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ALGEBRAICALLY COHERENT CATEGORIES

ALAN S. CIGOLI, JAMES R. A. GRAY AND TIM VAN DER LINDEN

Abstract. We call a �nitely complete category algebraically coherent if the change-of-
base functors of its �bration of points are coherent, which means that they preserve �nite
limits and jointly strongly epimorphic pairs of arrows. We give examples of categories
satisfying this condition; for instance, coherent categories and categories of interest in the
sense of Orzech. We study equivalent conditions in the context of semi-abelian categories,
as well as some of its consequences: including amongst others, strong protomodularity,
and normality of Higgins commutators for normal subobjects, and in the varietal case,
�bre-wise algebraic cartesian closedness.

1. Introduction

The aim of this article is to study a condition which recently arose in some loosely in-
terrelated categorical-algebraic investigations [54, 29, 28]: we ask of a �nitely complete
category that the change-of-base functors of its �bration of points are coherent, which
means that they preserve �nite limits and jointly strongly epimorphic pairs of arrows.

Despite its apparent simplicity, this property�which we shall call algebraic coher-
ence�has some important consequences. For instance, any algebraically coherent semi-
abelian category [43] satis�es the so-called Smith is Huq condition (SH). In fact (see Sec-
tion 6) it also satis�es the strong protomodularity condition as well as the conditions (SSH),
which is a strong version of (SH), and (NH), normality of Higgins commutators of normal
subobjects�studied in [12, 5], [5, 56], [57] and [26, 27], respectively. Nevertheless, there
are many examples including all categories of interest in the sense of Orzech [59] (The-
orem 4.15). In particular, the categories of groups, (commutative) rings (not necessarily
unitary), Lie algebras over a commutative ring with unit, Poisson algebras and associative
algebras are all examples. Knowing that a category is not only semi-abelian, but satis�es
these additional conditions is crucial for many results in categorical algebra, in particular
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to applications in (co)homology theory. For instance, the description of internal crossed
modules [40] becomes simpler when (SH) holds [56, 38]; the theory of universal central
extensions depends on the validity of both (SH) and (NH) [25, 36]; and under (SH) higher
central extensions admit a characterisation in terms of binary commutators which helps
in the interpretation of (co)homology groups [63, 64].

The concept of algebraically coherent category is meant to be an algebraic version of the
concept of coherent category [50], as explained by a certain formal parallel between topos
theory and categorical algebra [41]. The key idea is that notions which in topos theory are
expressed by properties of the basic �bration cod: ArrpC q Ñ C may have a meaningful
counterpart in categorical algebra when the basic �bration is replaced by the �bration
of points cod: PtpC q Ñ C . That is to say, the slice categories pC Ó Xq are replaced by
the categories PtXpC q of points over X in C , whose objects are split epimorphisms with
a chosen splitting pp : Y Ñ X, s : X Ñ Y q, ps � 1X . A successful example of this par-
allel is the second author's notion of algebraically cartesian closed category�see [34, 17]
and related works. The present paper provides a new example: while a coherent cat-
egory is a regular category C where every change-of-base functor of the basic �bration
cod: ArrpC q Ñ C is coherent, an algebraically coherent category is a �nitely complete cat-
egory C where the same property holds for the �bration of points cod: PtpC q Ñ C . As a
consequence, certain results carry over from topos theory to categorical algebra for purely
formal reasons: for instance, in parallel with the long-established [50, Lemma 1.5.13], any
locally algebraically cartesian closed category is algebraically coherent (Theorem 4.5). We
shall see that this procedure (replacing the basic �bration with the �bration of points)
is indeed necessary, because while a semi-abelian category [43] may or may not be alge-
braically coherent�see Section 4 for a list of examples�it is never coherent, unless it is
trivial (Proposition 2.10).

Section 2 recalls the de�nitions of coherent functor and coherent category. In Sec-
tion 3 we de�ne algebraic coherence, characterise it in terms of the kernel functor alone
(Proposition 3.12, Theorem 3.18) and study its stability properties: closure under slices
and coslices (Proposition 3.4), points (Corollary 3.5), and (regular epi)-re�ections (Prop-
osition 3.7). In Section 4 we give examples, non-examples and counterexamples. The
main results here is Theorem 4.15 proving that all categories of interest in the sense of
Orzech are algebraically coherent. Section 5 treats the relationship with two-nilpotency.
In Section 6 we focus on categorical-algebraic consequences of algebraic coherence, mostly
in the semi-abelian context. First of all, any pointed Mal'tsev category which is algebra-
ically coherent is protomodular (Theorem 6.2 and the more general Theorem 6.6). Next
we show that (SH), (NH), (SSH) and strong protomodularity are all consequences of al-
gebraic coherence (see Theorems 6.18, 6.21 and 6.24). In a general context including all
varieties of algebras, algebraic coherence implies �bre-wise algebraic cartesian closedness
(FWACC) (see Theorem 6.27), meaning that centralisers exist in the �bres of the �bration
of points. Section 7 focuses on the higher-order Higgins commutator and a proof of the
Three Subobjects Lemma for normal subobjects (Theorem 7.1). The �nal section gives a
short summary of results that hold in the semi-abelian context.
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2. Coherent functors, coherent categories

Recall that a cospan pf, gq over an object Z in an arbitrary category is called a

(a) jointly extremally epimorphic pair when for each commutative diagram as on
the left in Figure 1, if m is a monomorphism, then m is an isomorphism;

(b) jointly strongly epimorphic pair when for each commutative diagram as on the
right in Figure 1, if m is a monomorphism, then there exists a unique morphism
ϕ : Z ÑM such that mϕ � φ.

M

m��
X

f
,2

f 1
9C

Z Y

g1
Ze

g
lr

M

m

��
P

X
f
,2

f 1

5>

Z

φ

LR

Y

g1

`i

g
lr

Figure 1: Jointly extremally epimorphic and jointly strongly epimorphic pairs

In a similar way to extremal epimorphisms and strong epimorphisms (see for instance
Section 1 in [47]) we have

2.1. Lemma. Let C be an arbitrary category and let pf, gq be a cospan over an object Z.
If the pair pf, gq is jointly strongly epimorphic, then it is jointly extremally epimorphic.
If C has pullbacks then pf, gq is jointly extremally epimorphic if and only if it is jointly
strongly epimorphic.

2.2. Lemma. In an arbitrary category, let pf : X Ñ Z, g : Y Ñ Zq be a cospan over Z
and let e : W Ñ X be a strong epimorphism.

(a) pf, gq is jointly extremally epimorphic if and only if pfe, gq is jointly extremally
epimorphic;

(b) pf, gq is jointly strongly epimorphic if and only if pfe, gq is jointly strongly epi-
morphic.

Suppose now that pf, gq is a jointly strongly epimorphic cospan and consider a morphism
p : Z Ñ V .

(c) if p is an extremal epimorphism, then ppf, pgq is jointly extremally epimorphic;

(d) if p is a strong epimorphism, then ppf, pgq is jointly strongly epimorphic.
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2.3. Lemma. For each commutative diagram

K ,2 f
1

,2
�%

f �%

M
��

��

L
y�

g
y�

lrg1lr

Z

in an arbitrary category, M ¤ Z is the join of K ¤ Z and L ¤ Z if and only if pf 1, g1q is
jointly extremally epimorphic. In particular pf, gq is jointly extremally epimorphic when
the diagram above with M � Z is a join.

2.4. Lemma. For each diagram

X � Y

p f g q��
X

ιX
7A

f
,2 Z Y

ιY
]g

g
lr

in a category with binary coproducts, f and g are jointly extremally epimorphic / jointly
strongly epimorphic if and only if p f g q is an extremal epimorphism / strong epimorphism.

Since in the rest of the paper all categories considered will have �nite limits we will
freely interchange �jointly strongly epimorphic� and �jointly extremally epimorphic� (see
Lemma 2.1 above).

2.5. Definition. A functor between categories with �nite limits is called coherent if it
preserves �nite limits and jointly strongly epimorphic pairs.

Since an arrow is a monomorphism if and only if its kernel pair is the discrete equiv-
alence relation, it follows that any functor which preserves kernel pairs, preserves mono-
morphisms. In particular every coherent functor preserves monomorphisms. Note that
in a regular category a morphism f is a regular epimorphism if and only if pf, fq is a
jointly strongly epimorphic pair. It easily follows that a coherent functor between regular
categories is always regular, that is, it preserves �nite limits and regular epimorphisms.

The next proposition shows that for regular categories, the above de�nition coincides
with the one given in Section A.1.4 of [50].

2.6. Proposition. A regular functor between regular categories is coherent if and only
if it preserves binary joins of subobjects.

Proof. Note that by Lemma 2.2 (b) a cospan pf, gq in a regular category is jointly
strongly epimorphic if and only if the cospan pImpfq, Impgqq is jointly strongly epimorphic.
Note also that any regular functor preserves (regular epi, mono)-factorisations. Therefore
the proof follows from Lemma 2.3: under either condition diagrams of the form as in
Lemma 2.3 are preserved.
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2.7. Proposition. Let F : C Ñ D be a left exact functor between categories with �nite
limits and binary coproducts. The following are equivalent:

(i) F is coherent;

(ii) F preserves strong epimorphisms and the comparison morphism

p F pιXq F pιY q q : F pXq � F pY q Ñ F pX � Y q

is a strong epimorphism for all X, Y P C .

When in addition C is pointed (or more generally when coproduct injections are mono-
morphisms), these condition are further equivalent to:

(iii) F preserves strong epimorphisms and binary joins;

(iv) F preserves strong epimorphisms and joins of the form

X
ιX ,2 X � Y Y.

ιYlr

Proof. For any jointly strongly epimorphic cospan pf, gq over an object Z consider the
diagram

F pXq � F pY q

pF pιXq F pιY q q

��
F pX � Y q

F p f g q

��
F pXq

GN

ιF pXq

6?

6?

F pιXq

6?

,2
F pfq

,2 F pZq F pY q.
_i

F pιY q

_i

lr
F pgq

lr
PW

ιF pY q

_i

Suppose that (ii) holds. It follows from Lemma 2.4 and the fact that F preserves strong
epimorphisms that F p f g q is a strong epimorphism. Therefore the vertical composite
F p f g q p F pιXq F pιY q q � p F pfq F pgq q is a strong epimorphism and so according to Lemma 2.4
the cospan pF pfq, F pgqq is jointly strongly epimorphic. This proves that (ii) implies (i).
Since (ii) and (iii) follow trivially from (i), and (iv) follows from (iii), it remains only to
show that (iv) implies (ii). However this follows from Lemma 2.3 and 2.4.

