
Theory and Applications of Categories, Vol. 30, No. 12, 2015, pp. 410–432.

NORMALIZERS, CENTRALIZERS AND ACTION ACCESSIBILITY

J. R. A. GRAY

Abstract. We give several reformulations of action accessibility in the sense of D.
Bourn and G. Janelidze. In particular we prove that a pointed exact protomodular
category is action accessible if and only if for each normal monomorphism κ : X → A
the normalizer of 〈κ, κ〉 : X → A × A exists. This clarifies the connection between
normalizers and action accessible categories established in a joint paper of D. Bourn
and the author, in which it is proved that for pointed exact protomodular categories the
existence of normalizers implies action accessibility. In addition we prove a pointed exact
protomodular category with coequalizers is action accessible if centralizers of normal
monomorphisms exist, and the normality of unions holds.

1. Introduction

Recall for a pointed category C a split extension is a diagram

X κ // A
α // B
β
oo

where κ is the kernel of α and αβ = 1B. A morphism of split extensions is a diagram

X κ //

f
��

A
α //

g
��

B
β

oo

h
��

X ′
κ′ // A′

α′ // B′
β′
oo

where the top and bottom are split extensions (the domain and codomain respectively),
κ′f = gκ, α′g = hα, and β′h = gβ. We will denote by SPLEXT(C) the category of split
extensions, and by SPLEXTX(C) the category with objects those split extensions with
kernel X, and with morphisms those morphisms of split extensions where the morphism
between their kernels is 1X . An extension

X
κ // A

α // B
β
oo

is said to be faithful if it is a sub-terminal object in SPLEXTX(C), that is, there is
at most one morphism from any object to it in this category. A pointed protomodular
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category C is a called action accessible [7] if for each X the category SPLEXTX(C) has
enough sub-terminal objects, that is, each object admits a morphism into a sub-terminal
object.

It is well known that each split extension of groups

X
κ // A

α // B
β
oo

is determined by a morphism
B → Aut(X).

This can be understood categorically as the fact that when C is the category of groups,
the category SPLEXTX(C) has a terminal object. Semi-abelian categories which satisfy
this property are called action representative and were introduced and studied in [2] (see
also [3]) by F. Borceux, G. Janelidze and G. M. Kelly. Action accessible categories were
introduced by D. Bourn and G. Janelidze in [7] as a weakening of action representable
categories so as to include the category of rings as an example but still to allow, amongst
other things, centralizers of equivalence relations to be constructed in a similar way as in
the category of groups.

In [4] D. Bourn studied further how the existence of centralizers of equivalence rela-
tions is related to the concept of action accessibility (as well as groupoid accessibility). In
particular it was shown that a split extension

X
κ // A

α // B
β
oo

in an action accessible category is faithful if and only if the inverse image of the centralizer
of the kernel pair of α along β is indiscrete.

A. S. Cigoli and S. Mantovani showed in [8] that a pointed exact protomodular
category C is action accessible if and only if what they called non-symmetric centralizers
exist in C. In addition in a talk by A. S. Cigoli on their joint work, it was explained that
under certain conditions a category C is action accessible provided that certain centralizers
of subobjects exist and satisfy certain properties (see Theorem 2.15 and the paragraph
before it).

In Section 2 we recall many of these results relating to the existence of centralizers
of subobjects and add other equivalent formulations (see Theorem 2.15). In addition we
show that a pointed exact protomodular category with coequalizers is action accessible
if it has centralizers of normal monomorphisms which are normal and the normality of
unions holds in C. Recall from [3] that the normality of unions holds in C if for any
subobjects A, B and C of an object D, if A is normal in both B and C, then it is normal
in the join of B and C (in D).

Let us denote by K the functor sending a split extension in SPLEXT(C) to its kernel.
Recall that the normalizer [9] of a monomorphism is defined as the terminal object in
the category of factorizations as a normal monomorphism (i.e. a kernel) followed by a
monomorphism i.e. the normalizer of S ≤ X is the largest subobject of X in which S is
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normal. D. Bourn together with the author introduced in [6] another notion of normalizer
(using a different notion of normal) which can be defined for a finitely complete category
and which coincides with the definition given above in a pointed exact protomodular
category. In the same paper it was shown that C has normalizers in the sense of [6], and
hence in the sense defined above (when C is pointed exact protomodular), if and only if
for each split extension

X ′
κ′ // A′

α′ // B′
β′
oo (1)

and for each monomorphism f : X → X ′ there exists a K-precartesian lifting of f to
(1) . Such a K-precartesian lifting can be seen to be the terminal object in the following
subcategory of the category of morphisms of SPLEXT(C). The objects are morphisms
of split extensions of the form

X
κ //

f
��

A
α //

g

��

B
β

oo

h
��

X ′
κ′ // A′

α′ // B′;
β′
oo

and morphisms are morphisms of the form

X
κ1 //

f

��

A1

α1 //

g1

��

θ

!!

