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DUALITY FOR DISTRIBUTIVE SPACES

DIRK HOFMANN

Abstract. The main source of inspiration for the present paper is the work of R. Rose-
brugh and R.J. Wood on constructively completely distributive lattices where the au-
thors elegantly employ the concepts of adjunction and module. Both notions (suitably
adapted) are available in topology too, which permits us to investigate topological,
metric and other kinds of spaces in a similar spirit. We introduce here the notion of
distributive space and algebraic space and show in particular that the category of dis-
tributive spaces and colimit preserving maps is dually equivalent to the idempotent split
completion of a category of spaces and convergence relations between them. We explain
the connection of this result to the well-known duality between topological spaces and
frames, and deduce further duality theorems.
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Introduction

The work presented in this paper grew out of a naive comparison of the well-known
adjunctions

Ord
//
CCDop⊥oo and Top

//
Frmop⊥oo

between the category Ord of ordered sets and monotone maps and the dual of the cat-
egory CCD of (constructively) completely distributive lattices and left and right-adjoint
monotone maps on one side, and the category Top of topological spaces and continuous
maps and the dual of the category Frm of frames and frame homomorphisms on the other.
Here the functor Ord → CCDop can be constructed by sending an ordered set X to the
ordered set Up(X) ' Ord(X, 2) of all up-sets of X, and the functor Top → Frmop takes
a topological space X to the frame OX ' Top(X, 2) of opens of X where 2 denotes
the Sierpiński space. Since (−)op : Ord → Ord is an equivalence, in the first adjunction
we can equivalently consider the functor Ord → CCDop which sends X to the ordered
set Down(X) ' Ord(Xop, 2) of all down-sets of X; but for topological spaces this con-
struction does not seem to make sense since it is not clear what Xop means. However,
in our recent study of “spaces as categories” we introduced a candidate for dual space
(see [Clementino and Hofmann, 2009a]) which in several results took the role of the dual
ordered set. Therefore we ask in this paper about the construction X 7→ Top(Xop, 2), and
the answer leads to a scenario which appears to be even closer to the Ord-case than the
“usual” dual adjunction with frames.

As it is well known, the dual adjunction between Ord and CCD described above re-
stricts to a dual equivalence between Ord and the full subcategory TAL of CCD defined by
the totally algebraic lattices. This equivalence is actually the restriction of a larger one:
in [Rosebrugh and Wood, 1994] it is shown that the category CCDsup of constructively
completely distributive lattices and suprema preserving maps is equivalent to the idem-
potent split completion of the category Rel of sets and relations. This theorem turned out
to be very powerful since it synthesises many facts about complete distributive lattices,
implies various known duality theorems in lattice theory (for example, Ordop ' TAL as
well as Setop ' CABool follow easily), and allows to transfer nice properties and structures
from Rel to CCDsup. Later on, in [Rosebrugh and Wood, 2004] the authors observe that
this theorem is not really about lattices but rather a special case of a much more general
result about “a mere monad D on a mere category C where idempotents split”. More
precisely, they show that the idempotent split completion of the Kleisli category of D is
equivalent to the category of split Eilenberg-Moore algebras for D (see Section 8). The
equivalence above appears now for both the power-set monad on Set and the down-set
monad on Ord, and further interesting results can be obtained by considering submonads
of the down-set monad on Ord. More important to us, this result paves the road towards
similar results for topological, metric and approach spaces. In fact, we argue here that
many applications of [Rosebrugh and Wood, 2004] can be found in topology since many
interesting classes of spaces can be described as algebras for monads: compact Hausdorff
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spaces are the algebras for the ultrafilter monad on Set, continuous lattices are the al-
gebras for the filter monad on Set, Ord and Top, stably compact spaces are the algebras
for the prime filter monad on Ord and Top, to name a few. Furthermore, in [Clementino
and Hofmann, 2009b] we showed already how many of these monads can be described
in the language of modules which leads us to metric and other variants of filter monads.
The principal aim of this paper is to give a systematic study of these monads and their
associated duality theory in the spirit of the above-mentioned work of R. Rosebrugh and
R.J. Wood.

This work was developed in the context of (T,V)-categories where T and V are part
of a strict topological theory as described in [Hofmann, 2007]. However, we feel that the
large amount of special notations needed in the general case makes the actual results
less accessible, therefore we decided to present them here in the more familiar context
of topological, metric and approach spaces. We stress that most of our results can be
derived for strict topological theories in general, just a few are indeed only valid for
metric or approach spaces.

The paper is organised as follows. In Section 1 we recall the convergence-relational
approach to topological and approach spaces which is the context where “spaces look
like categories”. Section 2 presents basic facts about ordered sets in the language of
modules and adjunction, and Section 3 recalls Lawvere’s view on metric spaces as enriched
categories (see [Lawvere, 1973]). In Section 4 we define the notion of dual space. Here our
approach is slightly different then in previous work [Clementino and Hofmann, 2009a].
In Section 5 we recall the main results on cocomplete spaces of [Hofmann, 2011] and
[Clementino and Hofmann, 2009b] and derive further results about cocomplete approach
spaces. We show in particular that cocomplete approach spaces are determined by their
underlying metric and that they define a Cartesian closed category. In Section 6 we
introduce completely distributive spaces and develop their duality theory which resembles
closely the situation for Ord. In Section 7 we show that the category of completely
distributive topological spaces is equivalent to the category of frames. In Section 8 we
recall the idea of relative cocompleteness and apply the techniques of [Rosebrugh and
Wood, 1994, 2004] to those monads which correspond to a choice of colimit weights.
Finally, in Section 9 we discuss examples of such monads.

Some warnings:

a. The underlying order of a topological space X we define as

x ≤ y whenever
�
x→ y,

which is the dual of the specialisation order. We do so because we wish to think of
the underlying order as the “point shadow” of the convergence relation.

b. In the sequel we consider the Sierpiński space 2 = {0, 1} with {1} closed. This is
compatible with the point above since the underlying order gives 0 ≤ 1, but note
that ϕ : X → 2 is the characteristic map of a closed subset.
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1. Topological and approach spaces as categories

First we recall how a topological space can be viewed as a category. The fundamental
idea is to think of the points of X as objects and of the convergence x→ x of an ultrafilter
x on X to a point x in X as a morphism in X, so that the convergence relation

UX ×X → 2

becomes the “hom-functor” of X. An abstract relation between ultrafilters and points is
the convergence relation of a (unique) topology on X if and only if (see [Barr, 1970])

eX(x)→ x and (X→ x & x→ x) ⇒ mX(X)→ x,(1)

for all x ∈ X, x ∈ UX and X ∈ UUX, where eX(x) =
�
x the principal ultrafilter generated

by x ∈ X and

mX(X) = {A ⊆ X | A# ∈ X} (A# = {x ∈ UX | A ∈ x}).

The first arrow of (1) one might see as an identity on x, and the second condition of (1)
one might interpret as the existence of a “composite” of “composable pairs of arrows”.
Furthermore, a function f : X → Y between topological spaces is continuous if and only
if x → x in X implies f(x) → f(x) in Y , that is, f associates to each object in X an
object in Y and to each arrow in X an arrow in Y between the corresponding (ultrafilter
of) objects in Y . As usual, Top denotes the category of topological spaces and continuous
maps.

Note that the second condition of (1) talks about the convergence of an ultrafilter of
ultrafilters X to an ultrafilter x, which comes from applying the ultrafilter functor U to the
relation a : UX−→7 X. In general, for a relation r : X−→7 Y from X to Y and ultrafilters
x ∈ UX and y ∈ UY one puts

x (Ur) y whenever ∀A ∈ x, B ∈ y ∃x ∈ A, y ∈ B . x r y,

and obtains this way an extension of the Set-functor U to a functor U : Rel→ Rel which,
moreover, satisfies U(r◦) = (Ur)◦ (where r◦ : Y−→7 X is defined as y r◦ x whenever x r y)
and Ur ⊆ Us whenever r ⊆ s. Furthermore, the multiplication m is still a natural
transformation m : UU → U , but e : 1→ U satisfies only eY · r ⊆ Ur · eX for any relation
r : X−→7 Y .

To describe approach spaces (introduces in [Lowen, 1989]), it is only necessary to trade
relation for numerical relation : r : X−→7 Y stands now for r : X × Y → [0,∞]. We
sketch here very briefly this construction which can be found in [Clementino and Hofmann,
2003], and for questions concerning approach spaces in general we refer to [Lowen, 1997].
Given also s : Y−→7 Z, one can calculate the composite s · r : X−→7 Z by the formula

s · r(x, z) = inf
y∈Y

(r(x, y) + s(y, z)).(2)
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Each relation becomes a numerical relation by interpreting true as 0 and false as ∞, and
with this interpretation the identity function is also the identity numerical relation. Taking
into account the opposite of the pointwise order on the set of all numerical relations fromX
to Y , one obtains the ordered category NRel of sets and numerical relations. The “turning
around” of the natural order of [0,∞] has its roots in the translation of “false ≤ true” in
2 to “∞ > 0” in [0,∞]. Due to this switch, “∃” becomes “inf” in (2), but also note that
“&” is replaced by “+”. The implication x⇒ − : 2→ 2 is right adjoint to x&− : 2→ 2
for x ∈ 2; similarly, for x ∈ [0,∞], the map “addition with x” x+− : [0,∞]→ [0,∞] has
a right adjoint, namely hom(x,−) : [0,∞]→ [0,∞], y 7→ y 	 x := max{y − x, 0}.

As above, the ultrafilter functor U : Set→ Set extends to U : NRel→ NRel (with the
properties mentioned in the topological case) via

Ur(x, y) = sup
A∈x,B∈y

inf
x∈A,y∈B

r(x, y),

for a numerical relation r : X × Y → [0,∞]. We remark that a different but equivalent
formula defining the extension of U to NRel was used in [Clementino and Hofmann, 2003],
the one above is taken from [Clementino and Tholen, 2003].

1.1. Remark. Thinking of a relation r : X−→7 Y as a subset R ⊆ X × Y , it is not hard
to see that

x (Ur) y ⇐⇒ ∃w ∈ U(X × Y ) . Uπ1(w) = x&Uπ2(w) = y&w ∈ UR

for all x ∈ UX and y ∈ UY . Similarly, for a numerical relation r : X−→7 Y one has

Ur(x, y) = inf{ξ · Ur(w)
∣∣∣ w ∈ U(X × Y ), Tπ1(w) = x, Tπ2(w) = y},

where ξ : U [0,∞]→ [0,∞], u 7→ supA∈u inf A is the convergence of the Euclidean topology
on [0,∞]. The notation here is a bit ambiguous since Ur appears on both sides, but on
the ride hand side it stands for the functions Ur : U(X × Y ) → U [0,∞]. We use the
occasion to mention that the U-algebra structure ξ : U [0,∞] → [0,∞] makes [0,∞] a
monoid in the category of compact Hausdorff spaces and continuous maps in two different
ways since both + : [0,∞] × [0,∞] → [0,∞] and max : [0,∞] × [0,∞] → [0,∞] are
continuous. It is useful to observe that continuity of + and max mean precisely that the
diagrams

U([0,∞]× [0,∞])
U(+) //

〈ξ·Uπ1,ξ·Uπ2〉
��

U [0,∞]

ξ

��
[0,∞]× [0,∞]

+
// [0,∞]

U([0,∞]× [0,∞])
U(max) //

〈ξ·Uπ1,ξ·Uπ2〉
��

U [0,∞]

ξ

��
[0,∞]× [0,∞] max

// [0,∞]

commute. Also note that ξ is compatible with the map hom : [0,∞] × [0,∞] → [0,∞]
which sends (x, y) to hom(x, y) = y	x in the sense that ξ ·U(hom) > hom ·〈ξ ·Uπ1 , ξ ·Uπ2〉
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(see [Hofmann, 2007]).

U([0,∞]× [0,∞])
U(hom) //

〈ξ·Uπ1 ,ξ·Uπ2 〉
��

6

U [0,∞]

ξ

��
[0,∞]× [0,∞]

hom
// [0,∞]

With this notation, an approach space can be described as a pair (X, a) consisting
of a set X and a numerical relation a : UX−→7 X satisfying

0 > a(
�
x, x) and Ua(X, x) + a(x, x) > a(mX(X), x),(3)

and a mapping f : X → Y between approach spaces X = (X, a) and Y = (Y, b) is a
contraction whenever a(x, x) > b(Uf(x), f(x)) for all x ∈ UX and x ∈ X. Approach
spaces and contraction maps are the main ingredients of the category App.

There is a canonical forgetful functor App→ Top sending an approach space (X, a) to
the topological space with the same underlying set X and with the convergence relation

x→ x whenever 0 > a(x, x).

This functor has a left adjoint Top→ App which one obtains by interpreting the conver-
gence relation of a topological space as a numerical relation.

1.2. Remark. The left adjoint functor Top → App has a further left adjoint which can
be obtained by first sending an approach space (X, a) to the pseudotopological space X
with convergence

x→ x whenever a(x, x) <∞,
and then taking its topological reflection. Recall from [Herrlich et al., 1991] that a pseu-
dotopology on a set X is a convergence relation between ultrafilters and points which is

only required to satisfy
�
x→ x, for all x ∈ X.

The pointfree calculus of (numerical) relations allows for a simultaneous treatment of
topological and approach spaces emphasising their common nature. For instance, both
axioms (1) and (3) read as

X
eX //

1X

v

""

UX

_a
��
X

UUX
mX //

_Ua
��

UX

_a
��

UX

v

�
a

// X

(4)

1X v a · eX a · Ua v a ·mX

where v stands either for ⊆ or >. Since f : X → Y is continuous respectively contractive
if and only if

UX

_a
��

Uf // UY

_b
��

X
f
//

v

Y,
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we can think of Top and App as categories of lax Eilenberg–Moore algebras. Using the
fact that mX a m◦X and eX a e◦X in the ordered category Rel (and hence in NRel), one
can express the axioms (4) as

e◦X v a and a · Ua ·m◦X v a.(5)

In this context it is useful to think of a (numerical) relation a : UX−→7 X as an endo-
morphism a : X −⇀7 X and, more generally, of r : UX−→7 Y as an arrow r : X −⇀7 Y ,
called U-relation in the sequel. Given also s : Y −⇀7 Z, one can compose s and r using
(a variant of) Kleisli composition :

s ◦ r := s · Ur ·m◦X .

The (numerical) relation e◦X : UX−→7 X behaves almost as an identity arrow X −⇀7 X
since

r ◦ e◦X = r and e◦Y ◦ r w r.

We can now restate the second condition of (5) as a ◦ a v a, or even as a ◦ a = a thanks
to the first condition.

1.3. Remark. One calls a U-relation r : X −⇀7 Y unitary if e◦Y ◦ r = r. These relations
are not completely unfamiliar to topologists: a reflexive (numerical) relation a : UX−→7 X
is a pretopology (preapproach structure) precisely if a : X −⇀7 X is unitary (see [Hofmann,
2006]).

By restricting a convergence relation a : UX−→7 X to principal ultrafilters one obtains

• an order relation a0 := a · eX : X−→7 X where x ≤ y whenever
�
x → y (we write ≤

for a0 and → for a) if one starts with a topological space,

• or a metric a0 = a · eX : X−→7 X where a0(x, y) = a(
�
x, y) if one starts with an

approach spaces.

Note that for us an order relation does not need to be anti-symmetric. Hence, an ordered
set X = (X,≤) consists of a set X and a relation ≤: X ×X → 2 satisfying

x ≤ x and (x ≤ y& y ≤ x) ⇒ x ≤ z.

Similarly, a metric d on set X is only required to satisfy

0 > d(x, x) and d(x, y) + d(y, z) > d(x, z),

a “classical” metric is then a separated (d(x, y) = 0 = d(y, x) implies x = y), symmet-
ric (d(x, y) = d(y, x)) and finitary (d(x, y) < ∞) metric. The construction a 7→ a · eX
results in forgetful functors Top → Ord and App → Met respectively, both have a left
adjoint defined by (X, a0) 7→ (X, e◦X · U(a0)). Furthermore, one has a forgetful functor
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Met → Ord which can be seen as the “point shadow” of App → Top: for a metric space
(X, d), define

x ≤ y whenever 0 > d(x, y).

As in the “ultrafilter case”, Met→ Ord has a left adjoint Ord→ Met via interpreting an
order relation as a numerical relation.

1.4. Remark. The left adjoint Ord → Met has a further left adjoint which sends the
metric d on X to the order relation

x ≤ y whenever d(x, y) <∞

on X.

Putting everything together, we have the following commuting diagram of right adjoint
forgetful functors:

App //

��

Met

��
Top // Ord.

The pointwise order makes Ord an ordered category, and these forgetful functors reflect
this property into Top, Met and App. Concretely, for morphisms f, g : X → Y

in Top: f ≤ g whenever eX(f(x))→ g(x)

in Met: f ≤ g whenever 0 > d(f(x), g(x))

in App: f ≤ g whenever 0 > d(eX(f(x)), g(x))

for all x ∈ X. We stress that it is in general very useful to realise the ordered nature
of ones category since it allows to speak about adjunction, a notion which will be very
helpful in our study of injectivity in Top and App.

2. Some facts about complete ordered sets

Our transportation of order-theoretic concepts into the realm of spaces relies on their
respective formulation in point-free style using the notions of module (also called order-
ideal or distributor) and adjunction. In this section we give a quick overview, mainly to
establish notation; and refer to [Wood, 2004] for a nice presentation of “ordered sets via
adjunction”.

We recall that an ordered set is complete if each up-closed subset (up-set for short)
has an infimum, dually, it is cocomplete if each down-set has a supremum. By definition,
X is complete if and only if Xop is cocomplete. Moreover, X is complete if and only if X
is cocomplete.

A subset A ⊆ X of an ordered set X is down-closed if and only if its characteristic map
is monotone of type Xop → 2; likewise, A is up-closed if and only if its characteristic map
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is monotone of type X → 2. Both concepts can be brought under one roof by introducing
the notion of module ϕ : X−→◦ Y , which is defined as a relation ϕ : X−→7 Y compatible
with the order relations on X and Y in the sense that ϕ : Xop×Y → 2 is monotone. One
quickly verifies that a relation ϕ : X−→7 Y is a module if and only if

∀x, x′ ∈ X ∀y, y′ ∈ Y . ((x ≤ x′&x′ ϕy′& y′ ≤ y) ⇒ xϕ y),

and the pointfree version of this formula reads as (≤Y ·ϕ· ≤X) ⊆ ϕ. Since order relations
are reflexive one actually has equality, moreover, this condition can be split in two parts
so that ϕ : X−→7 Y is a module if and only if

ϕ· ≤X= ϕ and ≤Y ·ϕ = ϕ.

