not yielding such
isomorphisms, nevertheless ought to be comparable. Hence, in order to obtain a more
satisfactory understanding of how quotient vector bundles and linearized locales relate,
we shall define appropriate notions of morphism for both. In particular, our morphisms
of bundles will differ from typical morphisms of vector bundles, which usually consist of
pairs of maps (f0, f1) that yield commutative squares

F

ρ
��

f1 // E

π
��

Y
f0

// X

but do not behave well with respect to global sections unless restrictions are imposed,
such as local triviality of the bundles and requiring f1 to be fiberwise a homeomorphism
(as in [25] for maps of fiber bundles). The morphisms in this paper subsume the latter
and will still be such that a morphism f : ρ → π yields a contravariant linear map f ∗ :
C(π)→ C(ρ) on the spaces of global sections that in the case of trivial line bundles agrees
with the contravariant Gelfand duality functor. This property enables us to obtain an
adjunction between the category of spectral vector bundles and that of linearized locales,
where Ω is left adjoint to Σ, which extends the classical adjunction between topological
spaces and locales whereby the topology functor Ω is left adjoint to the spectrum functor
Σ [9]. Similarly to classical locale theory, we shall find corresponding notions of spatial
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linearized locale and of sober spectral vector bundles, and conclude that their respective
categories are equivalent.

At the end of the paper we also show that the spectral vector bundles on suitable
topological spaces X (for instance sober spaces) are classified by the continuous maps κ :
X → Sub◦A, where Sub◦A is the set SubA with a topology herein called the open support
topology, which sits between the lower Vietoris and the Fell topologies. However, for other
spaces X the quotient vector bundles that correspond to continuous maps κ : X → Sub◦A
may fail to be spectral. In particular, in general there is no notion of universal spectral
vector bundle for an arbitrary topological vector space A. In order to obtain some of
these results we study the prime open sets of various topologies on SubA, in particular
yielding a result of interest in its own right, namely that if A is a locally convex space
then MaxA, the space of closed linear subspaces of A with the lower Vietoris topology, is
a sober space.

Linearized locales are “quotient vector bundles on locales”. We note that this is not
a full-fledged localic notion, since it is formulated in terms of topological vector spaces.
It is in principle possible to give a fully localic definition by considering localic vector
spaces instead, and subsequently defining SubA or MaxA to be a localic sup-lattice as
in [23]. However, we are not following such an approach, at least for now, because the
motivation for our project stems from questions related to C*-algebras that we want to
address without transforming them into questions about localic C*-algebras. Moreover,
this choice will enable us to take advantage of quantale theory, without first having to
develop a theory of localic quantales, when studying linearized locales (Ω(G), A, σ, γ) such
that G is an open or étale groupoid and A is a C*-algebra, in which case both MaxA and
Ω(G) are quantales [14, 15, 11, 21, 18].

In a subsequent paper it will be seen that such linearized locales arise in connection
with C*-algebras of groupoids [17]. In the case of an étale groupoid G the space of units
G0 is open, and we obtain a pair (A,B) consisting of the reduced C*-algebra A = C∗r (G)
and a sub-C*-algebra B = γ(G0). More generally, this remains true for the reduced C*-
algebra C∗r (E) obtained from sections of a Fell bundle E on G in the sense of [12]. For
Fell line bundles on suitable groupoids these sub-C*-algebras are commutative and have
been characterized precisely by Renault [20] (see also [13, 19, 6]). A partial generalization
to noncommutative subalgebras is due to Exel [5] and it is formulated in terms of inverse
semigroup Fell bundles [24], whose relation to groupoid Fell bundles has been studied in
[3] in the semiabelian case, and, more recently, in [4]. The motivation for the present
paper stems from the above program, in an attempt to provide general constructions via
which the limitation to étale groupoids can be circumvented at least partially.

We thank the referee for his careful comments, which helped improve the presentation
of this paper.
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2. Preliminaries on vector bundles

We recall basic definitions from [22] in order to fix terminology and notation. Throughout
this paper all the vector spaces are over C, and topological vector spaces satisfy no specific
topological properties unless otherwise stated. Topological vector spaces satisfying the T1

axiom are necessarily Hausdorff (in fact completely regular), and we refer to them as
Hausdorff vector spaces. Such a space is finite dimensional if and only if it is locally
compact, in which case it necessarily has the Euclidean topology. We denote by Vect
(resp. TopVect) the category of vector spaces (resp. topological vector spaces) and linear
maps (resp. continuous linear maps). Given a subset S ⊂ A of a vector space A we denote
the linear span of S by spanS, and if S is a finite set {a1, . . . , ak} we also write 〈a1, . . . , ak〉
instead of span{a1, . . . , ak}.

2.1. Linear bundles.

Basic facts and definitions. Let π : E → X be a continuous map between topological
spaces E and X. For each x ∈ X we refer to the set π−1({x}) as the fiber over x and
denote it by Ex.

By a linear structure on π will be meant a structure of vector space on each fiber
Ex such that the operations of scalar multiplication and vector addition are globally
continuous when regarded as maps C×E → E and E ×X E → E, respectively, and such
that the zero section of π, which sends each x ∈ X to 0x (the zero of Ex) is continuous.
Hence, π equipped with a linear structure is a very loose form of vector bundle, which we
refer to as a linear bundle, the map π itself being called its projection.

The set C(π) of continuous sections of π is a vector space with the pointwise linear
structure. The bundle is said to have enough sections if the evaluation map eval : C(π)×
X → E is surjective.

If A is a topological vector space, the projection π2 : A × X → X will be called a
trivial linear bundle. Its space of continuous sections, C(π2), is linearly isomorphic to the
vector space of continuous functions C(X;A).

Pullbacks. Let π : E → X be a linear bundle, and let

f : Y → X

be a continuous map. The pullback of π along f defines a linear bundle

f ∗(π) = f ∗(E)→ Y ,

where f ∗(E) will usually be taken concretely to be the fibered product

E ×X Y = {(e, y) ∈ E × Y | π(e) = f(y)} ,
and f ∗(π) = π2. The pullback along f induces contravariantly a linear map on continuous
sections,

s 7→ f ∗(s) : C(π)→ C(π2) ,

by, for all s ∈ C(π) and y ∈ Y ,

f ∗(s)(y) = (s(f(y)), y) .
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Morphisms over fixed base space. The category LinBun(X) of linear bundles over
X has as morphisms

(ρ : F → X)
f→ (π : E → X)

the continuous and fiberwise linear maps f : F → E that commute with the projections:

F

ρ   

f // E

π~~
X

Such a morphism induces a linear map s 7→ f∗(s) : C(ρ) → C(π) by postcomposition:
f∗(s) = f ◦ s.

2.2. Quotient vector bundles.

Basic definition and facts. By a quotient vector bundle is meant a triple A = (π,A, q)
where π : E → X is a linear bundle, A is a topological vector space, and q is a continuous
open surjection that defines a morphism in LinBun(X):

A×X q //

π2
##

E

π~~
X

For each x ∈ X we denote by qx : A→ Ex the continuous map defined for all a ∈ A by

qx(a) = q(a, x) .

This is a continuous open linear surjection, and thus every fiber Ex is a quotient of A
as a topological vector space. Moreover, the quotient topology on Ex coincides with the
relative topology of Ex as a subspace of E.

Sections. For each a ∈ A we have a continuous section of π,

â : X → E ,

which is defined for all x ∈ X by

â(x) = q(a, x) .

Every e ∈ E is of this form, and thus quotient vector bundles have enough sections. The

map (̂−) : A → C(π) thus defined is linear, and therefore its image Â with the quotient
topology is a quotient topological vector space of A. The kernel of the quotient map is
the radical of A:

radA =
⋂
x∈X

ker qx .
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Pullbacks. If Y is a topological space and f : Y → X is a continuous map, the pullback
f ∗(A) is the quotient vector bundle (f ∗(π), A, f ∗(q)) such that for all a ∈ A and y ∈ Y
the continuous open surjection f ∗(q) : A× Y → E ×X Y is defined by

f ∗(q)(a, y) = (q(a, f(y)), y) .

Equivalently, f ∗(q) is the unique map that makes the following diagram commute:

A× Y
f∗(q)

&&

id×f //

π2

""

A×X
q

$$
E ×X Y

f∗(π)
��

π1
// E

π
��

Y
f

// X

Classifying spaces and universal bundles. We denote by SubA the collection of all
the linear subspaces of A topologized with the lower Vietoris topology [16, 26, 22], which
is generated by the sub basis whose open sets are, for each open set U ⊂ A,

Ũ = {P ∈ SubA | P ∩ U 6= ∅} .

We refer to SubA as the spectrum of A. The kernel map of A is the continuous map

κ : X → SubA

which is defined for all x ∈ X by κ(x) = ker qx.
Quotient vector bundles are classified by their kernel maps: from any continuous map

κ : X → SubA

we obtain a quotient vector bundle (π : E → X,A, q) such that E is the quotient of A×X
by the equivalence relation ∼ which is defined for all x, y ∈ X and a, b ∈ A by

(a, x) ∼ (b, y) ⇐⇒ (x = y and a− b ∈ κ(x)) .

Then q : A ×X → E is the quotient map and π is the factorization of π2 : A ×X → X
through q. The kernel map of this bundle is κ.

If κ : X → SubA is the kernel map of a quotient vector bundle (π : E → X,A, q) the
construction just described yields a quotient vector bundle (π′ : E ′ → X,A, q′) such that
π is isomorphic to π′ in LinBun(X) via an isomorphism i : E → E ′ that also commutes
with q and q′.

Finally we refer to the bundle obtained in this way from the identity map ι : SubA→
SubA as the universal quotient vector bundle for A, and denote it by UA = (πA : EA→
SubA,A, qA). Every quotient vector bundle for A arises, up to an isomorphism as just
described, as the pullback of UA along the kernel map of the bundle.
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3. Categories of vector bundles

In this section we study morphisms, over variable base space, of linear bundles and of
quotient vector bundles, keeping in mind the general aim of obtaining a contravariant
global sections functor.

3.1. Contravariant morphisms of linear bundles.

Covariant morphisms. Let ρ : F → Y and π : E → X be linear bundles. There is
more than one way in which to define a morphism from ρ to π. An obvious choice is to
let a morphism consist of a pair (f0, f1) of continuous maps f0 : Y → X and f1 : F → E
such that the following diagram commutes and f1 is fiberwise linear:

F
f1 //

ρ
��

E

π
��

Y
f0

// X

We call such a morphism covariant, and composition is defined by (g0, g1) ◦ (f0, f1) =
(g0 ◦ f0, g1 ◦ f1).