2.8. Definition. A regular category with �nite coproducts C is coherent in the sense
of [50] (and called a pre-logos in [30]) if and only if, for any morphism f : X Ñ Y in C ,
the change-of-base functor f� : pC Ó Y q Ñ pC Ó Xq is coherent.

The categories Gp and Ab (all groups, abelian groups) are well-known not to be cohe-
rent. In fact, the only semi-abelian (or, more generally, unital) coherent category is the
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trivial one. Recall from [11, 5] that a pointed �nitely complete category is unital when
for any pair of objects X, Y the cospan

X
x1X ,0y,2 X � Y Y

x0,1Y ylr

is jointly strongly epimorphic.

2.9. Lemma. Let C be a unital category. For each object X in C the pullback functor
x1X , 1Xy

� : pC Ó pX �Xqq Ñ pC Ó Xq is coherent if and only if X is a zero object.

Proof. In the diagram
0 ,2

��

X

x1X ,1Xy

��

0

��

lr

X
x1X ,0y

,2 X �X X
x0,1Xy
lr

the two squares are pullbacks and px1X , 0y, x0, 1Xyq is a jointly strongly epimorphic cospan
in C , and hence in pC Ó pX � Xqq. It follows that 0 Ñ X is a strong epimorphism, so
that X is isomorphic to 0.

2.10. Proposition. If a unital category is coherent, then it is trivial.

Proof. The proof follows trivially from Lemma 2.9.

However, we will see that in a unital category certain change-of-base functors are
always coherent.

2.11. Lemma. Let C be a unital category. If pf, gq and pf 1, g1q are jointly strongly epi-
morphic cospans over Z and Z 1 respectively, then pf � f 1, g � g1q is a jointly strongly
epimorphic cospan over Z � Z 1.

Proof. Consider the diagram

T 1

n1

��

}�
S

m

��

X 1

f 1
,2

x0,1X1y

}�

07

Z 1

x0,1Z1y

}�

Y 1g1lr

x0,1Y 1y
}�

jp

T

n

��

=G

X �X 1

f�f 1
,2

/6

Z � Z 1 Y � Y 1g�g1lr

jp

X
f

,2

x1X ,0y

=G

/6

Z

x1Z ,0y

=G

Yg
lr

x1Y ,0y

=G

jp

where m is a monomorphism of cospans and the monomorphisms of cospans n and n1 are
obtained by pullback. Since pf, gq and pf 1, g1q are jointly strongly epimorphic cospans it
follows that n and n1 are isomorphisms, respectively. Therefore since C is unital it follows
that m is an isomorphism as required.
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As an immediate corollary we obtain:

2.12. Lemma. Let C be a unital category. For each object X in C the functor

X � p�q : C Ñ C

is coherent, and hence so are the change-of-base functors C Ñ pC Ó Xq and C Ñ PtXpC q
along X Ñ 0.

3. Algebraically coherent categories

Considering that even the most basic algebraic categories are never coherent, it is natural
to try and �nd an algebraic variant of the concept. The idea followed in this paper is to
replace the basic �bration by the �bration of points :

3.1. Definition. A category with �nite limits is called algebraically coherent if and
only if for each morphism f : X Ñ Y in C , the change-of-base functor

f� : PtY pC q Ñ PtXpC q

is coherent.

This de�nition means that for each diagram

A2 u ,2
g2

w�

p2

��

A
g

w�

p

��

A1

g1

w�

vlr

p1

��

B2 u ,2

q2

��

B

q

��

B1vlr

q1

��

X

s2

LR

f
w�

X

s

LR

f
w�

X

s1

LR

f
w�

Y

t2

LR

Y

t

LR

Y

t1

LR

where pu, vq is a cospan in PtY pC q and pu, vq is the cospan in PtXpC q obtained by change-
of-base along f , if pu, vq is a jointly strongly epimorphic pair, then also the pair pu, vq is
jointly strongly epimorphic. Note that we can interpret those conditions in C itself:

3.2. Lemma. Each jointly strongly epimorphic pair in a category of points PtXpC q is still
jointly strongly epimorphic when considered in pC Ó Xq or even C .
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Proof.Consider a jointly strongly epimorphic pair pu, vq in PtXpC q which factors through
a subobject m in C .

M
��
m

��
A2

u
9C

u ,2

p2

��

A

p

��

A1vlr

p1

��

v
[e

X

s2

LR

X

s

LR

X

s1

LR

Then, clearly, pm is split by us2 � vs1 : X ÑM , thus m, u and v become morphisms of
points.

3.3. Stability properties. Next we will show that if a category is algebraically cohe-
rent, then so are its slice and coslice categories and so is any full subcategory which is
closed under products and subobjects.

3.4. Proposition. If a category C is algebraically coherent, then, for each X in C , the
categories pC Ó Xq and pX Ó C q are also algebraically coherent.

Proof. For each morphism in the slice category pC Ó Xq, i.e. a commutative diagram

Y

α �%

f ,2 Z

βy�
X

in C , there are isomorphisms of categories (the horizontal arrows below) which make the
diagram

PtpZ,βqpC Ó Xq
� ,2

pfÓXq�

��

PtZpC q

f�

��
PtpY,αqpC Ó Xq

�
,2 PtY pC q

commute. It follows that pf Ó Xq� is coherent whenever f� is. A similar argument holds
for the coslice category pX Ó C q.

3.5. Corollary. If a category C is algebraically coherent, then any �bre PtXpC q is also
algebraically coherent.

Proof. Since PtXpC q � ppX, 1Xq Ó pC Ó Xqq, this follows from Proposition 3.4.

3.6. Proposition. If C is algebraically coherent, then so is any category of diagrams
in C . In particular, such is the category PtpC q of points in C .

Proof. Since in a functor category, limits and colimits are pointwise, the passage to
categories of diagrams in C is obvious.
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3.7. Proposition. If B is a full subcategory of an algebraically coherent category C
closed under �nite products and subobjects (and hence all �nite limits), then B is algebra-
ically coherent. In particular, any (regular epi)-re�ective subcategory of an algebraically
coherent category is algebraically coherent.

Proof. We have to show that, for each morphism f : X Ñ Y in B, the change-of-base
functor f� : PtY pBq Ñ PtXpBq is coherent. Since the category B is closed under �nite
limits in C this functor is a restriction of the functor f� : PtY pC q Ñ PtXpC q. It therefore
su�ces to note that cospans in B are jointly strongly epimorphic in B if and only if they
are in C . However since B is closed under subobjects in C , this is indeed the case.

3.8. The protomodular case. We recall that a category C is called protomodular
in the sense of Bourn [10] if it has pullbacks of split epimorphisms along any map and all
the change-of-base functors of the �bration of points cod: PtpC q Ñ C are conservative,
which means that they re�ect isomorphisms. See also [5] for a detailed account of this
notion.

It is an obvious consequence of Lemma 2.2 that any change-of-base functor along a
pullback-stable strong epimorphism (and in particular along regular epimorphisms in a
regular category) re�ects jointly strongly epimorphic pairs (see also Lemma 6.4 (c) below).
We now explore the protomodular case, where all change-of-base functors re�ect jointly
strongly epimorphic pairs. Using this result we will prove that when C is a pointed
protomodular category, algebraic coherence can be expressed in terms of kernel functors
Ker: PtXpC q Ñ C (which are precisely the change-of-base functors along initial maps
!X : 0 Ñ X) alone.

3.9. Lemma. Let F : C Ñ D be a functor. If F is conservative and preserves mono-
morphisms then it re�ects jointly strongly epimorphic pairs.

Proof. Suppose that pu, vq is a cospan in C such that pF puq, F pvqq is a jointly strongly
epimorphic pair in D . This means that the image through F of any monomorphism of
cospans with codomain pu, vq in C is an isomorphism. The proof now follows from the
fact that F re�ects isomorphisms.

3.10. Proposition. If C is a protomodular category, then the change-of-base functors
re�ect jointly strongly epimorphic pairs.

3.11. Lemma. Let F : C Ñ D and G : D Ñ E be functors. If GF and G preserve and
re�ect, respectively, jointly strongly epimorphic pairs, then F preserves jointly strongly
epimorphic pairs.

Proof. Let pu, vq be a jointly strongly epimorphic cospan. By assumption, it follows that
pGF puq, GF pvqq and hence pF puq, F pvqq is a jointly strongly epimorphic cospan.
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3.12. Proposition. A protomodular category C with an initial object is algebraically
coherent if and only if the change-of-base functors along each morphism from the initial
object are coherent. In particular a pointed protomodular category is algebraically coherent
if and only if the kernel functors Ker: PtXpC q Ñ C are coherent.

Proof. Since by Proposition 3.10 every change-of-base functor re�ects jointly strong-
ly epimorphic pairs, the non-trivial implication follows from Lemma 3.11 applied to the
commutative triangle

PtY pC q
f� ,2

!�Y �'

PtXpC q

!�Xw�
Pt0pC q

where f : X Ñ Y is an arbitrary morphism in C and 0 is the initial object in C .

It is worth spelling out what Proposition 2.7 means in a pointed protomodular category
with pushouts of split monomorphisms.

3.13. Proposition. A pointed protomodular category with pushouts of split monomorph-
isms is algebraically coherent if and only if for every diagram of split extensions of the
form

H_��
h
��

,2 ,2 K_��

��

L_��
l
��

lrlr

A ,2 ιA ,2

p1

��

A�X C

p

��

Clr
ιClr

p2

��
X

s1

LR

X

s

LR

X

s2

LR (A)

the induced arrow H � LÑ K is a strong epimorphism.

Proof. This is a combination of Proposition 2.7 (i) ô (ii) and Proposition 3.12.

Using Proposition 2.7, this result may be rephrased as follows. Note the resemblance
with the strong protomodularity condition (cf. Subsection 6.22).

3.14. Corollary. A pointed protomodular category with pushouts of split monomorph-
isms is algebraically coherent if and only if for each diagram such as (A), K is the join
of H and L in A�X C.

