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ENRICHED FACTORIZATION SYSTEMS

RORY B. B. LUCYSHYN-WRIGHT

Abstract. In a paper of 1974, Brian Day employed a notion of factorization system in
the context of enriched category theory, replacing the usual diagonal lifting property with
a corresponding criterion phrased in terms of hom-objects. We set forth the basic theory
of such enriched factorization systems. In particular, we establish stability properties
for enriched prefactorization systems, we examine the relation of enriched to ordinary
factorization systems, and we provide general results for obtaining enriched factorizations
by means of wide (co)intersections. As a special case, we prove results on the existence
of enriched factorization systems involving enriched strong monomorphisms or strong
epimorphisms.

1. Introduction

In informal terms, a factorization system on a category B consists of suitable classes
E and M of morphisms in B such that each morphism of B factors in an essentially
unique way as a morphism in E followed by a morphism in M . For example the classes
of epimorphisms and monomorphisms in the category of sets constitute a factorization
system on Set. In general categories, epi-mono factorizations of a morphism need not
be unique (up to isomorphism) even if they exist, but other suitable choices of E and
M may be available. Whereas the essential uniqueness of factorizations was mandated
directly in the 1948 axiomatics of Mac Lane [16], it was realized in the late 1960’s (see
[22, 9] for references) that this uniqueness can be seen as a consequence of a more basic
property of mutual complementarity of the classes E and M : One stipulates that each
e ∈ E be orthogonal to every m ∈ M , meaning that for any commutative square as in
the periphery of the following diagram

A1
//

e

��

B1

m

��
A2

//

w

>>

B2

(1.0.i)

there exists a unique morphism w making the diagram commute. For example, in many
categories B (e.g., see 7.7, 6.10), orthogonal (E ,M )-factorizations are obtained by setting
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E = EpiB and taking M to consist of the strong monomorphisms, i.e. those monos to
which each epi is orthogonal; dually, one can take E to consist of the strong epis and M
all monos. In the example of B = Set, and indeed in any topos, these canonical choices
of factorization system coincide (6.10).

Realizing that the criterion for orthogonality (1.0.i) is equally the statement that the
square

B(A2, B1)
B(A2,m) //

B(e,B1)

��

B(A2, B2)

B(e,B2)

��
B(A1, B1)

B(A1,m) //B(A1, B2)

(1.0.ii)

be a pullback in Set, Day [7] implicitly generalized the notion of factorization system (by
then codified in generality in [11]) to the context of enriched categories, for which the
hom-objects B(A,B) lie in some given monoidal category V , rather than Set. In this
context, one demands that (1.0.ii) be a pullback in V , thus obtaining a stronger notion
of V -enriched orthogonality, together with ensuing enriched notions of prefactorization
system and factorization system by analogy with [11].

Yet to date there has been no substantial published account of the basic theory of
such enriched factorization systems and prefactorization systems, notwithstanding their
use in a certain special case in [13] §6.1, substantial work on related notions in [3, 4],
and a brief treatment of enriched weak factorization systems in [19]. Filling this gap, we
establish stability properties for enriched prefactorization systems (§4), we examine the
relation of enriched to ordinary factorization systems (§5), and we provide general results
for obtaining enriched factorizations by means of wide (co)intersections (§7). As a special
case, we provide results on the existence of enriched (Epi, Strong mono)-factorizations
and (Strong epi,Mono)-factorizations, where here the notions of epi, mono, strong epi,
and strong mono are interpreted in an enriched sense that is in general distinct from the
ordinary sense (§6, 7). We show that one or both of these canonical enriched factoriza-
tion systems exists in broad classes of examples, including closed locally presentable or
topological categories, categories of algebras of algebraic theories enriched over such [5],
as well as categories of models of weighted-limit sketches enriched over a closed locally
presentable category [13].

The theory of enriched factorization systems was studied and employed in the author’s
recent Ph.D. thesis [14] in providing a basis for abstract functional analysis in a closed
category. Further, the present work is employed in [15] in studying notions of completion,
closure, and density relative to a monad, and in proving a theorem on the existence of
the idempotent core of an enriched monad.

2. Preliminaries on enriched categories

In what follows, we work in the context of the theory of categories enriched in a symmetric
monoidal category V , as documented in the seminal paper [10] and the comprehensive
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references [13], [8]. We shall include an explicit indication of V when employing notions
such as V -category, V -functor, and so on, omitting the prefix V only when concerned with
the corresponding notions for non-enriched or ordinary categories. When such ordinary
notions and terminology are applied to a given V -category A , they should be interpreted
relative to the underlying ordinary category of A . In the absence of any indication to the
contrary, we will assume throughout that V is a closed symmetric monoidal category, and
in this case we denote by V the V -category canonically associated to V , whose underlying
ordinary category is isomorphic to V ; in particular, the internal homs in V will therefore
be denoted by V (V1, V2). We do not assume that any limits or colimits exist in V .

2.1. The ordinary categories C considered in this paper are not assumed locally small—
that is, they are not necessarily Set-enriched categories. Rather, we assume that for
each category C under consideration, there is a category SET of classes in which lie the
hom-classes of C , so that C is SET-enriched, but SET is not assumed cartesian closed.

The following notions are defined in [8].

2.2. Definition. Let B be a V -category.

1. A morphism m : B1 → B2 in B (i.e., in the underlying ordinary category of B)
is a V -mono(morphism) if B(A,m) : B(A,B1) → B(A,B2) is a monomorphism
in V for every object A of B. A morphism e in B is a V -epi(morphism) if e is a
V -mono in Bop.

2. MonoV B and EpiV B are the classes of all V -monos and V -epis, respectively, in
B.

3. A V -limit of an ordinary functor D : J → B consists of a cone for D that is
sent by each functor B(A,−) : B → V (A ∈ B) to a limit cone for B(A,D−).
Equivalently, a V -limit is a limit of D that is preserved by each functor B(A,−).
As special cases of V -limits we define V -products, V -pullbacks, V -fibre-products,
etc. V -colimits are defined as V -limits in Bop.