B1
β1

oo

h1

��

φ

!!
X

κ2 //

f

��

A2

α2 //

g2

��

B2
β2
oo

h2

��

X ′ κ′ // A′
α′ // B′
β′

oo

X ′ κ′ // A′
α′ // B′.
β′

oo

As mentioned above, in the paper [8], A. S. Cigoli and S. Mantovani showed that a
pointed exact protomodular category is action accessible if and only if the category has
what they called non-symmetric centralizers. In the context of a pointed exact protomod-
ular action accessible category C it can be seen that an equivalence relation r1, r2 : R→ A
with common section s : A→ R has a non-symmetric centralizer if and only if the category
of relations on

X k // R
r1 // A
s

oo

in SPLEXTX(C) has a terminal object (this is essentially Proposition 4.1 of [8]). Using
the isomorphism of categories between subobjects of products and relations (considered
as parallel pairs) it can be seen that the existence of such a terminal object is equivalent
to the existence of a K-precartesian lifting of 〈1, 1〉 : X → X ×X to

X ×X k×k // R×R
r1×r1 // A× A.
s×s
oo
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From this observation and what was recalled previously it follows that a pointed exact
protomodular category with normalizers is action accessible [6]. In Section 3 of this paper
we show that a pointed exact protomodular category is action accessible if and only if
each normal monomorphism composed with the diagonal morphism has a normalizer (see
Theorem 3.1). The proof of the fact that the existence of normalizers implies action
accessibility given in [6] was different from what was described above and made use of
a simple property studied by D. Bourn in [5] which is equivalent to the existence of
centralizers for Mal’tsev categories.

2. Action accessibility, centralizers and the normality of unions

In this section we recall various results from the papers [8] and [4] in order to give refor-
mulations of action accessibility. Note that a diagram

C
γ //

p
��

D
δ

oo

q
��

A
α // B
β
oo

where γδ = 1D, αβ = 1B, qγ = αp and βq = pδ will be called a split pullback if the
diagram consisting of rightward and downward directed arrows is a pullback. Recall that
a pair of morphisms f : A→ C and g : B → C commute in a (weakly) unital category C
[12, 1] if there exists a (necessarily unique) morphism ϕ : A×B → C, where (A×B, π1, π2)
is the product of A and B, making the diagram

A
〈1,0〉 //

f ''

A×B
ϕ

��

B
〈0,1〉oo

g
ww

C,

in which 〈1, 0〉 and 〈0, 1〉 are the unique morphisms such that π1〈1, 0〉 = 1A, π2〈1, 0〉 = 0,
π1〈0, 1〉 = 0 and π2〈0, 1〉 = 1, commute.

2.1. Lemma. [8], Lemma 2.3. Let C be a pointed protomodular category and let

X κ //

1X
��

A
α //

g

��

B
β

oo

h
��

X κ′ // A′
α′ // B′,
β′
oo
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be a morphism of split extensions. For each morphism s′ : S ′ → B′ such that β′s′ com-
mutes with κ′ the morphism s : S → B obtained from the pullback

S

i
��

s // B

h
��

S ′
s′
// B′

is such that βs commutes with κ.

2.2. Lemma. [8], Lemma 2.4, Proposition 2.5. Let C be a pointed protomodular category.
For each morphism of split extensions

X
κ //

1X
��

A
α //

g
��

B
β

oo

h
��

X κ′ // A′
α′ // B′
β′
oo

the kernel of h, ker(h) : Ker(h)→ B has the properties:

(a) βker(h) commutes with κ;

(b) βker(h) is a normal monomorphism.

When the codomain of the morphism is faithful then ker(h) has the additional property:

(c) if s : S → B is a morphism such that βs commutes with κ, then there exists a unique
morphism s such that s = ker(h)s.

2.3. Remark. The above proofs hold for morphisms of split extensions in an arbitrary
pointed category with finite limits provided the square on the right is a split pullback.

2.4. Definition. For any morphisms f : A → C and g : B → C the centralizer of f
relative to g is the morphism zf,g : Zf,g → B with the properties:

(a) gzf,g commutes with f ;

(b) for each morphism s : S → B such that gs commutes with f there exists a unique
morphism s such that zf,gs = s.

The centralizer of f relative to 1C will be denoted by zf (rather than zf,1C ) and called
the centralizer of f .