The sections of the bundles do not behave well with respect to such morphisms unless
further conditions are imposed, as in the following example:

3.2. Example. Let ρ : F → Y and π : E → X be locally trivial vector bundles with
the same constant finite rank, and let (f0, f1) : ρ → π be a covariant morphism such
that f1 is fiberwise a homeomorphism. Then a pullback map on sections C(π)→ C(ρ) is
obtained as in general for maps of coordinate bundles (cf. [25, Lem. 2.11]) by assigning to
each s ∈ C(π) the section s′ ∈ C(ρ) such that s′(y) = f−1

y (s(f0(y))) for all y ∈ Y , where
fy : Ey → Ef0(y) is the restriction of f1 to Ey.

In general a pushforward map does not exist:

3.3. Example. Let Y = C2 \ {(0, 0)} and let ρ = π1 : F = Y ×C→ Y be the trivial line
bundle over Y . Then C \ {0} acts on F by multiplication, λ · (z1, z2, z3) = (λz1, λz2, λz3),
and similarly on Y . Denoting the quotients by these actions by

f1 : F → CP 2 \ {[0, 0, 1]}
f0 : Y → CP 1

we obtain a covariant morphism (f0, f1) from ρ to the Hopf line bundle

π : CP 2 \ {[0, 0, 1]} → CP 1 .

The latter is nontrivial line bundle, so every section of π has at least one zero. Since
f1 is fiberwise a homeomorphism and ρ has nowhere vanishing sections, there can be no
induced map from the sections of ρ to the sections of π.
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A way to understand the relation of covariant morphisms to sections is to note that
f1 determines a unique continuous map f ′1 that makes the following diagram commute:

F
f1

((
ρ

  

f ′1
$$

E ×X Y
π2
��

π1
// E

π
��

Y
f0

// X

The map f ′1 is a morphism in LinBun(Y ) and, conversely, any such f ′1 defines a map
f1 such that (f0, f1) is a covariant morphism. Hence, (f0, f1) could have been defined
equivalently to be the pair (f0, f

′
1). The map f ′1 yields a linear map (f ′1)∗ : C(ρ)→ C(π2)

on sections, whereas the pullback gives us a linear map f ∗0 : C(π)→ C(π2). So in general
we do not have a map relating C(ρ) and C(π). But this discussion shows that a natural
way of obtaining a pullback of sections along f0 is, instead of placing strong constraints
on the bundles and on f1 as in Example 3.2, simply to reverse the direction of f ′1, as we
see next.

Contravariant morphisms. Let ρ : F → Y and π : E → X be linear bundles. By a
contravariant morphism f : ρ → π is meant a pair of continuous maps (f[, f

]) such that
f ] : f ∗[ (π)→ ρ is a morphism in LinBun(Y ), as follows:

F

ρ

��

E ×X Y
f]oo

π2

vv

π1 // E

π
��

Y
f[

// X

So fiberwise f ] induces linear maps f ]y : Ef[(y) → Fy for each y ∈ Y .

3.4. Example. If X and Y are smooth manifolds and E = T ∗X, F = T ∗Y are the
(complexified) cotangent bundles, any smooth map f[ : Y → X induces a contravariant
morphism (f[, f

]) with f ] = f ∗[ .

In order to compose contravariant morphisms one should think of the pair (f ], π1)
as a “binary relation” between F and E (a span), and composition should be defined
accordingly as composition of spans by pullback:

}} !!

(f◦g)]

��

g]

~~

π1

!!

f]

}}

π1
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Although composition of spans is in general defined only up to isomorphism, there is a
definition for contravariant morphisms which is associative “on the nose”. Let σ : G→ Z,
ρ : F → Y , and π : E → X be linear bundles, with contravariant morphisms as follows:

σ
g // ρ

f // π

Then the composition f ◦ g is the pair (f[ ◦ g[, (f ◦ g)]), where (f ◦ g)] : E ×X Z → G is
defined, for all e ∈ E and z ∈ Z, by

(f ◦ g)](e, z) = g](f ](e, g[(z)), z) . (3.1)

We note that this definition depends on all the four continuous maps involved. This is
explicit in (3.1) for g[, g

], and f ], and the dependence on f[ is via the definition of the
pullback E ×X Z:

E ×X Z
π1 //

π2
��

E

π
��

Z
f[◦g[

// X

It is now straightforward to verify that the composition is associative and that the fol-
lowing identity morphism on π : E → X is a neutral element for composition both on the
right and on the left:

idπ = (idX , π1 : E ×X X
∼=→ E) .

We denote the resulting category by LinBun. A morphism f is an isomorphism in this
category if and only if both f[ and f ] are homeomorphisms. Note that there is always a
contravariant morphism (f, id) : f ∗(π)→ π.

We remark that for each topological vector space A there is a faithful functor BA :
Top→ LinBun that to each topological space X assigns the trivial bundle

BA(X) = π2 : A×X → X

and to each continuous map f : Y → X assigns the contravariant morphism

BA(f) = (f, (A×X)×X Y
∼=→ A× Y ) .

Functoriality of sections. Let ρ : F → Y and π : E → X be linear bundles, and
f : ρ→ π a contravariant morphism. The composition

f̂ := f ]∗ ◦ f ∗[ : C(π)→ C(ρ)

is a linear map, and thus we have a contravariant functor

C : LinBunop → Vect
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defined on linear bundles π and contravariant morphisms f by

π 7→ C(π) ,

f 7→ f̂ .

This generalizes, for each topological vector space A, the contravariant functor

C(−;A) : Topop → Vect

in the sense that C(−;A) = C ◦BA.

3.5. Example. Let ρ : F → Y and π : E → X be locally trivial vector bundles with the
same constant finite rank, and let (f0, f1) : ρ → π be a covariant morphism such that f1

is fiberwise a homeomorphism. Then a contravariant morphism f = (f[, f
]) is obtained

by setting f[ = f0 and f ](e, y) = f−1
y (e) for all (e, y) ∈ E ×X Y , where fy : Ey → Ef[(y) is

the restriction of f1 to Ey, and the continuity of f ] follows from local triviality. The map

f̂ is the same as the maps of sections in Example 3.2.

We note that if f : ρ → π is a morphism in LinBun and π has enough sections then
f ] is uniquely determined by f[ and f̂ , since for all (e, y) ∈ E ×X Y we have e = s(f[(y))
for some s ∈ C(π) and

f ](e, y) = f ](s(f[(y)), y) = f ]∗(f
∗
[ (s))(y) = f̂(s)(y) . (3.2)

A similar phenomenon occurs in sheaf theory, where the notion of cohomomorphism for
sheaves of vector spaces is equivalent to that of contravariant morphism between étale
linear bundles, as we show in the following example.

3.6. Example. Let the linear bundles ρ : F → Y and π : E → X be local homeomor-
phisms, and let f : ρ → π be a contravariant morphism. The map on sections f̂ applies
equally to local sections, so for each continuous local section s : U → E of π we obtain a
continuous local section f̂(s) : f−1

[ (U) → F of ρ. This property means that f[ together
with the induced maps on the fibers f ]y : Ef[(y) → Fy is a cohomomorphism of sheaves [2].
Conversely, from any cohomomorphism (f[, (f

]
y)y∈Y ) with linear fiber maps f ]y we obtain

a contravariant morphism such that f ] is given by f ](e, y) = f ]y(e) and is easily seen to
be continuous due to the existence of enough continuous local sections and the fact that
for a local homeomorphism the local sections are open maps: if U ⊂ F is open we have,
writing s generically for a local section of π,

(f ])−1(U) = {(e, y) ∈ E ×X Y | f ]y(e) ∈ U}

=
⋃
s

{(s(f[(y)), y) | f ]y(s(f[(y))) ∈ U}

=
⋃
s

{f ∗(s)(y) | f̂(s)(y) ∈ U}

=
⋃
s

f ∗(s)(f̂(s)−1(U)) ,

and this is open because f̂(s) is continuous by hypothesis.
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3.7. The category of quotient vector bundles.

Contravariant morphisms revisited. Let us look again at contravariant morphisms,
now for linear bundles which are equipped with the additional structure of a quotient
vector bundle. The notion of morphism which we are about to define can be regarded, in
our context, as the natural adaptation of the notion of cohomomorphism (cf. Example 3.6).

Let A = (π : E → X,A, q) and B = (ρ : F → Y,B, r) be quotient vector bundles.
By a morphism f : B → A will be meant a contravariant morphism of linear bundles
(f[, f

]) : ρ→ π whose induced map on sections f̂ : C(π)→ C(ρ) satisfies

f̂(Â) ⊂ B̂ , (3.3)

together with a continuous linear map f ∗ : A → B such that the following diagram
commutes:

B

(̂−) ����

A

(̂−)����

f∗oo

B̂ Â
f̂

oo

(3.4)

In particular, this implies the following condition on radicals:

f ∗(radA) ⊂ radB . (3.5)

These morphisms form a category QVBun, which we refer to as the category of quotient
vector bundles :

• The composition f ◦ g is the pair consisting of the contravariant morphism (f[, f
]) ◦

(g[, g
]) together with the continuous linear map g∗ ◦ f ∗;

• The identity morphism on A = (π : A → X,A, q) is the identity contravariant
morphism on π together with idA.

We note that a morphism f in this category is an isomorphism if and only if its three
components are homeomorphisms.

3.8. Lemma. Let A = (π : E → X,A, q) and B = (ρ : F → Y,B, r) be quotient vector
bundles. If f : B → A is a morphism in QVBun then f ] is uniquely defined for all a ∈ A
and y ∈ Y by

f ](q(a, f[(y)) = r(f ∗(a), y) .

Proof. For all (e, y) ∈ E ×X Y we have e = â(f[(y)) for some a ∈ A and thus, by (3.2)
and (3.4),

f ](q(a, f[(y)) = f ](e, y) = f̂(â)(y) = f̂ ∗(a)(y) = r(f ∗(a), y) .
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There is a similar result when the map B → B̂ is a homeomorphism: then the map
f ∗ is completely determined by the contravariant morphism (f[, f

]). In this case we can
characterize the morphisms of quotient vector bundles as the contravariant morphisms of
linear bundles which satisfy (3.3).