2.3. Remark. V -limits coincide with the conical limits of [13]. Note that every V -mono
(resp. V -epi, V -limit, V -colimit) in B is a mono (resp. epi, limit, colimit) in (the
underlying ordinary category of) B.

2.4. Proposition. Any ordinary mono (resp. limit) in a tensored V -category B is a V -
mono (resp. V -limit). Dually, any ordinary epi (resp. colimit) in a cotensored V -category
B is a V -epi (resp. V -colimit). Hence if B is tensored, then MonoV B = MonoB; if B
is cotensored, then EpiV B = EpiB.

Proof. If B is tensored, then each ordinary functor B(B,−) : B → V is right adjoint
(to (−)⊗B : V → B) and hence preserves limits and monos.
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2.5. Proposition. A morphism m : B → C in a V -category B is a V -mono if and
only if m has a V -kernel-pair π1, π2 : P → B with π1 = π2.

Proof. If m is a V -mono then 1B, 1B : B → B is a V -kernel-pair in B, as one readily
checks. Conversely, if m has a V -kernel-pair with π1 = π2, then since each functor
B(A,−) : B → V (A ∈ B) preserves the given kernel pair, the needed conclusion follows
from the analogous result for ordinary categories, which is immediate.

2.6. Corollary. Every right V -adjoint V -functor preserves V -monos. Dually, every
left V -adjoint V -functor preserves V -epis.

Proof. Right V -adjoints preserve V -limits, so the result follows from 2.5.

2.7. Proposition. Let (mi : Bi → C)i∈I be a family of V -monos in V -category B,
where I is a class, and let m : B → C be a V -fibre-product of this family, with associated
projections πi : B → Bi (i ∈ I ). Then m is a V -mono.

Proof. For each A ∈ B, we must show that B(A,m) : B(A,B) → B(A,C) is mono,
but B(A,m) is a fibre product in V of the monomorphisms B(A,mi). Hence it suffices
to show that the analogous proposition holds for ordinary categories, and in this case the
verification is straightforward and elementary.

2.8. Definition. In the situation of 2.7, we say that the V -mono m is a V -intersection
of the mi.

2.9. Remark. Definition 2.8 is an enriched analogue of the notion of intersection defined
for ordinary categories in [12].

2.10. Definition. Given a class of morphisms E in a V -category B, we say that E is
closed under tensors in B if for any morphism e : A1 → A2 in E and any object V ∈ V for
which tensors V ⊗A1 and V ⊗A2 exist in B, the induced morphism V ⊗e : V ⊗A1 → V ⊗A2

lies in E . Dually, one defines the property of being closed under cotensors in B.

2.11. Proposition. For any V -category B, the following hold:

1. If g · f ∈ MonoV B, then f ∈ MonoV B.

2. MonoV B is closed under composition, cotensors, arbitrary V -fibre-products, and
V -pullbacks along arbitrary morphisms in B.

Proof. Both 1 and the needed closure under composition follow immediately from the
analogous statements for ordinary categories, upon applying each functor B(A,−) : B →
V (A ∈ B). We have already established closure under V -fibre-products in 2.7, and
closure under V -pullbacks is proved by an analogous method, since the corresponding
statement for ordinary categories holds. Lastly, given an object V of V and a V -mono
m : B1 → B2 in B for which cotensors [V,B1], [V,B2] exist in B, the induced morphism
[V,m] : [V,B1]→ [V,B2] is V -mono, as follows. Indeed, for each A ∈ B, B(A, [V,m]) ∼=
V (V,B(A,m)) in the arrow category ArrV (4.2), and since B(A,m) is mono and the
right-adjoint functor V (V,−) : V → V preserves monos, V (V,B(A,m)) is mono.



ENRICHED FACTORIZATION SYSTEMS 479

2.12. Definition. If a morphism m in a V -category B is a V -equalizer of a given pair
of morphisms, then since the equalizer diagram is preserved by each functor B(C,−) :
B → V (C ∈ B), it follows that m is a V -mono in B. We call any such V -equalizer m
a V -regular-mono(morphism) in B.

2.13. Proposition. Every section in a V -category B is a V -regular-mono in B.

Proof. Supposing that the composite A
s−→ B

r−→ A in B is the identity morphism 1A, it
follows that

A s // B r //

1B

44A s // B

is an absolute equalizer diagram and hence a V -equalizer diagram in B.

3. Basic notions

3.1. Definition. Let B be a V -category.

1. For morphisms e : A1 → A2, m : B1 → B2 in B we say that e is V -orthogonal to
m, written e ↓V m, if the commutative square

B(A2, B1)
B(A2,m) //

B(e,B1)
��

B(A2, B2)

B(e,B2)
��

B(A1, B1)
B(A1,m) //B(A1, B2)

(3.1.i)

is a pullback in V .

2. Given classes E , M of morphisms in B, we define

E ↓V := {m ∈ MorB | ∀e ∈ E : e ↓V m} ,

M ↑V := {e ∈ MorB | ∀m ∈M : e ↓V m} .

3. A V -prefactorization-system on B is a pair (E ,M ) of classes of morphisms in B
such that E ↓V = M and M ↑V = E .

4. For a pair (E ,M ) of classes of morphisms in B, we say that (E ,M )-factorizations
exist if every morphism in B factors as a morphism in E followed by a morphism
in M . More precisely, we require an assignment to each morphism f of B an
associated pair (e,m) ∈ E ×M with f = m · e.

5. A V -factorization-system is a V -prefactorization-system such that (E ,M )-
factorizations exist.

3.2. Remark. See 5.2 for an equivalent definition of the notion of V -factorization-system.
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3.3. Remark. The given definition of orthogonality relative to V appears in [7], where
the notion of enriched factorization system is also implicitly used.