Summing up, a module can be seen either as

a. a relation ϕ : X−→7 Y satisfying the two equations above, or

b. a monotone map ϕ : Xop × Y → 2, or

c. a monotone map pϕq : Y → 2X
op

.

Note that the equivalence between (b) and (c) relies on the fact that Ord is Cartesian
closed. In general, for ordered sets X and Y , the exponential Y X is given by the set
of all monotone functions of type X → Y with the pointwise order: h ≤ h′ whenever
∀x ∈ X . h(x) ≤ h′(x).

The order relation ≤ on X is an example of a module ≤: X−→◦ X since the transitivity
axiom gives ≤ · ≤=≤. By definition, ≤: X−→◦ X is the identity arrow on X in the ordered
category Mod of ordered sets and modules between them, where the compositional and
order structure is inherited from Rel. Two further important examples of modules are
induced by a monotone map f : X → Y :

f∗ : X−→◦ Y, x f∗ y :⇐⇒ f(x) ≤ y and f ∗ : Y−→◦ X, y f ∗ x :⇐⇒ y ≤ f(x),

and one has f∗ = b · f and f ∗ = f ◦ · b. One easily verifies the inequalities ≤X⊆ f ∗ · f∗ and
f∗ · f ∗ ⊆≤Y for a monotone map f : X → Y , hence f∗ a f ∗ in Mod. If we think of x ∈ X
as x : 1→ X, then x∗ is the down-set ↓x generated by x, and x∗ is the up-set ↑x induced
by x. It is also worth noting that these constructions define functors

(−)∗ : Ord→ Mod and (−)∗ : Ordop → Mod,

in particular, the order relation ≤ in X is both (1X)∗ and 1∗X . Furthermore, f ≤ g if and
only if f ∗ ≤ g∗ if and only if g∗ ≤ f∗, hence (−)∗ is order reversing and (−)∗ is order
preserving. By this observation, f a g in Ord if and only if g∗ a f ∗ in Mod, which in turn
is equivalent to f∗ = g∗. In pointwise notation, this reads as the familiar formula

∀x ∈ X, y ∈ Y . f(x) ≤ y ⇐⇒ x ≤ g(y).
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Coming back to up-sets and down-sets, we identify a down-set with a module of type
X−→◦ 1, and an up-set with a module of type 1−→◦ X. Hence, the ordered set of all down-
sets of X can be identified with both the exponential 2X

op
in Ord and the ordered hom-set

Mod(X, 1); and we write PX to denote this object. With the latter interpretation, the
mate pϕq : Y → PX of a module ϕ : X−→◦ Y sends y ∈ Y to y∗ · ϕ.

2.1. Remark. The composite ψ · ϕ of a down-set ψ : X−→◦ 1 with an up-set ϕ : 1−→◦ X
yields a module of type 1−→◦ 1 which is either true or false; it is true precisely if ϕ and ψ
have a common element. On the other hand, ϕ · ψ : X−→◦ X relates x and y if and only
if x belongs to ψ and y belongs to ϕ; therefore ϕ · ψ ⊆≤ if and only if each element of ψ
is less or equal then each element of ϕ. From this we conclude that ϕ a ψ in Mod if and
only if ψ = x∗ and ϕ = x∗ for some x ∈ X. Using the Axiom of Choice, we deduce that
each adjunction ϕ a ψ in Mod with ϕ : X−→◦ Y and ψ : Y−→◦ X is of the form f∗ a f ∗ for
some f : X → Y in Ord. In fact, this statement is equivalent to the Axiom of Choice as
shown in [Borceux and Dejean, 1986].

The mate of the identity module ≤: X−→◦ X is the Yoneda embedding y
X

: X →
PX sending x ∈ X to its down closure ↓x = x∗, which is indeed fully faithful thanks to
the well-known Yoneda Lemma which states

↓x ⊆ ϕ ⇐⇒ x ∈ ϕ.

This is a rather trivial statement in the context of ordered sets; however, the reformulation
of this result is the key in the translation process from Ord to Top and App. Cocomplete-
ness of an ordered set X gives a map SupX : PX → X which, when writing down the
definition of “Supremum”, turns out to be left adjoint to y

X
. In fact, X is cocomplete if

and only if y
X

has a left adjoint. With the help of the Yoneda Lemma one easily shows
that any monotone map L : PX → X with L · y

X
= 1X is actually left adjoint to y

X
(see

also 2.3). Clearly, the ordered set PX of down-sets is cocomplete where the supremum of
a down-set of down-sets Ψ ∈ PPX is given by union

⋃
Ψ, or, in the language of modules,

by Ψ · (y
X

)∗ : X−→◦ 1.
More generally, an arbitrary union of modules X−→◦ Y is again a module which tells

us that each hom-set in Mod is actually a (co)complete ordered set, moreover, relational
composition preserves suprema. Hence, for ϕ : X−→◦ Y , both “composition with ϕ”-maps
− · ϕ and ϕ · − have a right adjoint. Unwinding the definition, a right adjoint to − · ϕ
must give, for each ψ : X−→◦ Z, the largest module of type Y−→◦ Z whose composite with
ϕ is contained in ψ,

X ◦
ψ //

◦ϕ
��

Z

Y

◦⊆
>>

and a right adjoint to ϕ ·− must provide, for each ψ : Z−→◦ Y , the largest module of type
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Z−→◦ X whose composite with ϕ is contained in ψ.

Y Z◦
ψoo

◦⊇

~~
X

◦ϕ

OO

We denote the right adjoint of −·ϕ as − •− ϕ, and call ψ •− ϕ the extension of ψ along
ϕ. Similarly, ϕ −• − denotes the right adjoint of ϕ · −, and ϕ −• ψ is called the lifting
of ψ along ϕ. All what was just said about Mod could have been said earlier about Rel,
indeed the operations •− and −• are just restrictions to modules of these operations
on Rel. It is worthwhile noting that, for instance, the extension ψ •− ϕ of ψ along ϕ is
given by

(6) y (ψ •− ϕ) z ⇐⇒ ∀x ∈ X . (xϕ y ⇒ xψ z) ⇐⇒ pϕq(y) ≤ pψq(z).

2.2. Remark. A supremum of a down-set ψ : X−→◦ 1 is by definition a smallest upper
bound. Now, as we observed in 2.1, an up-set ϕ : 1−→◦ X consists only of upper bounds of
ψ if and only if ϕ·ψ ⊆≤, and ϕ is the up-set of all upper bounds precisely if ϕ = (≤ •− ψ).
Furthermore, x ∈ X is a smallest upper bound of ψ if and only if x∗ = (≤ •− ψ). We recall
that ≤= (1X)∗, hence an ordered set X is cocomplete if, for each down-set ψ : X−→◦ 1,
the extension (1X)∗ •− ψ of (1X)∗ along ψ is equal to x∗ for some x ∈ X. It is useful to
observe here that a cocomplete ordered set X admits all colimits of the following type:
for each monotone map h : A→ X and each module ψ : A−→◦ B, there exists a monotone
map f : B → X with f∗ = (h∗ •− ψ). A diagram of the form

A h //

◦ψ
��

X

B

is called weighted (by ψ), and such a monotone map f with f∗ = (h∗ •− ψ) is a weighted
colimit of this diagram. Furthermore, any sup-preserving map preserves also all colimits.

Every monotone map f : X → Y induces a string of adjunctions between the “down-
set-sets”: one has the inverse image function PY → PX, B 7→ f−1(B) which has a left
adjoint Pf : PX → PY, A 7→ ↓f(A) and a right adjoint PX → PY, A 7→ {y ∈ A |
f−1(↓y) ⊆ A}. The “module point of view” allows for an elegant description of these
maps using relational composition: the inverse image function is given by ψ 7→ ψ · f∗, its
left adjoint by ϕ 7→ ϕ · f ∗ and its right adjoint by ϕ 7→ ϕ •− f∗.

PX

(−·f∗)
⊥ %%

(− •− f∗)

⊥
::PY(−·f∗)oo
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Note that f∗ a f ∗ in Ord gives − · f ∗ a − · f∗ in Mod. It is interesting to observe that
− •− (y

X
)∗ is just the Yoneda embedding y

PX
of PX (use (6)), and therefore SupPX =

− · (y
X

)∗.
More generally, for each module ϕ : X−→◦ Y one has an adjunction − · ϕ a − •− ϕ in

Ord. Since Mod is an ordered category, both − · ϕ : PY → PX and − •− ϕ : PX → PY
are by definition monotone maps, however, later on we wish to deduce that these maps
are continuous respectively contractive which does not follow from U-Mod (the ultra-
counterpart of Mod) being ordered. Therefore we note here that − · ϕ is the mate of the
module (y

Y
)∗ · ϕ : X−→◦ PY , and − •− ϕ is the mate of ( pϕq)∗ : Y−→◦ PX.

The Yoneda embedding y
X

: X → PX has an important universal property: for any
monotone map f : X → Y with cocomplete codomain Y , there exists a unique sup-
preserving (=left adjoint) extension g : PX → Y , i.e. g · y

X
' f . Here g takes a down-set

ψ to a supremum of its image in Y . In the language of modules: ψ maps to the supremum
of ψ · f ∗, that is, g can be taken as the composite supY ·(− · f ∗). The right adjoint of
g is even easier to describe: it is simply the mate pf q∗ : Y → PX of f∗ : X−→◦ Y .
As a consequence, the (non-full) subcategory Sup of Ord consisting of all sup-lattices
(=cocomplete anti-symmetric ordered sets) and sup-preserving maps is reflective in Ord,
a left adjoint to the inclusion functor is given by the down-set functor P : Ord → Sup
which sends X to PX and f : X → Y to the map − · f ∗ : PX → PY (“direct image”).
In fact, Sup is monadic over Ord, and the induced monad is given by the down-set functor
P : Ord → Ord with units the Yoneda embeddings y

X
: X → PX and multiplications

mX : PPX → PX, Ψ 7→ Ψ · (y
X

)∗ (“union”). Its restriction to discrete ordered sets
gives the usual power-set monad on Set which has the category Sup as Eilenberg-Moore
category too.

2.3. Remark. The down-set monad P on Ord has a very particular property: P y
X
≤

y
PX

for all ordered sets X. This seemingly harmless property turns out to be very
powerful, it implies for instance that h : PX → X in Ord is the structure morphism of a
P-algebra if and only if h · y

X
= 1X , moreover, such a map h is necessarily left adjoint to

y
X

. These kinds of monads where introduced independently by A. Kock (in his thesis, but
see [Kock, 1995]) and [Zöberlein, 1976], hence one refers to them as of Kock-Zöberlein
type. From their results one can extract the following

2.4. Theorem. Let T = (T, e,m) be a monad on a ordered category X where T is a
2-functor. Furthermore, assume that hom(Y, TX) is separated, for all objects X, Y in X.
Then the following assertions are equivalent.

i. TeX ≤ eTX for all X ∈ X.

ii. For all X ∈ X, a X-morphism h : TX → X is the structure morphism of a T-algebra
if and only if h · eX = 1X (and then h a eX).

iii. mX a eTX for all X ∈ X.

iv. TeX a mX for all X ∈ X.
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It is also well-known that the category Ordsep of separated ordered sets and monotone
maps is dually equivalent to the category TAL of totally algebraic lattices (defined below)
and sup- and inf-preserving maps. We refer to [Rosebrugh and Wood, 1994] for a nice
presentation of this particular result, and to [Porst and Tholen, 1991] for a nice presen-
tation of duality theory in general. This duality can be obtained by first constructing an
adjunction

D a S, D : Ord→ CCDop, S : CCDop → Ord

between Ord and the dual of the category CCD of (constructively) completely dis-
tributive lattices and sup- and inf-preserving maps. We recall from [Fawcett and
Wood, 1990] that a complete lattice X is (ccd) if SupX : PX → X has a left adjoint
tX : X → PX. Note that tX corresponds to a module of type X−→◦ X, and this rela-
tion is precisely the totally-below relation≪ studied first in [Raney, 1952]. Clearly, any
lattice of the form PX is (ccd) since one has the string of adjunctions

y
PX

= − •− (y
X

)∗ ` − · (yX)∗ ` − · (yX)∗ = Py
X
.

The functor D : Ord → CCDop sends an ordered set X to DX := PX = 2X
op

and a
monotone map f : X → Y to Df := (− · f∗) : DY → DX (inverse image function). For
L ∈ CCD with y

L
` SupL ` tL, one defines SL := A where A is the equaliser

A i // L
tL //

y
L

// PL.

Hence, A can be taken as {x ∈ L | x≪ x}, that is, A consists precisely of the totally
compact elements of L. Given also M ∈ CCD with corresponding equaliser SM := B →
M and a sup- and inf-preserving map f : L→M , then its left adjoint g : M → L restricts
to g0 : B → A. With Sf := g0 one obtains a functor S : CCDop → Ord. Note that we
need here anti-symmetry of (ccd)-lattices, otherwise S is only a pseudo-functor. By the
Yoneda Lemma, y

X
: X → PX is fully faithful and its image is precisely the equaliser of

Py
X

and y
PX

. Hence,

X
y
X // PX

P y
X //

y
PX

// PPX

is an equaliser diagram for each anti-symmetric ordered set X. From that we get a
natural equivalence η : 1 → SD which is a natural isomorphism if we restrict η to anti-
symmetric ordered sets. For L ∈ CCD, one defines εL : L→ DS(L) as the composite (of

right adjoints) L
y
L−→ PL

−·i∗−−→ PA, where i : A ↪→ L is the inclusion map. Clearly, εL
preserves infima, and it is not difficult to verify that εL preserves also suprema. Therefore
εL : L→ DS(L) lives in CCD and is indeed the L-component of a natural transformation
ε : 1 → DS. The necessary equations are now easily verified, therefore one obtains
the desired dual adjunction. We will now determine the fixed subcategories. There is
nothing left to do on the Ord-side, we observed already that Fix(η) = Ordsep. Therefore
we concentrate now on L ∈ CCD. The left adjoint c : PA → L of εL : L → PA (where
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A = SL) sends ψ ∈ PA to SupL(ψ · i∗) (where i : A ↪→ L is the inclusion map). In fact,
one always has εL · c = 1, hence εL is an equivalence if c · εL ≥ 1, that is, every x ∈ L is
a supremum of the totally compact elements below x. A (ccd)-lattice with this property
is called totally algebraic, and we obtain Ordsep ' TALop where TAL denotes the full
subcategory of CCD defined by the totally algebraic lattices.

2.5. Remark. Firstly, instead of X 7→ 2X
op

one can also work with X 7→ 2X , and
construct the dual adjunction above as

Ord
hom(−,2) //

CCDop.
hom(−,2)

oo ⊥

In fact, one construction can be obtain from the other by composing it with the equivalence
(−)op : Ord→ Ord.

2.6. Remark. Secondly, as explained in [Rosebrugh and Wood, 1994], the duality Ordsep '
TALop is the restriction of a “bigger” duality involving the category CCDsup of (ccd)-lattices
and sup-preserving maps on one side and the idempotent split completion kar(Rel) of Rel
on the other side. This result is then further generalised in [Rosebrugh and Wood, 2004].
We come back to this in Section 8.

3. A short visit to metric spaces

The discussion of the previous section can be easily brought to metric spaces by considering
numerical relations, which amounts to substituting 2 by [0,∞], & by +, true by 0, x⇒ y
sometimes by x > y and sometimes by y	x (truncated minus)1, ∃ by inf, ∀ by sup, and so
on. Most notably, we will usually not consider the Cartesian structure (=max-metric) on
X×Y but rather the +-metric, and denote the resulting space as X⊗Y . This comes with
the advantage that, although Met is not Cartesian closed, it is monoidal closed in the
sense that X⊗− has a right adjoint −X . Here Y X can be taken as the set of all contraction
maps of type X → Y together with the sup-metric d(h, k) = supx∈X b(h(x), h′(x)). We are
especially interested in PX := [0,∞]X

op
, where the distance on [0,∞] is given by δ(x, y) =

y	x, and consequently on PX by [ϕ, ψ] = supx∈X(ψ(x)	ϕ(x)). One should compare this
with the order case where the truth value of [ϕ ⊆ ψ] is given by ∀x ∈ X .ϕ(x) ⇒ ψ(x).
A module ϕ : X−→◦ Y between metric spaces X = (X, a) and Y = (Y, b) can be seen as
either

a. a numerical relation ϕ : X−→7 Y satisfying ϕ · a = ϕ and b · ϕ = ϕ, or

b. a contraction map ϕ : Xop ⊗ Y → [0,∞], or

c. a contraction map pϕq : Y → PX.

1Since⇒ sometimes denotes the right adjoint to & (x&− a x⇒ −), and sometimes is used to express
the inclusion r ⊆ r′ of relations pointwise.
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As before,

• each contraction map f : X → Y induces modules f∗ : X−→◦ Y, f∗(x, y) = b(f(x), y)
and f ∗ : Y−→◦ X, f ∗(y, x) = b(y, f(x)) with f∗ a f ∗,

• the metric a of X = (X, a) is the identity module X−→◦ X on X,

• which induces the Yoneda embedding y
X

: X → PX sending x to x∗,

• the Yoneda Lemma states now that [y
X

(x), ψ] = ψ(x),

• a metric space is cocomplete whenever y
X

has a left adjoint SupX : PX → X,

• the cocomplete metric spaces are precisely the injective ones (where a metric spaceX
is injective whenever, for every fully faithful i : A→ B in Met and every contraction
map f : A→ X, there is a contraction map g : B → X so that g · i ' f),

• the subcategory Coctssep of cocomplete and separated metric spaces and suprema
preserving contraction maps is reflective (in fact, monadic) in Met, and the Yoneda
embedding y

X
: X → PX serves as a reflection map.