2.5. Corollary. [8], Proposition 2.5. Let C be a pointed protomodular action accessible
category. For each split extension

X κ // A
α // B
β
oo

the centralizer zκ,β of κ relative to β exists, and βzκ,β is normal.

Recall that a monomorphism is called protosplit if it is normal and its cokernel is a
split epimorphism [3]. Using the same construction as in [8] we obtain:
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2.6. Proposition. Let C be a unital category with cokernels. The following are equiva-
lent:

(a) for each split extension

X
κ // A

α // B
β
oo

the centralizer of κ relative to β exists;

(b) C has centralizers of normal monomorphisms;

(c) C has centralizers of protosplit monomorphisms.

Proof. The implication (b) ⇒ (c) follows from the fact that each protosplit monomor-
phism is a normal monomorphism.
(a) ⇒ (b) : Let n : N → X be a normal monomorphism and consider the morphism of
split extensions

N
k //

n
��

R
r1 //

〈r1,r2〉
��

X
s

oo

1X
��

X
〈0,1〉 // X ×X

π1 // X
〈1,1〉
oo

determined by its denormalization (the kernel pair of the cokernel of n). Since 0 commutes
with any morphism and 〈r1, r2〉 is a monomorphism it follows (see e.g. [1]) that for each
morphism u : U → X, su commutes with k if and only if n commutes with u. It follows
that the morphism zk,s : Zk,s → X is the centralizer of n.
(c)⇒ (a) : For each split extension

X κ // A
α // B
β
oo

it is easy to check that t obtained by the pullback

T

t
��

β // Zκ

zκ
��

B
β
// A

is the centralizer of κ relative to β.

2.7. Corollary. Let C be a unital category with cokernels. The following are equivalent:

(a) for each split extension

X
κ // A

α // B
β
oo

the centralizer of κ relative to β exists and the composite βzκ,β is normal;
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(b) C has centralizers of normal monomorphisms which are normal and have the property
that if their cokernel splits, then the intersection with each splitting is normal.

(c) C has centralizers of protosplit monomorphisms which are normal and have the prop-
erty that their intersection with each splitting of their cokernel is normal.

Proof. The proof of Proposition 2.6 can easily be extended to prove that the above
statements are equivalent.

The existence of centralizers of normal monomorphisms which are normal was proved
for a homological action accessible categories in [7].

2.8. Corollary. Let C be a homological action accessible category with cokernels. Cen-
tralizers of normal monomorphisms exist, are normal, and have the property that if their
cokernel splits, then the intersection with each splitting is normal.

Proof. The proof follows from Corollary 2.5 and Corollary 2.7

Recall that in a category with finite limits, for each diagram

D
δ //

p
��

E
ε

oo

q
��

A
α // B
β
oo

in which p and q are regular epimorphisms, αβ = 1B, δε = 1E, pε = βq and qδ = αp, the
diagram

D δ //

p
��

E

q
��

A
α // B

is a pushout (since the induced morphism between the kernel pair of p and the kernel pair
of q is a (split) epimorphism.)

2.9. Lemma. Let C be a regular subtractive category [10]. Each morphism

X ′
κ′ //

f
��

A′
α′ //

g

��

B′
β′
oo

h
��

X κ // A
α // B
β

oo
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can be decomposed as a composite

X ′
κ′ //

p

��

A′
α′ //

q

��

B′
β′
oo

r
��

Y σ //

l
��

C
γ //

m
��

D
δ

oo

n
��

X κ // A
α // B
β

oo

where p, q and r are regular epimorphisms, and l, m and n are monomorphisms.

Proof. Let

X
κ′ //

f
��

A′
α′ //

g

��

B′
β′
oo

h
��

X
κ // A

α // B
β

oo

be a morphism of split extensions. Consider the diagram

X ′ κ′ //

p

��

A′
α′ //

q

��

B′
β′
oo

r
��

Y
σ //

l
��

C
γ //

m
��

D
δ

oo

n
��

X κ // A
α // B
β

oo

(*)

where each of the vertical morphisms from left to right is the factorization as a regular
epimorphism followed by a monomorphism of f , g and h respectively, and σ ,γ and δ are
the induced morphisms between them. The top part of the diagram can be extended to
a 3x3 lemma diagram (with zeros omitted)

Ker(p) κ //

ker(p)
��

Ker(q)
α //

ker(q)
��

Ker(r)
β

oo

ker(r)
��

X ′
κ′ //

p

��

A′
α′ //

q

��

B′
β′

oo

r
��

Y σ // C
γ // D
δ

oo

where the top two lines and all columns are exact (in the sense of Z. Janelidze in [11]). It
follows [11] that the bottom row is exact and since σ is a monomorphism that the bottom
row is a split extension. Therefore, the diagram (*) gives the desired decomposition.