3.15. Algebraic coherence in terms of the functors X5p�q. We end this sec-
tion with a characterisation of algebraic coherence in terms of the action monad X5p�q.
Recall from [18, 7] that X5p�q : C Ñ C takes an object Y and sends it to the kernel in
the short exact sequence

0 ,2 X5Y � ,2
κX,Y ,2 X � Y

p 1X 0 q� ,2X
ιX
lr ,2 0.
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This functor is part of a monad on C , induced by the adjunction pX � p�qq % Ker, for
which the algebras are called internal X-actions and which gives rise to a comparison
PtXpC q Ñ CX5p�q. For instance, any internal action ξ : X5Y Ñ Y of a group X on a
group Y corresponds to a homomorphism X Ñ AutpY q. In other categories, however,
interpretations of the concept of internal object action may look very di�erent [7, 8].

3.16. Lemma. If C is a pointed algebraically coherent category with binary coproducts,
then for any object X, the functor X5p�q : C Ñ C preserves jointly strongly epimorphic
pairs.

Proof. This follows from the fact that kernel functors are coherent while left adjoints
preserve jointly strongly epimorphic pairs.

3.17. Lemma. Let F : C Ñ D and G : D Ñ E be functors such that C has binary co-
products and F preserves them, F preserves jointly strongly epimorphic pairs, G preserves
strong epimorphisms, and for every D in D there exists a strong epimorphism F pCq Ñ D.
GF preserves jointly strongly epimorphic pairs if and only if G does.

Proof. The �if� part follows from the fact that the composite of functors which preserve
jointly strongly epimorphic pairs, preserves jointly strongly epimorphic pairs. For the
�only if� part let pg1, g2q be a jointly strongly epimorphic cospan and construct the diagram

F pC1q
F pιC1

q
,2

e1

��

F pC1 � C2q

e

��

F pC2q
F pιC2

q
lr

e2

��
D1 g1

,2 D D2g2
lr

where e1 and e2 are arbitrary strong epimorphism existing by assumption, and e is in-
duced by the coproduct. Since pg1, g2q is jointly strongly epimorphic and e1 and e2 are
strong, e is necessarily strong by Lemmas 2.2 and 2.4. Therefore, since G preserves strong
epimorphisms and GF preserves jointly strongly epimorphic pairs it follows that

pGpeqGF pιC1q, GpeqGF pιC2qq � pGpg1qGpe1q, Gpg2qGpe2qq

is a jointly strongly epimorphic cospan, and so pGpg1q, Gpg2qq is jointly strongly epimorphic
by Lemma 2.2.

One situation where this lemma applies is when F % G is an adjunction where the
functor G preserves strong epimorphisms with a strongly epimorphic counit. Taking
pX � p�qq % Ker we �nd, in particular, Theorem 3.18. Recall from [5] that a pointed,
regular and protomodular category is called homological.

3.18. Theorem. Let C be a homological category with binary coproducts. C is algebra-
ically coherent if and only if for every X, the functor X5p�q : C Ñ C preserves jointly
strongly epimorphic pairs.
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In the article [54], the authors consider a variation on this condition, asking that the
functors X5p�q preserve jointly epimorphic pairs formed by semidirect product injections.

Note that in the proof of Theorem 3.18 we did not use the existence of coequalisers
in C , so it is actually valid in any pointed protomodular category with binary coproducts
in which strong epimorphisms are pullback-stable.

Lemma 3.16 can also be used as follows. Recall from [46, 45] that in a pointed and
regular category, a clot is a subobject K ¤ Y such that the conjugation action on Y
restricts to it.

3.19. Proposition. Let C be a pointed algebraically coherent category with binary co-
products and binary joins of subobjects. Given K, L ¤ Y in C , if ξ : X5Y Ñ Y is an
action which restricts to K and L, then ξ restricts to K _ L. In particular, if K and L
are clots in Y , then so is K _ L.

Proof. Let us consider the diagram

X5L
X5j

t}

X5l

�'ξL

��

X5pK _ Lq

ξK_L

��

X5m
,2 X5Y

ξ

��

X5K

X5i
4=

ξK

��

X5k

/6

L
j

t}

l

�(

ηL

LR

K _ L

ηK_L

LR

,2 m ,2 Y

ηY

LR

K

i

4<

k

/5ηK

LR

where the arrows at the bottom �oor are all inclusions of subobjects of Y , η is the unit of
the monad X5p�q, and ξ is an action of X on Y , with restrictions ξK and ξL to K and L
respectively.

Since, by Lemma 3.16, the pair pX5i,X5jq is jointly strongly epimorphic, and m is a
monomorphism, there exists a unique ξK_L (the dashed arrow in the diagram) such that
ξK_LpX5iq � iξK , ξK_LpX5jq � jξL and mξK_L � ξpX5mq.

It is not di�cult to see that ξK_L is indeed a retraction of ηK_L. In order to prove
that it is an action, and hence an algebra for the monad X5p�q, we still have to show
that the diagram

X5pX5pK _ Lqq

µK_L

��

X5ξK_L ,2 X5pK _ Lq

ξK_L

��
X5pK _ Lq

ξK_L ,2 K _ L,

where µ is the multiplication of the monad X5p�q, commutes. To prove this we use that
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the analogous property holds for both ξK and ξL, and that, again by Lemma 3.16, the
pair pX5pX5iq, X5pX5jqq is jointly strongly epimorphic.

Recall that a subobject in a pointed category is called Bourn-normal when it is the
normalisation of an equivalence relation [5, Section 3.2]. In an exact homological category,
Bourn-normal subobjects and kernels (= normal subobjects) coincide.

3.20. Corollary. In an algebraically coherent homological category with binary coprod-
ucts, the join of two Bourn-normal subobjects is Bourn-normal.

Proof. The result follows from the fact that in this context Bourn-normal subobjects
coincide with clots [55].

Notice that, in an exact homological category, the join of two normal subobjects is
always normal [5, Corollary 4.3.15].

In fact, in a semi-abelian context, the property in Proposition 3.19 turns out to be
equivalent to algebraic coherence. Recall that a category is semi-abelian [43] when it is
a pointed, Barr-exact, and protomodular category with �nite coproducts.

3.21. Theorem. Suppose C is a semi-abelian category. The following are equivalent:

(i) C is algebraically coherent;

(ii) given K, L ¤ Y in C , any action ξ : X5Y Ñ Y which restricts to K and L also
restricts to K _ L.

Proof. One implication is Proposition 3.19. Conversely, since here the comparison
PtXpC q Ñ CX5p�q is an equivalence, condition (ii) says that any cospan in PtXpC q whose
restriction to kernels is K, L ¤ Y factors through a morphism in PtXpC q whose restric-
tion to kernels is K _ L ¤ Y . But since the kernel functor Ker: PtXpC q Ñ C re�ects
jointly strongly epimorphic pairs (Lemma 3.9) and monomorphisms, it also re�ects joins
of subobjects. Then it preserves them, hence it is coherent by Proposition 2.7. The result
now follows from Proposition 3.12.

4. Examples, non-examples and counterexamples

Before treating algebraic examples, let us �rst consider those given by topos theory.

4.1. Proposition. Any coherent category is algebraically coherent.

Proof. This is an immediate consequence of Lemma 3.2.
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4.2. Examples. This provides us with all elementary toposes as examples (sets, �nite
sets, sheaves, etc.).

4.3. Example. The dual of the category of pointed sets is semi-abelian [13] algebraically
coherent. One way to verify this is by the dual of the condition of Proposition 3.13
in the category Set�. Given two elements of A �X C, it su�ces to check all relevant
cases to see that it is still possible to separate them after X has been collapsed. The
same argument is valid to prove that E op

� is algebraically coherent when E is any boolean
topos: the existence of complements allows us to express the cokernel of a monomorphism
m : M Ñ X in Pt1pE q as a disjoint union pXzMq \ 1. Indeed, in the diagram in E

0 ,2

��

M ,2

��

1

��
XzM ,2 X ,2 X{M

each square is simultaneously a pullback and a pushout�see [50]. Being given the opposite

pAzXq \ 1 pBzXq \ 1
flr g ,2 pCzXq \ 1

A

_LR

s1

��

B

_LR

flr g ,2

s
��

C

_LR

s2

��
X

p1

LR

X

p

LR

X

p2

LR

of diagram (A), page 1873, in Pt1pE q, we now have to prove that f and g are jointly
(strongly) monomorphic when so are f and g. Being given b, b1 P pBzXq \ 1 such that
fpbq � fpb1q and gpbq � gpb1q, we shall see that b � b1. Without loss of generality, as
follows from E being lextensive, we may assume that one of the three cases

(a) b, b1 P BzX;

(b) b P BzX and b1 P 1;

(c) b P 1 and b1 P BzX

is satis�ed, of which only the �rst leads to further work. Things are �ne if either fpbq �
fpb1q or gpbq � gpb1q is outside 1. When, however, both fpbq � 1 and gpbq � 1, then
fpbq � p1s1fpbq � p1spbq � fpspbq (because fpbq � 1 means that fpbq is in X) and
gpbq � gpspbq (for similar reasons), which proves that b � pspbq P X.

4.4. Example. The category Top of topological spaces and continuous maps is not co-
herent, because it is not even regular.

In fact, Top is not algebraically coherent either, since the change-of-base functors of
the �bration of points need not preserve regular epimorphisms (which coincide here with



1878 ALAN S. CIGOLI, JAMES R. A. GRAY AND TIM VAN DER LINDEN

strong epimorphisms = quotient maps). To see this, let us consider the following variation
on Counterexample 2.4.5 in [3]. Let A, B, C and D be the topological spaces de�ned
as follows. Their underlying sets are ta, b, c, du, tl,m, nu, tx, y, zu and ti, ju respectively.
The topologies on A and B are generated by tta, buu and ttl,muu while the topologies
of C and D are indiscrete. Let f : AÑ C, s : D Ñ A, p : C Ñ D and g : B Ñ D be the
continuous maps de�ned by:

a b c d

f x y y z

i j
s d c

x y z
p i j i

l m n
g i i i

Then f is actually a regular epimorphism ppf, sq Ñ pp, fsq in PtDpTopq. However, its
image g�pfq by the change-of-base functor g� : PtDpTopq Ñ PtBpTopq is a surjection, but
not a regular epimorphism. Indeed, since A�DB and C�DB have underlying sets ta, du�
tl,m, nu and tx, zu�tl,m, nu, and topologies generated by ttau�tl,m, nu, ta, du�tl,muu
and ttx, zu � tl,muu respectively, it follows that the set

tau � tl,mu � pg�pfqq�1ptxu � tl,muq

is an open subset of A �D B coming from a non-open subset of C �D B. This means
that C �D B does not carry the quotient topology induced by g�pfq and so g�pfq is not
a regular epimorphism.