3.4. Remark. The above definitions (3.1) apply equally when V is not assumed closed.
In particular, for any ordinary category B, if we take V = SET to be a category of
classes (2.1) in which lie the hom-classes of B, then we recover the analogous notions for
ordinary categories as given in [11], and for these we omit the indication of V from the
notation. In particular, orthogonality of morphisms in an ordinary category reduces to
the diagonal lifting criterion (1.0.i).

For general V , we note that V -orthogonality implies ordinary orthogonality.

3.5. Remark. Given a class of morphisms H in a V -category B, both (H ↓V ↑V ,H ↓V )
and (H ↑V ,H ↑V ↓V ) are V -prefactorization-systems on B.

3.6. Remark. Each V -(pre)factorization-system (E ,M ) on a V -category B determines
a V -(pre)factorization-system (M ,E ) on Bop.

Let us record the following well-known and oft-used observations regarding ordinary
orthogonality and hence also enriched orthogonality. The proofs are straightforward.

3.7. Proposition. Let g, f be morphisms in a category B such that the composite g · f
is defined.

1. If g · f ↓ g then g is a retraction in B.

2. If f ↓ g · f then f is a section in B.

3. If f ↓ f then f is an isomorphism.

4. Stability and cancellation for enriched prefactorization systems

In the present section we establish several stability properties of the left and right classes of
an enriched prefactorization system. Many are proved on the basis of analogous properties
of the class of cartesian arrows of a functor.

4.1. Given a functor P : A → Y and a morphism f : B → C in A , recall that f
is P -cartesian if for all morphisms k : A → C in A and u : PA → PB in Y with
Pf · u = Pk, there exists a unique v : A → B in A with Pv = u and f · v = k. Also,
we will say that an object C ∈ A is P -monic if for all objects D of A and morphisms
x, y : D → C, if Px = Py then x = y.

4.2. Example. Given a category Y , the arrow category ArrY = CAT(2,Y ) has as
objects all arrows of Y and as morphisms all commutative squares in Y . The cartesian
morphisms of the codomain functor cod : ArrY → Y are exactly the pullback squares in
Y . The cod-monic objects are the monomorphisms of Y .
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The following stability properties of cartesian arrows are well-known; the proofs, which
are omitted, are easy and elementary exercises. We also note in passing that cartesian
arrows are part of a generalized prefactorization system of the sort considered in [20]1,
which in general we might call a prefactorization system for cones along a functor, and
the given closure properties may alternatively be proved on that basis.

4.3. Lemma. Let P : A → Y be a functor, and let f : B → C, g : C → D in A .

1. If f and g are P -cartesian, then g · f is P -cartesian.

2. If both g · f and g are P -cartesian, then f is P -cartesian.

3. If C is P -monic and g · f is P -cartesian, then f is P -cartesian.

4. If f is a pullback of a P -cartesian morphism, and this pullback is preserved by P ,
then f is P -cartesian.

5. If f is a fibre product in A of a family (fi : Bi → C)i∈I of P -cartesian morphisms,
indexed by a class I , and this fibre product is preserved by P , then f is P -cartesian.

6. Suppose Pf is iso. Then f is P -cartesian iff f is iso.

The following stability properties generalize to the enriched context similar properties
of ordinary prefactorization systems given in [11] 2.1.1.

4.4. Proposition. Let (E ,M ) = (H ↓V ↑V ,H ↓V ) be an arbitrary V -prefactorization-
system on a V -category B, and let f : B → C, g : C → D be morphisms in B.

1. If f, g ∈M , then g · f ∈M .

2. If g · f ∈M and g ∈M , then f ∈M .

3. Suppose H ⊆ EpiV B. Then if g · f ∈M , it follows that f ∈M .

4. If f is a V -pullback in B of a morphism m ∈M , then f ∈M .

5. If f is a V -fibre-product in B of morphisms fi : Bi → C that lie in M (for i in
some class I ), then f ∈M .

6. Every isomorphism in B lies in M , and dually, in E . Hence E ∩M = IsoB by
3.7 3.

1Indeed, see the first sentence of page 341 there, note that “G-initial” = “G-cartesian”, and apply (6)
of that same paper.
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Proof. Since M = H ↓V is the intersection of the classes {e}↓V with e ∈ H , we
immediately reduce to the case where H is a singleton {e}, so that M = {e}↓V for some
morphism e : A1 → A2 in B. There is an ordinary functor

e∗ : B → ArrV

into the category of arrows ArrV of V (4.2), sending each object B ∈ B to the ob-
ject e∗(B) := B(e, B) : B(A2, B) → B(A1, B) of ArrV , and sending each morphism
m : B1 → B2 in B to the morphism e∗(m) : e∗(B1)→ e∗(B2) defined as the commutative
square (3.1.i) in V . Observe that

(a) M = {e}↓V consists of those morphisms m in B for which e∗(m) is a cartesian
morphism with respect to cod : ArrV → V .

(b) e∗ sends V -limits in B to limits in ArrV that are preserved by cod : ArrV → V .

Indeed, (a) is immediate from the definitions and 4.2; regarding (b), observe that the
composites

B
e∗−→ ArrV

dom−−→ V , B
e∗−→ ArrV

cod−−→ V

are B(A2,−) and B(A1,−), respectively, each of which sends V -limits to limits, so that
e∗ sends V -limits to pointwise limits in the functor category ArrV = CAT(2,V ).