3.9. Example. As mentioned in section 1, from a Banach bundle over a locally compact
Hausdorff space we can obtain a quotient vector bundle by taking A to be the space C0(π)
of sections which vanish at infinity with the supremum norm topology. In that case we
have A ∼= Â. Given a contravariant morphism of Banach bundles (f[, f

]) : ρ → π, if f[
is proper then f̂

(
C0(π)

)
⊂ C0(ρ), so we obtain a morphism of the associated quotient

vector bundles. This applies in particular to Example 3.4 whenever f[ is proper.

Equivalent definition of morphism. From Lemma 3.8 it follows that if f = (f[, f
], f ∗)

is a morphism of quotient vector bundles then the following condition, relating f[ and f ∗,
must hold for all a ∈ A and y ∈ Y :

q(a, f[(y)) = 0 =⇒ r(f ∗(a), y) = 0 . (3.6)

There is a converse to this:

3.10. Lemma. Let A = (π : E → X,A, q) and B = (ρ : F → Y,B, r) be quotient vector
bundles. Every pair of maps

f[ : Y → X (continuous)

f ∗ : A→ B (continuous linear)

satisfying (3.6) arises from a morphism f = (f[, f
], f ∗) in QVBun for a unique map f ].

Proof. Condition (3.6) implies that we may define a fiberwise linear map

f ] : E ×X Y → F

for all y ∈ Y and e ∈ Ef[(y) by

f ](e, y) = r(f ∗(a), y) , (3.7)

where a ∈ A is any element of A such that q(a, f[(y)) = e. In other words, f ] is the
unique map that makes the following diagram commute:

B × Y
r
����

A× Yf∗×idoo (A×X)×X Y
∼=oo

q×id
����

F E ×X Y
f]

oo

Now q× id is a quotient map because it is open and surjective. Therefore f ] is continuous,
and thus we have a contravariant morphism (f[, f

]) : ρ→ π.
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Next we show that the triple f = (f[, f
], f ∗) is a morphism in QVBun. Let a ∈ A and

y ∈ Y . We have f̂ = f ]∗ ◦ f ∗[ , and thus, letting e = q(a, f[(y)) in (3.7), we obtain

f̂ ∗(a)(y) = r(f ∗(a), y) = f ](q(a, f[(y)), y) = f ](â(f[(y)), y) = f̂(â)(y) ,

showing that (3.4) holds.

Hence, we see that the morphisms of quotient vector bundles can be defined alterna-
tively but equivalently to be pairs (f[, f

∗) satisfying (3.6), with f ] being derived from the
formula in Lemma 3.8:

f ](q(a, f[(y)) = r(f ∗(a), y) .

This formula further implies that f ] is fiberwise injective if and only if for all a ∈ A and
y ∈ Y we have

q(a, f[(y)) = 0 ⇐⇒ r(f ∗(a), y) = 0 . (3.8)

A morphism of quotient vector bundles such that the above equivalence holds is called
strict, whereas if only the implication (3.6) holds it is called lax. The strict morphisms
yield a subcategory of quotient vector bundles, which we refer to as the strict category of
quotient vector bundles, denoted by sQVBun.

3.11. Example. Let ρ : F → Y and π : E → X be locally trivial finite rank vector
bundles over locally compact Hausdorff spaces, and let (f0, f1) be a covariant morphism
such that f0 is a proper map and f1 is fiberwise a homeomorphism. Then we obtain,
by Example 3.5 and Example 3.9, a strict morphism of quotient vector bundles (f0, f

]) :
(ρ, C0(ρ), eval)→ (π,C0(π), eval).

4. Preliminaries on pointfree topology

In this section we provide some background on sup-lattices and locales. More details can
be found for instance in [10, 9].

4.1. Sup-lattices.

Basic definitions and examples. By a sup-lattice [10, Ch. I] will be meant a partially
ordered set L for which any subset S has a join (supremum), which is denoted by

∨
S

or supS. Similarly, we write
∨
α aα or supα aα for the join of an indexed family (aα)

in L. Sup-lattices necessarily have meets (infima) of every subset (denoted by
∧
S or

inf S), but the terminology we adopt reflects (as opposed to “complete lattice”) the fact
that joins are the first-class algebraic operations in the sense that they are preserved by
homomorphisms f : L→M :

f
(∨

S
)

=
∨

f(S) .

The category of sup-lattices SL is defined to have sup-lattices as objects and homomor-
phisms as arrows. Additionally, we adopt the usual notation from lattice theory for meets
and joins of pairs of elements, writing a ∨ b and a ∧ b instead of sup{a, b} and inf{a, b},



516 PEDRO RESENDE AND JOÃO PAULO SANTOS

respectively, and writing 1L and 0L, or simply 1 and 0 when no confusion will arise,
respectively for the greatest element

∨
L =

∧
∅ and the least element

∧
L =

∨
∅ of a

sup-lattice L.
As examples of sup-lattices we mention:

1. The topology Ω(X) of a topological space X, ordered by inclusion; we have
∨
S =⋃

S for all S ⊂ Ω(X), and
∧
S is the interior of

⋂
S. For binary meets we have

U ∧ V = U ∩ V .

2. The set of linear subspaces, SubA, of a vector space A. If (Vα) is a family in SubA
we have

∨
α Vα = span

⋃
α Vα and

∧
α Vα =

⋂
α Vα. Any linear map f : A → B

between vector spaces yields a sup-lattice homomorphism Sub f : SubA → SubB
defined by

Sub f(V ) = f(V ) ,

and in this way one obtains a functor Sub : Vect→ SL.

3. The set of closed linear subspaces, MaxA, of a topological vector space A. If (Vα)
is a family in MaxA we have

∨
α Vα = span

⋃
α Vα and

∧
α Vα =

⋂
α Vα. Any

continuous linear map f : A → B between topological vector spaces yields a sup-
lattice homomorphism Max f : MaxA→ MaxB defined by

Max f(V ) = f(V ) ,

and in this way one obtains a functor Max : TopVect→ SL.

Adjunctions. Let L and M be sup-lattices. We write f a g in order to indicate that f
is left adjoint to g:

L

f

))⊥ M
g

hh .

The pair (f, g) will be referred to as an adjunction from L to M .

4.2. Example. Let A and B be a complex vector spaces, and let f : A→ B be a linear
map. Recall that Sub f is the sup-lattice homomorphism SubA → SubB defined by
Sub f(V ) = f(V ) for all V ∈ SubA. The right adjoint of Sub f is the inverse image
map f−1 : SubB → SubA, as the following equivalences show, where V ∈ SubA and
W ∈ SubB:

Sub f(V ) ⊂ W ⇐⇒ f(V ) ⊂ W ⇐⇒ V ⊂ f−1(W ) .

We note that the bijection between sup-lattice homomorphisms and their right adjoints
is an antitone order isomorphism with respect to the pointwise order on maps: if both
f a g and f ′ a g′ are adjunctions from L to M then we have f ≤ f ′ ⇐⇒ g′ ≤ g.

4.3. Locales.
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Basic definitions and facts. A locale (see [9]) is a sup-lattice L satisfying the distribu-
tivity property

a ∧
∨
α

bα =
∨
α

a ∧ bα

for all a ∈ L and all families (bα) in L. The main example of a locale is the topology
Ω(X) of a topological space.

A map of locales f : M → L is a homomorphism of sup-lattices in the opposite
direction,

f ∗ : L→M ,

that also preserves finite meets:

f ∗(1L) = 1M

f ∗(a ∧ b) = f ∗(a) ∧ f ∗(b) .

Then f ∗ is called a homomorphism of locales, and it is referred to as the inverse image
homomorphism of the map f . This terminology follows from the fact that every continuous
map of topological spaces ϕ : Y → X defines a map of locales f : Ω(Y ) → Ω(X) by the
condition:

f ∗ = ϕ−1 : Ω(X)→ Ω(Y ) .

The category of locales Loc has the locales as objects and the maps of locales as arrows.
The assignment X 7→ Ω(X) extends to a functor

Ω : Top→ Loc

such that for each continuous map ϕ we have

(Ωϕ)∗ = ϕ−1 .

We also note that, since the inverse image homomorphism of a map of locales f : M → L
preserves joins, there is a meet preserving map (the right adjoint of f ∗)

f∗ : M → L ,

which is defined by, for all b ∈M ,

f∗(b) =
∨
{a ∈ L | f ∗(a) ≤ b} .

If ϕ : Y → X is a continuous open map between topological spaces then we denote by
ϕ! : Ω(Y ) → Ω(X) the direct image homomorphism defined by ϕ!(U) = ϕ(U). This is a
sup-lattice homomorphism, left adjoint to ϕ−1 : Ω(X)→ Ω(Y ).
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Points and prime elements. A point of a locale L is usually defined to be a map
x : Ω → L, where Ω = ℘({∗}) is the topology of a singleton. Although locale theory is
often meant to be applied in a constructive setting (i.e., in an arbitrary topos), classically
Ω is just a two element chain {0, 1} with 0 < 1, and the set of points x is in bijective
correspondence with the set of elements of the form∨

kerx∗ =
∨
{a ∈ L | x∗(a) = 0} .

These elements are precisely the prime elements of L, where an element p ∈ L of a locale
L is said to be prime if it satisfies the following two conditions for all a, b ∈ L:

p 6= 1

a ∧ b ≤ p ⇒ a ≤ p or b ≤ p .

For the purposes of this paper it will be useful to identify the points of a locale L with
its prime elements, and we denote the set of the latter by Σ(L).

The following simple fact will be used later:

4.4. Lemma. Let X be a topological space with a subbasis S. Any prime element P ∈ ΩX
is a union of subbasic open sets.

Proof. For any x ∈ P there are subbasic open sets S1, . . . , Sk ∈ S such that x ∈
S1 ∩ · · · ∩ Sk ⊂ P . Since P is prime, x ∈ Si ⊂ P for some i.

The spectrum of a locale. For each a ∈ L, where L is a locale, we define the following
set,

Ua = {p ∈ Σ(L) | a � p} ,

and the following conditions hold:

U1 = Σ(L) ;

Ua∧b = Ua ∩ Ub ;

U∨
α aα

=
⋃
α

Uaα .