It is well known [50, Lemma 1.5.13] that any �nitely cocomplete locally cartesian closed
category is coherent. We �nd the following algebraic version of this classical result. We
recall from [34, 17] that a �nitely complete category C is said to be locally algebraically
cartesian closed (satis�es condition (LACC)) when, for every f : X Ñ Y in C , the
change-of-base functor f� : PtY pC q Ñ PtXpC q is a left adjoint.

4.5. Theorem. Any locally algebraically cartesian closed category is algebraically cohe-
rent.

Proof. This is a consequence of the fact that change-of-base functors always preserve
limits and under (LACC), since they are left adjoints, they preserve jointly strongly
epimorphic pairs.

4.6. Example. The category of cocommutative Hopf algebras over a �eldK of character-
istic zero is semi-abelian as explained in [51, 32]. It is also locally algebraically cartesian
closed by Proposition 5.3 in [34], being the category of internal groups in the category of
cocommutative coalgebras, which is cartesian closed as shown in [1, Theorem 5.3]. Incid-
entally, via 4.4 in [7], the same argument su�ces to show that the category HopfAlgK,coc
has representable object actions.

4.7. Proposition. Any �nitely complete naturally Mal'tsev category [49] is algebraically
coherent.
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Proof. If C is naturally Mal'tsev, then for each object X of C , the category PtXpC q of
points over X is naturally Mal'tsev, pointed and �nitely complete, hence it is additive by a
proposition in [49]. As a consequence, the change-of-base functors f� : PtY pC q Ñ PtXpC q
all preserve binary coproducts and hence are coherent by Proposition 2.7.

4.8. Examples. The following are algebraically coherent: all abelian categories, all ad-
ditive categories, all a�ne categories in the sense of [21].

4.9. Proposition. Let C be an algebraically coherent Mal'tsev category [23, 24]. Then,
for any X in C , the category GpdXpC q of internal groupoids in C with object of objects X
is algebraically coherent. In particular, the category GppC q of internal groups in C is
algebraically coherent.

Proof. For any X in C , GpdXpC q is a naturally Mal'tsev category by Theorem 2.11.6
in [5]. The result follows from Proposition 4.7.

Note that some of the results we shall prove in Section 6 apply only to semi-abelian
categories, so need not apply to all the examples above. On the other hand, being semi-
abelian is not enough for algebraic coherence.

4.10. Examples. Not all semi-abelian (or even strongly semi-abelian) varieties are alge-
braically coherent. We list some, together with the consequence of algebraic coherence
which they lack: (commutative) loops and digroups (since by the results in [5, 12, 38]
they do not satisfy (SH), see Theorem 6.18 below), non-associative rings (or algebras in
general), Jordan algebras (since as explained in [26, 27] they do not satisfy (NH), see
Theorem 6.18), and Heyting semilattices (which, as explained in [57], form an arithmet-
ical [5, 61] Moore category [62] that does not satisfy (SSH), see Theorem 6.21).

In general, (compact) Hausdor� algebras over an algebraically coherent semi-abelian
theory are still algebraically coherent.

4.11. Theorem. 1 Let T be a theory such that SetT is an algebraically coherent semi-
abelian variety. Then the homological category HausT and the semi-abelian category HCompT

are algebraically coherent.

Proof. According to [6] the category HausT is homological and HCompT is semi-abelian.
This means that we may use Proposition 3.13 to show their algebraic coherence. Let us
consider a diagram like (A) in HausT. Since SetT is algebraically coherent, we know that
the underlying algebras are such that H _ L � K. Given a subset S � K which is open
in the �nal topology on K induced by H, L � K, we have to prove that S is open in the
subspace topology induced by K � A�XC. By de�nition, HXS and LXS are open in H
and in L, respectively. Since for Hausdor� algebras kernels are closed [6, Proposition 26],
pH X Sq Y pAzHq and pL X Sq Y pCzLq are open in A and in C, respectively. Hence
S Y ppA�X CqzKq is open in A�X C, which carries the �nal topology.

1We learned from Maria Manuel Clementino that this proof does not work, because the �nal topology
will not make A �X C a topological algebra. We do not know how to correct the proof, or whether the
claim made in Theorem 4.11 holds.
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Since limits in HComp are computed again as in Top, this proof also works for compact
Hausdor� algebras.

It would be interesting to know whether or not the same result holds for topological
spaces.

To make full use of this result, we need further examples of algebraically coherent
semi-abelian varieties of algebras. One class of such are the categories of interest in the
sense of [59].

4.12. Definition. A category of interest is a variety of universal algebras whose
theory contains a unique constant 0, a set Ω of �nitary operations and a set of identities
E such that:

(COI 1) Ω � Ω0 Y Ω1 Y Ω2, where Ωi is the set of i-ary operations;

(COI 2) Ω0 � t0u, � P Ω1 and � P Ω2, where Ωi is the set of i-ary operations, and E

includes the group laws for 0, �, �; de�ne Ω1
1 � Ω1zt�u, Ω1

2 � Ω2zt�u;

(COI 3) for any � P Ω1
2, the set Ω1

2 contains �
op de�ned by x �op y � y � x;

(COI 4) for any ω P Ω1
1, E includes the identity ωpx� yq � ωpxq � ωpyq;

(COI 5) for any � P Ω1
2, E includes the identity x � py � zq � x � y � x � z;

(COI 6) for any ω P Ω1
1 and � P Ω1

2, E includes the identity ωpxq � y � ωpx � yq;

(COI 7) for any � P Ω1
2, E includes the identity x� py � zq � py � zq � x;

(COI 8) for any �, � P Ω1
2, there exists a word w such that E includes the identity

px � yq� z � wpx �1 py�1 zq, . . . , x �m py�m zq, y �m�1 px�m�1 zq, . . . , y �n px�n zqq

where �1, . . . , �n and �1, . . . ,�n are operations in Ω1
2.

The following lemma expresses the well-known equivalence between split epimorphisms
and actions [18, 7] in the special case of a category of interest: here an internal B-action
on an object is determined by a set of additional operations ub,�, one for each element b
of B and each binary operation �.

4.13. Lemma. Let C be a variety of universal algebras whose theory contains a unique
constant 0, a set of �nitary operations Ω, and a set of identities E such that (COI 1)�
(COI 5) of De�nition 4.12 hold. For every B in C de�ne CB to be a new variety whose
theory contains a unique constant 0, a set of �nitary operations ΩB, and a set of identities
EB such that:

(a) ΩB � ΩB0 Y ΩB1 Y ΩB2, where ΩBi
is the set of i-ary operations;

(b) ΩB0 � Ω0, ΩB2 � Ω2 and ΩB1 � Ω1 \ Θ1 where Θ1 � tub,� | b P B, � P Ω2u;
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(c) EB has the same identities as in E but in addition for each ub,� in Θ1 the identity
ub,�px� yq � ub,�pxq � ub,�pyq.

The functor IB : PtBpC q Ñ CB sending a split epimorphism

A
α � ,2B
β
lr

to the kernel of α with all operations induced by those on A except for the unary operations
ub,� which are de�ned by

ub,�pxq �

#
βpbq � x� βpbq if � � �

βpbq � x otherwise

is such that CB � IBpPtBpC qq is a subvariety of CB and IB : PtBpC q Ñ CB is an equiva-
lence of categories.

Moreover if conditions (COI 6)�(COI 8) of De�nition 4.12 also hold, then for every
n-ary word w of CB there exists an m-ary word w1 of C and unary words vi,1, vi,2, . . . ,
vi,mi

of CB for each i in t1, . . . , nu such that

wpx1, . . . , xnq � w1pv1,1px1q, . . . , v1,m1px1q,

v2,1px2q, . . . , v2,m2px2q, . . . , vn,1pxnq, . . . , vn,mnpxnqq.

Proof. For a semi-abelian category, kernel functors are always faithful, since they pre-
serve equalisers and re�ect isomorphisms. Hence the functor IB is faithful too, because
the kernel functor factors through it. Since the kernel functor re�ects limits, being conser-
vative by protomodularity, it follows that IB does too. This proves that PtBpC q is closed
under limits in CB.

For each X in CB we can de�ne all operations in Ω on the set X �B as follows:

0 � p0, 0q is the unique constant

upx, bq � pupxq, upbqq for each u in Ω1
1

�px, bq � pu�b,�p�xq,�bq

px, bq � py, cq � px� ub,�pyq, b� cq

px, bq � py, cq � px � y � ub,�pyq � uc,�oppxq, b � cq for each � in Ω1
2.

The set X � B equipped with these operations becomes an object of C , and the maps
π2 : X �B Ñ B and x0, 1By : B Ñ X �B are morphisms in C . If

X � IBpA
α � ,2Bq
β
lr
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then the map ϕ : X �B Ñ A de�ned by ϕpx, bq � x� βpbq is a bijection which preserves
all operations. Indeed

ϕpupx, bqq � ϕpupxq, upbqq � upxq � βpupbqq � upϕpx, bqq

ϕppx, bq � py, cqq � x� ub,�pyq � βpb� cq

� x� βpbq � y � βpbq � βpbq � βpcq

� ϕpx, bq � ϕpy, cq

ϕppx, bq � py, cqq � x � y � ub,�pyq � uc,�oppxq � βpb � cq

� x � y � βpbq � y � x � βpcq � βpbq � βpcq

� px� βpbqq � py � βpcqq

� ϕpx, bq � ϕpy, cq.

Next we will show that for each f : X Ñ X 1 in CB the map f � 1B : X � B Ñ X 1 � B
which trivially makes the diagram

X
x1X ,0y ,2

f

��

X �B
π2 ,2

f�1B
��

B
x0,1By
lr

X 1

x1X1 ,0y
,2 X 1 �B

π2 ,2 B
x0,1By
lr

commute also preserves the operations de�ned above. We have

pf � 1Bqpupx, bqq � pf � 1Bqpupxq, upbqq � pfpupxqq, upbqq

� uppf � 1Bqpx, bqq

pf � 1Bqppx, bq � py, cqq � pf � 1Bqpx� ub,�pyq, b� cq

� pfpx� ub,�pyqq, b� cq

� pfpxq, bq � pfpyq, cq

� pf � 1Bqpx, bq � pf � 1Bqpy, cq

pf � 1Bqppx, bq � py, cqq � pf � 1Bqpx � y � ub,�pyq � uc,�oppxq, b � cq

� pfpx � y � ub,�pyq � uc,�oppxqq, b � cq

� pfpxq, bq � pfpyq, cq

� pf � 1Bqpx, bq � pf � 1Bqpy, cq.