418 J. R. A. GRAY

Following Z. Janelidze in [11] we will call a category normal if it is pointed, regular,
and each regular epimorphism is normal. The following result is a generalization for
normal subtractive categories of Corollary 2.8 of [8], we omit the proof as it essentially
the same.

2.10. Corollary. Let C be a normal subtractive action accessible category (where we
have dropped the pointed protomodularity requirement in the definition of action accessible
category). For each split extension

X
κ // A

α // B
β
oo

There exists a morphism of split extensions

X
κ //

1X
��

A
α //

q
��

B
β
oo

r
��

X σ // C
γ // D
δ
oo

with codomain faithful, and with q and r normal epimorphisms.

It easily follows from the definition of an eccentric extension in [5] that a split extension

X
κ // A

α // B
β
oo

in a pointed protomodular category is eccentric if and only if zκ,β = 0. In this paper
we will use this as the definition of an eccentric extension. The following proposition is
essentially the same as [4] Corollary 4.1 we omit the proof.

2.11. Proposition. Let C be a homological action accessible category. Eccentric exten-
sions are faithful.

Recall from [1]

2.12. Proposition. Let C be a pointed protomodular category and let f : A → C and
g : B → C be normal monomorphisms in C. If the intersection A ∩ B is trivial then f
and g commute.

2.13. Proposition. Let C be a pointed protomodular category. For each split pullback

A×B B′

π1
��

π2 // B′
〈βh,1〉
oo

h
��

A
α // B
β

oo

where h is a normal monomorphism, 〈βh, 1〉 is normal if and only if βh commutes with
the kernel of α
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Proof. Let κ : X → A be the kernel of α. It follows that 〈κ, 0〉 : X → A ×B B′ is the
kernel of π2 : A×B B′ → B′. Suppose that 〈βh, 1〉 is a normal monomorphism. Since by
Proposition 2.12 the morphisms 〈κ, 0〉 and 〈βh, 1〉 commute, it follows that κ = π1〈κ, 0〉
and βh = π1〈βh, 1〉 commute. Conversely suppose that βh commutes with κ and that ϕ
is the morphism showing they commute. Since the diagram

X
〈1,0〉 //

1X
��

X ×B′
π2 //

ϕ

��

B′
〈0,1〉
oo

h
��

X
κ // A

α // B
β

oo

is a morphism of split extensions and C is protomodular it follows that the square on the
right is a split pullback. It easily follows that 〈βh, 1〉 is a normal monomorphism.

Next we show that a weak form of normality of unions holds in any homological action
accessible category.

2.14. Proposition. Let C be a homological action accessible category. For each split
pullback

A×B B′

π1
��

π2 // B′
〈βh,1〉
oo

h
��

A
α // B
β

oo

if h and 〈βh, 1〉 are normal, then βh is normal.

Proof. Let κ : X → A be the kernel of α. Since by Proposition 2.13 it follows that κ and
βh commute and since by Corollary 2.5 zκ,β exists, it follows that there exists a unique
morphism h′ : B′ → Zκ,β such that h = zκ,βh

′. By Corollary 2.10 and Corollary 2.5 it
follows that there exists a morphism

X
κ //

1X
��

A
α //

q
��

B
β
oo

r
��

X
σ // C

γ // D
δ
oo



420 J. R. A. GRAY

with codomain faithful, and with q and r normal epimorphisms, such that the kernel of r
is zκ,β. Consider the diagram

A
α //

q

��

〈q,eα〉

��

B
β

oo

r

��

e

��
C ×D E

π2 //

π1

��

E
〈δf,1〉
oo

f

��
C

γ // D
δ

oo

in which e is the cokernel of h, and f is the unique morphism such that fe = r (which
exists since rh = rzκ,βh

′ = 0h′ = 0) . Since the outer arrows of the diagram above form a
split pullback and the bottom square is a split pullback it follows that the top square is
also a split pullback, this means that βh is the kernel of 〈q, eα〉 and is therefore normal
as required.

As pointed out to me by D. Bourn, the fact that the conditions (a) and (b) of the
following theorem are equivalent follows from the results in [4], the same fact appeared in
a talk by A. S. Cigoli on joint work with S. Mantovani entitled Action accessibility and
centralizers at the CT conference in 2010.