An immediate question is now how the important notion of Cauchy-completeness fits
into this framework. The answer can be found in F.W. Lawvere’s 1973 paper [Lawvere,
1973] where he made the amazing discovery that equivalence classes of Cauchy sequences
correspond precisely to right adjoint modules ψ : X−→◦ 1, and a Cauchy sequence con-
verges to x if and only if x is a supremum of the corresponding module. Consequently, X
is Cauchy complete if and only if the restriction y

X
: X → X̃ of the Yoneda embedding to

the subspace X̃ of PX defined by all right adjoint modules has a left adjoint in Met. Since
y
X

: X → X̃ is dense (in the usual metric sense), this simply means that y
X

: X → X̃ is

surjective. Furthermore, y
X

: X → X̃ is a Cauchy completion for any space X. It is also

worth noting that X̃ ↪→ PX is the equaliser of

PX
P y

X //

y
PX

// PPX (see also Lemma 6.5).

As for ordered sets, one can built a dual adjunction between Met and CDMet, which
restricts to a dual equivalence between the full subcategories of Cauchy complete metric
spaces and algebraic metric spaces. The reader has certainly no difficulties in writing down
the definitions of completely distributive metric space and consequently of the category
CDMet as well as of algebraic metric space.

3.1. Remark. Since Met is not Cartesian closed one might wonder what the exponen-
tiable objects are. They are characterised in [Clementino and Hofmann, 2006] (see also
[Clementino et al., 2009]) as those spacesX = (X, a) where, for all x, y ∈ X, u+v = a(x, y)
and ε > 0, there exists some z ∈ X with a(x, z) ≤ u + ε and a(z, y) ≤ v + ε. One easily
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sees that a cocomplete (=injective) metric space satisfies this property, just consider (with
w = a(x, y))

{0 w−→ 2}

f
))

// // {0 u−→ 1
v−→ 2}

g

��
X

where f(0) = x, f(2) = y and g(1) gives the desired z ∈ X. Furthermore, with Y is also
Y X cocomplete (=injective), to see this just pass from

A // //

!!

B

Y X

to X × A // //

&&

X ×B

Y.

Since the product of cocomplete spaces is also cocomplete, we conclude that the full
subcategory of Met defined by all cocomplete spaces is Cartesian closed. This observation
contradicts Theorem 2.2 of [Wagner, 1994] stating that the largest Cartesian closed full
subcategory of Met is the category of ultrametric spaces; however, the proof given there
seems to me incorrect. In fact, in the proof of this theorem the author assumes not only
that X × − has a right adjoint but also that this right adjoint coincides with the right
adjoint of X ⊗−.

4. The dual space

In the remaining sections we will go further and lift notions and results (such as dual
category, module, presheaf-construction and the Yoneda Lemma) from the theory of en-
riched categories to topological and approach spaces. The first obstacle waits right at the
beginning as the fundamental notion of down-set ψ : Xop → 2 involves the dual ordered
set, a concept which has no obvious counterpart in Top and App. Clearly, one cannot
directly dualise the convergence relation x → x of a topological space to “x → x”, it
is necessary to move into a more symmetric environment. Our experience shows so far
that a good candidate for such an environment is L. Nachbin’s notion of ordered com-
pact Hausdorff space (see [Nachbin, 1950]) as well as its metric counterpart. In fact, in
these space we can dualise the order respectively metric, and then return to topological
respectively approach spaces through an adjunction.

4.1. Definition. An ordered compact Hausdorff space is a triple (X,≤, α) where
(X,≤) is an ordered set and α is (the convergence relation of) a compact Hausdorff
topology on X so that {(x, y) | x ≤ y} is closed in X ×X.

In the sequel we write OrdCompHaus for the category of ordered compact Hausdorff
spaces and maps preserving both the order and the topology. We emphasise again that
we do not assume the order relation to be anti-symmetric. It is shown in [Flagg, 1997]
that the full subcategory OrdCompHaussep of OrdCompHaus defined by the objects with
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anti-symmetric order is the category of Eilenberg-Moore algebras for the prime filter
monad (of up-sets) B on Ord, and the “non-separated” version of this result can be found
in [Tholen, 2009] with the prime filter monad substituted by the ultrafilter monad. In
fact, based on its extension to Rel, the ultrafilter monad U = (U, e,m) on Set extends
to a monad on Ord where U : Ord → Ord sends (X,≤) to (UX,U ≤), and with this
definition eX and mX are monotone maps. Then, by Remark 1.1, {(x, y) | x ≤ y}
is closed in X × X if and only if α : U(X,≤) → (X,≤) is monotone. Therefore the
category OrdCompHaus of ordered compact Hausdorff spaces and continuous monotone
maps is precisely the Eilenberg-Moore category OrdU. For each ordered set X there is
a canonical map ρX : UX � BX, x 7→ {↑A | A ∈ x} which turns out to be the X-
component of a monad morphism ρ : U→ B. It is shown in [Flagg, 1997, Lemma 5] that
ρX is even surjective, and one easily verifies that ρX(x) ≤ ρX(x′) ⇐⇒ x ≤ x′. Hence,
ρX : UX � BX is the anti-symmetric reflection of UX, and composition with ρ induces
the inclusion functor OrdCompHaussep → OrdCompHaus.

As a byproduct of this discussion we obtain a notion of metric compact Hausdorff
spaces as the Eilenberg-Moore algebras for the extension of U to Met based on its
extension to numerical relations, that is, we define MetCompHaus := MetU.

4.2. Remark. The functor U does not restrict to an endofunctor on Ordsep respectively
Metsep. For instance, the order relation of UN is not anti-symmetric, where N has the
natural order. To see this, just take x ∈ UX such that each A ∈ x contains arbitrary large
odd numbers, and y ∈ UX such that each B ∈ y contains arbitrary large even numbers.
Then x ≤ y and y ≤ x, but x can be chosen different from y.

There are canonical forgetful functors

K : OrdCompHaus→ Top and K : MetCompHaus→ App,

both send (X, a0, α) to (X, a0 · α) where a0 is either an order relation or a metric.

4.3. Examples. The ordered set 2 = {0, 1} with the discrete (compact Hausdorff) topol-
ogy lives in OrdCompHaus and gives us the Sierpiński space 2 where {1} is closed and {0}
is open. The metric space [0,∞] with distance δ(x, y) = y 	 x equipped with the usual
compact Hausdorff topology where x converges to ξ(x) := supA∈x inf A is a metric compact
Hausdorff space which gives the usual approach structure λ(x, x) = x	 ξ(x) on [0,∞] (see
[Lowen, 1997]).

One easily verifies that K has a left adjoint

M : Top→ OrdCompHaus respectively M : App→ MetCompHaus

which sends X = (X, a) to (UX,Ua ·m◦X ,mX).

4.4. Examples. For a topological space X = (X, a), the order relation

UX
m◦X−−→7 UUX

Ua−−→7 UX



DUALITY FOR DISTRIBUTIVE SPACES 83

is described by
x ≤ y whenever A ∈ y for every A ∈ x.

Hence, x ≤ y if and only if every closed set in x belongs to y if and only if every open set

in y belongs to x. For an approach space X = (X, a), the metric UX
m◦X−−→7 UUX

Ua−−→7 UX
gives

inf{u ∈ [0,∞] | ∀A ∈ x . A(u) ∈ y}

as distance from x to y (where A(u) = {x ∈ X | δ(A, x) 6 u} and δ(A, x) = inf{a(x, x) |
A ∈ x}). To see this, with â = Ua ·m◦X , let

v := â(x, x′) = inf{Ua(X, x′) | X ∈ UUX,mX(X) = x}

and
w := inf{u ∈ [0,∞] | ∀A ∈ x . A(u) ∈ x′}.

Since
v > sup

A∈x
sup
B∈x′

inf
a∈A#

inf
y∈B

a(a, y),

for every ε > 0, A ∈ x, and B ∈ x′, there exist a ∈ A# and y ∈ B with a(a, y) 6 v + ε;
hence, δ(A, y) 6 v + ε. Therefore, A(v+ε) ∩ B 6= ∅, and we conclude that A(v+ε) ∈ x′

for every A ∈ x and ε > 0. This proves w 6 v. For the reverse inequality, note that
A(w+ε) ∩B 6= ∅, for every ε > 0, A ∈ x and B ∈ x′; this implies that

sup
A∈x

sup
B∈x′

inf
a∈A#

inf
y∈B

a(a, y) 6 w + ε.

Hence, by [Hofmann, 2006, Lemma 1.5] there is some X ∈ UUX with

{A# | A ∈ x} and Ua(X, x′) 6 w + ε,

so that v 6 w.

The functors (−)op : Ord → Ord and (−)op : Met → Met lift to functors (−)op :
OrdCompHaus → OrdCompHaus and (−)op : MetCompHaus → MetCompHaus by putting
(X, a0, α)op = (X, a◦0, α). Using the adjunction M a K, we can now define the dual of a
topological space and an approach space.

4.5. Definition. The functors (−)op : Top → Top and (−)op : App → App are defined
as the composites

Top

M
��

(−)op

// Top

OrdCompHaus
(−)op

// OrdCompHaus

K

OO and App

M
��

(−)op

// App

MetCompHaus
(−)op

//MetCompHaus.

K

OO
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4.6. Examples. By definition, an ultrafilter X ∈ UUX of ultrafilters converges to x ∈
UX in Xop whenever x ≤ mX(X), which is equivalent to A# ∈ X for each closed set A ∈ x.
From this one obtains that all sets A# for A ⊆ X closed form a basis for the topology on
Xop. In this sense, we dualise X by making the closed subsets of X open. A continuous
map ψ : Xop → 2 can be identified with a closed subset A ⊆ UX, where A ⊆ UX is
closed if and only if A is Zariski closed (i.e. closed for the compact Hausdorff topology
mX on UX) and down-closed (with respect to the order ≤ on UX).

It is well-known that both Top and App are not Cartesian closed. However, as we
shall see, the opposite topological space Xop always is exponentiable; that is, the functor
Xop×− : Top→ Top has a right adjoint. Similar to the metric case, for approach spaces we
are interested in the +-approach structure rather then the max-structure on the product
space. More in detail, for approach spaces X = (X, a) and Y = (Y, b), we put X ⊗ Y =
(X,×Y, d) where d(w, (x, y)) = a(Tπ1(w), x) + b(Tπ2(w), y) (see [Hofmann, 2007]). Then
an approach space X is called +-exponentiable whenever X⊗− : App→ App has a right
adjoint. We recall from [Pisani, 1999] and [Hofmann, 2007] that a topological/approach
space X = (X, a) is exponentiable/+-exponentiable if and only if the diagram

UUX
mX //

_Ua
��

UX
_a
��

UX �
a

// X

commutes.

4.7. Proposition. For each ordered compact Hausdorff space X, KX is exponentiable
in Top. Likewise, for each metric compact Hausdorff space, KX is +-exponentiable in
App.

Proof. Let X = (X, a0, α) be in OrdCompHaus or MetCompHaus. We have to show that
a := a0 · α satisfies a · Ua w a ·mX (since the other inequality holds anyway), where v
stands either for ⊆ or >. But this follows easily:

a · Ua = a0 · α · U(a0) · Uα w a0 · α · Uα = a0 · α ·mX = a ·mX .

4.8. Corollary. For each topological (approach) space X, Xop is (+-)exponentiable.

4.9. Remark. Clearly, both OrdU and MetU inherit products from Ord and Met respec-
tively. However, more important to us is the monoidal structure on Met defined by the
plus-metric, and therefore we are interested in transporting this structure to MetU. This
problem is addressed in general in [Moerdijk, 2002] where the author introduces the no-
tion of a Hopf monad on a monoidal category C, which captures exactly what is needed
to transport the monoidal structure on C to the category of Eilenberg–Moore algebras.
For space reasons we must refer to [Moerdijk, 2002] for the definition of Hopf monad, and
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simply state here that the monad U = (U, e,m) on Met is an example of a monad with a
Hopf structure since

τX,Y : U(X ⊗ Y )→ UX ⊗ UY, w 7→ (Tπ1(w), Tπ2(w)) ! : U1→ 1

are contraction maps. This is clear for the second map, and for the first one it follows
using Remark 1.1. Consequently, MetU inherits the monoidal structure from Met: for
X = (X, a, α) and Y = (Y, b, β), X ⊗ Y becomes equipped with the plus-metric a ⊗ b

and the product topology U(X × Y )
τX,Y−−→ UX × UY α×β−−→ X × Y . Recall from Example

4.3 that [0,∞] lives in MetU, and it is now clear that + : [0,∞] ⊗ [0,∞] → [0,∞] is a
U-homomorphism. We also remark that K : MetU → App is a strict monoidal functor.

In [Simmons, 1982; Wyler, 1984] it is shown that OrdCompHaussep is also monadic
over Top where the monad is the prime filter (of opens) monad. Similarly, the adjunction
M a K induces a monad on Top respectively App, in fact, it lifts the ultrafilter monad
U = (U, e,m) to these categories. One easily verifies that the ultrafilter monad U on App
is a Hopf monad witnessed by the maps τX,Y and ! described above.

4.10. Proposition. The ultrafilter monad U = (U, e,m) on Top is of Kock-Zöberlein
type.

Proof. First note that an ultrafilter X ∈ UUX converges to x ∈ UX in UX if and only
if mX(X) ≤ x, and this is equivalent to A# ∈ X for all open subsets A ⊆ X with A ∈ x.
Therefore all sets A# where A is open in X form a basis for the topology in UX. We
now show mX a eUX (see Remark 2.3). To see 1UUX ≤ eUX · mX , let X ∈ UUX and
A ∈ eUX · mX(X) be open. Hence mX(X) ∈ A, and there is some open subset A ⊆ X
with A ∈ mX(X) and A# ⊆ A. Consequently, A# ∈ X and therefore also A ∈ X. Since
mX · eUX = 1UX , we conclude mX a eUX .

For an approach space X = (X, a) with underlying topological space Xt and x, y ∈ UX,
from Example 4.4 we obtain that x ≤ y in U(Xt) implies 0 = â(x, y) (where â = Ua ·mX),
and therefore:

4.11. Corollary. The ultrafilter monad U = (U, e,m) on App is of Kock-Zöberlein
type.

Hence, the algebra structure l : UX → X is left adjoint to eX : X → UX in Top
respectively App. Moreover, any left inverse l : UX → X of eX : X → UX (that is,
l · eX = 1X) in Top/App is left adjoint to eX and makes X a pseudoalgebra for U. In
particular, a topological/approach T0-space is an Eilenberg-Moore algebra for U precisely
if eX : X → UX admits a left inverse.

4.12. Proposition. TopU ' OrdU and AppU ' MetU.
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Proof. For X = (X, a0, α) in OrdCompHaus or MetCompHaus, α : UX → X turns out to
be continuous respectively contractive, hence the functors K : OrdU → Top respectively
K : MetU → App can be seen a functor OrdU → TopU respectively MetU → AppU. On
the other hand, for X = (X, a) in TopU or AppU, the underlying ordered set (X, a0)
together with the algebra structure lX lives in OrdU/MetU. Furthermore, lX a eX in Top
respectively App and consequently in Ord respectively in Met, and one observes that the
underlying order/metric of UX is given by â = Ua ·m◦X . From

a0(lX(x), x) = â(x, eX(x)) = a(x, x)

one reaches eventually to the conclusion that TopU ' OrdU and AppU ' MetU.

5. Cocomplete spaces

With the notion of dual space at our disposal, one can now define U-modules between
topological spaces and approach spaces and develop their basic properties following closely
what was done for ordered sets. For topological spaces X = (X, a) and Y = (Y, b), a U-
module ϕ : X −⇀◦ Y is a U-relation ϕ : X −⇀7 Y so that Xop × Y → 2 is continuous; and
for approach spaces X = (X, a) and Y = (Y, b), a U-module ϕ : X −⇀◦ Y is a U-relation
ϕ : X −⇀7 Y so that Xop ⊗ Y → [0,∞] is contractive. By Corollary 4.8, U-modules
correspond to continuous/contractive maps pϕq : Y → PX, where PX := 2X

op
in the

topological case and PX := [0,∞]X
op

in the approach case. It is not completely trivial
that the module-property can be also expressed with the help of Kleisli composition,
but it is shown in [Clementino and Hofmann, 2009a] that a U-relation ϕ : X −⇀7 Y
is a U-module if and only if b ◦ ϕ = ϕ and ϕ ◦ a = ϕ. This correspondence will be
particularly useful when establishing cont(inuity/ractivity) of a map of type Y → PX as
it is occasionally easier to verify these two equalities.

5.1. Remark. It should be noted that the dual space introduced in this paper is differ-
ent from what was considered in [Clementino and Hofmann, 2009a; Hofmann and Tholen,
2010; Hofmann, 2011; Clementino and Hofmann, 2009b], the two ingredients of an or-
dered/metric compact Hausdorff space were kept separately there. Since the presheaf
space PX there is defined as a subspace of the exponential with respect to the compact
Hausdorff topology only, it is not automatically clear that this gives the same space. The
following result tells us that there is no problem.

5.2. Lemma. For any (X, a0, α) in OrdCompHaus or MetCompHaus and any Y in Top
respectively App, the exponential Y (X,a0·α) → Y (X,α) of (X,α) → (X, a0 · α) is an embed-
ding.

Proof. To prove this, we recall that the function space structure on Y X (with Y = (Y, b)
and X = (X, a)) is defined as the largest one making the evaluation map ev : Y X×X → Y
continuous (respectively ev : Y X ⊗X → Y contractive in the approach case). Explicitly,
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for p ∈ U(Y X) and h ∈ Y X , one has

p→ h ⇐⇒


for all w ∈ U(Y X ×X), x ∈ X with w 7→ p

x→ x ⇒ Uev(w)→ h(x)),

(where w 7→ x ∈ UX)

in the topological case and

d(p, h) = sup{b(Uev(w), h(x))	 a(x, x) | w ∈ U(Y X ⊗X) with w 7→ p, x ∈ X, (w 7→ x)}

in the approach case. Now, in Y (X,α) one has

d2(p, h) = sup{b(Uev(w), h(α(x))) | w ∈ U(Y X ⊗X) with w 7→ p, (w 7→ x)},

and in Y (X,a0·α)

d1(p, h) = sup{b(Uev(w), h(x))	 a0(α(x), x) | w ∈ U(Y X ⊗X),w 7→ p, x ∈ X, (w 7→ x)}.