This means that IB is full, and also that PtBpC q is closed under monomorphisms and
quotients in CB. Indeed, f � 1B is a monomorphism or a regular epimorphism as soon
as f is.
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It is easy to check that

0 � x � x using (COI 2)

0 � x � 0 when � � � using (COI 5)

�px� yq � p�yq � p�xq using (COI 2)

�px � yq � p�xq � y when � � � using (COI 2), (COI 2) and (COI 5)

and for each u in Ω1
1

upx� yq � upxq � upyq using (COI 4)

upx � yq � upxq � y using (COI 6)

which means that for each n-ary word w from C there exists an n-ary word w1 built using
only operations from Ω2, and unary words v1, . . . , vn which are composites of operations
from Ω1 such that wpx1, . . . , xnq � w1pv1px1q, . . . , vnpxnqq. It is also easy to check that for
each ub,� in Θ1

ub,�px� yq � ub,�pxq � ub,�pyq using (COI 2) for � � � and (COI 5) otherwise

ub,�px� yq � x� y when � � � using pCOI 2q, pCOI 7q.

When � � � and � � �, according to (COI 3) and (COI 8) and what was proved above,
there exists a word w built using only operations from Ω2 and unary words v1, . . . , vn
which are composites of operations from Ω1 such that

ub,�px� yq � w
�
v1px�1 pub,�1pyqqq, . . . , vmpx�m pub,�mpyqqq,

vm�1py �m�1 pub,�m�1pxqqq, . . . , vnpyn �n pub,�npxqqq
�

� w
�
x�1 pub,�1pv1pyqqq, . . . , x�m pub,�mpvmpyqqq,

y �m�1 pub,�m�1pvm�1pxqqq, . . . , yn �n pub,�npvnpxqqq
�
.

The �nal claim follows by induction.

4.14. Lemma. Let U : B Ñ C be a forgetful functor between varieties (meaning that the
operations and identities of C are amongst those of B) such that for each n-ary word w
in B there exists an m-ary word w1 in C and unary words vi,1, vi,2, . . . , vi,mi

in B for each
i P t1, . . . , nu satisfying

wpx1, . . . , xnq � w1pv1,1px1q, . . . , v1,m1px1q,

v2,1px2q, . . . , v2,m2px2q, . . . , vn,1pxnq, . . . , vn,mnpxnqq.

The functor U is coherent.
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Proof. Since every element of UpX � Y q is of the form a � wpx1, . . . , xk, yk�1 . . . , ynq
for some n-ary word w from B, where x1, . . . , xk are in X and yk�1, . . . , yn are in Y , it
follows by assumption that there exist a word w1 from C and vi,1, vi,2, . . . , vi,mi

for each
i in t1, . . . , nu in B such that wpx1, . . . , xk, yk�1, . . . , ynq equals

w1pv1,1px1q, . . . , v1,m1px1q, v2,1px2q, . . . , v2,m2px2q, . . . , vk,1pxkq, . . . , vk,mk
pxkq,

vk�1,1pyk�1q, . . . , vk�1,mk�1
pyk�1q, . . . , vn,1pynq, . . . , vn,mnpynqq.

Therefore, since each vi,mi
pxiq is in X and each vi,mi

pyiq is in Y it follows that a is in the
image of

p UpιXq UpιY q q : UpXq � UpY q Ñ UpX � Y q

and so U is coherent by Proposition 2.7.

4.15. Theorem. Every category of interest in the sense of Orzech is algebraically cohe-
rent.

Proof. The proof is a consequence of Lemma 4.13 together with Lemma 4.14 because
any kernel functor PtBpC q Ñ C factors into an equivalence IB : PtBpC q Ñ CB followed
by a coherent functor U : CB Ñ C .

4.16. Examples. The categories of groups and non-unital (Boolean) rings are algebra-
ically coherent semi-abelian categories, as are the categories of associative algebras, Lie
algebras, Leibniz algebras, Poisson algebras over a commutative ring with unit, all vari-
eties of groups in the sense of [58].

4.17. Proposition. If C is a semi-abelian algebraically coherent category and X is an
object of C , then the category ActXpC q � CX5p�q of X-actions in C is semi-abelian
algebraically coherent.

Proof. This is an immediate consequence of Corollary 3.5, using the equivalence between
actions and points from [18, 7], see also Subsection 3.15.

4.18. Proposition. If C is algebraically coherent, then the category RGpC q of re�exive
graphs in C is algebraically coherent.

If, moreover, C is exact Mal'tsev, then also the category CatpC q of internal categories
(= internal groupoids) in C is algebraically coherent. As a consequence, the category
EqpC q of (e�ective) equivalence relations in C is algebraically coherent.

If, moreover, C is semi-abelian then, by equivalence, the categories PXModpC q and
XModpC q of (pre)crossed modules in C are algebraically coherent.

Proof. The �rst statement follows from Proposition 3.6. We now assume that C is
exact Mal'tsev. Since the category of internal categories of C is (regular epi)-re�ective
in RGpC q, we have that CatpC q is algebraically coherent by Proposition 3.7. In turn,
following [31, 9], we see that the category EqpC q is (regular epi)-re�ective in CatpC q. The
�nal claim in the semi-abelian context now follows from the results of [40].
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4.19. Examples. Crossed modules (of groups, rings, Lie algebras, etc.); n-cat-groups,
for all n [52]; groups in a coherent category.

4.20. Proposition. If C is an algebraically coherent exact Mal'tsev category, then

(a) the category ArrpC q of arrows in C ,

(b) its full subcategory ExtpC q determined by the extensions (= regular epimorphisms),
and

(c) the category CExtBpC q of B-central extensions [42] in C , for any Birkho� subcat-
egory B of C ,

are all algebraically coherent.

Proof. (a) follows from Proposition 3.6 since ArrpC q is a category of diagrams in C . (b)
follows from Proposition 4.18, because ExtpC q and EqpC q are equivalent categories. (c)
now follows from (b) by Proposition 3.7.

4.21. Examples. Inclusions of normal subgroups (considered as a full subcategory of
ArrpGpq); central extensions of groups, Lie algebras, crossed modules, etc.; discrete �bra-
tions of internal categories (considered as a full subcategory of ArrpCatpC qq) in an alge-
braically coherent semi-abelian category C [31, Theorem 3.2].

4.22. Proposition. Any sub-quasivariety (in particular, any subvariety) of an algebra-
ically coherent variety is algebraically coherent.

Proof. Since any sub-quasivariety is a (regular epi)-re�ective subcategory [53], this fol-
lows from Proposition 3.7.

4.23. Examples. n-nilpotent or n-solvable groups, rings, Lie algebras etc.; torsion-free
(abelian) groups, reduced rings.

4.24. Monoids.We end this section with some partial algebraic coherence properties for
monoids.

4.25. Proposition. If X is a monoid satisfying the quasi-identity xy � 1 ñ yx � 1,
then the kernel functor Ker: PtXpMonq Ñ Mon is coherent.

Proof. Given a diagram
H_��
h
��

,2 ,2 K_��

��

L_��
l
��

lrlr

A ,2 iA ,2

p1

��

B

p
��

Clr
iClr

p2

��
X

s1

LR

X

s

LR

X

s2

LR

where B � A_ C, we consider A and C as subsets of B via the monomorphisms iA and
iC . We need to show that any element k of K written as a product k � a1c1 � � � ancn of
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elements of A and C in B may be written as a product of elements of H and L in K. We
prove this by induction on the length of the product a1c1 � � � ancn.

When k � ac, �rst note that since ppacq � 1 it follows that p2pcqp1paq � 1 and so
s1pp2pcqqs2pp1paqq � 1. Hence

k � ac � as1pp2pcqq � s2pp1paqqc,

where as1pp2pcqq P H and s2pp1paqqc P L.
If k � a1c1a2 � � � ancn, then ppa1c1a2 � � � anq � p2pcnq

�1. Hence

k � a1c1a2 � � � ancn

� a1c1a2 � � � ans
1pp2pcnqq � s

2pppa1c1a2 � � � anqqcn

is a product of two elements of K, where the �rst has length n � 1 and the second is in
L.

As a consequence, both the category MonC of monoids with cancellation and the
category CMon of commutative monoids have coherent kernel functors.

4.26. Remark. Although we shall not explore this further here, it is worth noting that
the category of all monoids is relatively algebraically coherent: if we replace the �bration
of points in De�nition 3.1 by the �bration of Schreier points considered in [20], all kernel
functors Ker: SPtXpMonq Ñ Mon will be coherent. To see this, it su�ces to modify the
proof of Proposition 4.25 as follows.

If k � ac, use [20, Lemma 2.1.6] to write a as hx with h P H and x P X. Then
k � h � xc where 1 � ppkq � pphq � ppxcq � ppxcq, so that xc P L.

If k � a1c1a2 � � � ancn, write a1 as hx with h P H and x P X. Then k � h �
pxc1qa2 � � � ancn where 1 � ppkq � pphq � pppxc1qa2 � � � ancnq � pppxc1qa2 � � � ancnq. Hence
the induction hypothesis may be used on the product pxc1qa2 � � � ancn.

5. The functor X � p�q and two-nilpotency

Consider a cospan pk : K Ñ X, l : LÑ Xq in C . Following [55], we compute the Higgins
commutator rK,Ls ¤ X as in the commutative diagram

0 ,2 K � L � ,2
ιK,L ,2

_��

K � L
σK,L� ,2

p k l q

��

K � L ,2 0

rK,Ls ,2 ,2 X

(B)

where σK,L is the canonical morphism from the coproduct to the product, ιK,L is its kernel
and rK,Ls is the regular image of ιK,L through p k l q.

In contrast with Lemma 3.16, even in a semi-abelian algebraically coherent category C ,
the co-smash product functors X � p�q : C Ñ C for X P C introduced in [22, 55]
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need not preserve jointly strongly epimorphic pairs in general. Indeed, this would imply
that Higgins commutators in C distribute over joins. To see this, observe the following
commutative diagram

K � L

_��

,2 K � pL_Mq

_��

K �M

_��

lr

rK,Ls ,2 ,2 rK,L_M s rK,M slrlr

in which K, L and M are all subobjects of a given object X. Since the middle vertical
arrow in it is a regular epimorphism, saying that the upper cospan is jointly strongly
epimorphic would imply that also the bottom cospan is jointly strongly epimorphic, so
that rK,L_M s � rK,Ls_rK,M s. But this property fails in Gp, as the following example
shows.