2.15. Theorem. Let C be a homological category. The following are equivalent:

(a) C is action accessible;

(b) (i) for each split extension

X κ // A
α // B
β
oo

the centralizer of κ relative to β exists and βzκ,β is a normal monomorphism;

(ii) Eccentric extensions are faithful;

(c) (i) C has centralizers of normal monomorphisms;

(ii) the intersection of the centralizer of a protosplit monomorphism and any splitting
of its cokernel is normal;

(iii) Eccentric extensions are faithful;

(d) (i) C has centralizers of normal monomorphisms which are normal;

(ii) for each split pullback

A×B B′

π1
��

π2 // B′
〈βh,1〉
oo

h
��

A
α // B
β

oo
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if h and 〈βh, 1〉 are normal, then βh is normal;

(iii) Eccentric extensions are faithful.

Proof. The equivalence of (b) and (c) follows from Corollary 2.7. The implication (a)⇒
(d) follows from Corollary 2.8 and Propositions 2.11 and 2.14. The implication (d)⇒ (b)
follows from Corollary 2.7 and Proposition 2.13. To complete the proof we will show that
(b)⇒ (a). Let

X
κ // A

α // B
β
oo

be a split extension. Consider the diagram

Zκ,β
1Zκ,β //

βzκ,β
��

Zκ,β
1Zκ,β

oo

zκ,β
��

A
α //

q
��

B
β

oo

r
��

C
γ // D
δ

oo

in which r and q are the cokernels of zκ,β and βzκ,β respectively and γ and δ are the
induced morphisms between them. Since βzκ,β is a normal monomorphism it follows that
the square at the bottom is a split pullback and so can be completed as a morphism of
split extensions

X
κ //

1X
��

A
α //

q
��

B
β

oo

r
��

X σ // C
γ // D.
δ
oo

Since in the diagram

Zσ,δ ×D B
π1

��

π2 // B

r

��
Zσ,δ zσ,δ

// D

by Lemma 2.1, βπ2 commutes with κ, it follows by the universal property of zκ,β that
there exists a unique morphism t : Zσ,δ ×D B → Zκ,β such that π2 = zκ,βt. Since
zσ,δπ1 = rπ2 = rzκ,βt = 0t = 0 = 0π1 and since π1 is a (regular) epimorphism (being the
pullback of a regular epimorphism), it follows that zσ,δ = 0 and so by assumption the split
extension

X
σ // C

γ // D
δ
oo

is faithful, and every split extension admits a morphism into a faithful split extension as
required.
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The following result is a generalization for subtractive categories of Lemma 3.1 of [8]
we omit the proof:

2.16. Lemma. Let C be a regular subtractive category. Each parallel pair of morphisms

X

1X
��

1X
��

κ′ // A′

g

��
g′

��

α′ // B′

h
��
h′

��

β′
oo

X κ // A
α // B
β

oo

can be decomposed as a composite

X
κ′ //

1X
��

A′
α′ //

e
��

B′
β′
oo

f
��

X

1X
��

1X
��

κ // A

m
��
m′

��

α // B

n
��
n′

��

β

oo

X
κ // A

α // B
β

oo

where e and f are regular epimorphisms, and the pairs m and m′, and n and n′ are jointly
monomorphic.

2.17. Corollary. Let C be a regular subtractive category. A split extension

K
κ // A

α // B
β
oo

is faithful if and only if for each parallel pair of morphisms

X

1X
��

1X
��

κ′ // A′

g

��
g′

��

α′ // B′

h
��
h′

��

β′
oo

X
κ // A

α // B
β

oo

where the pairs g and g′, and h and h′ are jointly monomorphic, g = g′ and h = h′.

2.18. Proposition. Let C be a pointed exact protomodular category with coequalizers in
which the normality of unions holds. Eccentric extensions are faithful.

Proof. Let

X κ // A
α // B
β
oo
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be an eccentric extension. It follows from Corollary 2.17 and protomodularity that it is
sufficient to show for each pair of jointly monomorphic morphisms of split extensions

X

1X
��

1X
��

κ′ // A′

g

��
g′

��

α′ // B′

h
��
h′

��

β′
oo

X κ // A
α // B.
β

oo

that h = h′. Consider the diagram

X κ′ //

κ
��

A′

〈g,g′〉

��

u
��

A
e //

〈1,1〉 //

R

〈r1,r2〉 ##
A× A

in which r1, r2 : R → A is the kernel pair of the coequalizer of g, g′ : A′ → A, and e
and u are the unique morphisms such that r1e = 1A and r2e = 1A, and r1u = g and
r2u = g′. Since e and u are jointly extremal-epimorphic (indeed if they factor through
some monomorphism m : S → R, then it will make S a reflexive relation and hence an
effective equivalence relation contained in R and containing A′), it follows by the normality
of unions k = eκ = uκ′ is a normal monomorphism. Since in the pullback