To conclude d1(p, h) 6 d2(p, h), we show that

b(Uev(w), h(α(x))) > b(Uev(w), h(x))	 a0(α(x), x)

for any x ∈ X. In fact, the inequality above is equivalent to

b(Uev(w), h(α(x))) + a0(α(x), x) > b(Uev(w), h(x)),

which is indeed true since

b(Uev(w), h(α(x))) + a0(α(x), x) > b(Uev(w), h(α(x))) + b0(h(α(x)), h(x))

> b(Uev(w), h(x)).

Here b0 denotes the underlying metric of the approach structure b on Y . For topological
spaces one can argue in a similar way.

Consequently, the function space PX is essentially the exponential of a compact Haus-
dorff space, therefore its topology is the compact-open topology. An approach variant of
this topology was introduced in [Lowen and Sioen, 2004].

5.3. Example. In [Hofmann and Tholen, 2010] it is shown that the topological space
PX is homeomorphic to the space F0(X) of all filters (including the improper one) on
the lattice OX of open sets of X, where the topology on F0(X) has

{f ∈ F0(X) | A ∈ f} (A ⊆ X open)

as basic open sets (see [Escardó, 1997]). Here we can identify an element ψ ∈ PX = 2X
op

with a closed (=Zariski closed and down-closed) subset A of UX. With this identification,
the maps

PX
Φ−→ F0(X), A 7→ (

⋂
A) ∩ OX and F0(X)

Π−→ PX, f 7→ {x ∈ UX | f ⊆ x}
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are indeed continuous and inverse to each other.

The structure a of a space X = (X, a) is a U-module X −⇀◦ X and indeed the identity
arrow on X in the ordered categoryU-Mod of topological/approach spaces andU-modules
between them, composition is given by Kleisli-composition and the order structure is
inherited from Rel respectively NRel. Each continuous/contractive map f : X → Y gives
rise to U-modules

f∗ : X −⇀◦ Y, f∗(x, y) = b(Uf(x), y) and f ∗ : Y −⇀◦ X, f ∗(y, x) = b(y, f(x))

f∗ = b · Uf f ∗ = f ◦ · b

which form an adjunction f∗ a f ∗ in U-Mod, and these constructions define functors
(−)∗ : Top → U-Mod and (−)∗ : Topop → U-Mod respectively (−)∗ : App → U-Mod and
(−)∗ : Appop → U-Mod. The order on the hom-sets of Top and App are reflections from
their respective module categories since

f ≤ h ⇐⇒ f ∗ v h∗ ⇐⇒ h∗ v f∗.

From this it follows that f a g in Top/App if and only if g∗ a f ∗ in U-Mod if and only if
g∗ = f∗, which in pointwise notation reads as

b(Uf(x), y) = a(x, g(y)),

or, in the particular case of topological spaces, as

Uf(x)→ y ⇐⇒ x→ g(y).

The ordered category U-Mod has (co)complete hom-sets, and Kleisli-composition with
a U-module ϕ : X −⇀◦ Y from the right preserves suprema. As in the case of ordered sets,
a right adjoint to −◦ϕ gives, for each ψ : X −⇀◦ Z, the largest U-module of type Y −⇀◦ Z
which composite with ϕ is less or equal then ψ:

(7) X ◦
ψ /

◦ϕ
�

Z

Y

◦v
>

This U-module is called extension of ψ along ϕ, and we write ψ ◦− ϕ. It can be
calculated in Rel respectively NRel as ψ •− (Uϕ ·m◦X).

5.4. Theorem. ψ ◦− ϕ(y, z) = JU pϕq(y), pψq(z)K.

Proof. See [Hofmann, 2011, Theorem 1.10].
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Since the structure a of X = (X, a) is a U-module X −⇀◦ X, we obtain as its mate the
Yoneda embedding y

X
= paq : X → PX which sends x to x∗ = a(−, x). Choosing in

(7) ϕ as the identity module and ψ : X −⇀◦ 1, the theorem above specialises to the Yoneda

5.5. Lemma. JUy
X

(x), ψK = ψ(x).

As usual, the lemma above tells us that the Yoneda embedding is fully faithful (=ini-
tial). For a topological space X, the Yoneda Lemma says that, when identifying ψ ∈ PX
with a filter f ∈ F0(X),

Uy
X

(x)→ f ⇐⇒ x ⊇ f,

which follows also easily from the definition of the topology on F0(X) (see Example 5.3).
Each module ϕ : X −⇀◦ Y induces maps − ◦ ϕ : PY → PX and − ◦− ϕ : PX → PY

which are both continuous respectively contractive as − ◦ ϕ is the mate of the module
(y

Y
)∗ ◦ ϕ : X −⇀◦ PY , and − ◦− ϕ is the mate of ( pϕq)∗ : Y −⇀◦ PX, and therefore form

an adjunction − ◦ ϕ a − ◦− ϕ in Top/App. Hence, for f : X → Y in Top/App, one has

PX

(−◦f∗)
⊥ %%

(− ◦− f∗)

⊥
::PY.(−◦f∗)oo

In the sequel we write Pf for − ◦ f ∗. Note that ψ ◦− (y
X

)∗ = J−, ψK = ψ∗, hence
− ◦− (y

X
)∗ = y

PX
.

5.6. Definition. A topological/approach space is called cocomplete if the Yoneda em-
bedding y

X
: X → PX has a left adjoint SupX : PX → X in Top/App.

If, for a topological space X, we think of PX as the filter space F0(X), then SupX
produces for each filter f ∈ F0(X) a smallest convergence point. In [Hofmann, 2011] it is
shown that many properties of cocomplete spaces resemble closely the ones of cocomplete
ordered sets:

• cocomplete=injective,

• PX is cocomplete where a supremum SupX : PPX → PX is given by − ◦ (y
X

)∗,

• the subcategory Coctssep of Top/App consisting of cocomplete T0-spaces and left
adjoint morphisms is reflective, and the Yoneda embedding provides a universal
arrow,

• Coctssep is monadic over Top/App where the induced monad P is of Kock-Zöberlein
type and has P as functor, the Yoneda embeddings y

X
: X → PX as units and

mX := − ◦ (y
X

)∗ : PPX → PX as multiplications (providing us with the filter
monad in the topological case and with what one might call now approach filter
monad in the approach case),
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• Coctssep is also monadic over Set and Ord/Met.

Recall that a topological/approach space X = (X, a) induces an order/metric â :=
Ua ·m◦X on UX, and â : UX−→7 UX can be also viewed as a U-relation â : X −⇀7 UX.
This relation is actually a U-module â : X −⇀◦ UX as one easily verifies:

â ◦ a = Ua ·m◦X · Ua ·m◦X = â · â = â, and

(Ua ·m◦X ·mX) ◦ â = Ua ·m◦X ·mX · UUa · Um◦X ·m◦X
= Ua ·m◦X · Ua ·mUX ·m◦UX ·m◦X = Ua ·m◦X · Ua ·m◦X = â · â = â.

Therefore â : X −⇀◦ UX induces a morphism Y X : UX → PX, for each toplogi-
cal/approach space X. Moreover, Y X : UX → PX can be seen as a “second” Yoneda
embedding:

5.7. Lemma. For X ∈ UUX and ψ ∈ PX, JUY X(X), ψK = ψ(mX(X)).

Proof. In fact, with â = Ua ·m◦X one has

Uâ ·m◦X = UUa · Um◦X ·m◦X = UUa ·m◦UX ·m◦X = m◦X · Ua ·m◦X = m◦X · â,

and therefore

JUY X(−), ψK = ψ ◦− â = ψ •− (m◦X ·â) = (ψ •− â)·mX = [ pâq(mX(−)), ψ] = ψ(mX(−)).

Here [−,−] denotes the underlying order/metric on PX and we made use of the Yoneda
Lemma for ordered sets respectively metric spaces.

5.8. Proposition. Y = (Y X)X is a monad morphism Y : U → P .

Proof. To check naturality, let X = (X, a), Y = (Y, b) be topological/approach spaces
and f : X → Y be a cont(inous/ractive). Furthermore, let â := Ua ·m◦Y and b̂ := Ub ·m◦Y ,
and note that

U(f ∗) ·m◦X = Uf ◦ · Ub ·m◦X = Uf ◦ · b̂ = (Uf)∗,

where (Uf)∗ is the module induced by Uf : UX → UY in Ord respectively Met. With
this in mind, the left-lower path in

UX
Y X //

Uf
��

PX

Pf
��

UY
Y Y

// PY

sends x to b̂(−, Uf(x)) = Uf ∗(−, x), and the upper-right path sends x to

Y X(x) ◦ f ∗ = â(−, x) · Uf ∗ = Uf ∗(−, x).
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One easily verifies that the diagram

UX
Y X // PX

X

eX

bb

y
X

==

commutes for each topological/approach space X, and the assertion follows since both
monads U, P are of Kock-Zöberlein type and PX is always separated.

We conclude that every P-algebra X is also a U-algebra and therefore also a compact
Hausdorff space with convergence

(8) UX
Y X //

lX

&&
PX

SupX // X;

moreover, lX : UX → X is characterised as being left adjoint to eX : X → UX in Top
respectively App. For a cocomplete topological T0-space X, this topology is known as the
Lawson topology (see [Gierz et al., 2003]) and, for x ∈ UX,

lX(x) =
∨
A∈x

∧
x∈A

x =
∧
A∈x

∨
x∈A

x.

If X is not necessarily a T0-space, the formula above still describes the left adjoint to
eX : X → UX in Top. From this description of lX one concludes that this convergence is
already encoded in the underlying order, therefore the convergence a of the topology of
X can be recovered from the underlying order a0 = a · eX alone since lX a eX gives

a(x, x) = a0(lX(x), x),

for all x ∈ UX and x ∈ X (see also Proposition 4.12). In fact, injective topological T0-
spaces are known to be precisely the continuous lattices (see [Scott, 1972]). It also follows
that, for injective space X and Y , a monotone map f : X → Y (between the underlying
ordered sets) is continuous provided that it preserves co-directed infima2.

5.9. Example. Since PX is cocomplete it is also a metric compact Hausdorff space
where the convergence UPX → PX sends p ∈ UPX to Y PX(p) ◦ (y

X
)∗ in PX. Re-

call from Lemma 5.5 that (y
X

)∗ : X −⇀◦ PX is given by the evaluation relation ev :
UX−→7 PX, ev(x, ψ) = ψ(x). Therefore, for any x ∈ UX, one has

(Y PX(p) ◦ (y
X

)∗)(x) = U(J−,−K) ·m◦PX · U y
X

(x, p)

= U(J−,−K · U y
X

) ·m◦X(x, p) = Uev ·m◦X(x, p).

In the remainder of this section we have a closer look at cocomplete (=injective)
approach spaces. Motivated by the situation for topological spaces, we define:

2Recall that we consider the dual of the specialisation order. We should also mention that continuity
is even equivalent to preservation of these infima.
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5.10. Definition. A metric space is called continuous if it underlies an injective ap-
proach space.

For an injective approach space X = (X, a), we consider lX as in (8), hence lX · eX '
1X and lX a eX in App. By Examples 4.4, the identity map on UX is continuous of
type U(Xt) → (UX)t where (−)t refers to the underlying topological space, therefore
lX : U(Xt) → Xt is continuous and lX · eX ' 1X in Top, hence also lX a eX in Top. In
conclusion, the approach structure of an injective approach space can be recovered from
its underlying metric since lX is determined by the underlying order of the underlying
metric; and a contraction map between continuous metric spaces is a contraction map
between the corresponding approach spaces if it preserves co-directed infima (i.e. if it is
continuous with respect to the Scott-topologies of the underlying lattices).

5.11. Proposition. For a metric space X = (X, d), there exists at most one injective

approach space X = (X, a) so that d(x, y) = a(
�
x, y), for all x, y ∈ X.

The full subcategory of App consisting of all injective approach spaces we denote as
ContMet. By the corollary above, ContMet can be also viewed as a (non-full) subcategory
of Met.

5.12. Example. We consider the approach space [0,∞] with λ(x, x) = x	 ξ(x) (see 4.3).
In the underlying topology,

x→ x ⇐⇒ 0 > x	 ξ(x) ⇐⇒ ξ(x) > x.

In particular, any interval [0, u] is closed. Take now the filter base g := {(1, 1+ε) | 0 < ε}
and let y ∈ U [0,∞] be with g ⊆ y. Then

�
1 6≤ y (since [0, 1] /∈ y) but δ(

�
1, y) = 0 (since

every B ∈ y contains elements arbitrary close to 1 from the right).

5.13. Remark. The metric space [0,∞] is continuous since it underlies the injective
approach space [0,∞]. Certainly, every continuous metric space is also a continuous
lattice via its underlying order; however, it should be noted a continuous lattice (via
its free metric) is in general not a continuous metric space. For instance, the Sierpiński
space 2 is not injective in App. To see this, just consider the embedding {0,∞} ↪→ [0,∞]
and f : {0,∞} → 2 with f(0) = true and f(∞) = false, and observe that there is
no contraction map g : [0,∞] → 2 extending f since there exists x ∈ U [0,∞) with
λ(x,∞) = 0.

It is well-known that the full subcategory of Top defined by all injective spaces is
Cartesian closed (see [Scott, 1972]). We will now show that ContMet is a Cartesian closed
category as well. To this end, recall that the approach space [0,∞] is actually a monoid
in the monoidal category App since addition + is a contraction map + : [0,∞]⊗ [0,∞]→
[0,∞]. Hence it induces a monad M = (M, 0,+) on App where M = −⊗ [0,∞]. For each
approach space X,

tX : X ⊗ [0,∞]→ PX, (u, x) 7→ a(−, x) + u
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is a contraction map since it is the mate of the composite

Xop ⊗X ⊗ [0,∞]
a⊗1−−→ [0,∞]⊗ [0,∞]

+−→ [0,∞]

of contraction maps. Thinking of u ∈ [0,∞] as a U-module u : 1−⇀◦ 1, then tX(x, u) is
the U-module u◦x∗. One easily confirms that the family t = (tX)X is a monad morphism
M→ P. Therefore each injective approach space admits an action

+ := SupX · tX : X ⊗ [0,∞]→ X,

which satisfies

a0(x+ u, y) = a0(SupX(u ◦ x∗), y) = [u ◦ x∗, y∗] = a0(x, y)	 u.

Note that the universal property above determines the action + uniquely, that is, an
approach space X admits up to equivalence at most one action + : X ⊗ [0,∞] → X in
App with a0(x+ u, y) = a0(x, y)	 u.

For a numerical relation ϕ : X−→7 Y and u ∈ [0,∞], we write ϕ C u for the relation
defined by ϕ C u(x, y) := ϕ(x, y) + u. Note that U(ϕ C u) = Uϕ C u, and, given also
ψ : Y−→7 Z and v ∈ [0,∞], (ψ C v) · (ϕ C u) = (ψ · ϕ) C (v + u).

5.14. Theorem. Let X be an approach space which admits a left adjoint l : UX → X of
eX : X → UX and an action + : X ⊗ [0,∞]→ X in App with a0(x+u, y) = a0(x, y)	u.
Then X is exponentiable in App.

Proof. Firstly, fixing u ∈ [0,∞], one obtains tu : X → X, x 7→ x+ u in App. Moreover,
from

a0(x, y) > a0(x+ u, y + u) = a0(x, y + u)	 u
it follows that a0(x, y) + u > a0(x, y + u), for all x, y ∈ X; and hence also

a(x, y) + u = a0(l(x), y) + u > a0(l(x), y + u) = a(x, y + u)

for all x ∈ TX and y ∈ X. With notation introduced above, this reads as a C u > t◦u · a,
which allows us to conclude

(Ua) C u = U(a C u) > Ut◦u · Ua,

that is, Ua(X, x) + u > Ua(X, Utu(x)), for all X ∈ TTX and x ∈ TX. Furthermore,
l · Utu ≤ tu · l since tu is a contraction map, and therefore

a(Utu(x), x) = a0(l · Utu(x), x) 6 a0(l(x) + u, x) = a(x, x)	 u,

for all x ∈ TX and x ∈ X.
Secondly, recall from [Hofmann, 2006] that an approach space X = (X, a) is expo-

nentiable if, for all X ∈ UUX and x ∈ X with a(mX(X), x) < ∞, all v, u ∈ [0,∞) with
u+ v = a(mX(X), x) and all ε > 0, there exists an ultrafilter x ∈ UX such that

Ua(X, x) 6 u+ ε and a(x, x) 6 v + ε.
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Assume now that X = (X, a) is injective in App, and let X ∈ UUX, x ∈ X with
w := a(mX(X), x) <∞ and u, v ∈ [0,∞] with u+v = w. Put y := Ul(X) and x := Utu(y).
Then

Ua(X, x) 6 Ua(X, y) + u = u, and

a(x, x) 6 a(y, x)	 u
= a0(l · Ul(X), x)	 u
= a0(l ·mX(X), x)	 u
= w 	 u = v,

and the assertion follows.

5.15. Corollary. Each injective approach space is exponentiable in App.

With the same argument as in Remark 3.1 one can show that with Y and X also Y X

and Y ×X are injective approach spaces, hence

5.16. Theorem. ContMet is Cartesian closed.

6. A seemingly unnatural dual adjunction

At the end of Section 2 we briefly discussed the dual adjunction between Ord and CCD. In
this section we show that this dual adjunction has a natural analogue when we replace Ord
with Top or App. It is interesting to observe that the considerations in this section only
apply to X 7→ 2X

op
, the construction X 7→ 2X (see Remark 2.5) is a completely different

story and is studied in general in [Hofmann and Stubbe, 2011]. Note that (−)op : Top→
Top is no longer an equivalence, and also that 2X

op
is a (very particular) topological space

but 2X in general not since Top is not Cartesian closed. Of course, X 7→ 2X leads to the
well-known dual adjunction between Top and Frm, so lets look now at X 7→ 2X

op
.

6.1. Definition. A cocomplete topological/approach space X is called completely dis-
tributive (cd) if SupX : PX → X has a left adjoint in Top/App.

We remark immediately that every space of type PX is (cd), witnessed by the string
of adjunctions

y
PX

= − ◦− (y
X

)∗ ` − ◦ (y
X

)∗ ` − ◦ (y
X

)∗ = Py
X
.