Using (a) and (b), the needed closure properties of M follow immediately from the
corresponding closure properties of cartesian morphisms given in 4.3. For example, to
prove 4, we reason that if f is a V -pullback of m ∈ M , then by (a) and (b), e∗(f) is a
pullback of the cod-cartesian morphism e∗(m) and this pullback is preserved by cod, so
that by 4.3 4, e∗(f) is cod-cartesian, i.e. f ∈ M . For 3, note that if e ∈ EpiV B, then
e∗(C) = B(e, C) is mono in V and hence a cod-monic object (4.1,4.2), so that we can
apply 4.3 3.

When a V -natural family of M -morphisms induces a morphism between V -enriched
weighted limits, the resulting morphism again lies in M , as we now show. The notion of
V -enriched weighted limit was called indexed limit in [13].

4.5. Proposition. Let (E ,M ) be a V -prefactorization-system on a V -category B, let
B,B′ : J → B be V -functors, and let m : B → B′ be a V -natural transformation whose
component morphisms mj : Bj → B′j (j ∈J ) lie in M . Suppose that W : J → V is
a V -functor for which V -enriched weighted limits [W,B], [W,B′] exist in B. Then the
induced morphism [W,m] : [W,B]→ [W,B′] lies in M .

Proof. Letting e : A → A′ lie in E , we intend to show that e ↓V [W,m], i.e. that the
diagram

B(A′, [W,B])

B(e,[W,B])
��

B(A′,[W,m]) //B(A′, [W,B′])

B(e,[W,B′])
��

B(A, [W,B])
B(A,[W,m])

//B(A, [W,B′])
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is a pullback in V . But this diagram is isomorphic to the following diagram

[J ,V ](W,B(A′, B−))

[J ,V ](W,B(e,B−))
��

[J ,V ](W,B(A′,m−)) // [J ,V ](W,B(A′, B′−))

[J ,V ](W,B(e,B′−))
��

[J ,V ](W,B(A,B−))
[J ,V ](W,B(A,m−))

// [J ,V ](W,B(A,B′−))

(and in particular, the given hom-objects exist in V and can be taken as just the hom-
objects in the preceding diagram). For each j ∈ J , we have that e ↓V mj, so the
diagram

B(A′, B−)

B(e,B−)
��

B(A′,m−) //B(A′, B′−)

B(e,B′−)
��

B(A,B−)
B(A,m−)

//B(A,B′−)

is a pointwise pullback of V -functors J → V , and it follows that the preceding diagram
is a pullback.

4.6. Corollary. Let (E ,M ) be a V -prefactorization-system on a V -category B. Then
M is closed under cotensors in B (2.10). Dually, E is closed under tensors in B.

5. Characterizations of enriched factorization systems

5.1. Proposition. An ordinary prefactorization system (E ,M ) on a V -category B is a
V -prefactorization-system on B as soon as each e ∈ E is V -orthogonal to each m ∈M .

Proof. Using our hypothesis of V -orthogonality, we find that

E ⊆M ↑V ⊆M ↑ , M ⊆ E ↓V ⊆ E ↓ . (5.1.i)

But since (E ,M ) is an ordinary prefactorization system, we have that E = M ↑ and
M = E ↓, so the above inclusions are equalities.

The following is an enriched analogue of a well-known characterization of ordinary
factorization systems that is often used as the definition; see, e.g., [11] 2.2.1, [1] 14.6.

5.2. Proposition. Let E , M be classes of morphisms in a V -category B. Then (E ,M )
is a V -factorization-system on B if and only if the following conditions hold:

1. Each of E and M is closed under composition with isomorphisms.

2. Each e ∈ E is V -orthogonal to each m ∈M .

3. (E ,M )-factorizations exist.
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Proof. That every V -factorization-system satisfies the given conditions is immediate
from 4.4 and 3.1. It is well-known that the converse implication holds for ordinary cate-
gories (e.g. see [1] 14.6). Hence, in the enriched case, if the given conditions hold, then 2
entails in particular that each e ∈ E is orthogonal in the ordinary sense to each m ∈M ,
so the result for ordinary categories entails that (E ,M ) is an ordinary factorization sys-
tem, and by 2, 3, and 5.1 it then follows that (E ,M ) is a V -factorization-system.

5.3. Corollary. A pair (E ,M ) of classes of morphisms in a V -category B is a V -
factorization-system on B if and only if (E ,M ) is an ordinary factorization system on
B and each e ∈ E is V -orthogonal to each m ∈M .

Proof. That the latter condition entails the former follows from 5.1. Conversely, if
(E ,M ) is a V -factorization-system, then conditions 1, 2, and 3 of 5.2 hold, so the corre-
sponding non-enriched conditions hold with respect to the underlying ordinary category
B, and hence the non-enriched analogue of 5.2 entails that (E ,M ) is an ordinary factor-
ization system.

A statement to the effect of the following proposition appears in an entry on the
collaborative web site nLab [17]; a special case of this observation was also employed
earlier in [13] §6.1:

5.4. Proposition. Let E be a class of morphisms in a V -category B. Suppose that B
is tensored, and suppose that E is closed under tensors in B (2.10). Then E ↓V = E ↓.

Dually, if a class M of morphisms in a cotensored V -category B is closed under
cotensors, then M ↑V = M ↑.

Proof. Let SET be a category of classes (2.1) in which lie the hom-classes of V . Enriched
orthogonality implies ordinary, so it suffices to show that E ↓ ⊆ E ↓V . Letting m : B1 → B2

lie in E ↓ and e : A1 → A2 lie in E , we must show that e ↓V m. It suffices to show that
each functor V (V,−) : V → SET (V ∈ V ) sends the square (3.1.i) to a pullback square
in SET. Since B is tensored, we have in particular that

V (V,B(A,B)) ∼= B(V ⊗ A,B)

naturally in A,B ∈ B. The diagram in SET obtained by applying V (V,−) to the square
(3.1.i) is therefore isomorphic to the following diagram

B(V ⊗ A2, B1)
B(V⊗A2,m) //

B(V⊗e,B1)

��

B(V ⊗ A2, B2)

B(V⊗e,B2)

��
B(V ⊗ A1, B1)

B(V⊗A1,m) // A (V ⊗ A1, B2) ,

which is a pullback in SET since V ⊗ e ∈ E and hence V ⊗ e ↓ m.
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5.5. Proposition. Let (E ,M ) be an ordinary prefactorization system on a V -category
B.