5.1. Example. Let us consider the symmetric group X � S4 and its subgroups

K � xp12qy , L � xp23qy and M � xp34qy .

Then L _M � xp23q, p34qy, rK,Ls � xp123qy, and rK,M s � 0, while rK,L _M s is the
alternating group A4. That is:

rK,L_M s � rK,Ls _ rK,M s .

On the other hand, for a semi-abelian category, this condition on the functors X � p�q
does imply algebraic coherence. Proposition 2.7 in [37] gives us a split short exact sequence

0 ,2 X � Y � ,2
jX,Y ,2 X5Y

p 0 1Y qκX,Y � ,2 Ylr
ηY

lr ,2 0

so that, for any X, Y P C , the object X5Y decomposes as pX �Y q_Y . As a consequence,
if X � p�q preserves jointly strongly epimorphic pairs, then so does the functor X5p�q;
algebraic coherence of C now follows from Theorem 3.18.

If a semi-abelian category C is two-nilpotent�which means [38] that every ternary
co-smash product X � Y � Z, which may be obtained as the kernel in the short exact
sequence

0 ,2 X � Y � Z � ,2 ,2 pX � Y q � Z � ,2 pX � Zq � pY � Zq ,2 0,

is trivial�then Higgins commutators in C do also distribute over �nite joins by [38, Prop-
osition 2.22], see also [37]. Hence it follows that all functors of the form X � p�q : C Ñ C
preserve jointly strongly epimorphic pairs. Indeed, if we have a jointly strongly epimorphic
cospan

L
f ,2 K M

glr
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and denote by fpLq and gpMq the regular images inK of L andM , respectively, thenK �
fpLq_gpMq. Now sinceX�p�q preserves regular epimorphisms [55, Lemma 5.11], if (being
a Higgins commutator) it distributes over binary joins, then also the pair pX � f,X � gq
is jointly strongly epimorphic.

One example of this situation is the category Nil2pGpq of groups of nilpotency class
at most 2. More generally, this happens in the two-nilpotent core Nil2pC q of any
semi-abelian category C , which is the Birkho� subcategory of C determined by the two-
nilpotent objects: those X for which rX,X,Xs � 0 where, given three subobjects
K, L, M ¤ X represented by monomorphisms k, l and m, the ternary commutator
rK,L,M s ¤ X is the image of the composite

K � L �M � ,2
ιK,L,M ,2 K � L�M

p k l m q ,2 X.

Thus we proved:

5.2. Theorem. Any two-nilpotent semi-abelian category is algebraically coherent.

In any semi-abelian category C , the Huq commutator rK,LsX of two subobjects K,
L ¤ X is the normal closure of the Higgins commutator rK,Ls (see Proposition 5.7 in [55]),
so by Proposition 4.14 of [37] it may be obtained as the join rK,Ls_ rrK,Ls, Xs�X. We
see that if C is two-nilpotent, then Huq commutators distribute over joins of subobjects.
Hence if it is, moreover, a variety, it is algebraically cartesian closed (ACC) by [35].
We will, however, prove a stronger result for categories which are merely algebraically
coherent: see Theorem 6.27 below.

5.3. Examples. Nil2pC q for any semi-abelian category C ; modules over a square ring [2].

6. Categorical-algebraic consequences

6.1. Protomodularity. We begin this section by showing that a pointed Mal'tsev
category which is algebraically coherent is necessarily protomodular�a straightforward
generalisation of Theorem 3.10 in [15].

6.2. Theorem. Let C be a pointed algebraically coherent category. If C is a Mal'tsev
category, then it is protomodular.

Proof. Let

X κ ,2 A
α ,2 B
β
lr

be an arbitrary split extension. Since the diagram

A

α
��

B � A
1B�α ,2π2lr

απ2
��

B �B

π2
��

B

β

LR

B

x1B ,βy

LR

B

x1B ,1By

LR
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is a product and PtBpC q is a unital category (since C is Mal'tsev, see [11]), it follows that
the morphisms

A
xα,1Ay,2

α
��

B � A

απ2
��

B �B
1B�βlr

π2
��

B

β

LR

B

x1B ,βy

LR

B

x1B ,1By

LR

are jointly strongly epimorphic in PtBpC q. Hence Lemma 3.2 implies that they are jointly
strongly epimorphic in C . Therefore, since in the diagram

X
κ ,2

κ
��

A
α ,2

x0,1Ay
��

B
β

lr

x0,1By
��

A
xα,1Ay,2

α
��

B � A
1B�α ,2

π1
��

B �B
1B�β
lr

π1
��

B

β

LR

B

x1B ,βy

LR

B

x1B ,1By

LR

the top split extension is obtained by applying the kernel functor to the bottom split
extension in PtBpC q, it follows that κ and β are jointly strongly epimorphic. Hence C is
protomodular by Proposition 11 in [10].

6.3. Lemma. Let C be an arbitrary category with pullbacks. If s : D Ñ B is a split
monomorphism and PtDpC q is protomodular, then s� : PtBpC q Ñ PtDpC q re�ects iso-
morphisms.

Proof. Again by Proposition 11 in [10], it is su�cient to show that for each split pullback

C
r ,2

γ
��

A

α
��

D

δ

LR

s
,2 B

β

LR

the morphisms r and β are jointly strongly epimorphic. However this is an immediate
consequence of Lemma 3.2, because if f is a splitting of s, then the morphism r in the
diagram

C r ,2

γ
��

A
α ,2

fα
��

B
β

lr

f
��

D

δ

LR

D

βs

LR

D

s

LR

is the kernel of α in PtDpC q.
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6.4. Lemma. Let C be an arbitrary category with pullbacks and let q : D Ñ B be a
pullback-stable strong epimorphism. Then the functor q� : pC Ó Bq Ñ pC Ó Dq and hence
the functor q� : PtBpC q Ñ PtDpC q re�ects:

(a) isomorphisms;

(b) monomorphisms;

(c) jointly strongly epimorphic cospans.

Proof. Point (a) is well known [47, Proposition 1.6], and depends on the fact that the
functors q� : pC Ó Bq Ñ pC Ó Dq are right adjoints. (b) follows immediately from (a),
since q� preserves limits, and monomorphisms are precisely the arrows whose kernel pair
projections are isomorphisms. (c) follows from Lemma 3.9.

Recall that, in a category C with a terminal object 1, an objectD has global support
when the unique morphism D Ñ 1 is a pullback-stable strong epimorphism. We write
GSpC q for the full subcategory of C determined by the objects with global support.

6.5. Lemma. Let C be a category with a terminal object. Let D be an object with global
support for which PtDpC q is protomodular. For each morphism q : D Ñ B the pullback
functor q� : PtBpC q Ñ PtDpC q re�ects isomorphisms.

Proof. Let q : D Ñ B be a morphism in C such that D Ñ 1 is a pullback-stable strong
epimorphism, and PtDpC q is protomodular. The result follows from Lemma 6.3 and 6.4
since q can be factored as in the diagram

D
q ,2

x1D,qy �'

B

D �B

π2

7A

where x1D, qy is a split monomorphism and π2, being a pullback of D Ñ 1, is a pullback-
stable strong epimorphism.

We obtain a generalisation of Theorem 3.11 in [15]:

6.6. Theorem. Let C be a Mal'tsev category such that, for any X P C , PtXpC q is
algebraically coherent. Then the category GSpC q is protomodular. In particular, if every
object in C admits a pullback-stable strong epimorphism to the terminal object, then C is
protomodular.

Proof. Recall [5, Example 2.2.15] that if C is a Mal'tsev category, then for any X in C
the category PtXpC q is also Mal'tsev. The proof now follows from Theorem 6.2 and
Lemma 6.5.
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6.7. Remark. The above theorem together with Corollary 3.5 implies that any alge-
braically coherent Mal'tsev category which has an initial object with global support is
protomodular.

6.8. Higgins commutators, normal subobjects and normal closures.We now
describe the e�ect of coherent functors on Higgins commutators (see Subsection 5), normal
subobjects and normal closures.

6.9. Proposition. Let F : C Ñ D be a coherent functor between regular pointed catego-
ries with binary coproducts. Then F preserves Higgins commutators of arbitrary cospans.

Proof. Consider a cospan pk : K Ñ X, l : LÑ Xq in C and the induced diagram (B) of
page 1886. Since F is coherent, it preserves �nite limits and the comparison morphism
F pKq � F pLq Ñ F pK � Lq is a regular epimorphism. Hence, the leftmost vertical arrow
in the diagram

F pKq � F pLq � ,2
ιF pKq,F pLq ,2

_��

F pKq � F pLq

_��

σF pKq,F pLq ,2 F pKq � F pLq

�
��

F pK � Lq � ,2
F pιK,Lq

,2 F pK � Lq
F pσK,Lq

,2 F pK � Lq

is a regular epimorphism. Finally, applying F to Diagram (B) and pasting with the left
hand square above, we obtain the square

F pKq � F pLq � ,2
ιF pKq,F pLq ,2

_��

F pKq � F pLq

pF pkq F plq q
��

F prK,Lsq ,2 ,2 F pXq

showing us that F prK,Lsq � rF pKq, F pLqs.

As shown in [29], this implies that the derived subobject rX,Xs of an object X in an
algebraically coherent semi-abelian category is always characteristic. Recall from [37, 55]
that, for any subobject K ¤ X in a semi-abelian category, its normal closure in X may
be obtained as the join K _ rK,Xs.

6.10. Corollary. Any coherent functor between semi-abelian categories preserves nor-
mal closures.

Proof. This is Proposition 2.6 combined with Proposition 6.9.
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6.11. Ideal-determined categories. This result can be proved in a more general
context which, for instance, includes all ideal-determined categories [44]. Working towards
Theorem 6.16, we �rst prove some preliminary results. We start with Lemma 6.12 which
is a general version of [57, Lemma 4.10].

We assume that C is a pointed �nitely complete and �nitely cocomplete category.
Recall the following list of basic properties [43, 44, 55].

(A1) C has pullback-stable (normal-epi, mono) factorisations;

(A2) in C , regular images of kernels are kernels;

(A3) Hofmann's axiom [43].

The category C is semi-abelian if and only if (A1), (A2) and (A3) hold. When C satis�es
just (A1) and (A2) it is called ideal-determined [44]. In it is called normal when it
satis�es (A1). Indeed, it is well-known and easily seen that this happens precisely when
C is regular and regular epimorphisms and normal epimorphisms coincide in C , which is
the original de�nition given in [48].