Hence, the collection (Ua)a∈L defines a topology Ω Σ(L) on Σ(L). The set of primes
equipped with this topology will be called the spectrum of the locale L. The assignment
a 7→ Ua is a homomorphism of locales that defines a map of locales spatL : Ω Σ(L) → L
called the spatialization of L. A locale is called spatial if its spatialization map is an
isomorphism. This is equivalent to the statement that L is isomorphic to the topology of
some topological space.

The spectrum functor. If f : M → L is a map of locales we obtain a continuous map

Σ(f) : Σ(M)→ Σ(L)
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which coincides with the restriction of f∗ to Σ(M):

Σ(f)(p) =
∨
{a ∈ L | f ∗(a) ≤ p} .

In this way we have a functor
Σ : Loc→ Top ,

which is right adjoint to Ω. If X is a topological space there is a continuous map sobX :
X → Σ Ω(X), called the soberification of X, which to each x ∈ X assigns the complement
in X of the closure {x}. The space X is T0 if and only if sobX is injective. Moreover,
note the following simple fact:

4.5. Lemma. If sobX is surjective then it is an open map.

Proof. Let W ⊂ X be open. The condition sobX(x) ∈ UW is equivalent to x ∈ W , so if
sobX is surjective we have sobX(W ) = UW .

It follows that if sobX is bijective then it is necessarily a homeomorphism, and in this
case X is said to be a sober space. In particular, the spectrum of a locale is a sober space,
and hence T0.

The adjunction between Ω and Σ restricts to an equivalence of categories between the
full subcategories of spatial locales and sober spaces. If X is a Hausdorff space, the prime
elements of Ω(X) are exactly the open sets of the form X \ {x} and thus X is sober.

5. Quotient vector bundles via locales

The ideas described in the introduction show that a quotient vector bundle A = (π : E →
X,A, q) gives rise to an adjunction between SubA and Ω(X), both regarded as sup-lattices
under the inclusion order. The left adjoint is the open support map σ : SubA → Ω(X),
and the right adjoint γ : Ω(X)→ SubA yields, for each open set U ⊂ X, the set of “formal
sections” a ∈ A such that the open support supp◦ â is contained in U . In this section
we pursue this idea in order to study quotient vector bundles, in the end obtaining an
adjunction between the category of such locales with linear structure and a subcategory
of the category of quotient vector bundles. The objects of this category will be called
spectral vector bundles. Any quotient vector bundle on a sober base space and with closed
zero section will be seen to be of this kind.

5.1. Linearized locales.

Basic definitions and facts. Let 4 be a locale. By a linear structure on 4 is meant a
topological vector space A together with a sup-lattice homomorphism

σ : SubA→4 ,

which we refer to as the support map, and whose right adjoint γ : 4→ SubA restricts to
a continuous map k = γ|Σ(4) : Σ(4)→ SubA. The map γ is referred to as the restriction
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map — for each U ∈ 4 we may think of γ(U) as the restriction of A to U , where A is
regarded as a space of formal global sections on 4. The map k is referred to as the kernel
map of the linear structure.

By a linearized locale A = (4, A, σ, γ) will be meant a locale 4 equipped with a linear
structure given by A and σ, with σ a γ.

The continuity of the kernel map of a linear structure has the following necessary
condition:

5.2. Lemma. Let A = (4, A, σ, γ) be a linearized locale. For all p, q ∈ Σ(4) the following
implication holds:

p ≤ q ⇒ γ(p) = γ(q) .

Proof. The specialization order of the topology of Σ(4) is dual to the order of4. Hence,
the kernel map, which is monotone because γ is, is also antitone on prime elements due
to continuity, and thus the condition p ≤ q implies that γ(p) and γ(q) are topologically
equivalent, which for the lower Vietoris topology means precisely that their closures in A
are the same.

We also mention, although we shall not use it in this paper, the following general
necessary and sufficient condition for the continuity of the kernel map.

5.3. Theorem. Let 4 be a locale, A a topological vector space, and σ a γ an adjunction
from SubA to 4. Then k := γ|Σ(4) is continuous if and only if for all open sets U ⊂ A
the set

⋂
a∈U Uσ(〈a〉) is closed in Σ(4).

Proof. Let U ⊂ A be an open set and p ∈ Σ(4). Then

p ∈ k−1(Ũ) ⇐⇒ k(p) ∩ U 6= ∅
⇐⇒ ∃a∈U a ∈ k(p)

⇐⇒ ∃a∈U 〈a〉 ⊂ γ(p)

⇐⇒ ∃a∈U σ(〈a〉) ≤ p

⇐⇒ ∃a∈U p /∈ Uσ(〈a〉)

⇐⇒ p /∈
⋂
a∈U

Uσ(〈a〉) ,

and thus k−1(Ũ) = Σ(4) \
⋂
a∈U Uσ(〈a〉). Hence, k is continuous if and only if

⋂
a∈U Uσ(〈a〉)

is closed for all U ∈ Ω(A).

Morphisms of linearized locales. Let the following be linearized locales:

A = (A,4A, σA, γA) ,

B = (B,4B, σB, γB) .

A morphism f : B→ A is a pair (f, f) consisting of a map of locales

f : 4B →4A
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and a continuous linear map
f : A→ B

satisfying, for all V ∈ SubA, the inclusion

σB(f(V )) ⊂ f ∗(σA(V )) . (5.1)

In other words, f satisfies the following lax commutation relation:

SubA

σA
��

Sub f //

≥

SubB

σB
��

4A f∗
//4B

(5.2)

Equivalently, on right adjoints, recalling that the right adjoint of Sub f coincides with

f
−1

, we have:

SubA

≤

SubB
f
−1

oo

4A

γA

OO

4B

γB

OO

f∗

oo

(5.3)

These morphisms yield an obvious category LinLoc, which we shall refer to as the
category of linearized locales (with lax morphisms). By requiring the above commutation
relations to be strict we obtain the subcategory sLinLoc, referred to as the strict category of
linearized locales. Natural examples of such morphisms can be obtained from Example 3.9
via the adjunction that will be obtained later in this section.

5.4. Spectral vector bundles.

The spectral kernel of a quotient vector bundle. Let A = (π : E → X,A, q) be a
quotient vector bundle with kernel map κ : X → SubA, and consider the adjoint pair

SubA

σ
))⊥ 4

γ

jj

where σ and γ are defined by2

σ(V ) =
⋃
a∈V

supp◦ â ,

γ(U) = span{a ∈ A | supp◦ â ⊂ U} .

The restriction of γ to the set of prime open sets of X,

k := γ|Σ(4) : Σ(4)→ SubA ,

will be referred to as the spectral kernel map of the bundle A. Then we have the following
immediate remark:

2span added 2016-12-07
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5.5. Lemma. (Ω(X), A, σ, γ) is a linearized locale if and only if the spectral kernel k of
A is continuous.

Also, note the following relation between the two kernel maps:

5.6. Lemma. For all x ∈ X we have κ(x) ⊂ k
(
sobx

)
.

Proof. We have κ(x) = {a ∈ A | â(x) = 0} and k(sobx) = k(X \ {x}) = {a ∈ A | x /∈
supp◦ â}, and also â(x) = 0⇒ x /∈ supp◦ â.

Open support property. In most examples that arise in practice, such as those obtained
from Banach bundles, the (image of the) zero section of a quotient vector bundle is closed
in E, and thus the sets {x ∈ X | â(x) 6= 0} are open, so that we have

supp◦ â = {x ∈ X | â(x) 6= 0} .

We will say that the quotient vector bundle has the open support property if the above
condition holds for all a ∈ A. As will be seen below, this property is in general weaker
than having a closed zero section and it is useful in its own right.

The open support property can also be formulated equivalently in terms of the kernel
maps κ and k of A, as we now show.

5.7. Lemma. A has the open support property if and only if κ = k ◦ sob. In particular,
these equivalent conditions hold whenever the (image of the) zero section of π is a closed
set of E.

Proof. We have κ = k ◦ sob if and only if for all a ∈ A and all x ∈ X the following
equivalence holds:

â(x) = 0 ⇐⇒ x /∈ supp◦ â .

Continuous spectral kernels. We say that A is a spectral (quotient) vector bundle
if A has the open support property and the spectral kernel k is continuous. The full
subcategory of QVBun (resp. sQVBun) whose objects are the spectral vector bundles is
denoted by QVBunΣ (resp. sQVBunΣ).

The following is a useful sufficient condition for spectrality:

5.8. Lemma. If a quotient vector bundle A = (π : E → X,A, q) has the open support
property and sob : X → Σ Ω(X) is surjective then A is spectral.

Proof. The surjectivity of sob tells us that the direct image sob! : Ω(X) → Ω Σ Ω(X)
is surjective (cf. Lemma 4.5). Therefore the inverse image map sob−1 is injective and
sob! ◦ sob−1 is the identity map on Ω Σ Ω(X). Hence,

k−1 = sob! ◦ sob−1 ◦k−1 = sob! ◦κ−1

and it follows that k is continuous.
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5.9. Example. Any Banach bundle π : E → X as in [8] has a Hausdorff base space X
and a closed zero section, and thus any quotient vector bundle (π,A, q) is spectral. For
instance, if X is locally compact we may take A = C0(π) and q = eval [22].

5.10. Example. It is possible to have a continuous spectral kernel and a sober base space
without having the open support property. An example of this is the universal quotient
vector bundle with Hausdorff fibers for a locally convex space A, whose base space MaxA
is sober — see Theorem 6.16 below.

5.11. Example. For examples with the open support property but discontinuous spectral
kernel see Theorem 6.20 below, where it is also shown that for suitable A (in particular
finite dimensional) we obtain spectral vector bundles whose base spaces are sober and T1

(cf. Lemma 6.4), but not Hausdorff (cf. Example 6.5).

There is also a necessary condition for spectrality in terms of the kernel map κ, based
on Lemma 5.2:

5.12. Lemma. Let A = (π : E → X,A, q) be a spectral vector bundle with kernel map
κ. For all x, y ∈ X we have the following implication, where v denotes the specialization
preorder of the topology of X:

x v y ⇒ κ(x) = κ(y) .

Proof. Let x, y ∈ X be such that x v y. Then sob(x) v sob(y) in Σ(4), which is
equivalent to sob(y) ≤ sob(x), and thus by Lemma 5.2 we obtain

κ(x) = γ(sob(x)) = γ(sob(y)) = κ(y) .