We let CDTop (CDApp) denote the category of completely distributive topological (ap-
proach) T0-spaces and left-and-right adjoint continuous (contractive) maps. The presheaf
construction defines functors

D : Topop → CDTop respectively D : Appop → CDApp

sending f : X → Y to − ◦ f∗ : PY → PX, that is, DX = PX and Pf a Df . To define
functors in the opposite direction, we note that a completely distributive space L comes
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together with y
L

: L → PL and tL : L → PL where tL a SupL. As in the Ord-case, we
consider now the equaliser

A
i // L

tL //

y
L

// PL.(9)

in Top/App. Let also M be a completely distributive space with corresponding equaliser
j : B ↪→ M and f : L→ M in CDTop/CDApp, hence f preserves suprema and has a left
adjoint g : M → L. Therefore the diagrams

M
y
M //

g
��

PM

Pg
��

L y
L

// PL

and PL
SupL //

Pf
��

L

f
��

PM
SupM

//M

commute (up to equivalence), and from the latter it follows that the diagram of the
corresponding left adjoints

M
tM //

g
��

PM

Pg
��

L
tL
// PL

commutes (up to equivalence, but PL is separated, so it really commutes). We conclude
that g : M → L restricts to a continuous/contractive map g0 : B → A. Summing up:

6.2. Proposition. With the notation used above, there are functors

S : CDTop→ Topop respectively S : CDApp→ Appop

where SL = A and Sf = g0.

We will now show that S and D form a dual adjunction. To construct a natural
transformation η : 1 → SD, we start by observing that Py

X
· y

X
= y

PX
· y

X
for any X

in Top/App; however, y
X

is in general not the equaliser of Py
X

and y
PX

. Nevertheless,
the universal property of the equaliser produces a continuous/contractive map ηX : X →
SD(X) which is just the corestriction of the Yoneda embedding, and η = (ηX)X is indeed
a natural transformation. Let now L in CDTop/CDApp with equaliser diagram (9), we
put

L y
L

//

εL

))
PL −◦i∗

// PA = DS(L).

Then εL is a right adjoint since both y
L

and −◦ i∗ are. To see that εL is also left adjoint,
we show that

PL
PεL //

SupL
��

PPA

supPA=−◦(y
A

)∗
��

L εL
// PA
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commutes. Let ψ ∈ PL and a ∈ UA. Then (with L = (L, a))

εL · SupL(ψ)(a) = a(Ui(a), SupL(ψ))

= JU(tL · i)(a), ψK (tL a SupL)

= JUy
L
(Ui(a)), ψK (tL · i = y

L
·i)

= ψ(Ui(a)) = ψ ◦ i∗(a) (Yoneda Lemma)

and

SupPA ·PεL(ψ) = ψ ◦ ε∗L ◦ (y
A

)∗

= ψ ◦ y∗
L
◦(− ◦ i∗)∗ ◦ (y

A
)∗ (εL = (− ◦ i∗) · yL)

= ψ ◦ y∗
L
◦(Pi)∗ ◦ (y

A
)∗ (Pi a (− ◦ i∗), hence (Pi)∗ = (− ◦ i∗)∗)

= ψ ◦ y∗
L
◦(y

L
)∗ ◦ i∗ = ψ ◦ i∗.

Next we show that ε = (εL)L is a natural transformation ε : 1 → DS. To this end, let
f : L → M in CDTop/CDApp with left adjoint g : M → L. We have to convince ourself
that

L

f
��

εL // PA

−◦(g0)∗
��

M εM
// PB

commutes (we use here the notation introduced above), which we do by pasting the
commutative diagrams

L

f
��

y
L // PL

Pf
��

M y
M

// PM

and PL

−◦g∗
��

−◦i∗ // PA

−◦(g0)∗
��

PM −◦j∗
// PB

together. This is indeed possible since from Pg a Pf and Pg a (− ◦ g∗) it follows that
Pf = − ◦ g∗. Finally, the composites

SL
ηSL−−→ SDS(L)

S(εL)−−−→ SL
x 7−→ x∗ 7−→ SupL(x∗) = x

and

DX
εDX−−−→ DSD(X)

D(ηX)−−−−→ DX
ψ 7−→ ψ∗ ◦ i∗ 7−→ ψ∗ ◦ i∗ ◦ (ηX)∗ = ψ∗ ◦ (y

X
)∗ = ψ

are both equal to the identity, where i : SDX ↪→ DX denotes the inclusion map.

6.3. Theorem. (D,S, η, ε) defines a dual adjunction

Topop � CDTop respectively Appop � CDApp.
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6.4. Remark. The dual adjunction above does not seem to be induced by a dualising
object. Certainly, S ' hom(−, 2) respectively S ' hom(−, [0,∞]), but there is no space
X with D ' hom(−, X). This indicates that the “obvious” forgetful functor CDTop→ Set
respectively CDApp→ App is a “bad” choice, in fact, we will later on (Remark 7.17) see
that there is a better candidate.

As for any dual adjunction, one obtains a dual equivalence between the fixed full
subcategories

Fix(η) := {X | ηX is an isomorphism} and Fix(ε) := {L | εL is an isomorphism}

which we determine now.

6.5. Lemma. For each topological/approach space X and ψ ∈ PX,

Py
X

(ψ) = y
PX

(ψ) ⇐⇒ ψ is right adjoint.

Proof. Our proof uses the fact obtained in [Hofmann and Tholen, 2010] that

X̃ := {ψ ∈ PX | ψ is right adjoint}

is the Lawvere closure of y
X

(X) in PX. Clearly, the equaliser of y
PX

and Py
X

is Lawvere
closed and contains y

X
(X), and the implication “⇐” follows. To see “⇒”, note that from

Py
X

(ψ) = y
PX

(ψ) it follows that ψ∗ = ψ ◦ y∗
X

, hence ψ ◦ y∗
X

(
�
ψ) is true respectively 0.

Since UeY · eY = m◦Y · eY 3 for any Y ,

ψ ◦ y∗
X

(
�
ψ) = ψ · U y∗

X
(eUPX · ePX(ψ)) =

∨
x∈UX

ψ(x)⊗ UJ−,−K(eUPX · ePX(ψ), T y
X

(x))

where J−,−K denotes the structure on PX, ⊗ is either & or +, and
∨

is either ∃ or inf.
The result follows now from Proposition 4.16 (3.16 in the arXiv-version) of [Hofmann and
Tholen, 2010].

Hence, X belongs to Fix(η) precisely if each right adjoint module ψ is representable as
ψ = x∗ for a unique x ∈ X. But this is precisely the definition of a Lawvere complete
(also called Cauchy complete) separated space as introduced in [Clementino and Hofmann,
2009a]. In both the topological and the approach case, Lawvere completeness together
with separateness means soberness (see [Clementino and Hofmann, 2009a, Subsections 6.3
and 6.4]), so that Fix(η) is precisely the category Sob/ASob of sober topological/approach
spaces and continuous/contraction maps (see [Banaschewski et al., 2006] and [Van Olmen,
2005] for the notion of sober approach space).

3The same holds for any monad where T1 = 1.
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6.6. Example. For a topological space X, a U-module ϕ : 1−⇀◦ X corresponds to a
closed subsetA ⊆ X, and ψ : X −⇀◦ 1 to a closed subsetA ⊆ UX. With this identification,
ϕ a ψ means that (see [Clementino and Hofmann, 2009a])

• A = {x ∈ UX | ∀x ∈ A . x→ x},

• there exists an ultrafilter x0 ∈ A with A ∈ x0.

Hence, for any x ∈ A and any B ∈ x, A ⊆ B and therefore B ∈ x0. We conclude that
x ≤ x0, hence A = ↓x0.

For L in CDTop/CDApp, εL : L → PA has a left adjoint c : PA → L which sends
ψ ∈ PA to SupL(ψ ◦ i∗). Since εL preserves suprema and ε · i = y

A
, we see that even

εL · c = 1 since

εL · c(ψ) = εL(SupL(ψ ◦ i∗)) = SupPA(PεL(ψ ◦ i∗)) = SupPA(ψ ◦ i∗ ◦ ε∗L)

= SupPA(ψ ◦ y∗
A

) = mA ·P y
A

(ψ) = ψ.

6.7. Definition. We call a completely distributive topological/approach space L totally
algebraic if c · εL ' 1, that is, if

SupL(x∗ ◦ i∗ ◦ i∗) ' x

for each x ∈ X.

6.8. Example. By definition, a topological space X is totally algebraic if each element
x ∈ X is a supremum of the distributor x∗ ◦ i∗ ◦ i∗ : X −⇀◦ 1. Intuitively, x∗ ◦ i∗ ◦ i∗ is
the down-set of all totally algebraic elements below x, and in fact, x ∈ UX belongs to
x∗ ◦ i∗ ◦ i∗ if and only if there is some a ∈ UA with x ≤ a and a→ x.

Clearly, Fix(ε) is the full subcategory of CDTop/CDApp consisting of all totally alge-
braic T0-spaces; we denote this category as TATop respectively as TAApp. In conclusion,

6.9. Theorem. Sobop ' TATop and ASobop ' TAApp.

In Section 8 we will develop a more general theory which contains the result above as
a special case (see Theorem 8.20).

6.10. Proposition. The inclusion functors Sob ↪→ Top, ASob ↪→ App, TATop ↪→ CDTop
and TAApp ↪→ CDApp are right adjoint.

Proof. It is well-known (see, for instance,Theorem 2.0 of [Lambek and Rattray, 1979])
that these fixed subcategories are reflective if and only if ηSL respectively εDX are isomor-
phisms, that is, SL is sober respectively DX is totally algebraic. Now, any completely
distributive space is cocomplete, hence Lawvere complete (=sober), and SL is L-closed
(see [Hofmann and Tholen, 2010]) in L since it is the equaliser of y

L
and tL. Therefore

SL is sober. Certainly, DX = PX is totally algebraic for each sober space X. For an
arbitrary space X, the induced U-module i∗ of the sobrification i : X → X̃ satisfies
i∗ ◦ i∗ = 1 and i∗ ◦ i∗ = 1, therefore PX ' PX̃ is totally algebraic as well.
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7. Frames vs. complete distributivity

In the previous section we have studied the dual adjunctions

Topop � CDTop and Appop � CDApp

which are quite different from the “traditional” ones with frames (see [Isbell, 1972]) respec-
tively approach frames (see [Banaschewski et al., 2006] and [Van Olmen, 2005]). In fact,
for a topological space X, the two constructions X 7→ Top(X, 2) and X 7→ Top(Xop, 2)
produce quite different objects: the former one an ordered set satisfying certain com-
pleteness properties, and the latter one a very particular topological space. This stands
in sharp contrast to the situation for an ordered set X where both X 7→ Ord(X, 2) and
X 7→ Ord(Xop, 2) lead to complete lattices. One reason for this discrepancy is the fact
that X is in general not exponentiable but Xop is always exponentiable. Another reason
is the asymmetry in the definition of convergence: whereby the domain and codomain
of x ≤ y are points of X, the domain of x → x is an ultrafilter but the codomain is a
point. Nevertheless, all these adjunctions restrict to dual equivalences involving sober
spaces; therefore one might ask about the relationship between frames and completely
distributive spaces. In this section we will consider only the topological case and show
that CDTop is equivalent to Frm. Unfortunately, so far I do not know if a similar result
is true for approach spaces.

Recall from Example 5.3 that PX is homeomorphic to the filter space FOX, where
OX denotes as usual the frame of open subsets of a topological space X. Therefore we
can hope that there is a commutative diagram

Topop

O

{{

D

$$
Frm

F
// CDTop

of functors, where FL denotes the usual filter space of a frame. More general, for a meet
semi-lattice L one puts

FL := {f ⊆ L | f is a (possibly improper) filter}

which is a topological space with

x# = {f ∈ FL | x ∈ f} (x ∈ L)

as basic open set. Note that 1# = FL and (x ∧ y)# = x# ∩ y#. Furthermore, the
underlying order on FL is given by

f ≤ g ⇐⇒
�
f→ g ⇐⇒ ∀x ∈ g . f ∈ x# ⇐⇒ g ⊆ f,
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which also tells us that FL is separated (=T0). For a meet semi-lattice homomorphism
f : L→M , the mapping

Ff : FL→ FM, f 7→ ↑{f(x) | x ∈ f}

is continuous since

Ff−1(y#) = {f ∈ FL | ∃x ∈ f . f(x) ≤ y} =
⋃

x:f(x)≤y

x#,

and so is
f! : FM → FL, g 7→ f−1(g).

since

(10) f−1
! (x#) = {g | f!(g) ∈ x#} = {g | f(x) ∈ g} = f(x)#.

Furthermore, one easily verifies that f! a Ff in Top. Given also g : L → M with f ≤ g
and f ∈ FL, then

{g(x) | x ∈ f} ⊆ ↑{f(x) | x ∈ f} = Ff(f)

and therefore Ff(f) ≤ Fg(f). We write Topinf for the 2-category of T0-spaces and right
adjoint continuous maps with the pointwise order on hom-sets, and SLat denotes the 2-
category of meet semi-lattices and meet semi-lattice homomorphisms with the pointwise
order on hom-sets. Therefore, we have proven the following

7.1. Proposition. F : SLat→ Topinf is a 2-functor.

We will now show that F restricts to an equivalence functor between the full subcat-
egories of SLat and Topinf defined by all frames and all completely distributive T0-spaces
respectively.

Given a meet semi-lattice L, one has the mapping

αL : L→ O(FL), x 7→ x#

which is an order-embedding since x# ⊆ y# ⇐⇒ ↑x ∈ y# ⇐⇒ x ≤ y. Furthermore,
αL preserves all existing infima in L. To see this, observe first that

int(A) = {f ∈ FL | ∃x ∈ f . x# ⊆ A}

Let now (xi)i∈I be a family of elements of L with infimum x ∈ L. Then∧
i∈I

x#
i = int(

⋂
i∈I

x#
i ) = {f ∈ FL | ∃z ∈ f∀i ∈ I . z# ⊆ x#

i }

= {f ∈ FL | ∃z ∈ f∀i ∈ I . z ≤ xi} = {f ∈ FL | x ∈ f} = x#.

If L is complete, then αL : L → O(FL) has a left adjoint βL : O(FL) → L which is
necessarily given by

βL(A) =
∧
{x ∈ L | A ⊆ x#}.
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7.2. Lemma. Assume that L is complete. For any open subset A ⊆ FL,∧
{x ∈ L | A ⊆ x#} =

∨
{y ∈ L | y# ⊆ A}.

Proof. We only need to show “≤”. We put z =
∨
{y ∈ L | y# ⊆ A} and show A ⊆ z#.

To this end, let f ∈ A. Since A is open, there is some u ∈ f with u# ⊆ A. Hence u ≤ z
and therefore f ∈ z#.

7.3. Proposition. For every frame L, βL : O(FL)→ L is a frame homomorphism.

Proof. Clearly, βL(FL) = >. Let now A,B ∈ O(FL). Then

βL(A) ∧ βL(B) =
∨
{y ∈ L | y# ⊆ A} ∧

∨
{z ∈ L | z# ⊆ B}

=
∨
{y ∧ z | y# ⊆ A, z# ⊆ B} =

∨
{x ∈ L | x# ⊆ A ∩ B} = βL(A ∩ B).

Hence, for any frame L, one has

FL

FαL

> &&

(βL)!

>
88

FOF (L)FβLoo .

Since P (FL) ' FOF (L) and

FαL(f) = 〈{x# | x ∈ f}〉 = y
FL

(f),

we conclude that FL is a completely distributive T0-space.

7.4. Proposition. F : SLat → Topinf restricts to a 2-functor F : Frm∧ → CDTopinf

where Frm∧ denotes the full subcategory of SLat defined by those meet-semilattices which
are frames, and CDTopinf denotes the 2-category of completely distributive T0-spaces and
right adjoint continuous maps.

To show that F : Frm∧ → CDTopinf is an equivalence of categories, we will now
describe its inverse Pt : CDTopinf → Frm∧. To motivate our construction, note that this
functor should send a completely distributive space Y of the form Y ' PX for X ∈ Top
to the frame OX ' Top(X, 2)op of opens of X. By the universal property of the Yoneda
embedding,

Map(Top)(PX, 2)→ Top(X, 2), g 7→ g · y
X

is an isomorphism in Ord; where we write Map(−) for the subcategory defined by all left
adjoint morphisms. Its inverse sends ϕ : X → 2 to the left adjoint

(11) ϕL := Sup2 ·Pϕ : PX → 2.
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Therefore we consider, for any topological space X,

Λ(X) := {ϕ : X → 2 | ϕ is continuous and left adjoint}

which becomes an ordered set with the pointwise order. In the sequel we will write C(X)
for the coframe of all continuous maps of type X → 2. Note that ϕ : X → 2 is left
adjoint in Top if and only if it is continuous and left adjoint in Ord (with respect to the
underlying orders). The first hint that we are on the right track is

7.5. Lemma. For each frame L, the map ρL : L→ Λ(FL)op sending x ∈ L to

ϕx : FL→ 2, f 7→

{
1 x /∈ f

0 x ∈ f

is an isomorphism in Ord.

Proof. First note that ϕx is the characteristic map of the complement of x#, hence it is
continuous. Furthermore, ϕx preserves suprema (=intersection), hence it is left adjoint.
From

x ≤ y ⇐⇒ ∀f ∈ FL . (x ∈ f⇒ y ∈ f) ⇐⇒ ϕy ≤ ϕx

we deduce that L→ Λ(FL)op is an order-embedding. Let now ϕ : FL→ 2 be continuous
and left adjoint. Put B = ϕ−1(0) and f =

∨
B. Since ϕ preserves suprema, ϕ(f) = 0 and

therefore f ∈ B. Since B is open, there is some x ∈ f with x# ⊆ B. Hence ↑x ≤ f, that is,
f ⊆ ↑x, and therefore f = ↑x. We conclude that ϕ = ϕx.

7.6. Proposition. Let X be a completely distributive space with tX a SupX a y
X

. Then
the inclusion map i : Λ(X) → C(X) has a right adjoint r : C(X) → Λ(X) given by
r(ϕ) = ϕL · tX (see (11)). Moreover, r preserves finite suprema.