1. If B is tensored and E is closed under tensors in B, then (E ,M ) is a V -prefact-
orization-system on B.

2. Dually, if B is cotensored and M is closed under cotensors in B, then (E ,M ) is
a V -prefactorization-system on B.

Proof. 1. By 5.1 it suffices to show that M ⊆ E ↓V . But by 5.4 we have that M = E ↓ =
E ↓V .

5.6. Proposition. Let E , M be classes of morphisms in a V -category B, and suppose
that B is tensored and cotensored. Then the following are equivalent:

1. (E ,M ) is a V -prefactorization-system on B;

2. (E ,M ) is an ordinary prefactorization system on B, E is closed under tensors, and
M is closed under cotensors.

Proof. By 5.5, 2 entails 1. Conversely, if 1 holds, then by 4.6 we have that E is closed
under tensors and M is closed under cotensors, so by two applications of 5.4 we find that
M = E ↓V = E ↓ and E = M ↑V = M ↑; therefore (E ,M ) is an ordinary prefactorization
system.

5.7. Theorem. Let E , M be classes of morphisms in a V -category B. If B is tensored,
then the following are equivalent:

1. (E ,M ) is a V -factorization-system on B;

2. (E ,M ) is an ordinary factorization system on B, and E is closed under tensors in
B.

If B is cotensored, then 1 is equivalent to

2′. (E ,M ) is an ordinary factorization system on B, and M is closed under cotensors
in B.

Proof. If (E ,M ) is V -factorization-system, then (E ,M ) is an ordinary factorization
system by 5.3, and E is closed under tensors by 4.6. Conversely, 2 entails 1 by 5.5.
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6. Enriched strong monomorphisms and epimorphisms

The notion of strong monomorphism was introduced in [12], and the following enriched
generalization of this notion was given in [7].

6.1. Definition. Let B be a V -category.

1. A V -strong-mono(morphism) in B is a V -mono m : B1 → B2 such that e ↓V m for
every V -epi e in B.

2. We denote the class of all V -strong-monos in B by

StrMonoV B := (EpiV B)↓V ∩MonoV B .

3. A V -strong-epi(morphism) in B is a V -strong-mono in Bop, and the class of all
such is denoted by StrEpiV B.

6.2. Proposition. For any V -category B, the following hold:

1. If g · f ∈ StrMonoV B, then f ∈ StrMonoV B.

2. StrMonoV B is closed under composition, cotensors, arbitrary V -fibre-products, and
V -pullbacks along arbitrary morphisms in B.

Proof. By 4 and 2.11, each of the classes (EpiV B)↓V and MonoV B possesses the needed
closure properties, so their intersection does as well.

6.3. Proposition. Every V -regular-mono in a V -category B is a V -strong-mono. In
particular, every section in B is a V -strong-mono.

Proof. Let

B1
m // B2

f
,,

g
22 B

be a V -equalizer diagram in B. For each V -epi e : A1 → A2 in B we have a diagram

B(A2, B1)

B(e,B1)

��

B(A2,m)//B(A2, B2)

B(e,B2)

��

B(A2,f)..

B(A2,g)
00B(A2, B)

B(e,B)

��
B(A1, B1)

B(A1,m)
//B(A1, B2)

B(A1,f)..

B(A1,g)
00B(A1, B)

in which each row is an equalizer diagram in V . Using the fact that each vertical morphism
is mono, one readily checks that the leftmost square is a pullback. The second claim follows
from the first via 2.13.
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The following is an enriched generalization of part of [11], 2.1.4.

6.4. Proposition. Let (E ,M ) be a V -prefactorization-system on a V -category B.

1. If B has V -kernel-pairs and every retraction in B lies in E , then M ⊆ MonoV B.

2. Dually, if B has V -cokernel-pairs and every section in B lies in M , then E ⊆
EpiV B.

Proof. 1. Let m : B → C lie in M . We have a V -pullback as in the following diagram

B

s

  
P

π1
��

π2 //
y

B

m
��

B m
//

w

>>

C

and an induced s such that π1 · s = 1B = π2 · s. In particular, π1 is a retraction and
hence lies in E , so there is a unique w making the diagram commute. Hence 1B = π2 · s =
w · π1 · s = w · 1B = w, so π2 = w · π1 = 1B · π1 = π1 and the result follows by 2.5.

6.5. Proposition. Let B be a V -category with V -kernel-pairs. Then we have the fol-
lowing:

1. StrMonoV B = (EpiV B)↓V .

2. If B also has V -cokernel-pairs, then EpiV B = (StrMonoV B)↑V .

Proof. Let (E ,M ) := ((EpiV B)↓V ↑V , (EpiV B)↓V ). Every retraction in B is an absolute
epi and hence is a V -epi and so lies in E , so by 6.4 1, M ⊆ MonoV B and hence
StrMonoV B = M ∩ MonoV B = M . If B also has V -cokernel-pairs, then since every
section lies in M (6.3) we deduce by 6.4 2 that E ⊆ EpiV B, so EpiV B = E = M ↑V =
(StrMonoV B)↑V .

6.6. Remark. For ordinary categories, one can improve upon 6.5. It was recognized in [6]
that 2.1.4 of [11] entails that the epimorphisms and strong monomorphisms of a finitely-
complete or -cocomplete ordinary category together constitute a prefactorization system.
Indeed, by 2.1.4 of [11], if B has kernel pairs or finite coproducts, then StrMonoB =
(EpiB)↓, and if B also has cokernel pairs or finite products, then EpiB = (StrMonoB)↑.