Less obvious is that Lemma 5.2 has a converse for bundles, which gives us a necessary
and sufficient condition for spectrality:

5.13. Theorem. Let A = (π : E → X,A, q) be a quotient vector bundle satisfying the
open support property. Then the spectral kernel k is continuous (and thus A is a spectral
vector bundle) if and only if for all P,Q ∈ Σ Ω(X) we have the implication

P ⊂ Q⇒ k(P ) = k(Q) . (5.4)

Proof. If k is continuous we obtain (5.4) from Lemma 5.2 and Lemma 5.5, so it remains
to be proved only that (5.4) implies the continuity of k. In order to prove this we shall
show that for any open set W ⊂ SubA we have

k−1(W ) = Uκ−1(W ) , (5.5)

where κ is the kernel map. Let P ∈ Uκ−1(W ). Then κ−1(W ) 6⊂ P , so there is x ∈ X such
that x ∈ κ−1(W ) and x /∈ P . But then κ(x) ∈ W and

x /∈ P ⇐⇒ P ⊂ sob(x) =⇒ k(P ) ≡ k
(
sob(x)

)
= κ(x) ,
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where ≡ denotes topological equivalence. Since κ(x) ∈ W and k(P ) ≡ κ(x) we have
k(P ) ∈ W , and thus P ∈ k−1(W ).

Reciprocally, assume P ∈ k−1(W ), that is, k(P ) ∈ W . Then for any x /∈ P we have
P ⊂ sob(x), so

κ(x) = k
(
sob(x)

)
≡ k(P ) ,

and hence κ(x) ∈ W . This shows that X \P ⊂ κ−1(W ). But then, since P 6= X, we have
κ−1(W ) 6⊂ P , so P ∈ Uκ−1(W ), and this proves (5.5).

The spectrum of a linearized locale. Let A = (4, A, σ, γ) be a linearized locale. We
define its spectrum to be the quotient vector bundle

Σ(A) = k∗(UA)

which is classified by the continuous map

k = γ|Σ(4) : Σ(4)→ SubA .

5.14. Lemma. For any linearized locale A, the spectrum Σ(A) is a spectral vector bundle.

Proof. Let us use the following notation:

Ω Σ(A) = (Ω Σ(4), A, σ, γ) .

The base space of Σ(A) is Σ(4), which is a sober space, so, by Lemma 5.7 and Lemma 5.8,
we need only verify that for each a ∈ A the set

{p ∈ Σ(4) | a /∈ γ(p)}

is open in Σ(4). This follows from the adjunction σ a γ, because for all p ∈ Σ(4) and
a ∈ A we have

σ(〈a〉) ≤ p ⇐⇒ 〈a〉 ⊂ γ(p) ,

and thus {p ∈ Σ(4) | a /∈ γ(p)} is the open set Uσ(〈a〉).

5.15. Theorem. The assignment A 7→ Σ(A) extends to a functor

Σ : LinLoc→ QVBunΣ .

Moreover, this functor restricts to the corresponding strict categories:

Σ : sLinLoc→ sQVBunΣ .
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Proof. Let A = (4, A, σ, γ) and A′ = (4′, A′, σ′, γ′) be linearized locales, and let

f = (f, f) : A′ → A

be a morphism in LinLoc. Defining

f[ = f ∗|Σ(4′) : Σ(4′)→ Σ(4)

f ∗ = f : A→ A′

we obtain a morphism f : Σ(A′)→ Σ(A) in QVBun. In order to see this we only need to
prove that (3.6) holds. Let a ∈ A and y ∈ Σ(4′), and denote by k and k′ the restrictions
of γ and γ′, respectively, to Σ(4) and Σ(4′). Denote also the quotient vector bundles as
follows:

Σ(A) = (π : E → Σ(4), A, q)

Σ(A′) = (π′ : E ′ → Σ(4′), A′, q′)

Then, for all a ∈ A and y ∈ Σ(4′), we have

q(a, f[(y)) = 0 ⇐⇒ a ∈ k(f[(y))

⇐⇒ a ∈ γ ◦ f ∗(y)

=⇒ a ∈ f−1 ◦ γ′(y)

⇐⇒ f(a) ∈ k′(y)

⇐⇒ q′(f ∗(a), y) = 0 .

Hence, (3.6) holds. It is also clear that if f is a strict morphism then the above implication
is another equivalence, and thus f is also strict. The functoriality is evident, so we have
obtained two functors as intended.

5.16. Adjunctions and equivalences.

A left adjoint to the spectrum functor. For each spectral vector bundle

A = (π : E → X,A, q) ,

let
Ω(A) = (Ω(X), A, σ, γ)

be the corresponding linearized locale.

5.17. Lemma. Let A = (π : E → X,A, q) be a spectral vector bundle with kernel map κ,
and let

Σ Ω(A) = (p : E→ Σ Ω(X), A, q) ,

with kernel map k. Then

sobA := (sobX , idA) : A → Σ Ω(A)

is a morphism in sQVBunΣ.
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Proof. The condition for being a strict morphism is given by (3.8), so for all a ∈ A and
x ∈ X we must prove the equivalence

q(a, sobX(x)) = 0 ⇐⇒ q(a, x) = 0 ,

which is immediate because k(sobX(x)) = κ(x):

q(a, sobX(x)) = 0 ⇐⇒ a ∈ k(sobX(x)) ⇐⇒ a ∈ κ(x) ⇐⇒ q(a, x) = 0 .

Hence, since bothA and Σ Ω(A) are spectral (cf. Lemma 5.14), sobA is indeed a morphism
in sQVBunΣ.

5.18. Remark. Note that for sobA to be a morphism at all it is necessary that it be
strict, for the weaker condition (3.6) in this case reads

q(a, sobX(x)) = 0 =⇒ q(a, x) = 0 ,

which implies
k ◦ sobX ≤ κ

and, by Lemma 5.7, is equivalent to strictness. Hence, for any quotient vector bundle A
with continuous k, the following conditions are equivalent:

1. A is spectral;

2. sobA is a morphism;

3. sobA is a strict morphism.

5.19. Theorem. The assignment A 7→ Ω(A) extends to a functor

Ω : QVBunΣ → LinLoc ,

which is left adjoint to Σ. Moreover the unit of the adjunction is the family {sobA}A, and
the adjunction restricts to the strict subcategories sQVBunΣ and sLinLoc.

Proof. In order to prove the theorem we shall show, for an arbitrary spectral vector
bundle A, that (Ω(A), sobA) is a universal arrow from A to Σ. So let the following be,
respectively, a spectral vector bundle and a linearized locale,

A = (π : E → X,A, q) ,

B = (4, B, σB, γB) ,

and let f = (f[, f
∗) : A → Σ(B) be a morphism in QVBunΣ (cf. Lemma 5.14). We need

to prove that there is a unique morphism of linearized locales

f = (f, f) : Ω(A)→ B
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such that the following diagram commutes:

A sobA //

f ''

Σ Ω(A)

Σ(f)

��
Σ(B)

Let us use the following notations for the structure maps of Ω(A) and Σ(B):

Ω(A) = (Ω(X), A, σA, γA) ,

Σ(B) = (π′ : E ′ → Σ(4), B, q′) .

Due to the adjunction Ω ` Σ between Top and Loc there is in Loc a unique map f :
Ω(X)→4 such that Σ(f) ◦ sobX = f[ — its inverse image is defined, for all d ∈ 4, by

f ∗(d) = f−1
[ (Ud) , (5.6)

where Ud = {p ∈ Σ(4) | d � p}. In addition, f must obviously be f ∗, so we must now
verify that (5.1) holds for f. With the necessary notation changes this condition is, for all
V ∈ SubB,

σA(f ∗(V )) ⊂ f ∗(σB(V )) , (5.7)

or, using (5.6),
σA(f ∗(V )) ⊂ f−1

[ (UσB(V )) . (5.8)

In order to prove the latter condition we shall prove that, for all x ∈ X, if x /∈ f−1
[ (UσB(V ))

then x /∈ σA(f ∗(V )). Let then x /∈ f−1
[ (UσB(V )). This is equivalent to f[(x) /∈ UσB(V ),

which in turn is equivalent to σB(V ) ≤ f[(x), and, by adjointness, to

V ⊂ γB(f[(x)) . (5.9)

Now f[(x) ∈ Σ(4) and thus, by definition, γB(f[(x)) = κ′(f[(x)), where κ′ is the kernel
map of Σ(B). Hence, (5.9) is equivalent to the statement that every a ∈ V satisfies
a ∈ κ′(f[(x)), which in turn is equivalent to

∀a∈V q′(a, f[(x)) = 0 . (5.10)

Since f is a morphism of quotient vector bundles the latter implies

∀a∈V q(f ∗(a), x) = 0 , (5.11)

which is equivalent to
f ∗(V ) ⊂ κ(x) . (5.12)

Since A is spectral we have κ = k ◦ sobX , and thus (5.12) is equivalent to

f ∗(V ) ⊂ k(sobX(x)) = γA(sobX(x)) ,
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and, by adjointness, equivalent to

σA(f ∗(V )) ⊂ sobX(x) = X \ {x} ,

which, since σA(f ∗(V )) is open in X, is equivalent to

x /∈ σA(f ∗(V )) . (5.13)

This concludes the proof of the inclusion (5.8), and establishes the adjunction Ω ` Σ.
Now we note that all but one of the steps in the above proof of (5.7) are equivalences.
But if f is a strict morphism the implication (5.10)⇒(5.11) becomes an equivalence, too,
and we obtain

σA(f ∗(V )) = f ∗(σB(V )) ,

which means that f is strict. Together with the fact that sobA is strict, this proves that
the adjunction restricts to the strict subcategories.

Sober vector bundles. Let A = (π : E → X,A, q) be a quotient vector bundle with
kernel map κ : X → SubA. We say that A is a sober vector bundle if the two following
conditions hold:

• X is a sober space;

• A has the open support property.

By Lemma 5.7 and Lemma 5.8 we immediately obtain:

5.20. Corollary. The following conditions satisfy (1)⇒ (2)⇒ (3):

1. X is sober and the zero-section of A is closed in E;

2. A is sober;

3. A is spectral.

5.21. Example. Any Banach bundle on a locally compact Hausdorff space can be made
a sober vector bundle (cf. Example 5.9). Examples of quotient vector bundles that are
spectral but not sober can of course be obtained from any sober vector bundle (π : E →
X,A, q) by pulling it back along a quotient map Y → X such that Y is not sober.