Proof. First note that r(ϕ) is left adjoint since it is a composite of left adjoint. Fur-
thermore, i · r ≤ 1 since ϕ = ϕL · yX ≥ ϕL · tX for any ϕ ∈ C(X), and r · i = 1 since
ϕ = ϕ · SupX ·tX = Sup2 ·Pϕ · tX = ϕL · tX for each left adjoint ϕ : X → 2. Finally,
r : C(X)→ Λ(X) is the corestriction of

C(X)
'−→ Λ(PX)

left adjoint−−−−−−−→ C(PX)
coframe homom. induced by tX−−−−−−−−−−−−−−−−−−→ C(X),

therefore r preserves finite suprema.

7.7. Corollary. For each completely distributive space X, Λ(X) is a coframe.

For any left adjoint g : Y → X in Top, composition with g defines a monotone map

Λ(g) : Λ(X)→ Λ(Y ), ϕ 7→ ϕ · g.
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Furthermore, since

Λ(X)
Λ(g) //

��

Λ(Y )

��
C(X)

C(g)
// C(Y )

commutes, Λ(g) preserves finite suprema. For X in CDTopinf we put Pt(X) := Λ(X)op,
and for f : X → Y in CDTopinf with left adjoint g : Y → X we define Pt(f) = Λ(g)op.
Then

7.8. Proposition. Pt : CDTopinf → Frm∧ is a 2-functor.

Furthermore, we revise Lemma 7.5:

7.9. Lemma. ρL is the L-component of a natural isomorphism ρ : 1Frm∧ → PtF .

Proof. Use (10) to conclude naturality.

For a space X in CDTopinf , we put

σX : X → F Pt(X), x 7→ {ϕ ∈ Λ(X) | ϕ(x) = 0}.

7.10. Lemma. σX is surjective.

Proof. Let j ⊆ Λ(X) be an ideal. For any ϕ ∈ j, put Aϕ := {x ∈ X | ϕ(x) = 0} and
xϕ :=

∨
Aϕ. Since xψ ≤ xϕ for ϕ ≤ ψ ∈ j, the association ϕ 7→ xϕ defines a codirected

diagram D : jop → X. Let x =
∧
ϕ∈j xϕ. By continuity, ϕ(x) = 0 for every ϕ ∈ j. Let now

ϕ0 ∈ Λ(X) with ϕ0 /∈ j. For any ϕ ∈ j, ϕ0 6≤ ϕ and therefore there is some x ∈ Aϕ with
ϕ0(x) = 1, hence ϕ0(xϕ) = 1. Consequently, ϕ0(x) = 1.

By definition, any space X = FL for some frame L has a basis for the closed sets
formed by the complements of the opens x# (x ∈ L). The characteristic map of such
a basic closed set is left adjoint (see Lemma 7.5), hence any ϕ ∈ C(X) is the infimum
of elements of Λ(X). Via the adjunction tX a SupX one can transport this property to
any completely distributive space X as follows. For any ϕ ∈ C(X), ϕ · SupX ∈ C(PX),
hence ϕ · SupX '

∧
i ϕi in C(PX) with all ϕi : PX → 2 left adjoint, and therefore

ϕ ' ϕ · SupX ·tX ' (
∧
i ϕi) · tX '

∧
i(ϕi · tX).

7.11. Lemma. For each completely distributive space X and x, y ∈ X with x 6' y,
σX(x) 6= σ(y).

Proof. If, for instance, y /∈ cl{x}, then there exists some “left adjoint closed subset”
B ⊆ X with y /∈ B and x ∈ B.
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7.12. Proposition. For any X ∈ CDTopinf , σX : X → F Pt(X) is an isomorphism.

Proof. We know already that σX : X → F Pt(X) is bijective. To see continuity, notice
that

σ−1
X (ϕ#) = {x ∈ X | ϕ(x) = 0}

for any ϕ ∈ Λ(X). Let now B ⊆ X be closed with left adjoint characteristic map
ϕ : X → 2. Then

σX(B) = {σX(x) | x ∈ B} = F Pt(X) \ (ϕ#).

Clearly, ϕ /∈ σX(x) for any x ∈ B. Let now j ⊆ Λ(X) be an ideal with ϕ /∈ j. One has
j = σX(x) for some x ∈ X and, since ϕ /∈ σX(x), x ∈ B.

7.13. Lemma. σ = (σX)X is a natural isomorphism σ : 1CDTopinf
→ F Pt.

Proof. We have to show the naturality condition. To this end, let f : X → Y in CDTopinf

with left adjoint g : Y → X. We identify Λ(X) with the set of all “left adjoint closed
subsets” of X, and σX(x) = {A ∈ Λ(X) | x /∈ A}. Then

↓{g−1(A) | x /∈ A} = {B ∈ Λ(Y ) | x /∈ f−1(B)} = {B ∈ Λ(Y ) | f(x) /∈ B}.

7.14. Theorem. F : Frm∧ → CDTopinf and Pt : CDTopinf → Frm∧ define an equivalence
of categories.

7.15. Corollary. A topological space is equivalent to the filter space of some frame if
and only if it is completely distributive.

Throughout we have emphasised that both F and Pt are 2-functors, hence the sub-
categories of Frm∧ and CDTopinf defined by the left adjoint morphisms are equivalent as
well. Therefore

7.16. Theorem. Frm is equivalent to CDTop.

7.17. Remark. The results of this section tell us that CDTop is actually a very nice
category: it is monadic over Set. However, we have to take here the “right” forgetful
functor CDTop→ Set (see also Remark 6.4); namely the one which sends X ∈ CDTop to
the set of all right adjoint continuous maps of type 2 → X. Any such map necessarily
sends 1 to the top element of X, hence it is completely determined by the image of
0. But note that, unlike in ordered sets, not every x ∈ X defines a right adjoint via
0 7→ x. Therefore our result really extends the well-known fact that the canonical forgetful
functor CCD→ Set is monadic. I do not know yet if the corresponding functor CDApp→
Set, X 7→ Map(App)(X, [0,∞]) is monadic.
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8. Spaces with weighted colimits of a certain class

So far we have studied spaces which admit all suprema; however, it is often desirable
to limit the discussion to certain chosen ones. This is, for instance, the case in domain
theory where one typically considers directed cocomplete ordered sets, and the “directed
version” of complete distributivity is called continuity. The main point for us here is that
many results are valid for both cases, one just has to write JX (the ordered set of all
directed down-sets) instead of PX everywhere.

Therefore it seems reasonable to start with a specification of certain U-modules, and
to study spaces which admit all suprema of U-modules belonging to this specified class.
This is indeed a well-known procedure in the context of enriched category theory, we
refer to [Kelly, 1982; Albert and Kelly, 1988; Kelly and Schmitt, 2005; Kelly and Lack,
2000]. A similar investigation of relative cocompleteness for (T,V)-categories (hence for
topological and approach spaces) was done in [Clementino and Hofmann, 2009b]. There
seems to be no equal treatment of relative distributivity (or continuity) in the literature,
but some initial steps are done in [Hofmann and Waszkiewicz, 2011]. We also wish to
point the reader to [Stubbe, 2007] where an extensive study of complete distributivity in
the context of quantaloid enriched categories can be found.

Following [Kelly and Schmitt, 2005], one might want to start with a collection Φ[X]
of U-modules of type X −⇀◦ 1, for each space X, where Φ[X] contains all representable
modules x∗ : X −⇀◦ 1 (x ∈ X). Then a Φ-weighted diagram in a space X is given by a mor-
phism d : D → X in Top/App and aU-module ψ : D−⇀◦ 1 in Φ[D]. A colimit of such a dia-
gram is an element x ∈ X which represents d∗ ◦− ψ, that is, x∗ = d∗ ◦− ψ. One calls x a ψ-
weighted colimit of d and writes x ' colim(d, ϕ). Furthermore, a continuous/contractive
map f : X → Y preserves the ψ-weighted colimit of d if f(colim(ψ, d)) ' colim(ψ, f · d).
If the family Φ[X] is functorial in the sense that, for all f : X → Y in Top/App and
all ψ ∈ Φ[X], ψ ◦ f ∗ ∈ Φ[Y ], then it is enough to consider weighted diagrams where
d is the identity 1X : X → X since the diagrams (d : D → X,ψ : D−⇀◦ 1) and
(1X : X → X,ψ ◦ d∗ : X −⇀◦ 1) share the same colimit. Finally, it is often convenient to
assume that the family Φ[X] is saturated, meaning that i : Φ[X] ↪→ PX is closed under
Φ-weighted colimits, for each space X. As we will see below, saturated implies functorial.

One would then call a space X Φ-cocomplete if X admits all colimits weighted by some
ψ : X −⇀◦ 1 in Φ[X]. However, the situation for spaces is a bit more complicated than the
one for enriched categories which is already visible in the global case where Φ[X] = PX
contains all U-modules of type X −⇀◦ 1. If X is cocomplete, then SupX : PX → X
calculates for each weighted diagram 1X : X → X, ψ : X −⇀◦ 1 in X a colimit SupX(ψ),
however, the existence of all weighted colimits does not guarantee cocompleteness of X.
In fact, [Hofmann and Waszkiewicz, 2011] presents an example of a topological space X
which admits all suprema of U-modules of type X −⇀◦ 1 but X is not cocomplete. The
problem here is that the induced map PX → X,ψ 7→ x does not need to be continuous,
and therefore is in general only a right adjoint to y

X
: X → PX in Ord.

The situation changes if we allow U-modules ψ : D−⇀◦ A in the definition of weighted
colimits, where A might be different from the one-point space 1. A colimit of a weighted
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diagram (weighted colimit for short) is now a continuous/contractive map g : A → X
which represents d∗ ◦− ψ, that is, g∗ = d∗ ◦− ψ. With this modification it is indeed true
that X is cocomplete if and only if X admits all weighted colimits (see [Hofmann, 2011]).
In other words, X admits “continuously” suprema of all U-modules ψ : X −⇀◦ 1 if and
only if X admits weighted colimits of all U-modules ψ : X −⇀◦ A.

The following example of a weighted colimit is essentially taken from [Stubbe, 2010]
and will be used later.

8.1. Example. [Composition as a colimit] Let ϕ : X −⇀◦ Y and ψ : Y −⇀◦ Z be U-
modules, and consider the diagram

Y

◦ψ
�

pϕq
// PX.

Z

Then colim( pϕq, ψ) = pψ ◦ ϕq.
Therefore what we need is not just a choice of U-modules of type X −⇀◦ 1 but rather

a class K of U-modules ϕ : X −⇀◦ Y . One possibility is to extend the given family Φ[X]
to such a class by defining, for ϕ : X −⇀◦ Y in U-Mod,

ϕ : X −⇀◦ Y in K whenever ∀y ∈ Y . y∗ ◦ ϕ ∈ Φ[X].

Note that, for any f : Z → Y in Top/App, theU-module f ∗ belongs to K, and f ∗◦ϕ is in K
whenever ϕ : X −⇀◦ Y is in K. In [Stubbe, 2010] it is shown (in the context of quantaloid-
enriched categories, but the argument is based on Example 8.1 and therefore adapts easily
to our case) that the family Φ[X] is saturated if and only if the correspdonding class K
is actually a subcategory of U-Mod. In [Clementino and Hofmann, 2009b] we went the
other way around and started with a class K of U-modules containing all U-modules of
the form f ∗, closed under certain compositions (see below), and such that

(12) (∀y ∈ Y . y∗ ◦ ϕ ∈ K) ⇐⇒ ϕ ∈ K

for all ϕ : X −⇀◦ Y ∈ U-Mod. Note that (12) guarantees already that K is closed under
compositions of the form f ∗◦ϕ. Combining [Stubbe, 2010] with [Clementino and Hofmann,
2009b] gives

8.2. Theorem. Assume that a family Φ[X] of U-modules of type X −⇀◦ 1 (X in Top or
App) is given, and define K as above. Then the following assertions are equivalent.

i. The family Φ[X] is saturated.

ii. K is a subcategory of U-Mod.

iii. For all ψ : X −⇀◦ 1 in Φ[X] and all continuous/contractive maps f : X → Y and
g : Y → X where g∗ ∈ K,

ψ ◦ f ∗ ∈ Φ[Y ] and ψ ◦ g∗ ∈ Φ[Y ].
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Proof. By definition, ϕ : X −⇀◦ Y belongs to K if and only if pϕq : Y → PX factors
through Φ[X] ↪→ PX. Assume (i) and let ϕ : X −⇀◦ Y and ψ : Y −⇀◦ Z be in K. Then
pz∗ ◦ ψ ◦ ϕq : 1→ PX factors through Φ[X] ↪→ PX, for each z ∈ Z, hence ψ ◦ ϕ belongs
to K. The implication (ii)⇒(iii) is clear, so assume now (iii). Since K is closed under
compositions of the form ϕ ◦ f ∗, it is enough to show that i : Φ[X] ↪→ PX is closed under
suprema of U-modules of type Φ[X]−⇀◦ 1 in K. Let ψ : Φ[X]−⇀◦ 1 be in K. Then the
colimit of i and ψ in PX is given by ψ ◦ i∗ ◦ (y

X
)∗ ∈ Φ[X].

8.3. Definition. A subcategory K of U-Mod is called saturated whenever K satisfies
(12) and contains f ∗, for every f : X → Y in Top respectively in App.

8.4. Proposition. Every saturated family Φ[X] (X in Top or App) of U-modules of type
X −⇀◦ 1 defines via (12) a saturated subcategory K = (U,Φ)-Mod of U-Mod; and every
saturated subcategory K of U-Mod defines a saturated family Φ[X] := K(X, 1) (X in Top
or App) of U-modules of type X −⇀◦ 1. Moreover, these two constructions are inverse to
each other.

Due to the considerations above, throughout this section we assume that a saturated
subcategory (U,Φ)-Mod of U-Mod is given. Following the nomenclature of [Clementino
and Hofmann, 2009b], a continuous/contractive map f : X → Y is called Φ-dense
if f∗ ∈ (U,Φ)-Mod, and a topological/approach space X is called Φ-injective if it is
injective w.r.t. Φ-dense embeddings. Furthermore, we define

ΦX = {ψ ∈ PX | ψ ∈ (U,Φ)-Mod}

as a subspace of PX. One verifies easily that the Yoneda embedding y : X → PX
corestricts to a Φ-dense mapping yΦ

X
: X → ΦX. For each U-module ϕ : X −⇀◦ Y ,

ϕ ∈ (U,Φ)-Mod if and only if its mate pϕq : Y → PX factors through the embedding
ΦX ↪→ PX.

For a U-module ϕ : X −⇀◦ Y in (U,Φ)-Mod, − ◦ ϕ : PX → PY sends ψ ∈ ΦX to
ψ ◦ ϕ ∈ ΦX and therefore restricts to − ◦ ϕ : ΦX → ΦY . In particular, Pf : PX → PY
restricts to Φf : ΦX → ΦY since f ∗ ∈ (U,Φ)-Mod. The right adjoint − ◦ f∗ of Pf
restricts to a right adjoint of Φf if f is Φ-dense. In fact, it is shown in [Clementino and
Hofmann, 2009b] that f is Φ-dense if and only if Φf has a right adjoint.

8.5. Definition. A topological/approach space X is called Φ-cocomplete whenever X
has all weighted colimits where the weight ψ : D−⇀◦ A belongs to (U,Φ)-Mod. A continu-
ous/contractive map f : X → Y is called Φ-cocontinuous if it preserves all Φ-weighted
colimits which exist in X.

The following four results can be found in [Clementino and Hofmann, 2009b].

8.6. Theorem. The following assertions are equivalent, for a topological/approach space
X.

i. X is Φ-cocomplete.
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ii. yΦ
X

: X → ΦX has a left adjoint SupΦ
X : ΦX → X.

iii. X is Φ-injective.

8.7. Proposition. Let f : X → Y be a continuous/contractive map between Φ-co-
complete spaces.

a. f is Φ-cocontinuous if and only if f · SupΦ
X ' SupΦ

Y ·Φf .

b. f is Φ-cocontinuous and Φ-dense if and only if f is left adjoint.

8.8. Corollary. For each space X, ΦX is Φ-cocomplete where SupΦ
ΦX = − ◦ (yΦ

X
)∗.

Furthermore, the inclusion map ΦX ↪→ PX is Φ-cocontinuous.

8.9. Theorem. The subcategory Φ-Coctssep of Top/App consisting of Φ-cocomplete T0-
spaces and Φ-cocontinuous morphisms is reflective with the Yoneda embedding as universal
arrow. Furthermore, the inclusion functor Φ-Coctssep → Top/App is even monadic. The
induced monad � = (Φ, yΦ,mΦ) is of Kock-Zöberlein type and has Φ as functor, the
Yoneda embeddings yΦ

X
: X → ΦX as units and mΦ

X := − ◦ (yΦ
X

)∗ : ΦΦX → ΦX as
multiplications.

8.10. Theorem. Let (U,Φ)-Mod be a saturated subcategory of U-Mod. Then (U,Φ)-Mod
is dually 2-equivalent to the Kleisli category of � = (Φ, yΦ,mΦ) on Top/App.

Proof. We have seen already that U-modules X −⇀◦ Y in (U,Φ)-Mod are in bijection
with continuous/contractive maps of type Y → ΦX, where the identity distributor a :
X −⇀◦ X corresponds to the Yoneda embedding yΦ

X
: X → ΦX. Let ϕ : X −⇀◦ Y and

ψ : Y −⇀◦ Z be in (U,Φ)-Mod. By Example 8.1,

pψ ◦ ϕq = colim( pϕq, ψ) = SupΦ
ΦX ·Φ pϕq · pψq = mΦ

X ·Φ pϕq · pψq.

The notion of complete distributivity generalises in an obvious way to this relative
case, and was studied in this context under the name “continuity” in [Hofmann and
Waszkiewicz, 2011].

8.11. Definition. Let (U,Φ)-Mod be a saturated subcategory of U-Mod. A Φ-cocom-
plete topological/approach space X is called Φ-distributive whenever SupΦ

X : ΦX → X
has a left adjoint t : X → ΦX.

One naturally expects that the proofs of Section 6 can be adapted to this case leading
to a duality theorem for “Φ-algebraic spaces”. It is the aim of the remainder of this
section to show that this is indeed the case.

