We study the totality of categories weakly enriched in a monoidal bicategory using a notion of enriched icon as 2-cells. We show that when the monoidal bicategory in question is symmetric then this process can be iterated. We show that starting from the symmetric monoidal bicategory Cat and performing the construction twice yields a convenient symmetric monoidal bicategory of partially strict tricategories. We show that restricting to the doubly degenerate ones immediately gives the correct bicategory of `2-tuply monoidal categories' missing from our earlier studies of the Periodic Table. We propose a generalisation to all $k$-tuply monoidal $n$-categories.
Keywords: symmetric monoidal bicategory, icon, enriched category
2010 MSC: Primary 18A05, 18D05, 18D10, 18D20
Theory and Applications of Categories, Vol. 29, 2014, No. 32, pp 929-977.
Published 2014-12-22.
TAC Home