Y
λ //

σ
��

R

〈r1,r2〉
��

A
〈0,1〉
// A× A

λ is a normal monomorphism with intersection with k equal to 0, it follows by Proposition
2.12 that k and λ commute. Therefore since (β × β)〈0, 1〉 = 〈0, 1〉β it follows that in the
diagram

Z
µ //

η

��

S

〈s1,s2〉
��

β // R

〈r1,r2〉
��

B
〈0,1〉
// B ×B

β×β
// A× A

where both the left and right hand squares are pullbacks, βµ commutes with k. It follows
that βη = r2βµ commutes with κ = r2k and therefore by assumption η = 0. Since
〈s1, s2〉 : S → B × B is the preimage of an equivalence relation it is also an equivalence
relation, and since η = 0 is the normalization of 〈s1, s2〉 : S → B × B it follows that
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s1 = s2. Therefore the unique morphism v making the diagram

B′

〈h,h′〉

��

β′ //

v

��

A′

u

��
〈g,g′〉

��

S

〈s1,s2〉

��

β // R

〈r1,r2〉

��
B ×B

β×β
// A× A

commute, forces h = s1v = s2v = h′ as required.

2.19. Theorem. Let C be a pointed exact protomodular category with coequalizers. If C
satisfies the normality of unions and has centralizers of normal monomorphisms which
are normal, then C is action accessible.

Proof. The proof follows from Theorem 2.15 and Proposition 2.18 since the diagram
consisting of leftward and downward directed arrows in Condition (d)(ii) of Theorem 2.15
is a union by protomodularity.

3. Action accessibility and normalizers

It was shown in [6] that for a pointed exact protomodular category action accessibility
follows from the existence of normalizers. In this section we show that for a pointed
exact protomodular category action accessibility is equivalent to the existence of certain
normalizers.

3.1. Theorem. Let C be a pointed exact protomodular category. The following are equiv-
alent:

(a) C is action accessible;

(b) for each normal monomorphism κ : X → A the normalizer of 〈κ, κ〉 exists;

(c) for each protosplit monomorphism κ : X → A the normalizer of 〈κ, κ〉 exists;

(d) for each split extension

X κ // A
α // B
β
oo

the category of relations in SPLEXTX(C) on

X κ // A
α // B
β
oo

has a terminal object;
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(e) for each equivalence relation

R
r1 //

r2
// Asoo

the category of relations in SPLEXTX(C) on

X
k // R

r1 // A,
s

oo

where k is the kernel of r1, has a terminal object;

(f) for each split extension

X
κ // A

α // B
β
oo

the category of parallel morphisms in SPLEXTX(C) with codomain

X κ // A
α // B
β
oo

has a terminal object;

(g) for each equivalence relation

R
r1 //

r2
// Asoo

the category of parallel morphisms in SPLEXTX(C) with codomain

X k // R
r1 // A,
s

oo

where k is the kernel of r1, has a terminal object;

(h) for each split extension

X
κ // A

α // B
β
oo

there is a K-precartesian lifting of 〈1, 1〉 : X → X ×X to

X ×X κ×κ // A× A
α×α // B ×B.
β×β
oo

(i) for each equivalence relation

R
r1 //

r2
// Asoo

there is a K-precartesian lifting of 〈1, 1〉 : X → X ×X to

X ×X k×k // R×R
r1×r1 // A× A,
s×s
oo

where k is the kernel of r1.
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Proof. The implications (b)⇒ (c), (d)⇒ (e), (f)⇒ (g), and (h)⇒ (i) follow trivially,
and the implication (c) ⇒ (h) follows from Proposition 2.4 and Lemma 2.7 in [6]. The
implications (d) ⇔ (f) and (e) ⇔ (g) follow from Lemma 2.16, and the implications
(f)⇔ (h) and (g)⇔ (i) follow from the fact that for any category with binary products
there is an isomorphism of categories between relations on an object and monomorphisms
into the product of that object with itself. Therefore the proof will be completed if we
show that (a)⇒ (f), (d)⇒ (a), and (i)⇒ (b).
(a)⇒ (f): Let

X
κ // A

α // B
β
oo

be a split extension. Since C is action accessible there exists a morphism

X κ //

1X
��

A
α //

g
��

B
β
oo

h
��

X κ // A
α // B
β

oo

with codomain a faithful extension. Consider the diagram

X

1X
��

1X
��

κ̃ // R

r1
��
r2
��

α̃ // S

s1
��
s2
��

β̃

oo

X
κ //

1X
��

A
α //

g
��

B
β
oo

h
��

X κ // A
α // B
β

oo

in which (S, s1, s2) and (R, r1, r2) are the kernel pair of h and g respectively, α̃ and β̃ are
the induced morphisms between the kernel pairs, and κ̃ is the kernel of α̃. Let