On the other hand, if (EpiV B, StrMonoV B)-factorizations are known to exist in B,
then the hypotheses of 6.5 are superfluous:

6.7. Proposition. If (EpiV B, StrMonoV B)-factorizations exist in a V -category B,
then (EpiV B, StrMonoV B) is a V -factorization-system on B.

Proof. This follows from 5.2.
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6.8. Proposition. Suppose that B is a tensored and cotensored V -category. Then
StrMonoV B = StrMonoB, and EpiV B = EpiB.

Proof. The second equation was established in 2.4. For each V ∈ V , the functor
V ⊗ (−) : B → B is left adjoint (to [V,−] : B → B) and hence preserves epis. Hence
the class E := EpiB satisfies the hypotheses of 5.4, and we compute that

(EpiV B)↓V = (EpiB)↓V = (EpiB)↓ .

Therefore, by 2.4

StrMonoV B = (EpiV B)↓V ∩MonoV B = (EpiB)↓ ∩MonoB = StrMonoB .

6.9. Corollary. If B is a tensored and cotensored V -category in which (EpiB, StrMonoB)-
factorizations exist, then (EpiV B, StrMonoV B) = (EpiB, StrMonoB) is a V -factorization-
system on B.

Proof. This follows from 6.7 and 6.8.

6.10. Example. Every quasitopos X (and in particular, any topos) carries an X -
enriched factorization system (E ,M ), where E = EpiX = EpiX X , M = StrMonoX =
StrMonoX X , and X is endowed with its cartesian closed monoidal structure. In-
deed, this follows from 6.9 since every morphism in X factors as an epi followed by
a strong mono ([18] 2.10). Note that the strong monos in X coincide with the reg-
ular monos. If X is a topos, then every monomorphism is regular and hence strong,
so M = MonoX = MonoX X ; in this case, every epimorphism is regular and hence
strong, and so since X op is tensored and cotensored we deduce by 6.8 that (E ,M ) =
(StrEpiX ,MonoX ) = (StrEpiX X ,MonoX X ) as well.

The following notion is a V -enriched analogue of the notion of finitely well-complete
(ordinary) category of [6]:

6.11. Definition. A V -category B is V -finitely-well-complete (V -f.w.c.) if

1. B has all finite V -limits, and

2. B has V -intersections of arbitrary (class-indexed) families of V -strong-monos.

6.12. Remark. By 6.2, the V -intersections of V -strong-monos required in 6.11 are nec-
essarily V -strong-monos.

6.13. Proposition. Let B be a tensored and cotensored V -category. Then B is V -
finitely-well-complete if and only if B is finitely well-complete.

Proof. Finite V -limits, V -intersections, and V -strong-monos in B are the same as the
corresponding ordinary notions (by 2.4, 6.8).
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6.14. Example. If a small-complete category B is well-powered with respect to strong
monos, meaning that each of its objects has but a set of strong subobjects, then B is
f.w.c. Hence if B satisfies either of the following conditions, then both B and Bop are
f.w.c.:

1. B is locally presentable.

2. B is topological over Set.

Indeed, in case 1, B is complete, cocomplete, and well-powered ([2] 1.56), and B is also
co-well-powered ([2] 1.58). In case 2, the strong monomorphisms in B are exactly the
initial injections, and the strong epimorphisms are the final surjections (e.g. by [23] 11.9),
so that strong subobjects correspond bijectively to subsets of the underlying set, and
strong quotients correspond to equivalence relations on the underlying set.

In particular, if V itself is complete and well-powered with respect to strong monos,
then V is V -f.w.c. (by 6.13, since V is tensored and cotensored). If V is cocomplete
and co-well-powered with respect to strong epis, then V op is V -f.w.c., again by 6.13.
For example, if V is any symmetric monoidal closed category whose underlying ordinary
category is (i) locally presentable or (ii) topological over Set, then both V and V op are
V -finitely-well-complete.

6.15. Proposition. Every right V -adjoint V -functor preserves V -strong-monos.

Proof. Let F a G : B → A be a V -adjunction, and let m : B1 → B2 be a V -strong-
mono in B. By 2.6, G preserves V -monos, so Gm is V -mono. Letting e : A1 → A2 be a
V -epi in A , we must show that e ↓V Gm, i.e. that the square

A (A2, GB1)

A (e,GB1)

��

A (A2,Gm) // A (A2, GB2)

A (e,GB2)

��
A (A1, GB1)

A (A1,Gm)
// A (A1, GB2)

is a pullback. But the latter square is isomorphic to the square

B(FA2, B1)

B(Fe,B1)
��

B(FA2,m) //B(FA2, B2)

B(Fe,B2)

��
B(FA1, B1)

B(FA1,m)
//B(FA1, B2)

which is a pullback since Fe is a V -epi (by 2.6).
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6.16. Proposition.

1. Let F a G : B → A be a V -adjunction with A V -finitely-well-complete, and
suppose that G detects V -limits (i.e., a diagram D : J → B has a V -limit as soon
as its composite with G does). Then B is V -finitely-well-complete.

2. Let A be a V -finitely-well-complete V -category, let T be a V -monad on A , and as-
sume that V has the equalizers needed in order to form the V -category of Eilenberg-
Moore algebras A T ([8], II.1). Then A T is V -finitely-well-complete.

Proof. 1 follows readily from 6.15. 2 follows from 1, since the forgetful V -functor G :
A T → A is a right V -adjoint and detects (indeed creates) V -limits.

7. Enriched factorization systems by wide (co)intersections

In the present section we obtain several results on the existence of enriched factorization
systems when wide intersections of certain kinds of monomorphisms exist. In particu-
lar, we obtain results on the existence of both (EpiV , StrMonoV )-factorizations as well as
(StrEpiV ,MonoV )-factorizations. By dualizing, one obtains further results on the existence
of such V -factorization-systems when wide cointersections exist. A summary of several
of these results is provided in Theorem 7.14.