5.22. Theorem. Let A = (4, A, σ, γ) and A = (π,A, q) be a linearized locale and a
quotient vector bundle, respectively.

1. The spectrum Σ(A) is a sober vector bundle.

2. The bundle A is sober if and only if

sobA = (sobX , idA) : A → Σ Ω(A)

is an isomorphism.

Proof. We have already seen in Lemma 5.14 that Σ(A) is spectral, so it is sober because
Σ(4) is. This proves (1), and (2) is obvious.
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Spatial linearized locales. Let A = (4, A, σ, γ) be a linearized locale. The spatializa-
tion of A is the pair

spatA = (spat4 : Ω Σ(4)→4, idA : A→ A) .

5.23. Theorem. spatA is a strict morphism of linearized locales Ω Σ(A)→ A.

Proof. Let Ω Σ(A) = (Ω Σ(4), A, σ̃, γ̃). Then spatA is a strict morphism if and only if
the following square commutes:

SubA
idA //

σ

��

SubA

σ̃
��

4
spat∗4

// Ω Σ(4)

Let V ∈ SubA. We have

σ̃(V ) =
⋃
a∈V

int{p ∈ Σ(4) | a /∈ γ(p)}

=
⋃
a∈V

{p ∈ Σ(4) | a /∈ γ(p)} (by Lemma 5.7 and Lemma 5.14)

=
⋃
a∈V

{p ∈ Σ(4) | σ(〈a〉) � p} (because σ a γ)

=
⋃
a∈V

Uσ(〈a〉) = Uσ(V ) = spat∗4(σ(V )) ,

and thus we have σ̃ = spat∗4 ◦ σ, as intended.

We say that A is spatial if 4 is a spatial locale. This is equivalent to stating that
spatA is an isomorphism of linearized locales. It immediately follows that the adjunction
Ω a Σ restricts to another adjunction, between the full subcategories of sober vector
bundles and spatial linearized locales, whose unit and co-unit are isomorphisms. Hence,
we are provided with a linearized version of the equivalence of categories between sober
spaces and spatial locales:

5.24. Corollary. The adjunction Ω a Σ restricts to an equivalence between the full
subcategories of QVBunΣ and LinLoc whose objects are, respectively, the sober vector
bundles and the spatial linearized locales. This further restricts to an equivalence between
the respective subcategories whose morphisms are strict.

5.25. Bundles with Hausdorff fibers.
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Max-valued linear structures. A quotient vector bundle (π,A, q) has Hausdorff fibers
if and only if its kernel map is valued in MaxA. All our previous results carry through
to this setting, and we briefly examine this.

First, we notice that MaxA is both a topological retract of SubA (under the lower
Vietoris topology) and a quotient sup-lattice given by the topological closure operator.
In other words, we have an adjunction

SubA

(−)
++

⊥ MaxA
ι

kk (5.14)

where both the inclusion ι and the surjection (−) are continuous.
Now let A = (4, A, σ, γ) be a linearized locale. Then γ is valued in MaxA if and only

if σ factors through MaxA — that is, σ(V ) = σ(V ) for all V ∈ SubA —, in which case
we obtain an adjunction

MaxA

σ|MaxA

))⊥ 4
γ

jj ,

and the kernel map k is continuous as a map to MaxA.
Conversely, given an adjunction

MaxA

σ
))⊥ 4

γ

jj (5.15)

such that k := γ|Σ(4) : Σ(4)→ MaxA is continuous, composing this with the adjunction

of (5.14) we obtain a linearized locale (4, A, (−) ◦ σ, ι ◦ γ), whose kernel map is ι ◦ k.
Let us refer to such a linearized locale as a Max-linearized locale. All our results in

section 5 remain true if restricted to Max-linearized locales and spectral vector bundles
with Hausdorff fibers. In addition we note that, by Lemma 5.2, if (4, A, σ, γ) is a Max-
linearized locale then for all p, q ∈ Σ(4) we have the following implication:

p ≤ q ⇒ γ(p) = γ(q) . (5.16)

Spectral vector bundles revisited. Lemma 5.12 has the following simple consequences:

5.26. Corollary. Let A = (π : E → X,A, q) be a spectral vector bundle with Hausdorff
fibers and kernel map κ. For all x, y ∈ X we have the following implication, where v
denotes the specialization preorder of the topology of X:

x v y ⇒ κ(x) = κ(y) .

5.27. Corollary. Spectral vector bundles with Hausdorff fibers and injective kernel
maps must have T1 base spaces.

We also rewrite Theorem 5.13 for bundles with Hausdorff fibers:
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5.28. Corollary. Let A = (π : E → X,A, q) be a quotient vector bundle with Hausdorff
fibers satisfying the open support property. Then the spectral kernel k is continuous (and
thus A is a spectral vector bundle) if and only if for all P,Q ∈ Σ Ω(X) we have the
implication

P ⊂ Q⇒ k(P ) = k(Q) . (5.17)

6. Classifying spaces and universal bundles

In this section we define the open support topology on the spectrum SubA of an arbitrary
topological vector space A. This topology is finer than the lower Vietoris topology (for
instance MaxA becomes a T1 space) but in general coarser than the Fell topology. We
write Sub◦A for SubA with the open support topology. This space classifies the spectral
vector bundles, at least those over base spaces X such that sobX is surjective (e.g., Haus-
dorff spaces). We also show that this classification does not necessarily apply to more
general spaces X because although the quotient vector bundles classified by continuous
maps κ : X → SubA have the open support property, their spectral kernels may fail to
be continuous. In particular, in general there is no universal spectral vector bundle for a
given topological vector space A. Conversely, we prove, for any locally convex space A,
that the quotient vector bundle determined by the inclusion MaxA → SubA (with the
lower Vietoris topology) does not have the open support property but that its spectral
kernel is continuous (in fact constant). Along the way we obtain general results concerning
the prime open sets of topologies on SubA that are finer than the lower Vietoris topology,
in particular concluding that for locally convex spaces A the space MaxA is sober.

6.1. Classifying spaces for spectral vector bundles.

Open support topology. Let A be a topological vector space. For each a ∈ A let

ǎ = {P ∈ SubA | a /∈ P} .

The coarsest topology on SubA that contains the lower Vietoris topology and makes
all the sets ǎ open will be referred to as the open support topology. The terminology is
motivated by the following lemma:

6.2. Lemma. Let A be a quotient vector bundle. Then A has the open support property
if and only if its kernel map is continuous with respect to the open support topology.

Proof. Let κ be the kernel map of A. Continuity of κ with respect to the open support
topology is, since κ is continuous with respect to the lower Vietoris topology (because it
is a kernel map), just the statement that for all a ∈ A the set κ−1(ǎ) is open. But, by
Lemma 5.7, this is equivalent to the open support property because κ−1(ǎ) = {x ∈ X |
a /∈ κ(x)}.
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We shall denote by Sub◦A and Max◦A the spaces SubA and MaxA equipped with
the open support topology.

6.3. Corollary. Let X be a topological space whose soberification map sob : X →
Σ Ω(X) is surjective. Then the spectral vector bundles (π,A, q) are, up to isomorphism,
in bijective correspondence with the continuous maps κ : X → Sub◦A. This applies in
particular to all sober spaces X, and thus also to Hausdorff spaces.

We note the following property, which will be used later on:

6.4. Lemma. Max◦A is a T1 space.

Proof. Let V,W ∈ Max◦A be distinct elements. Without loss of generality assume that
V 6⊂ W , and let a ∈ V \W . Then we have both W ∈ ǎ and V /∈ ǎ, on one hand, and, on

the other, W /∈ Ã \W and V ∈ Ã \W .

Note, however, that Max◦A is never a Hausdorff space if dimA ≥ 2. The following
example illustrates this:

6.5. Example. Each open set of Max◦C2 is an open set of the lower Vietoris topology
minus a finite number of rays. This implies that {(0, 0)} and 〈(z, w)〉 cannot be separated
by disjoint neighborhoods if (z, w) 6= (0, 0), since any basic open neighborhood of 〈(z, w)〉
is generated by an open set of the Grassmannian Gr(1,C2) (see [22, Th. 7.5]).

Fell topology. The open support topology is defined in a similar way to the Fell topology
[7] (see also [16, 22]), but the latter has subbasic open sets

Ǩ = {V ∈ MaxA | V ∩K = ∅}

for each compact subset K ⊂ A instead of only ǎ = ˇ{a} for a ∈ A. Therefore the Fell
topology is obviously finer than the open support topology. Next we show that under
mild restrictions it is strictly finer.

6.6. Lemma. Let A be a first countable topological vector space such that dimA > 2. Then
there is a compact set K ⊂ A which is not contained in any finite union of 2-dimensional
subspaces.

Proof. Let e0 ∈ A and let {Un} be a countable basis of neighborhoods of e0 with
Un+1 ⊂ Un for all n. There is a sequence (en) in A such that en ∈ Un for all n, with the
property that for any i < j < k the vectors ei, ej, ek are linearly independent: assume
we have chosen e1, . . . , en−1 such that the list e0, . . . , en−1 has this property, and let C =⋃
i,j<n 〈ei, ej〉; since A \ C is open and dense, we can choose en ∈ Un ∩ (A \ C), and the

list e0, . . . , en has the required property. Now let K = {en}n≥0. The set K is compact
and no 2-dimensional subspace contains more than two elements of K.
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6.7. Theorem. Let A be a first countable topological vector space such that dimA > 2.
Then the open support topology is strictly coarser than the Fell topology.

Proof. Let K ⊂ A be a compact set which is not contained in any finite union of 2-
dimensional subspaces (cf. Lemma 6.6). The set Ǩ = {V ∈ MaxA | V ∩K = ∅} is open
in the Fell topology. Let a ∈ A be such that 〈a〉 ∈ Ǩ. We will show that no neighborhood
of 〈a〉 in the open support topology is contained in Ǩ. Any basic neighborhood of 〈a〉
in the open support topology is of the form U ∩ č1 ∩ · · · ∩ čn with U ⊂ MaxA open in
the lower Vietoris topology and c1, . . . , cn /∈ 〈a〉. But then 〈a, b〉 ∈ U for any b ∈ A. Let
C =

⋃
i 〈a, ci〉 and choose b ∈ K \ C. Then for any i we have b /∈ 〈a, ci〉, so ci /∈ 〈a, b〉

because ci /∈ 〈a〉. It follows that 〈a, b〉 ∈ U ∩ č1 ∩ · · · ∩ čn. But 〈a, b〉 /∈ Ǩ, so Ǩ is not
open in the open support topology.