X

1X
��

1X
��

κ′ // A′

g1
��
g2
��

α′ // B′

h1
��
h2
��

β′
oo

X
κ // A

α // B
β

oo

be a parallel pair of morphism. Since the extension

X κ // A
α // B
β

oo
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is faithful it follows that in the diagram

X

1X
��

1X
��

κ′ // A′

g1
��
g2
��

α′ // B′

h1
��
h2
��

β′
oo

X κ //

1X
��

A
α //

g
��

B
β

oo

h
��

X κ // A
α // B
β

oo

gg1 = gg2 and hh1 = hh2 so by the universal properties of the kernel pairs (R, r1, r2) and
(S, s1, s2), there exists a unique morphism

X
κ′ //

1X
��

A′
α′ //

p

��

B′
β′
oo

q

��
X

κ̃ // R
α̃ // S
β̃

oo

such that g1 = r1p, g2 = r2p, h1 = s1q and h2 = s2q. This proves that

X

1X
��

1X
��

κ̃ // R

r1
��
r2
��

α̃ // S

s1
��
s2
��

β̃

oo

X κ // A
α // B
β
oo

is the terminal object in the category of parallel morphisms in SPLEXTX(C) with
codomain

X
κ // A

α // B.
β
oo

(d)⇒ (a): Let

X
κ // A

α // B
β
oo

be a split extension and let

X

1X
��

1X
��

κ̃ // R

r1
��
r2
��

α̃ // S

s1
��
s2
��

β̃

oo

X
κ // A

α // B
β
oo

be the terminal object in the category of relations in SPLEXTX(C) with codomain

X κ // A
α // B.
β
oo
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Note that since

X

1X
��

1X
��

κ // A

1A
��

1A
��

α // B

1B
��

1B
��

β
oo

X κ // A
α // B
β
oo

is an object in the same category it follows that (R, r1, r2) and (S, s1, s2) are effective
equivalence relations and hence the pairs r1, r2 and s1, s2 admit coequalizers. Consider
the diagram

X

1X
��

1X
��

κ̃ // R

r1
��
r2
��

α̃ // S

s1
��
s2
��

β̃

oo

X
κ //

1X
��

A
α //

g
��

B
β
oo

h
��

X κ // A
α // B
β

oo

in which g and h are the coequalizers of r1 and r2 and s1 and s2 respectively, and κ is the
kernel of α (which has domain X since in an exact category, every equivalence relation is
effective and every regular epimorphism is an effective descent morphism, the lower right
hand side square is a split pullback since so are upper ones). We will show that the split
extension

X
κ // A

α // B
β

oo

is faithful. It follows from Corollary 2.17 that it is sufficient to show that, for each relation

X

1X
��

1X
��

σ // U

u1
��
u2
��

θ // V

v1
��
v2
��

φ

oo

X
κ // A

α // B,
β

oo

in SPLEXTX(C), v1 = v2. By forming the pullback

X σ //

1X

��

〈1,1〉
{{

U
θ //

g̃

��

〈u1,u2〉
{{

V
φ

oo

h̃

��

〈v1,v2〉
{{

X ×X
κ×κ

//

1X×X

��

A× A
α×α //

g×g

��

B ×B
β×β

oo

h×h

��

X
σ //

〈1,1〉

{{

U
θ //

〈u1,u2〉
||

V
φ

oo

〈v1,v2〉||

X ×X
κ×κ

// A× A
α×α // B ×B
β×β

oo
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in SPLEXT(C) we obtain a new relation

X

1X
��

1X
��

σ // U

u1
��
u2
��

θ // V

v1
��
v2
��

φ
oo

X
κ // A

α // B
β
oo

which therefore factors through the relation

X

1X
��

1X
��

κ̃ // R

r1
��
r2
��

α̃ // S

s1
��
s2
��

β̃

oo

X
κ // A

α // B
β
oo

via a unique morphism

X
σ //

1X
��

U
θ //

u
��

V
φ
oo

v
��

X κ̃ // R
α̃ // S.
β̃

oo

It follows that v1h̃ = hv1 = hs1v = hs2v = hv2 = v2h̃ and similarly u1g̃ = u2g̃ and there-
fore, since g̃ and h̃ being pullbacks of regular epimorphism are (regular) epimorphisms,
that u1 = u2 and v1 = v2.
(i)⇒ (b) : Let κ : X → A be a normal monomorphism and let γ : A→ C be a morphism
which it is the kernel of. By forming the pullback