Let us recall the following result for ordinary categories, which is Lemma 3.1 of [6]2.
Whereas the proof is sketched in [6], we include a proof, and then we consider the extent
to which this result generalizes to the enriched context, obtaining several corollaries for
cotensored enriched categories.

7.1. Proposition. Let M be a class of monomorphisms in an (ordinary) category B.
Suppose that (i) arbitrary intersections of M -morphisms exist in B and again lie in M ,
(ii) pullbacks of M -morphisms along arbitrary morphisms exist in B and again lie in M ,
and (iii) M is closed under composition. Then (M ↑,M ) is a factorization system on B.

Proof. Let g : C → B in B. Let m0 : M → B be the intersection of all m : Mm → B in
M through which g factors — i.e. for which there exists a (necessarily unique) gm : C →
Mm with m · gm = g. Then m0 ∈M by hypothesis (i). The family of all gm : C → Mm

induces a unique e : C → M such that m0 · e = g and πm · e = gm for all m, where the
morphisms πm : M →Mm present m0 as an intersection of the morphisms m.

Hence we have a factorization m0 · e of g with m0 ∈M , and it remains to show that
e ∈ M ↑. Let i : B1 → B2 lie in M . For any h, k such that i · k = h · e we obtain a

2The result and variations thereupon were known earlier, however; e.g. cf. [21] 6.3, 6.5, 7.3.
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commutative diagram
C

g

		

e





w
��

k

��

P

j~~ h′ !!
M

m0�� h   

B1

i~~
B B2

in which the diamond with top vertex P is a pullback and w is the unique morphism into
this pullback making the diagram commute. Since i ∈M , the pullback j of i lies in M
by hypothesis (ii). Hence m0 · j ∈M since M is closed under composition, so m0 · j is a
morphism in M through which g factors, so from the definition of m0 as an intersection it
follows that j is iso (since m0 · j ·πm0·j = m0 and hence the mono j is a retraction of πm0·j
and so is iso). Letting u := h′ · j−1, we claim that u is the unique morphism with u · e = k
and i · u = h. Indeed, u · e = h′ · j−1 · e = h′ ·w = k, and i · u = i · h′ · j−1 = h · j · j−1 = h,
and the uniqueness of u is immediate since i is mono.

7.2. Remark. Notice that the given argument does not directly generalize to the enriched
setting, since in showing e ↓ i we have taken a pullback that depends on the specific
commutative square for which a diagonal lift is sought. However, for cotensored enriched
categories we obtain the following corollaries.

7.3. Corollary. Let M be a class of monomorphisms in a cotensored V -category B.
Suppose that the hypotheses of 7.1 hold, and further that M is closed under cotensors.
Then (M ↑V ,M ) = (M ↑,M ) is a V -factorization-system on B.

Proof. By 7.1, (M ↑,M ) is a factorization system on B and hence by 5.7 is a V -
factorization-system, and in particular M ↑V = M ↑.

7.4. Corollary. Let (E ,M ) be a V -prefactorization-system on a cotensored V -category
B, where M ⊆ MonoV B. Suppose B has arbitrary V -intersections of M -morphisms
as well as V -pullbacks of M -morphisms along arbitrary morphisms. Then the following
hold:

1. (E ,M ) is a V -factorization-system on B.

2. For any class Σ of morphisms in B, if we let N := Σ↓V ∩M , then (N ↑V ,N ) is
a V -factorization-system on B

Proof. 1. M satisfies the hypotheses of 7.3, by 4.4, and the result follows.
2. N = (Σ↓V ) ∩ (E ↓V ) = (Σ ∪ E )↓V , and setting H := Σ ∪ E we thus have that

(N ↑V ,N ) = (H ↓V ↑V ,H ↓V ) is a V -prefactorization-system on B. Hence, noting that
N ⊆M ⊆ MonoV B, we may apply 1 with respect to (N ↑V ,N ).
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7.5. Corollary. Let B be a V -finitely-well-complete cotensored V -category.

1. If B has V -cokernel-pairs, then (EpiV B, StrMonoV B) is a V -factorization-system
on B

2. For any class Σ of morphisms in B, if we let N := Σ↓V ∩ StrMonoV B, then
(N ↑V ,N ) is a V -factorization-system on B.

Proof. Let M := StrMonoV B, E := M ↑V . By 6.5 1, M = (EpiV B)↓V , so (E ,M ) =
((EpiV B)↓V ↑V , (EpiV B)↓V ) is a V -prefactorization-system on B. We find that (E ,M )
satisfies the hypotheses of 7.4, and we thus deduce both that (E ,M ) is a V -factorization-
system and that 2 holds. If B has V -cokernel-pairs, then by 6.5 2, EpiV B = M ↑V = E .

7.6. Corollary. Suppose that B is a tensored, cotensored, and finitely well-complete V -
category. Then (EpiV B, StrMonoV B) = (EpiB, StrMonoB) is a V -factorization-system
on B.

Proof. By 6.8, the given equation holds. By 6.6, the given pair is an ordinary pre-
factorization system, and we find that StrMonoB satisfies the hypotheses of 7.1. Hence
((StrMonoB)↑, StrMonoB) = (EpiB, StrMonoB) is a factorization system, and the re-
sult now follows by 5.3.

7.7. Remark. For an ordinary category B, the hypotheses of 7.5, 7.6 can be weakened:
It is shown in [6] 3.2 that (EpiB, StrMonoB) is a factorization system as soon as B is
finitely well-complete. Similarly, the non-enriched analogue of 7.5 2 applies to arbitrary
finitely well-complete ordinary categories and was employed in a certain instance within
the proof of [6] 3.3.