6.8. Grassmannians.

The Grassmannian of a Hausdorff vector space. Let A be a Hausdorff vector space.
Recall [22] that the k-Grassmannian of A is the set Gr(k,A) of k-dimensional linear
subspaces of A, carrying the quotient topology given by the identification Gr(k,A) ∼=
V (k,A)/GL(k,C), where V (k,A) is the space of injective linear maps from Ck to A
with the product topology. Hence, the surjection V (k,A)→ Gr(k,A) that is defined by
φ 7→ Imφ is a continuous open map.

We have Gr(k,A) ⊂ MaxA because finite dimensional subspaces of a Hausdorff vector
space are closed, and in [22, Th. 7.2] it is shown that Gr(k,A) is a topological subspace
of MaxA with the lower Vietoris topology. In addition, below we shall use the fact [22,
Th. 7.5] that a basis of the lower Vietoris topology of MaxA consists of all the sets of the
form

↑C := {V ∈ MaxA | ∃W∈C W ⊂ V } ,

where C is an open set of a Grassmannian Gr(k,A) for some k ∈ N>0.

Spaces of linear maps. Write L(k,A) for the space of all the linear maps from Ck to A
with the product topology. We note that we have a homeomorphism L(k,A) ∼= Ak, under
which V (k,A) can be identified with the subspace of linearly independent k-tuples.

6.9. Lemma. Let A be a topological vector space. Any proper linear subspace V ⊂ A has
empty interior.

Proof. Let V ⊂ A be a proper linear subspace. For all U ⊂ V , v ∈ U , and w /∈ V , let
f : C→ A be the map defined by f(λ) = v + λw. Then for all λ 6= 0 we have f(λ) /∈ V ,
and thus f−1(U) = {0}, showing that U cannot be open.

6.10. Lemma. Let A be a Hausdorff vector space. If dimA ≥ k then V (k,A) is dense
and open in L(k,A).
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Proof. We identify L(k,A) with Ak. Let us prove density. Let U = U1 × · · · × Uk ⊂ Ak

with each Ui open in A, and let a = (a1, . . . , ak) ∈ U be such that d = dim 〈a1, . . . , ak〉
is maximal. Assume that d < k. Then 〈a1, . . . , ak〉 is a proper subspace of A, hence
by Lemma 6.9 with empty interior. Without loss of generality, assuming that ak ∈
〈a1, . . . , ak−1〉, we can choose a′k ∈ Uk such that dim 〈a1, . . . , ak−1, a

′
k〉 > d, a contradiction.

Hence, d = k. This proves that V (k,A) intersects U , and thus it is dense in L(k,A). Now
let a = (a1, . . . , ak) ∈ V (k,A) be a linearly independent k-tuple. It has been shown in [22,
Lem. 7.1] that there are neighborhoods Ui of ai such that every (a′1, . . . , a

′
k) ∈ U1× . . .×Uk

is linearly independent. Such an open set U1× · · · ×Uk is a neighborhood of a contained
in V (k,A), and thus V (k,A) is open in L(k,A).

Independent linear subspaces. We say that three linear subspaces V1, V2, V3 ⊂ A are
independent if for all permutations p of {1, 2, 3} we have Vp(1) ∩ (Vp(2) + Vp(3)) = {0}.
Equivalently, the mapping (a, b, c) 7→ a + b + c defines an isomorphism V1 ⊕ V2 ⊕ V3

∼=
V1 + V2 + V3.

6.11. Lemma. Let A be a Hausdorff vector space, V ∈ MaxA, and k1, k2 ∈ N>0.

1. If codimV ≥ k1 + k2 then the subspace of pairs (W1,W2) such that V , W1 and W2

are independent is open in Gr(k1, A)×Gr(k2, A).

2. Let a /∈ V . If codimV ≥ k1 + k2 + 1 then the subset

Wa = {(W1,W2) | a /∈ V +W1 +W2 and V,W1,W2 are independent}

is open and dense in Gr(k1, A)×Gr(k2, A).

3. Let a = (a1, . . . , am) ∈ (A \ V )m. If codimV ≥ k1 + k2 + 1 then the subset

Wa = {(W1,W2) | a1, . . . , am /∈ V +W1 +W2 and V,W1,W2 are independent}

is open and dense in Gr(k1, A)×Gr(k2, A).

4. Let a = (a1, . . . , am) ∈ (A \ V )m. If codimV ≥ k1 + k2 + 1 then the subset

Xa = {(W1,W2) | a1, . . . , am /∈ V +W1 +W2}

is dense in Gr(k1, A)×Gr(k2, A).

Proof. Let k = k1 + k2. The quotient space A/V is Hausdorff because V is closed,
and, since we have dimA/V ≥ k, by Lemma 6.10 we conclude that V (k,A/V ) is open in
L(k,A/V ). Hence, ψ−1(V (k,A/V )) is open in L(k1, A)× L(k2, A), where ψ is given by
the following composition:

L(k1, A)×L(k2, A)

ψ

))

∼=
// L(k,A)

((−)+V )∗
// L(k,A/V )
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[Under the identification provided by the isomorphism L(k,A) ∼= Ak, the map ψ is the
k-fold quotient map Ak → (A/V )k.] Moreover, in fact we have ψ−1(V (k,A/V )) ⊂
V (k1, A) × V (k2, A), and furthermore ψ−1(V (k,A/V )) is the subspace of pairs (φ1, φ2)
such that the spaces V , Imφ1 and Imφ2 are independent. Hence, since the quotient map
V (ki, A) → Gr(ki, A) is open, the subspace of pairs (W1,W2) ∈ Gr(k1, A) ×Gr(k2, A)
such that V , W1 and W2 are independent is open in Gr(k1, A)×Gr(k2, A). This proves
(1).

In order to prove (2), assume a /∈ V and codimV ≥ k + 1, and let Va = V ⊕ 〈a〉.
Then dimA/Va ≥ k and, again by Lemma 6.10, V (k,A/Va) is dense in L(k,A/Va). Since
ψ is open and surjective, ψ−1

(
V (k,A/Va)

)
⊂ V (k1, A) × V (k2, A) is also dense. Now

ψ−1
(
V (k,A/Va)

)
is the subspace of pairs (φ1, φ2) ∈ V (k1, A) × V (k2, A) such that the

spaces Va, Imφ1 and Imφ2 are independent. Such pairs are precisely the elements of the
subspace

{(φ1, φ2) | a /∈ V + Imφ1 + Imφ2 and V, Imφ1, Imφ2 are independent} ,

which therefore is open and dense in V (k1, A)× V (k2, A). Hence, applying the quotient
φi 7→ Imφi we conclude that Wa is dense in Gr(k1, A)×Gr(k2, A), thus proving (2).

Now let us prove (3). For each i we have ai /∈ V , by (2) the set Wai is open and dense
in Gr(k1, A)×Gr(k2, A), and thus so is the finite intersection Wa =Wa1 ∩ . . . ∩Wam .

Finally, (4) follows from (3) because Wa ⊂ Xa.

6.12. Finer spectrum topologies.

Lower Vietoris topology revisited. In general it is not true, given some topological

vector space A, that Ũ1 ∩ U2 = Ũ1 ∩ Ũ2 for arbitrary open sets U1, U2 ⊂ A. The following
lemma provides an example where this equality holds, involving convex open sets.

6.13. Lemma. Let A be a topological vector space, let U ⊂ A be a convex open set, and
let a ∈ A. Let

U+ =
⋃
λ≥0

(U + λa) and U− =
⋃
λ≥0

(U − λa) .

Then Ũ+ ∩ Ũ− = Ũ .

Proof. We have U+∩U− = U so Ũ ⊂ Ũ+∩ Ũ−. Let V ∈ Ũ+∩ Ũ− and pick c+ ∈ V ∩U+

and c− ∈ V ∩ U−. Then there are b−, b+ ∈ U and λ−, λ+ ≥ 0 such that c− = b− − λ−a
and c+ = b+ + λ+a. If λ+ = 0 then c+ = b+ ∈ V ∩ U and thus V ∈ Ũ . If λ+ 6= 0 let
µ = λ−/(λ+ + λ−) ∈ [0, 1]. Then µc+ + (1− µ)c− = µb+ + (1− µ)b− ∈ V ∩ U since both

U and V are convex, so V ∈ Ũ .
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Finer topologies and their prime open sets. Given V1, V2 ∈ MaxA with V1 ⊂ V2,
we introduce the following notation:

UV1,V2 = MaxA \
{
V ∈ MaxA | V1 ⊂ V ⊂ V2

}
.

Given a collection S of subsets of MaxA we shall write MaxS A for MaxA equipped with
the topology which is generated by the lower Vietoris topology and by S. We state the
following lemma in more generality than needed in the rest of this paper.

6.14. Lemma. Let A be a locally convex space, let S be a collection of subsets of MaxA,
and let Y ⊂ MaxS A be a subspace. Then for every prime open set P in Y there is
V ∈ MaxA such that for some union S of elements of S we have

P =
(
U0,V ∪ S

)
∩ Y .

Proof. Let P ∈ Σ Ω(Y). Since every prime open set is the union of subbasic open sets

(cf. Lemma 4.4) and for all families (Uα) of open sets of A we have ˜(⋃
α Uα

)
=
⋃
α Ũα,

there is U ∈ Ω(A) such that P = (Ũ ∪ S) ∩ Y , where S is a union of elements of S. Let

Umax be the union of all the open sets Uα ∈ Ω(A) such that (Ũα ∪ S) ∩ Y = P . Then(
Ũmax ∪ S

)
∩ Y =

⋃
α

(
Ũα ∪ S

)
∩ Y = P .

Let V = A \ Umax. To complete the proof we only need to show that V ∈ MaxA, since

then Ũmax = Ã \ V = U0,V .

1. First we show that if λ ∈ C and a ∈ V then λa ∈ V . The case λ = 0 follows
since 0 /∈ Umax, for otherwise we would have Ũmax = MaxA and P = Y , which is a
contradiction because P is prime. So assume λ 6= 0. Then for any open set U ∈ ΩA
we have λ̃U = Ũ and hence, by maximality, λUmax = Umax. The result immediately
follows.