A×C A
π1
��

π2 // A

γ

��
A γ

// C

we obtain the split extension

X
〈κ,0〉 // A×C A

π2 // A.
〈1,1〉
oo

Let

X
σ //

〈1,1〉

��

T
ε //

〈〈t1,1,t1,2〉,〈t2,1,t2,2〉〉

��

N
δ

oo

〈m1,m2〉

��
X ×X 〈κ,0〉×〈κ,0〉// (A×C A)× (A×C A)

π2×π2 // A× A
〈1,1〉×〈1,1〉
oo
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be a K-precartesian lifting. Since the diagram

X
〈1,0〉 //

〈1,1〉

��

X ×X
π2 //

〈κ×κ,κ×κ〉

��

X
〈1,1〉

oo

〈κ,κ〉

��
X ×X 〈κ,0〉×〈κ,0〉// (A×C A)× (A×C A)

π2×π2 // A× A
〈1,1〉×〈1,1〉
oo

is a lifting of the same morphism to the same extension there exists a unique morphism

X
〈1,0〉 //

1X
��

X ×X
π2 //

ϕ

��

X
〈1,1〉
oo

n
��

X
σ // T

ε // N
δ

oo

such that 〈κ × κ, κ × κ〉 = 〈〈t1,1, t1,2〉, 〈t2,1, t2,2〉〉ϕ and 〈κ, κ〉 = 〈m1,m2〉n. We will show
that (N, n, 〈m1,m2〉) is the normalizer of 〈κ, κ〉. It is easy to check that the diagram

X

n

&&

σ // T

〈t1,1,t2,1〉

��

N

1N

xx

δoo

A× A

N

〈m1,m2〉

OO

commutes, and therefore since 〈m1,m2〉 is a monomorphism and σ and δ are jointly
strongly epimorphic, there exist a unique morphism ε′ : T → N such that 〈m1,m2〉ε′ =
〈t1,1, t2,1〉, and hence ε′δ = 1N and ε′σ = n. Since 〈〈t1,1, t1,2〉, 〈t2,1, t2,2〉〉 is a monomorphism
and π1 × π1, π2 × π2 : (A×C A)× (A×C A)→ A×A are jointly monomorphic it follows
that ε, ε′ : T → N are jointly monomorphic. Therefore since εδ = 1N = ε′δ and since C is
a Mal’tsev category, it follows that

T
ε //

ε′
// Nδoo

is an equivalence relation. It follows that since the diagram

X σ //

n
��

T
ε //

〈ε′,ε〉
��

N
δ

oo

1N
��

N
〈1,0〉 // N ×N

π2 // N
〈1,1〉
oo
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is a morphism of split extensions, n is normal. Let (N ′, n′, 〈m′1,m′2〉) be a factorization of
〈κ, κ〉 as a normal monomorphism followed by a monomorphism, and let

X
λ //

n′

��

R
r2 //

〈r1,r2〉
��

N ′
s

oo

1N′
��

N ′
〈1,0〉 // N ′ ×N ′

π2 // N ′
〈1,1〉
oo

be the morphism of split extensions determined by the denormalization of n′. Since λ
and s are jointly epimorphic, γm′ir1λ = γm′in

′ = γκ = 0 = γ0 = γm′i0 = γm′ir2λ, and
γm′ir1s = γm′i = γm′ir2s it follows that γm′ir1 = γm′ir2. Therefore for each i in {1, 2}
there exists a unique morphism 〈m′ir1,m′ir2〉 making the diagram

X

m′ir1

&&

m′ir2

��

〈m′ir1,m′ir2〉

##
A×C A

π2 //

π1

��

A

γ

��
A γ

// C

commute. Since the diagram

X

〈1,1〉

��

λ // R

〈〈m′1r1,m′1r2〉,〈m′2r1,m′2r2〉〉

��

r2 // N ′

〈m′1,m′2〉

��

s
oo

X ×X 〈κ,0〉×〈κ,0〉// (A×C A)× (A×C A)
π2×π2 // A× A
〈1,1〉×〈1,1〉
oo

is a morphism of split extensions there exists a unique morphism

X λ //

1X
��

R
r2 //

g′

��

N ′
s

oo

h′

��
X

σ // T
ε // N
δ

oo

such that 〈〈m′1r1,m′1r2〉, 〈m′2r1,m′2r2〉〉 = 〈〈t1,1, t1,2〉, 〈t2,1, t2,2〉〉g′ and 〈m′1,m′2〉 = 〈m1,m2〉h′.
This proves that (N, n, 〈m1,m2〉) is the normalizer of 〈κ, κ〉.
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