6.12. Lemma. Let C be pointed, �nitely cocomplete and regular, satisfying (A2). For a
monomorphism m : M Ñ X, the monomorphism m : MX Ñ X in the diagram

0 ,2 X5M � ,2
κX,M ,2

θ_��

X �M
p 1X 0 q� ,2

p 1X m q
_��

X
ιX
lr ,2 0

MX
� ,2

m
,2 X,

where mθ is the factorisation of p 1X m qκX,M as a regular epimorphism followed by a
monomorphism, is the normal closure of m.

Proof. First note that m may be obtained as the image of κX,M along p 1X m q. This
monomorphism is normal by (A2). Let ηM : M Ñ X5M be the unique morphism such
that

κX,MηM � ιM : M Ñ X �M.

m factors through m because mθηM � p 1X m qκX,MηM � p 1X m q ιM � m. We thus have
to show that m is the smallest normal monomorphism through which m factors.

Let k : K Ñ X be a normal monomorphism and let f : X Ñ Y be a morphism such
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that k is the kernel of f . Consider the diagram

K

ηK
��

ιK

!)
X5K � ,2

κX,K ,2

ϕ

��

X �K
p 1X 0 q ,2

$
% 1X k

1X 0

,
-

��

X
ιX
lr

K � ,2
xk,0y

,2 X �Y X
π2 ,2

π1
��

X
p1X ,1X q
lr

f
��

K � ,2
k

,2 X
f

,2 Y

where

� ηK is the unique morphism making the triangle at the top commute;

� the bottom right square is a pullback;

� xk, 0y is the kernel of π2;

� ϕ is the unique morphism making the top a morphism of split extensions.

Since xk, 0y is a monomorphism it follows that ϕηK � 1K and so in the commutative
diagram

X5K
κX,K ,2

ϕ

��

X �K

p 1X k q
��

K
k

,2 X

kϕ is the (regular epi, mono)-factorisation of p 1X k qκX,K . Now suppose that there exists
t : M Ñ K such that kt � m. Since there exists a unique morphism X5t : X5M Ñ X5K
making the diagram

X5M
κX,M ,2

X5t
��

X �M
p 1X 0 q,2

1X�t
��

X
ιX
lr

X5K κX,K

,2 X �K
p 1X 0 q,2 X
ιX
lr

a morphism of split extensions, functoriality of regular images tells us that m factors
through k

X5M
X5t
u�

κX,M ,2

θ

_��

X �M
1X�t

t|
p 1X m q

��

X5K κX,K

,2

ϕ

_��

X �K

p 1X k q

��

MX
� ,2

m
,2

u~

X

K � ,2
k

,2 X
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as required.

6.13. Proposition. Let F be a functor between pointed regular categories with �nite
coproducts satisfying (A2). If F is coherent, then F preserves normal closures.

Proof. Let m : M Ñ X be a monomorphism. Consider the diagram

F pXq5F pMq
κF pXq,F pMq,2

h
��

F pXq � F pMq
p 1F pXq 0 q ,2

pF pιXq F pιM q q
��

F pXq
ιF pXq

lr

F pX5Mq
F pκX,M q

,2

F pθq
��

F pX �Mq
F p 1X 0 q ,2

F p 1X m q
��

F pXq
F pιXq

lr

F pMXq
F pmq

,2 F pXq,

where

� mθ is the (regular epi, mono)-factorisation of p 1X m qκX,M ;

� h is the unique morphism making the upper part of the diagram into a morphism
of split extensions�which exists since F preserves limits.

Lemma 6.12 tells us that m is the normal closure of m. Since F is coherent it follows
by Proposition 2.7 that the dotted middle arrow is a regular epimorphism. Hence h
is a regular epimorphism, because the top left square is a pullback. Since F preserves
(regular epi, mono)-factorisations it follows that F pmqpF pθqhq is the (regular epi, mono)-
factorisation of

F p 1X m q p F pιXq F pιM q qκF pXq,F pMq � p 1F pXq F pmq qκF pXq,F pMq

and so, again by Lemma 6.12, F pmq is the normal closure of F pmq.

Recall that a functor between homological categories is said to be sequentially exact
if it preserves short exact sequences.

6.14. Corollary. Any regular functor which preserves normal closures and normal epi-
morphisms preserves all cokernels.

Proof. It su�ces to preserve cokernels of arbitrary monomorphisms, which are in fact
the cokernels of their normal closures. Those are preserved since the functor under consid-
eration is sequentially exact, because it preserves �nite limits and normal epimorphisms.

Recall from [55] that for a pair of subobjects in a normal unital category with binary
coproducts, their Huq commutator is the normal closure of the Higgins commutator. Thus
we �nd:

6.15. Corollary. Let F be a coherent functor between normal unital categories with
binary coproducts. If F preserves normal closures, then F preserves Huq commutators of
arbitrary cospans.

Proof. This follows from Proposition 6.9.
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6.16. Theorem. Let C be an algebraically coherent regular category with pushouts of
split monomorphisms. For any morphism f : X Ñ Y , consider the change-of-base functor
f� : PtY pC q Ñ PtXpC q. Then

(a) f� preserves Higgins commutators of arbitrary cospans.

If, in addition, C is an ideal-determined Mal'tsev category, then

(b) f� preserves normal closures;

(c) f� preserves all cokernels;

(d) f� preserves Huq commutators of arbitrary cospans.

In particular, (a)�(d) hold when C is semi-abelian and algebraically coherent.

Proof. Apply the previous results to the coherent functor f�, again using that PtXpC q
is unital when C is Mal'tsev [11]. In particular, (a), (b), (c) and (d) follow from Propo-
sition 6.9, Proposition 6.13, Corollary 6.14 and Corollary 6.15, respectively.

6.17. The conditions (SH) and (NH). Let us recall (from [56], for instance) that a
pointed Mal'tsev category satis�es the Smith is Huq condition (SH) when two equiva-
lence relations on a given object always centralise each other (= commute in the Smith
sense [60, 65]) as soon as their normalisations commute in the Huq sense [16, 39]. A semi-
abelian category satis�es the condition (NH) of normality of Higgins commutators
of normal subobjects [26, 27] when the Higgins commutator of two normal subobjects
of a given object is again a normal subobject, so that it coincides with the Huq commu-
tator. Condition (d) in Theorem 6.16 combined with Theorem 6.5 in [27] now gives us
the following result.

6.18. Theorem. Any algebraically coherent semi-abelian category satis�es both the con-
ditions (SH) and (NH).

6.19. Peri-abelian categories and the condition (UCE). Recall that a semi-
abelian category C is peri-abelian when for all f : X Ñ Y , the change-of-base functor
f� : PtY pC q Ñ PtXpC q commutes with abelianisation. Originally established by Bourn
in [14] as a convenient condition for the study of certain aspects of cohomology, it was
further analysed in [36] where it is shown to imply the universal central extension
condition (UCE) introduced in [25]. As explained in that paper, the condition (UCE) is
what is needed for the characteristic properties of universal central extensions of groups
to extend to the context of semi-abelian categories.

Via Theorem 6.18 above, Proposition 2.5 in [36] implies that all algebraically cohe-
rent semi-abelian categories are peri-abelian and thus by [36, Theorem 3.12] satisfy the
universal central extension condition (UCE).
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6.20. A strong version of (SH). In the article [57], the authors consider a strong
version of the Smith is Huq condition, asking that the kernel functors

Ker: PtXpC q Ñ C

re�ect Huq commutativity of arbitrary cospans (rather than just pairs of normal subob-
jects). We write this condition (SSH). Of course (SSH) ñ (SH). On the other hand,
as shown in [57], (SSH) is implied by (LACC). This can be seen as a consequence of
Theorem 4.5 in combination with the following result.

6.21. Theorem. If C is an algebraically coherent semi-abelian category, then the ker-
nel functors Ker: PtXpC q Ñ C re�ect Huq commutators. Hence the category C satis-
�es (SSH).

Proof.We may combine (d) in Theorem 6.16 with Lemma 6.4 in [27]. We �nd precisely
the de�nition of (SSH) as given in [57].

6.22. Strong protomodularity. A pointed protomodular category C is said to be
strongly protomodular [12, 5, 62] when for all f : X Ñ Y , the change-of-base func-
tor f� : PtY pC q Ñ PtXpC q re�ects Bourn-normal monomorphisms. This is equivalent to
asking that, for every morphism of split extensions

N � ,2 ,2
��

n

��

D ,2

��

Xlr

K � ,2
k
,2 B ,2 X,lr

if n is a normal monomorphism then so is the composite kn. Theorem 7.3 in [12] says
that any �nitely cocomplete strongly protomodular homological category satis�es the
condition (SH).

6.23. Lemma. Let C and D be pointed categories with �nite limits such that normal
closures of monomorphisms exist in C , and let F : C Ñ D be a conservative functor. If
F preserves normal closures, then F re�ects normal monomorphisms.

Proof. Let m : M Ñ X be a morphism such that F pmq is normal. Using that F
preserves limits and re�ects isomorphisms, is easily seen that m is a monomorphism.
Now let n : N Ñ X be the normal closure of m and i : M Ñ N the unique factorisation
m � ni. The monomorphism F pmq being normal, we see that F piq is an isomorphism:
F piq is the unique factorisation of F pmq through its normal closure F pnq. Since F re�ects
isomorphisms, i is an isomorphism, and m is normal.

6.24. Theorem. Any algebraically coherent semi-abelian category is strongly protomod-
ular.

Proof. Via Theorem 6.16 and the fact that in a semi-abelian category, Bourn-normal
monomorphisms and kernels coincide, this follows from Lemma 6.23.
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Notice that, in the case of varieties, the last result can also be seen as a consequence
of Proposition 9 in [4].

6.25. Fibrewise algebraic cartesian closedness. A �nitely complete category C
is called �brewise algebraically cartesian closed (shortly (FWACC)) in [17] if, for
each X in C , PtXpC q is algebraically cartesian closed. In the same paper, the authors
showed that a pointed Mal'tsev category is (FWACC) if and only if each �bre of the
�bration of points has centralisers.

6.26. Lemma. Let F : C Ñ D and G : D Ñ C be functors between categories with �nite
limits and binary coproducts such that GF � 1C and G re�ects isomorphisms. If F and G
are coherent, then F preserves binary coproducts.