2. Now we want to show that a, b ∈ V ⇒ a+b ∈ V . We will prove this by contradiction.
If a+ b ∈ Umax then, by (1), we have 1

2
(a+ b) ∈ Umax, so there is a convex open set

N ⊂ A satisfying 1
2
(a+ b) ∈ N ⊂ Umax. Let

Na =
⋃
λ≥0

(
N + λ(a− b)

)
and Nb =

⋃
λ≥0

(
N + λ(b− a)

)
.

Then a ∈ Na and b ∈ Nb, and, by Lemma 6.13, we have

(Ña ∩ Y) ∩ (Ñb ∩ Y) = Ñ ∩ Y ⊂ Ũmax ∩ Y ⊂ P .

Hence, since P is prime, we must have either Ña ∩Y ⊂ P or Ñb ∩Y ⊂ P . Without
loss of generality assume that Ña ∩ Y ⊂ P . Then(

( ˜Na ∪ Umax) ∪ S
)
∩ Y =

(
Ña ∪ Ũmax ∪ S

)
∩ Y = (Ña ∩ Y) ∪ P = P ,

and it follows that Na ⊂ Umax, and thus a ∈ Umax.
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6.15. Universal bundles.

Universal quotient vector bundles. We shall denote by U1A the universal bundle
with Hausdorff fibers for A (which is classified by the inclusion MaxA → SubA). The
following result shows that the open support property may fail even for bundles with
Hausdorff fibers.

6.16. Theorem. Let A be a locally convex space. The following conditions hold:

1. MaxA is sober;

2. U1A has continuous spectral kernel but it is not spectral because it does not satisfy
the open support property.

Proof. Let Y = MaxA and let S = ∅. Then Lemma 6.14 tells us that any prime
open set is of the form P = U0,V = sob(V ) with V ∈ MaxA, and it follows that the
soberification map of MaxA is surjective. It is also injective because MaxA is T0, and
therefore MaxA is sober. Now we claim that, for any a ∈ A, we have supp◦ â = ∅.
Suppose we have V ∈ supp◦ â. Then â(V ) 6= 0, which is equivalent to a /∈ V . Then,
since open sets of MaxA are upper closed we must also have3 V ⊕ 〈a〉 ∈ supp◦ â, which
implies a /∈ V ⊕ 〈a〉, a contradiction. This proves the claim, and it immediately follows
that the universal bundle U1A does not have the open support property. But its spectral
kernel k is continuous because it is constant, since for all P ∈ ΣΩ(MaxA) we have4

k(P) ⊃ {a ∈ A | supp◦ â ⊂ P} = A.

Prime open sets for the open support topology. Now we use the description of
prime open sets of Lemma 6.14 in order to obtain a full characterization of the prime
open sets for the open support topology.

6.17. Lemma. Let A be a topological vector space. Let also V1, V2 ∈ MaxA with V1 ⊂ V2,
let C ⊂ MaxA, and let a1, . . . , ak ∈ A. The following conditions are equivalent:

1. ↑C ∩ ǎ1 ∩ · · · ∩ ǎk 6⊂ UV1,V2;

2. There is W ∈ C such that W ⊂ V2 and a1, . . . , ak /∈ W + V1.

Proof. If ↑C ∩ ǎ1 ∩ · · · ∩ ǎk 6⊂ UV1,V2 then there is V ∈ MaxA and W ∈ C such that
W ⊂ V , a1, . . . , ak /∈ V and V1 ⊂ V ⊂ V2. It follows that W ⊂ V2 and a1, . . . , ak /∈
W + V1. Conversely, if there is W ∈ C such that W ⊂ V2 and a1, . . . , ak /∈ W + V1 then
W + V1 ∈ ↑C ∩ ǎ1 ∩ · · · ∩ ǎk and W + V1 /∈ UV1,V2 .

3a revised to â 2016-12-07
4= revised to ⊃ 2016-12-07
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6.18. Lemma. Let A be a Hausdorff vector space, and let V1, V2 ∈ Max◦A be such that
V1 ⊂ V2 and the codimension of V1 inside V2 is infinite. Then UV1,V2 is a prime open set.

Proof. Let U1 and U2 be open sets of Max◦A. We shall prove that UV1,V2 is prime by
showing that if U1 6⊂ UV1,V2 and U2 6⊂ UV1,V2 then U1 ∩ U2 6⊂ UV1,V2 . Assume then that

U1 6⊂ UV1,V2 and U2 6⊂ UV1,V2 . (6.1)

We may also assume that U1 and U2 are basic open sets, so, again by [22, Th. 7.5], we
can write them in the form

U1 = ↑C1 ∩ ǎ1 ∩ · · · ∩ ǎk and U2 = ↑C2 ∩ b̌1 ∩ · · · ∩ b̌n ,

where C1 ⊂ Gr(d1, A) and C2 ⊂ Gr(d2, A) are open sets of Grassmannians. Then (6.1)
implies, by Lemma 6.17, that a1, . . . , ak, b1, . . . , bn /∈ V1. Since the codimension of V1 in
V2 is infinite, we can apply Lemma 6.11(4) in order to conclude that the set

{(W1,W2) ∈ Gr(d1, V2)×Gr(d2, V2) | a1, . . . , ak, b1, . . . , bn /∈ V1 +W1 +W2}

is dense in Gr(d1, V2) × Gr(d2, V2) (notice that these are Grassmannians of V2 rather
than A). Condition (6.1) implies that both U1 ∩Gr(d1, V2) and U2 ∩Gr(d2, V2) are not
empty, so due to density there exist W1 ∈ U1 and W2 ∈ U2 such that W1 + W2 ⊂ V2 and
a1, . . . , ak, b1, . . . , bn /∈ V1 +W1 +W2. Finally, again by Lemma 6.17, we have

U1 ∩ U2 = ↑(C1 + C2) ∩ ǎ1 ∩ · · · ∩ ǎk ∩ b̌1 ∩ · · · ∩ b̌n 6⊂ UV1,V2 .

6.19. Theorem. Let A be a Hausdorff locally convex space, and let P be a subset of
Max◦A. Then P is a prime open set if and only if either P = sob(V ) for some V ∈
Max◦A, or P = UV1,V2 for some V1, V2 ∈ Max◦A such that V1 ⊂ V2 and the codimension
of V1 inside V2 is infinite.

Proof. Applying Lemma 6.14 with S = {ǎ}a∈A and Y = MaxS A = Max◦A, we see that
P = U0,V2 ∪ S with V2 ∈ Max◦A and S a union of elements of S. Then there is a subset
C ⊂ A such that S =

⋃
a∈C ǎ = UV1,A, where V1 = spanC. Then P = U0,V2 ∪ UV1,A, and,

since P 6= Y because P is prime, we must have V1 ⊂ V2, and thus P = UV1,V2 . If V1 = V2

then P = Y \ {V1}, and this equals sob(V1) because, by Lemma 6.4, Max◦A is T1. So let
us assume V1 6= V2. Suppose that the codimension d of V1 inside V2 is finite. If d = 1 then
UV1,V2 = Y \ {V1, V2}, which is not prime. So let us assume that d ≥ 2. Write d = d1 + d2

with d1, d2 > 0, and pick open sets C1 ⊂ Gr(d1, A) and C2 ⊂ Gr(d2, A) with the following
properties (cf. Lemma 6.11):

1. There are W1 ∈ C1 and W2 ∈ C2 such that W1 +W2 ⊂ V2;

2. For any W1 ∈ C1 and W2 ∈ C2 the subspaces W1, W2 and V1 are independent.
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Fix W1 ∈ C1 and W2 ∈ C2 with W1 + W2 ⊂ V2 and pick a ∈ V2 so that a /∈ V1 + W1 and
a /∈ V1 + W2. Due to [22, Th. 7.5] the sets ↑C1 and ↑C2 are open in Max◦A, and from
Lemma 6.17 it follows that

↑C1 ∩ ǎ 6⊂ UV1,V2 and ↑C2 ∩ ǎ 6⊂ UV1,V2 . (6.2)

Notice also that (
↑C1 ∩ ǎ

)
∩
(
↑C2 ∩ ǎ

)
= ↑(C1 + C2) ∩ ǎ . (6.3)

By independence, for any W ∈ C1 + C2 we have either W 6⊂ V2 or W + V1 = V2, and thus
either W 6⊂ V2 or a ∈ W +V1. Therefore, by Lemma 6.17, we have ↑(C1 +C2)∩ ǎ ⊂ UV1,V2 ,
and, due to (6.2) and (6.3), we see that UV1,V2 is not prime. Finally, if the codimension of
V1 in V2 is infinite then UV1,V2 is prime, by Lemma 6.18.

Universal bundles versus open support topology. Let A be a topological vector
space. The identity id : Sub◦A → Sub◦A is the kernel map of a quotient vector bundle
over Sub◦A that satisfies the open support property. However, as we shall see now,
this is not in general a spectral vector bundle because the spectral kernel may fail to be
continuous. In addition we show that the open support property does not in general entail
having a closed zero section.

We shall denote by U◦A the bundle which is classified by the inclusion Max◦A →
Sub◦A.

6.20. Theorem. Let A be a Hausdorff vector space.

1. If dimA =∞ the open support property for U◦A holds but its spectral kernel is not
continuous.

2. If dimA <∞ then U◦A is sober (and thus spectral).

Proof. Let κ and k be the kernel map and the spectral kernel map of U◦A (κ is the
identity on MaxA). Then κ = k ◦ sob. Assuming first that dimA =∞, from Lemma 6.18
it follows that ∅ = U0,A is a prime open set of Max◦A. Given any V ∈ Max◦A we have
k(sob(V )) = κ(V ) = V . If k were continuous then from Theorem 5.13 we would conclude,
since ∅ ⊂ V for all V ∈ Max◦A, that k(∅) = V for all V ∈ Max◦A, a contradiction. If
A has finite dimension then it is Euclidean and, by Theorem 6.19, the only prime open
sets are of the form sob(V ) for V ∈ Max◦A. This means that Max◦A is sober, and, by
Lemma 5.8, we conclude that k is continuous. Hence, for finite dimensional A the bundle
U◦A is sober.

In addition, we mention the following simple consequence of Theorem 6.7:

6.21. Corollary. Let A be a first countable topological vector space such that dimA > 2.
Then the zero section of U◦A is not closed.

Proof. By [22, Th. 5.7], the kernel of a quotient vector bundle with closed zero section
must be Fell continuous, so the result follows immediately from Theorem 6.7.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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