More generally, R. Rosebrugh and R.J. Wood showed in [Rosebrugh and Wood, 1994]
that the category CCDsup of constructively completely distributive lattices and suprema
preserving maps is equivalent to the idempotent split completion kar(Rel) of the category
Rel of sets and relations, as well as to the idempotent split completion kar(Mod) of the
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category Mod of ordered sets and modules. Later on, in [Rosebrugh and Wood, 2004]
they observed that this theorem is “not really about lattices” but rather a special case of
a much more general result about “a mere monad D on a mere category C”.

8.12. Theorem. Let D be a monad on a category C where idempotents split. Then

kar(CD) ' Spl(CD).

Here CD denotes the Kleisli and CD the Eilenberg–Moore category of D, kar(CD) the
idempotent split completion of CD and Spl(CD) the full subcategory of CD defined by those
algebras (X,α) which admit a splitting t : X → DX, α · t = 1X in CD.

Proof. See [Rosebrugh and Wood, 2004].

Note that, as shown in [Rosebrugh and Wood, 2004], if D is of Kock-Zöberlein type,
then a D-algebra (X,α) admits at most one splitting which is necessarily left adjoint to
α.

Since it is important for the remainder of this section, below we explain this result
more in detail. Recall that an idempotent morphism e : X → X in a category A splits
if e = s · r for r : X → Y and s : Y → X in A with r · s = 1Y . One says that
idempotents split in A if every idempotent is of this form. Most “everyday” categories
have this property since s can be taken as the equaliser of e and 1X and necessarily r as
the induced morphism, or r as the coequaliser of e and 1X and s as the induced morphism;
supposing here that these (co)limits exist. The arguably most prominent example of a
(highly) non-complete category is Rel, and for instance the idempotent relation <: R−→7 R
does not split in Rel. In any case, the idempotent split completion kar(A) of A has as
objects pairs (X, e) where e is idempotent, and a morphism f : (X, e)→ (X ′, e′) in kar(A)
is an A-morphism f : X → X ′ such that e′ · f = f = f · e. The category A is fully
embedded into kar(A) via X 7→ (X, 1X), all idempotents split in kar(A) and it is indeed
the free idempotent split completion of A. To explain the latter, let F : A → B be a
functor where idempotents split in B. One can construct now the (essentially unique)
extension F̃ : kar(A) → B as follows. For any object (X, e) in kar(A), define F̃ (X, e)
as the idempotent split FX

r−→ F̃ (X, e)
s−→ FX of the idempotent Fe in B; and for a

morphism f : (X, e)→ (X ′, e′) in kar(A) put F̃ f = r′ · Ff · s where r′ and s′ split Fe′.
A category where idempotents split is sometimes also called Cauchy complete, due to

the fact that in the language of modules both properties (for categories and metric spaces
respectively) are instances of the same definition. Therefore many properties we know
about Cauchy completion of metric spaces are shared by kar(A), for instance:

8.13. Lemma. Let A be a full subcategory of B and assume that idempotents split in
B. Let A be the full subcategory of B defined by the retracts of the objects in A. Then
idempotents split in A and A→ A is the free idempotent split completion of A.

Proof. Every idempotent in A splits in B and the splitting belongs to A. By definition,
every B in A splits some idempotent e : A → A in A. If B splits also e′ : A′ → A′
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in A, so that A
r−→ B

s−→ A and A′
r′−→ B

s−→ A′ with e = sr, rs = 1B and e′ = s′r′,
r′s′ = 1B, then s′r : (A, e) → (A′, e′) and sr′ : (A′, e′) → (A, e) are inverse to each other
in kar(A). Choosing for every B in A such an idempotent e : A → A in A defines the
object part of a functor G : A → kar(A), which sends a morphism f : B → B′ in A to
s′fr : (A, e) → (A′, e′) in kar(A). With F : kar(A) → A denoting a functor induced by
the universal property, one verifies that both GF and FG are naturally isomorphic to the
identity.

Clearly, every algebra (X,α) which admits a splitting t : X → DX is a retract of
the free algebra DX. Vice versa, if (X,α) is a retract of a free algebra, then (X,α) is
projective with respect to those morphisms in CD which are split epimorphisms in C,
hence α : DX → X admit a splitting t : X → DX. Consequently, Spl(CD) is the free
idempotent split completion of full subcategory of CD defined by the free algebras which
is known to be equivalent to CD, and Theorem 8.12 follows.

Our principal object of interest here is the monad � = (Φ, yΦ,mΦ) on Top/App, for
a given saturated subcategory (U,Φ)-Mod of U-Mod. We know already (see Theorem
8.9) that the category of Eilenberg–Moore algebras of � has Φ-cocomplete T0-spaces as
objects, and Φ-cocontinuous maps as morphisms. The objects of Spl(Top�) respectively
Spl(App�) are precisely the Φ-distributive T0-spaces, and we denote the category of Φ-
distributive T0-spaces and Φ-cocontinuous maps as Φ-DTopcocts/Φ-DAppcocts.

Combining Theorem 8.12 with Theorem 8.10 yields

8.14. Theorem. kar((U,Φ)-Mod)op ' Φ-DTopcocts/Φ-DAppcocts.

Below we give a description of the corresponding equivalence functors

kar((U,Φ)-Mod)op S−→ Φ-DTopcocts/Φ-DAppcocts

and

Φ-DTopcocts/Φ-DAppcocts
I−→ kar((U,Φ)-Mod)op.

Of course, the equivalence of Theorem 8.14 is induced by the equivalence

ϕ : X −⇀◦ X ′ 7→ (− ◦ ϕ) : ΦX ′ → ΦX

between (U,Φ)-Modop and the full subcategory of Φ-Coctssep defined by the free alge-
bras. Accordingly, the functors S and I can be constructed as follows. For (X, θ) in
kar((U,Φ)-Mod), let ΦX

r−→ S(X, θ)
s−→ ΦX be a splitting of the idempotent − ◦ θ :

ΦX → ΦX; to have something concrete,

S(X, θ) = {ψ ∈ Φ | ψ ◦ θ = ψ},

r : ΦX → S(X, θ), ψ 7→ ψ ◦ θ and s : S(X, θ) → ΦX is the inclusion functor. If
ϕ : (X, θ)→ (X ′, θ′), then Sϕ : S(X, θ)→ S(X ′, θ′) sends ψ ∈ S(X, θ) to ψ ◦ θ. Let now
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X be a Φ-distributive T0-space with yΦ
X
` SupΦ

X ` t. Then t : X → ΦX corresponds
to a module θ : X −⇀◦ X in (U,Φ)-Mod which is necessarily idempotent. Furthermore,

ΦX
SupΦ

X−−−→ X
t−→ ΦX splits the idempotent − ◦ θ : ΦX → ΦX, and therefore I(X) can

be taken as (X, θ). Accordingly, for f : X → X ′ one calculates now I(f) = θ′ ◦ f ∗ ◦ θ, in
the sequel we denote θ′ ◦ f ∗ ◦ θ also as f#. Note that both functors S and I are actually
2-functors.

For a Φ-distributive T0-space X, the natural isomorphism X ' SI(X) stems from the
fact that both X and S(X, θ) split the idempotent − ◦ θ : ΦX → ΦX. Hence,

X → S(X, θ), x 7→ x∗ ◦ θ and S(X, θ)→ X, ψ 7→ SupΦ
X(ψ)

are inverse to each other. Certainly, also (X, θ) ' IS(X, θ) for every object (X, θ) in
kar((U,Φ)-Mod), but to describe the natural isomorphism (X, θ)−⇀◦ IS(X, θ) we need
some notation.

For (X, θ) in kar((U,Φ)-Mod) we define θ̂ = (−◦θ)· pθq : X → S(X, θ), which is indeed

just the corestriction of pθq : X → ΦX to S(X, θ). Furthermore, we put θ̂+ = θ̂∗ ◦ θ and

θ̂+ = θ ◦ θ̂∗. Note that θ̂+ ◦ θ̂+ = θ since θ̂∗ ◦ θ̂∗ = pθq
∗ ◦ pθq∗ = JU pθq(−), pθq(−)K = θ ◦− θ

by Theorem 5.4, idempotency of θ gives θ ≤ θ ◦− θ, and therefore θ = θ ◦ θ ◦ θ ≤
θ ◦ (θ ◦− θ) ◦ θ ≤ θ ◦ θ = θ. One easily verifies that the suprema in S(X, θ) are given by

SupΦ
S(X,θ) : ΦS(X, θ)→ S(X, θ), Ψ 7→ Ψ ◦ θ̂+,

and the left adjoint of SupΦ
S(X,θ) by

t : S(X, θ)→ ΦS(X, θ), ψ 7→ ψ ◦ θ̂+.

Therefore t ·SupΦ
S(X,θ) sends ψ to ψ ◦ θ̂+ ◦ θ̂+, hence t = pωq for ω = θ̂+ ◦ θ̂+. Since S(X, θ)

splits both − ◦ θ and − ◦ ω,

ΦX
−◦θ //

$$

ΦX

S(X, θ)

::

t

$$
ΦS(X, θ)

SupΦ
S(X,θ)

::

−◦ω
// ΦS(X, θ)

(X, θ) and (S(X, θ), ω) are naturally isomorphic in kar((U,Φ)-Mod) via

θ̂+ : (X, θ)−⇀◦ (S(X, θ), ω) and θ̂+ : (S(X, θ), ω)−⇀◦ (X, θ).

Finally, we note that the diagrams

(X, θ) ◦
ϕ /

◦θ̂+
�

(X ′, θ′)

◦θ̂′+
�

(S(X, θ), ω) ◦
(−◦ϕ)#

/ (S(X ′, θ′), ω′)

X
f //

θ̂
��

X ′

θ̂′
��

S(X, θ)
−◦f#

// S(X ′, θ′)
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commute, for ϕ : (X, θ) → (X ′, θ′) in kar((U,Φ)-Mod) and f : X → Y in Φ-DTopcocts

respectively Φ-DAppcocts.

8.15. Definition. We call a Φ-distributive T0-space X Φ-algebraic if X is isomorphic
to a space of form ΦY .

Moving to the other side of the equivalence, X is Φ-algebraic if and only if (X, θ) is
isomorphic to some (Y, (1Y )∗) in kar((U,Φ)-Mod). Let X be Φ-algebraic, and assume
that α : (Y, (1Y )∗)−⇀◦ (X, θ) and β : (X, θ)−⇀◦ (Y, (1Y )∗) are inverse to each other in
kar((U,Φ)-Mod). As above one verifies that α : Y −⇀◦ X is left adjoint to β : X −⇀◦ Y
in (U,Φ)-Mod, and, since X is Φ-cocomplete, α = f∗ and β = f ∗ for some f : Y → X.
Furthermore, f equalises yΦ

X
, pθq : X → ΦX since f ∗ ◦ θ = f ∗. We write i : A → X for

the equaliser of yΦ
X
, pθq : X → ΦX, and h : Y → A for the map induced by f . Then

f ∗ = h∗ ◦ i∗, hence h∗ = f ∗ ◦ i∗ and

i∗ ◦ f∗ ◦ h∗ = i∗ ◦ f∗ ◦ f ∗ ◦ i∗ = i∗ ◦ θ ◦ i∗ = i∗ ◦ i∗ = (1A)∗,

f∗ ◦ h∗ ◦ i∗ = f∗ ◦ f ∗ = θ ≤ (1X)∗.

Therefore f∗ ◦ h∗ a i∗ in U-Mod, which implies i∗ = f∗ ◦ h∗ ∈ (U,Φ)-Mod. Clearly,
i∗ ◦ i∗ = (1A)∗, but also i∗ ◦ i∗ = θ since

θ = f∗ ◦ f ∗ = i∗ ◦ h∗ ◦ h∗ ◦ i∗ ≤ i∗ ◦ i∗ = i+ ◦ i+ ≤ θ.

8.16. Proposition. Let X a Φ-distributive T0-space, and i : A→ X be the equaliser of
yΦ
X
, pθq : X → ΦX. Then X is Φ-algebraic if and only if i is Φ-dense and i∗ ◦ i∗ = θ.

The full subcategory of Φ-DTop respectively Φ-DApp determined by the Φ-algebraic
spaces we denotes as Φ-ATop and Φ-AApp respectively.

8.17. Theorem. (U,Φ)-Mod is dually equivalent to Φ-ATopcocts/Φ-AAppcocts.

The functor S : (U,Φ)-Modop → Φ-ATop/Φ-AApp is just the restriction of the func-
tor S : kar((U,Φ)-Mod)op → Φ-DTop/Φ-DApp, its inverse C : Φ-ATop/Φ-AApp →
(U,Φ)-Modop substitutes (X, θ) by the isomorphic (A, (1A)∗) where i : A → X denotes
the equaliser of yΦ

X
, pθq : X → ΦX, and accordingly sends f : X → X ′ to the restriction

of f ∗ to A and A′, that is, to i∗ ◦ f ∗ ◦ i′∗. One easily verifies (see Lemma 6.5):

8.18. Lemma. For X in (U,Φ)-Mod, the equaliser of Φ(yΦ
X

), yΦ
ΦX

: ΦX → ΦΦX is given
by

X̃Φ := {ψ ∈ ΦX | ψ : X −⇀◦ 1 is right adjoint in U-Mod} ↪→ ΦX

We write ηΦ
X : X → CS(X) for the restriction of the Yoneda embedding yΦ

X
to X̃Φ,

then the isomorphism X −⇀◦ CS(X) is given by (ηΦ
X)∗. For a Φ-algebraic space X, the

isomorphism SC(X)→ X is the restriction of SupΦ
X to ΦA.

Since both S and C are indeed 2-functors, we obtain immediately that the cate-
gory Map((U,Φ)-Mod) of left adjoint modules in (U,Φ)-Mod is dually equivalent to the
category Φ-ATop/Φ-AApp of Φ-algebraic (topological/approach) spaces and right adjoint
Φ-cocontinuous maps between them.
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8.19. Definition. We call a T0-space X Φ-sober if each left adjoint ϕ : Y −⇀◦ X in
(U,Φ)-Mod is of the form ϕ = f∗ for some (unique) f : Y → X.

Note that each space of the form ΦX is Φ-sober. More important, also X̃Φ is Φ-sober
which can be seen as follows. For any Ψ : X̃Φ−⇀◦ 1 in (U,Φ)-Mod which is right adjoint
in U-Mod put ψ = Ψ ◦ (ηΦ

X)∗, then ψ ∈ X̃Φ and Ψ = ψ ◦ (ηΦ
X)∗ = ψ∗ ◦ (ηΦ

X)∗ ◦ (ηΦ
X)∗ = ψ∗.

We write Φ-Sob for the category of Φ-sober spaces and Φ-dense maps, the considerations
above imply that (−)∗ : Φ-Sob → Map((U,Φ)-Mod) is an equivalence of categories. We
conclude:

8.20. Theorem. Φ-Sob is dually equivalent to Φ-ATop/Φ-AApp.

It is high time to present examples.

9. Examples of choices of weighting

In this section we describe some possible choices of (U,Φ)-Mod and derive properties of
spaces and maps arising from these choices (Φ-cocomplete spaces and Φ-dense maps, for
instance), and in some of these cases we spell out the meaning of the duality theorems of
the previous sections. We have to admit right at the beginning that, unfortunately, we
do not have yet intrinsic topological descriptions of Φ-distributivity or Φ-algebraicity in
general. Nevertheless, we hope to be able to convince the reader that these spaces have
nice properties and that it is therefore desirably to have such descriptions.

In the topological case, we know that P is isomorphic to the filter monad on Top.
Consequently, the monad � corresponding to a choice (U,Φ)-Mod of U-modules is iso-
morphic to a submonad of the filter monad, which puts us in the context of [Escardó
and Flagg, 1999] where many semantic domains are identified as the algebras for certain
submonads of the filter monad. In [Clementino and Hofmann, 2009b] we showed already
how the defining properties of these submonads translate into the language of modules.
It was also observed there that many of these examples can be described in a uniform
manner as follows: take (U,Φ)-Mod as the category all those modules ϕ : X −⇀◦ Y where
“ϕ-colimits commute with certain limits” (see [Kelly and Schmitt, 2005]), that is, where
the monotone/contractive map

ϕ ◦ − : U-Mod(1, X)→ U-Mod(1, Y )

preserves chosen limits.

9.1. The absolute case. Certainly we can choose no limits at all, and then (U,Φ)-Mod
is the category U-Mod of all U-modules. The results of the previous section restate Theo-
rem 6.9 and, more general, tell us that the category CDTopcocts respectively CDAppcocts of
completely distributive T0-spaces and left adjoints in Top/App is dually equivalent to the
idempotent split completion kar(U-Mod) of U-Mod, and that the category TATopcocts re-
spectively TAAppcocts of totally algebraic T0-spaces and left adjoint continuous/contractive
maps is dually equivalent to U-Mod.
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9.2. The “inhabited” case. Our next example is (U,Φ)-Mod being the category of all
U-modules ϕ : X → Y where ϕ ◦ − preserves the top element, we call such an U-module
inhabited. Explicitly, ϕ : X −⇀◦ Y is inhabited if and only if

∀y ∈ Y ∃x ∈ UX . xϕy resp. 0 > sup
y∈Y

inf
x∈UX

ϕ(x, y).

A continuous map f between topological spaces is Φ-dense if and only if f is dense in
the usual topological sense, and a topological space X is Φ-cocomplete if and only if X is
densely injective, that is, a Scott domain (see [Gierz et al., 2003]). Correspondingly, we
call a contraction map f : X → Y between approach spaces X = (X, a) and Y = (Y, b)
dense if f is Φ-dense, that is, if

0 > inf
x∈UX

b(Uf(x), y)

for all y ∈ Y . Every right adjoint U-module is inhabited, hence a topological/approach
space is Φ-sober precisely if it is sober. The results of the previous section tells us now
that the category Sobdense respectively ASobdense of sober spaces and dense maps is du-
ally equivalent to the category of “inhabited algebraic” spaces and right adjoint continu-
ous/contractive maps which preserve inhabited suprema.