Proof. Since F is coherent, by Proposition 2.7 (ii) the induced morphism

f � p F pιAq F pιBq q : F pAq � F pBq Ñ F pA�Bq

is a strong epimorphism. It follows by the universal property of the coproduct that the
diagram

A�B

GF pAq �GF pBq
g�pGpιF pAqq GpιF pBqq q

,2 GpF pAq � F pBqq
Gpfq

,2 GF pA�Bq

commutes, and so since G is coherent, by Proposition 2.7 (ii), that the morphism g is
an isomorphism. This means that Gpfq is an isomorphism and hence�since G re�ects
isomorphisms�that f is an isomorphism as required.

6.27. Theorem. Let C be a regular Mal'tsev category with pushouts of split monomorph-
isms.

(a) If C is algebraically coherent, then the change-of-base functor along any split epi-
morphism preserves �nite colimits.

(b) When C is, in addition, a cocomplete well-powered category in which �ltered colim-
its commute with �nite limits�for instance, C could be a variety�then if C is
algebraically coherent, it is �bre-wise algebraically cartesian closed (FWACC).

Proof. Let us start with the �rst statement. For each X in C , PtXpC q is a Mal'tsev
category by Example 2.2.15 in [5], and it is algebraically coherent by Corollary 3.5. Then,
by Theorem 6.2, PtXpC q is protomodular for each X.

Suppose now that p is a split epimorphism in C , with a section s. Then by Lemma 6.3
the functor s� re�ects isomorphisms. Hence we can apply Lemma 6.26, with F � p� and
G � s�, to prove that p� preserves binary coproducts. Finally, by Theorem 4.3 in [34], p�

preserves �nite colimits.
Statement (b) follows from (a) again via Theorem 4.3 in [34].
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6.28. Action accessible categories. It is unclear to us how the notion of action
accessibility introduced in [19] is related to algebraic coherence. The two conditions share
many examples and counterexamples, but we could not �nd any examples that separate
them. On the other hand, we also failed to prove that one implies the other, so for now
the relationship between the two conditions remains an open problem.

7. Decomposition of the ternary commutator

It is known [38] that for normal subgroups K, L and M of a group X,

rK,L,M s � rrK,Ls,M s _ rrL,M s, Kss _ rrM,Ks, Ls

where the commutator on the left is de�ned as in Section 5. Since, by the so-called Three
Subgroups Lemma, any of the latter commutators is contained in the join of the other
two, we see that

rK,L,M s � rrK,Ls,M s _ rrM,Ks, Ls.

We shall prove that this result is valid in any algebraically coherent semi-abelian category.
This gives us a categorical version of the Three Subgroups Lemma, valid for normal
subobjects of a given object. Recall, however, that the usual Three Subgroups Lemma
for groups works for arbitrary subobjects.

7.1. Theorem. [Three Subobjects Lemma for normal subobjects] If K, L and M are
normal subobjects of an object X in an algebraically coherent semi-abelian category, then

rK,L,M s � rrK,Ls,M s _ rrM,Ks, Ls.

In particular, rrL,M s, Ks ¤ rrK,Ls,M s _ rrM,Ks, Ls.

Proof. First note that in the diagram

0 ,2 pK5Lq � pK5Mq

α
_��

� ,2
ιK5L,K5M ,2 pK5Lq � pK5Mq

pK5ιL K5ιM q
_��

σK5L,K5M ,2 pK5Lq � pK5Mq ,2 0

0 ,2 A � ,2 ,2 K5pL�Mq $
'%
K5p 1L 0 q
K5p 0 1M q

,
/-

,2 pK5Lq � pK5Mq ,2 0

the middle arrow, and hence also the induced left hand side arrow α, are strong epimorph-
isms by algebraic coherence in the form of Theorem 3.18. Hence also in the diagram

0 ,2 B

β
_��

� ,2 ,2 pK5Lq � pK5Mq

α
_��

p 0 1L qκK,L�p 0 1M qκK,M,2 L �M
ηL�ηM

lr ,2 0

0 ,2 K � L �M � ,2 ,2 A ,2 L �Mlr ,2 0

of which the bottom split short exact sequence is obtained via the 3 � 3 diagram in Fig-
ure 2, we have a vertical strong epimorphism on the left. Indeed, the left hand side vertical
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0

��

0

��

0

��
0 ,2 K � L �M_��

��

� ,2 ,2 A_��

��

,2 L �Mlr ,2
_��
ιL,M

��

0

0 ,2 K � pL�Mq
$
'%
K�p 1L 0 q
K�p 0 1M q

,
/-

_��

� ,2
jK,L�M ,2 K5pL�Mq

p 0 1L�M qκK,L�M ,2

$
'%
K5p 1L 0 q
K5p 0 1M q

,
/-

_��

L�M
ηL�M

lr

σL,M

_��

,2 0

0 ,2 pK � Lq � pK �Mq � ,2
jK,L�jK,M

,2

��

pK5Lq � pK5Mq

��

p 0 1L qκK,L�p 0 1M qκK,M,2 L�M
ηL�ηM

lr

��

,2 0

0 0 0

Figure 2: An alternative computation of K � L �M

sequence in Figure 2 is exact by [38, Remark 2.8], and the right hand one by de�nition of
L �M . Its middle and bottom horizontal sequences are exact by Proposition 2.7 in [37]
and because products preserve short exact sequences.

We have that K5M � pK �Mq _M in K �M and K5L � pK � Lq _ L in K � L
by [37, Proposition 2.7], so we may use Proposition 2.22 in [38] to see that pK5Lq�pK5Mq
is covered by

L � pK5Mq � pK � Lq � pK5Mq � L � pK � Lq � pK5Mq,

which by further decomposition using [38, Proposition 2.22] gives us a strong epimorphism
from pL �Mq � S to pK5Lq � pK5Mq, where S is

L � pK �Mq � L �M � pK �Mq � pK � Lq �M

� pK � Lq � pK �Mq � pK � Lq �M � pK �Mq � L � pK � Lq �M

� L � pK � Lq � pK �Mq � L � pK � Lq �M � pK �Mq.

Via the diagram

0 ,2 pL �Mq5S

γ
_��

� ,2
κL�M,S ,2 pL �Mq � S

_��

p 1L�M 0 q ,2 L �M
ιL�M

lr ,2 0

0 ,2 B � ,2 ,2 pK5Lq � pK5Mq
p 0 1L qκK,L�p 0 1M qκK,M,2 L �M

ηL�ηM
lr ,2 0

it induces a strong epimorphism βγ from pL �Mq5S � S _ pL �Mq � S to K �L �M . We
thus obtain a strong epimorphism from S � pL �Mq � S to K �L �M . Considering K, L
and M as subobjects of X now, we take the images of the induced arrows to X to see
that rK,L,M s � S _ rrL,M s, Ss in X, where S is the image of S Ñ X. Now S, being

rL, rK,M ss _ rL,M, rK,M ss _ rrK,Ls,M s

_ rrK,Ls, rK,M ss _ rrK,Ls,M, rK,M ss _ rL, rK,Ls,M s

_ rL, rK,Ls, rK,M ss _ rL, rK,Ls,M, rK,M ss,
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is contained in rL, rK,M ss _ rrK,Ls,M s by Proposition 2.21 in [38], using (SH) in the
form of [38, Theorem 4.6], using (NH) and the fact that K, L and M are normal. Indeed,
rL,M, rK,M ss ¤ rL,X, rK,M ss ¤ rL, rK,M ss by (SH); note that Theorem 4.6 in [38] is
applicable because rK,M s is normal in X by (NH) and normality of K andM . Similarly,
rrK,Ls, rK,M ss ¤ rL, rK,M ss, and likewise for the other terms of the join.

Hence

rK,L,M s � S _ rrL,M s, Ss

¤ rL, rK,M ss _ rrK,Ls,M s _
�
rL,M s, rL, rK,M ss _ rrK,Ls,M s

�
¤ rL, rK,M ss _ rrK,Ls,M s

because rL, rK,M ss _ rrK,Ls,M s is normal as a join of normal subobjects, so that�
rL,M s, rL, rK,M ss _ rrK,Ls,M s

�
¤ rL, rK,M ss _ rrK,Ls,M s

by [55, Proposition 6.1]. Since the other inclusion

rK,L,M s ¥ rL, rK,M ss _ rrK,Ls,M s

holds by [38, Proposition 2.21], this �nishes the proof.

As a consequence, in any algebraically coherent semi-abelian category, the two nat-
ural, but generally non-equivalent, de�nitions of two-nilpotent object�X such that either
rX,X,Xs or rrX,Xs, Xs vanishes, see also Section 5�coincide:

7.2. Corollary. In an algebraically coherent semi-abelian category,

rX,X,Xs � rrX,Xs, Xs

holds for all objects X.

Note that, since one of its entries is X, the commutator on the right is a normal
subobject of X, which makes it coincide with the Huq commutator rrX,XsX , XsX . Fur-
thermore, by Proposition 2.2 in [33], this commutator vanishes is and only if the Smith
commutator rr∇X ,∇Xs,∇Xs does. This implies that the normal subobject rX,X,Xs is
the normalisation of the equivalence relation rr∇X ,∇Xs,∇Xs.

8. Summary of results in the semi-abelian context

In this section we give several short summaries. We begin with a summary of conditions
that follow from algebraic coherence for a semi-abelian category C :

(a) preservation of Higgins and Huq commutators, normal closures and cokernels by
change-of-base functors with respect to the �bration of points, see 6.16;

(b) (SH) and (NH), see 6.18;
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(c) as a consequence�see 6.19�the category C is necessarily peri-abelian and thus
satis�es the universal central extension condition;

(d) (SSH), see 6.21;

(e) strong protomodularity, see 6.24;

(f) �bre-wise algebraic cartesian closedness (FWACC), if C is a variety, see 6.27 and [17,
34];

(g) rK,L,M s � rrK,Ls,M s _ rrM,Ks, Ls for K, L, M �X, see 7.1.

Next we give a summary of semi-abelian categories which are algebraically coherent.
These include all abelian categories; all categories of interest in the sense of Orzech: (all
subvarieties of) groups, the varieties of Lie algebras, Leibniz algebras, rings, associative
algebras, Poisson algebras; cocommutative Hopf algebras over a �eld of characteristic zero;
n-nilpotent or n-solvable groups, rings, Lie algebras; internal re�exive graphs, categories
and (pre)crossed modules in such; arrows, extensions and central extensions in such�note,
however, that the latter two categories are only homological in general.

Finally we give a summary of semi-abelian categories which are not algebraically
coherent. These include (commutative) loops, digroups, non-associative rings, Jordan
algebras.
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