7.8. Example. By 6.14, if V is a symmetric monoidal closed category that is (i) lo-
cally presentable or (ii) topological over Set, then both V and V op are finitely well-
complete, tensored, and cotensored, so by two invocations of 7.6 we find that V carries
V -factorization-systems (EpiV V , StrMonoV V ) = (EpiV , StrMonoV ) and
(StrEpiV V ,MonoV V ) = (StrEpiV ,MonoV ).

7.9. Example. Let V be a finitely well-complete π-category [5], such as any cartesian
closed category that is locally presentable or topological over Set (6.14), and let B be a V -
algebraic V -category [5]. Since V is V -finitely-well-complete (6.13) and B is V -monadic
over V by [5] 2.2.2, we deduce by 6.16 that B is V -finitely-well-complete. Hence, since
B also has V -cokernel-pairs by [5] 2.3.1 and is cotensored by [8] II.4.7, we deduce by 7.5
that B carries a V -factorization-system (EpiV B, StrMonoV B).

7.10. Corollary. Let B be a cotensored V -category with V -cokernel-pairs, V -pullbacks
of V -monos along arbitrary morphisms, and arbitrary V -intersections of V -monos. Then
(StrEpiV B,MonoV B) is a V -factorization-system on B.

Proof. By 2.11, M := MonoV B satisfies the hypotheses of 7.3, so (M ↑V ,M ) is a V -
factorization-system. But since B has V -cokernel-pairs, the dual of 6.5 1 entails that
M ↑V = StrEpiV B.
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7.11. Corollary. Let B be a tensored and cotensored V -category with finite limits and
arbitrary intersections of monos. Then (StrEpiV B,MonoV B) = (StrEpiB,MonoB) is a
V -factorization-system on B.

Proof. The analogue of 2.11 for ordinary categories entails that MonoB satisfies the
hypotheses of 7.1, so ((MonoB)↑,MonoB) is a factorization system on B. But since B
has finite products, the dual of 6.6 entails that (MonoB)↑ = StrEpiB. Further, by (the
dual of) 6.8, (StrEpiV B,MonoV B) = (StrEpiB,MonoB), and by 5.3, this factorization
system is a V -factorization-system.

7.12. Example. Let V be a well-powered π-category [5], such as a locally presentable
cartesian closed category. Again letting B be a V -algebraic V -category [5] as in 7.9, B
is cotensored, and B has all small V -limits and V -colimits by [5] 2.3.1. Also, since V
is well-powered and B is monadic over V , it follows that B is well-powered and hence
well-powered with respect to V -monos. Therefore, by 7.10, (StrEpiV B,MonoV B) is a
V -factorization-system on B.

7.13. Example. Suppose that the underlying ordinary category of V is locally pre-
sentable, and let B be the V -category of models in V of a V -enriched sketch (A op,Φ) ([13]
§6.3). We deduce via 7.5 and 7.10 that B carries V -factorization-systems
(EpiV B, StrMonoV B) and (StrEpiV B,MonoV B), as follows. By [13] Theorem 6.11, B
is a V -reflective sub-V -category of [A op,V ] and hence is tensored and cotensored and has
all small V -limits and V -colimits. Since A op is a small V -category and V is well-powered
(with respect to monos and hence V -monos), we deduce by [8] IV.1.3 that [A op,V ] is
well-powered with respect to V -monos. Hence since the inclusion B ↪→ [A op,V ] preserves
V -monos, B is well-powered with respect to V -monos and so satisfies the hypotheses of
7.10 and 7.5 1.

Applying the above results and their duals, we obtain the following.

7.14. Theorem. Let B be a V -category.

1. (EpiV B, StrMonoV B) is a V -factorization-system on B as soon as one of the fol-
lowing holds:

(a) B is cotensored, well-powered with respect to V -strong-monos, and has small
V -limits and V -cokernel-pairs.

(b) B is cotensored and tensored, well-powered with respect to strong monos, and
has small limits.

(c) B is tensored, co-well-powered with respect to V -epis, and has small V -colimits
and V -kernel-pairs.

(d) B is tensored and cotensored, co-well-powered, and has small colimits.

2. Dually, (StrEpiV B,MonoV B) is a V -factorization-system as soon as one of the
following holds:
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(a) B is tensored, co-well-powered with respect to V -strong-epis, and has small
V -colimits and V -kernel-pairs.

(b) B is tensored and cotensored, co-well-powered with respect to strong epis, and
has small colimits.

(c) B is cotensored, well-powered with respect to V -monos, and has small V -limits
and V -cokernel-pairs.

(d) B is cotensored and tensored, well-powered, and has small limits.

Proof. 1(a) follows from 7.5 1, 1(b) from 7.6, 1(c) from the dual of 7.10, 1(d) from the
dual of 7.11. 2 follows from 1 by dualizing.
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[6] C. Cassidy, M. Hébert, and G. M. Kelly, Reflective subcategories, localizations and
factorization systems, J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 287–329.

[7] B. Day, On adjoint-functor factorisation, Lecture Notes in Math. 420 (1974), 1–19.

[8] E. J. Dubuc, Kan extensions in enriched category theory, Lecture Notes in Mathe-
matics, Vol. 145, Springer-Verlag, 1970.

[9] H. Ehrbar and O. Wyler, Images in categories as reflections, Cahiers Topologie Géom.
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Giuseppe Rosolini, Università di Genova: rosolini@disi.unige.it
Alex Simpson, University of Edinburgh: Alex.Simpson@ed.ac.uk
James Stasheff, University of North Carolina: jds@math.upenn.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: rfcwalters@gmail.com
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


	Introduction
	Preliminaries on enriched categories
	Basic notions
	Stability and cancellation for enriched prefactorization systems
	Characterizations of enriched factorization systems
	Enriched strong monomorphisms and epimorphisms
	Enriched factorization systems by wide (co)intersections