9.3. The prime case. One can go further and consider (U,Φ)-Mod being the category
of all U-modules ϕ : X −⇀◦ Y where ϕ ◦ − preserves finite or countable suprema, or
even all weighted limits. The latter case is not very interesting since for this choice a
U-module ϕ belongs to (U,Φ)-Mod if and only if ϕ is right adjoint. Colimits weighted
by right adjoints are absolute, that is, every continuous/contractive map preserves them.
Moreover, a T0-space X is Φ-cocomplete if and only if X is Φ-distributive if and only if
X is Φ-algebraic if and only if X is sober. Consequently, Theorem 8.20 just tells us that
the category of sober spaces and left adjoints is dually equivalent to the category of sober
spaces and right adjoints.

The first case, on the other hand, seems to be more promising. First of all, we
find it interesting that this definition, applied to metric spaces, yields forward Cauchy
completeness as shown in [Vickers, 2005]: for a metric space X, the modules ψ : X−→◦ 1
where ψ · − preserves finite infima correspond precisely to forward Cauchy filters, and x
is a supremum of ψ if and only if x is a limit point of the corresponding filter.

Turning now to the topological case, the induced monad � on Top is isomorphic to
the prime filter (of opens) monad which we encountered already in Section 4. Recall
from Section 4 that Top� is equivalent to the category OrdCompHaussep of anti-symmetric
ordered compact Hausdorff space and monotone continuous maps. These spaces are also
known under the designation stably compact (see [Gierz et al., 2003]) as they are pre-
cisely those spaces which are sober, locally compact, and have the property that their
compact down-sets4 are closed under finite intersections. As usual, it is enough to require
stability under empty and binary intersections, and stability under empty intersection

4Recall that our underlying order is dual to the specialisation order.
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translates to compactness of X. Note that a sober space is locally compact if and only
if it is core-compact if and only if it is exponentiable. A stably compact space is called
spectral (or coherent) if the compact opens form a basis for the topology of X. One
easily verifies that each space of the form ΦX is spectral, and with an argument similar
to the one used before Lemma 7.11 one shows that every Φ-distributive space is spectral.

A continuous map f : (X, a) → (Y, b) between topological spaces is Φ-dense if it
is dense in a very strong sense: for each y ∈ Y , there must exist a largest ultrafilter
x ∈ UX with Uf(x)→ y. For lack of a better name we call these maps ultra-dense. The
general results of [Clementino and Hofmann, 2009b] tell us that a topological T0-space
is stably compact if and only if it is injective with respect to ultra-dense embeddings.
Furthermore, by Theorem 8.20, the category Sobultra-dense of sober spaces and ultra-dense
maps is dually equivalent to the category of Φ-algebraic spaces (which are very special
spectral spaces) and right adjoint continuous maps which preserve smallest convergence
points of ultrafilters.

Every Φ-cocomplete approach T0-space X is sober since (U,Φ)-Mod contains all right
adjoint modules. Furthermore, for every ultrafilter x ∈ UX,

Y X(x) ◦ ϕ = ξ · Uϕ(x),

for all ϕ : 1−⇀◦ X, and therefore Y X(x) ◦ − : U-Mod(1, X) → [0,∞] preserves finite
suprema (which are infima in the natural order of [0,∞]). Therefore, by Proposition
4.7, X is also +-exponentiable. Unfortunately, we do not know yet a characterisation of
Φ-cocomplete approach spaces.

9.4. The ultrafilter case. One obtains a closely related example using the monad
morphism Y : U → P (see Proposition 5.8): for a space X, let Φ[X] be the image of
Y X . Of course, for topological spaces one gets the prime filter monad discussed above,
but the situation is different for approach spaces. We observed already that Y X(x0) ◦− :
U-Mod(1, X) → [0,∞] preserves finite suprema. Furthermore, using Remark 1.1 one
shows that

Y X(x0) ◦ (hom(u, ϕ)) > hom(u,Y X(x0) ◦ ϕ)

for every ϕ : 1−⇀◦ X and u ∈ [0,∞]. Since for every contraction map U-Mod(1, X) →
[0,∞] one has the reverse inequality, we conclude that Y X(x0) ◦ − preserves even the
operation hom(u,−) on U-Mod(1, X). This begs the question if every module ψ : X −⇀◦ 1
where ψ ◦ − preserves all finite suprema and “homing” with all u ∈ [0,∞] is of the form
ψ = Y X(x) for some x ∈ UX. If this is the case it follows that the corresponding class
(U,Φ)-Mod of U-modules is a subcategory of U-Mod (see Theorem 8.2); however, since
we do not know this yet we present a different argument.

Recall that the functor M0 : App → Met sends X = (X, a) to M0(X) = (UX, ã)
where ã = Ua · m◦X . More general, for an arbitrary U-relation ϕ : X −⇀7 Y we define
ϕ̃ = Uϕ ·m◦X : UX−→7 UY . Given also ψ : Y −⇀7 Z, then

ψ̃ ◦ ϕ = Uψ · UUϕ · Um◦X ·m◦X = Uψ · UUϕ ·m◦UX ·m◦X = Uψ ·m◦X · Uϕ ·m◦X = ψ̃ · ϕ̃.
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Consequently, if ϕ : X −⇀◦ Y isU-module, then ϕ̃ : M0(X)−→◦ M0(Y ) is a module between
metric spaces. We also remark that ϕ can be seen as a module ϕ : M0(X)−→◦ Y0. By
definition, ϕ : X −⇀◦ Y belongs to (U,Φ)-Mod if there is a function f : Y → UX such
that

ϕ = ã(−, f(−)) = f ◦ · ã = f ∗.

Note that f : M0(X) → Y0 is necessarily contractive since f ∗ = ϕ is a module between
metric spaces. Let now ϕ : (X, a)−⇀◦ (Y, b) and ψ : (Y, b)→ (Z, c) be in (U,Φ)-Mod with
ψ = g∗ and ϕ = f ∗. Then

ψ ◦ ϕ = g◦ · b̃ · Uϕ ·m◦X = g◦ · b̃ · ϕ̃ = g◦ · b̃ ◦ ϕ = g◦ · ϕ̃ = g◦ · Uϕ ·m◦X
= g◦ ·Uf ◦ ·UUa ·Um◦X ·m◦X = g◦ ·Uf ◦ ·m◦X ·Ua ·m◦X = (mX ·Uf ·g) · ã = (mX ·Uf ·g)∗.

The following lemma contains the approach counterpart to Example 6.6.

9.5. Lemma. Φ[X] contains all right adjoint U-modules ψ : X −⇀◦ 1.

Proof. We make use of the description of maps ϕ : X → [0,∞] as variable sets (Av)v∈[0,∞]

where Av = {x ∈ X | ϕ(x) 6 v}. Let now ψ : X −⇀◦ 1 with left adjoint ϕ : 1−⇀◦ X.
By [Banaschewski et al., 2006, Proposition 5.7], there is some ultrafilter x0 ∈ UX with
ϕ = a(x0,−) and Av ∈ x0, for all v > 0. Furthermore, by [Clementino and Hofmann,
2009a, Subsection 6.4], the variable set (Av)v∈[0,∞] corresponding to ψ is given by

Av = {x ∈ UX | ∀u ∈ [0,∞] ∀x ∈ X . (a(x0, x) 6 u ⇒ a(x, x) 6 u+ v)}.

We show that x ∈ Av ⇐⇒ Y (x0)(x) 6 v, for all v ∈ [0,∞]. Assume first Y (x0)(x) =
â(x, x0) 6 v, with â = Ua · m◦X . If a(x0, x) 6 u, then, since a is transitive, a(x, x) 6
â(x, x0) + a(x0, x) 6 v + u; and therefore x ∈ Av. Assume now x ∈ Av and let B ∈ x. Let
u > 0. Then, by hypothesis, Au ⊆ A(v+u), hence A(v+u) ∈ x0. Consequently (see Example
4.4), Y (x0)(x) = â(x, x0) 6 v.

By definition, the corresponding monad � appears in the (epi,mono)-factorisationU�
�� P of the monad morphism Y : U → P, and the monad morphism U � � induces
full embeddings App� → MetCompHaus. By the “second Yoneda Lemma” (Lemma 5.7),
Y X : UX → PX is fully faithful. Therefore UX � ΦX is a quotient map, in fact,
UX � ΦX gives the T0-reflection of UX. Consequently, every separated metric compact
Hausdorff space X is also a �-algebra since the universal property of UX � ΦX provides
us with an inverse SupΦ

X : ΦX → X of yΦ
X

: X → ΦX. We conclude that App� is
equivalent to the category of separated metric compact Hausdorff spaces.

Given an approach space X = (X, a) which is a Φ-algebra, then X is +-exponentiable
by Proposition 4.7. Furthermore, the structure map α : UX → X picks, for each ultrafilter
x, a supremum of the U-module Y X(x) : X −⇀◦ 1, that is, a point α(x) ∈ X such that,
for each x ∈ X, a(x, x) = a0(α(x), x). Conversely, assume now that an approach space
X = (X, a) admits all suprema of U-module Y X(x) : X −⇀◦ 1 where x ∈ UX. Let
l : UX → X be any map which chooses a supremum of Y X(x), for each x ∈ UX. Then
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l : UX → X is a morphism in Met but in general not in App. However, if X is in addition
+-exponentiable, then l is indeed a morphism in App. To see this, recall from [Hofmann,
2007] that +-exponentiability of X is equivalent to commutativity of

UUX

mX
��

�Ua // UX
_a
��

UX �
a

// X

in NRel. Then, with a = a0 · l, one obtains

l · Ua ·m◦X ·mX ≤ a0 · l · Ua ·m◦X ·mX = a ·mX = a · Ua
= a · Ua0 · Ul = a · Ua · UeX · Ul ≤ a · Ua ·m◦X · Ul ≤ a · Ul.

We conclude:

9.6. Proposition. An approach space X is Φ-cocomplete if and only if X is +-ex-
ponentiable and, for each ultrafilter x ∈ UX, there exists a point x0 ∈ X such that
a(x, x) = a0(x0, x), for all x ∈ X.

A contraction map f : (X, a)→ (Y, b) is Φ-dense if and only if, for each y ∈ Y , there
is some xy ∈ UX with b(Uf(x), y) = â(x, xy), for all x ∈ UX (where â = Ua ·m◦X).

9.7. The ultra-and-tensor case. Given X in App, we define Φ[X] as the set of all
U-modules ψ : X −⇀◦ 1 of the form ψ = Y X(x) C u for some x ∈ UX and u ∈ [0,∞]
(see Section 5, before Theorem 5.14). Hence, a U-module ϕ : X −⇀◦ Y between approach
spaces X = (X, a) and Y = (Y, b) belongs to (U,Φ)-Mod precisely if there exist functions
h : Y → UX and α : Y → [0,∞] with

ϕ(x, y) = ã(x, h(y)) + α(y),

for all x ∈ UX and y ∈ Y . As above, we use Theorem 8.2 to show that (U,Φ)-Mod is
closed under compositions in U-Mod. Let X = (X, a) and Y = (Y, b) be approach spaces
and assume that ψ : X −⇀◦ 1 belongs to Φ[X] with corresponding x0 ∈ UX and u ∈ [0,∞].
For f : X → Y in App and y ∈ UY one has

ψ ◦ f ∗(y) = ψ · (Uf ◦ · b̃)(y) = inf
x∈UX

b̃(y, Uf(x)) + ã(x, x0) + u = c̃(z, Uf(x0)) + u.

Therefore ψ ◦ f ∗ belongs to (U,Φ)-Mod. Let now g : Y → X be in App such that
g∗ : Y −⇀◦ X is in (U,Φ)-Mod, witnessed by k : X → UY and β : X → [0,∞]. Hence, for
all y ∈ UY and x ∈ X,

a · Ug(y, x) = g∗(y, x) = b̃(y, k(x)) + β(x).

To see that ψ ◦ g∗ belongs to Φ[Y ], observe first that, for a numerical relation r : X−→7 Y ,
a function γ : Y → [0,∞] and for s(x, y) = r(x, y) + γ(y), one has

Us(x, y) = Ur(x, y) + ξ · Uγ(x)
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for all x ∈ UX and y ∈ UY , where ξ : U [0,∞]→ [0,∞] is defined as ξ(u) = supA∈u inf A.
From this one concludes

ã(Ug(y), x) = Ua ·m◦X · Ug(y, x)

= U(a · Ug) ·m◦Y (y, x)

= inf
Y,mY (Y)=y

U(a · Ug)(Y, x)

= inf
Y,mY (Y)=y

Ub̃(Y, Uk(x)) + ξ · Uβ(x)

= Ub̃ ·m◦Y (y, Uk(x)) + ξ · Uβ(x)

= b̃(y,mY · Uk(x)) + ξ · Uβ(x),

and finally obtains

ψ ◦ g∗(y) = ψ(Ug(y)) = ã(Ug(y), x0) + u = b̃(y,mY · Uk(x0)) + ξ · Uβ(x0) + u,

for all y ∈ UY .
By the preceding example, Φ[X] contains all right adjoint U-modules ψ : X −⇀◦ 1,

hence every Φ-cocomplete approach T0-space is sober. Furthermore, both contraction
maps

tX : X ⊗ [0,∞]→ PX, (u, x) 7→ a(−, x) + u and Y X : UX → PX, x 7→ ã(−, x)

factor through ΦX ↪→ PX, hence, by Theorem 5.14:

9.8. Proposition. Every Φ-cocomplete approach space is exponentiable.

9.9. Monads over Set. So far we have exploited the fact that the category Φ-Cocts is
monadic over Top respectively App. However, under further conditions on (U,Φ)-Mod,
Φ-Cocts is also monadic over Set, and therefore Theorem 8.12 applies to the induced
monad on Set. To finish this paper we briefly discuss this case.

Recall from [Clementino and Hofmann, 2009b] that Φ-Cocts is monadic over Set pro-
vided that, in addition to the condition imposed in Section 8, (U,Φ)-Mod satisfies the fol-
lowing condition which we assume from now on: for each surjective continuous/contractive
map f , f∗ belongs to (U,Φ)-Mod. Hence, under these conditions, Φ-Cocts ' Set�0

where �0 is the restriction of the monad � on Top respectively App to Set. A mor-
phism from X to Y in the Kleisli category Set�0 is a map X → ΦY (necessarily con-
tinuous respectively contractive) where we consider X = (X, e◦X) and Y = (Y, e◦Y ) with
the discrete structure, and it corresponds to a U-module X −⇀◦ Y in (U,Φ)-Mod. We
write Φ-URel for the ordered category of all unitary U-relations ϕ : X −⇀7 Y where
ϕ : (X, e◦X)−⇀◦ (Y, e◦Y ) belongs to (U,Φ)-Mod, the composition is Kleisli composition
and the order on hom-sets is the pointwise one. Then the morphisms ϕ : X −⇀7 Y of
Φ-URel correspond precisely to the morphisms pϕq : Y → ΦX in Set�0 , and with the
help of Example 8.1 one concludes that the compositional structures match. In conclu-
sion, Φ-URel ' Set�0 , even as ordered categories. By definition, Φ-URel embeds fully into
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(U,Φ)-Mod by considering a set as a discrete space. For a topological/approach space
X = (X, a), the convergence relation a : X −⇀7 X is unitary and idempotent. Further-
more, a = i∗ ◦ i∗ where i : (X, e◦X)→ (X, a), x 7→ x, hence a : (X, e◦X)−⇀◦ (X, e◦X) belongs
to (U,Φ)-Mod. From this one obtains a full embedding (U,Φ)-Mod→ kar(Φ-URel), and
therefore kar((U,Φ)-Mod) ' kar(Φ-URel). From Theorem 8.14 we infer now that

kar(Φ-URel)op ' Φ-DTopcocts/Φ-DAppcocts.

For the choice of all U-modules on topological spaces, the result above tells us that
CDTopcocts is dually equivalent to kar(URel), where URel denotes the ordered category of
sets and unitary U-relations. Hence, by Theorem 7.16:

9.10. Theorem. The category Frm is dually equivalent to category Map(kar(URel)) de-
fined by the left adjoint morphisms in kar(URel).

By the theorem above, frames correspond to “spaces” (X, a) where a : UX−→7 X is
an idempotent convergence relation but not necessarily reflexive (that is, the principal

ultrafilter
�
x does not need to converge to x). Equivalently, one can describe these spaces

as pair (X,N) where N : X → FX is a neighbourhood system which satisfies all axiom
of a topology except for that a point does not need to belong to all of its neighbourhoods.
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Zöberlein, V. (1976), Doctrines on 2-categories, Math. Z. 148 (3), 267–279.

CIDMA – Center for Research and Development in Mathematics and Applications
Department of Mathematics
University of Aveiro
3810-193 Aveiro
Portugal
Email: dirk@ua.pt

This article may be accessed at http://www.tac.mta.ca/tac/ or by anonymous ftp at
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/28/3/28-03.{dvi,ps,pdf}



THEORY AND APPLICATIONS OF CATEGORIES (ISSN 1201-561X) will disseminate articles that
significantly advance the study of categorical algebra or methods, or that make significant new contribu-
tions to mathematical science using categorical methods. The scope of the journal includes: all areas of
pure category theory, including higher dimensional categories; applications of category theory to algebra,
geometry and topology and other areas of mathematics; applications of category theory to computer
science, physics and other mathematical sciences; contributions to scientific knowledge that make use of
categorical methods.
Articles appearing in the journal have been carefully and critically refereed under the responsibility of
members of the Editorial Board. Only papers judged to be both significant and excellent are accepted
for publication.
Full text of the journal is freely available in .dvi, Postscript and PDF from the journal’s server at
http://www.tac.mta.ca/tac/ and by ftp. It is archived electronically and in printed paper format.

Subscription information Individual subscribers receive abstracts of articles by e-mail as they
are published. To subscribe, send e-mail to tac@mta.ca including a full name and postal address. For in-
stitutional subscription, send enquiries to the Managing Editor, Robert Rosebrugh, rrosebrugh@mta.ca.

Information for authors The typesetting language of the journal is TEX, and LATEX2e
strongly encouraged. Articles should be submitted by e-mail directly to a Transmitting Editor. Please
obtain detailed information on submission format and style files at http://www.tac.mta.ca/tac/.

Managing editor. Robert Rosebrugh, Mount Allison University: rrosebrugh@mta.ca

TEXnical editor. Michael Barr, McGill University: barr@math.mcgill.ca

Assistant TEX editor. Gavin Seal, Ecole Polytechnique Fédérale de Lausanne:
gavin seal@fastmail.fm

Transmitting editors.
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