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THE CORE OF ADJOINT FUNCTORS

ROSS STREET

Abstract. There is a lot of redundancy in the usual definition of adjoint functors.
We define and prove the core of what is required. First we do this in the hom-enriched
context. Then we do it in the cocompletion of a bicategory with respect to Kleisli
objects, which we then apply to internal categories. Finally, we describe a doctrinal
setting.

1. Introduction

Kan [7] introduced the notion of adjoint functors. By defining the unit and counit natural
transformations, he paved the way for the notion to be internalized to any 2-category.
This was done by Kelly [8] whose interest at the time was particularly in the 2-category
of V-categories for a monoidal category V (in the sense of Eilenberg-Kelly [4]).

During my Topology lectures at Macquarie University in the 1970s, the students and
I realized, in proving that a function f between posets was order preserving when there
was a function u in the reverse direction such that f(x) ≤ a if and only if x ≤ u(a), did
not require u to be order preserving. I realized then that knowing functors in the two
directions only on objects and the usual hom adjointness isomorphism implied the effect
of the functors on homs was uniquely determined. Writing this down properly led to the
present paper.

Section 2 merely reviews adjunctions between enriched categories. Section 3 introduces
the notion of core of an enriched adjunction: it only involves the object assignments of the
two functors and a hom isomorphism with no naturality requirement. The main result
characterizes when such a core is an adjunction.

The material becomes increasingly for mature audiences; that is, for those with knowl-
edge of bicategories. Sections 4 and 5 present results about adjunctions in the Kleisli
object cocompletion of a bicategory in the sense of [13]. In particular, this is applied
in Section 6 to adjunctions for categories internal to a finitely complete category. By a
different choice of bicategory, where enriched categories can be seen as monads (see [2]),
we could rediscover the work of Section 3; however, we leave this to the interested reader.
In Section 7 we describe a general setting involving a pseudomonad (doctrine) on a bicat-
egory.
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2. Adjunctions

For V-categories A and X , an adjunction consists of

1. V-functors U : A −→ X and F : X −→ A;

2. a V-natural family of isomorphisms π : A(FX,A) ∼= X (X,UA) in V indexed by
A ∈ A, X ∈ X .

We write π : F a U : A −→ X .
The following result is well known; for example see Section 1.11 of [10].

2.1. Proposition. Suppose U : A −→ X is a V-functor, F : obX −→ obA is a function,
and, for each X ∈ X , π : A(FX,A) ∼= X (X,UA) is a family of isomorphisms V-natural
in A ∈ A. Then there exists a unique adjunction π : F a U : A −→ X for which
F : obX −→ obA is the effect of the V-functor F : X −→ A on objects.

3. Cores

3.1. Definition. For V-categories A and X , an adjunction core consists of

1. functions U : obA −→ obX and F : obX −→ obA;

2. a family of isomorphisms π : A(FX,A) ∼= X (X,UA) in V indexed by A ∈ A,
X ∈ X .

Given such a core, we make the following definitions:
(a) βX : X −→ UFX is the composite

I
j−→ A(FX,FX)

π−→ X (X,UFX);

(b) αA : FUA −→ A is the composite

I
j−→ X (UA,UA)

π−1

−→ A(FUA,X);

(c) UAB : A(A,B) −→ X (UA,UB) is the composite

A(A,B)
A(αA,1)−→ A(FUA,B)

π−→ X (UA,UB);

(d) FXY : X (X, Y ) −→ A(FX,FY ) is the composite

X (X, Y )
X (1,βY )−→ X (X,UFY )

π−1

−→ A(FX,FY ).

Clearly each adjunction π : F a U : A −→ X includes an adjunction core as part of
its data. Then it follows directly from the Yoneda lemma and the definitions (a) and (b)
that the effect of U and F on homs are as in (c) and (d).
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3.2. Theorem. An adjunction core extends to an adjunction if and only if one of the
diagrams (3.1) or (3.2) below commutes. The adjunction is unique when it exists.

A(A,B)⊗A(FX,A)
UA,B⊗π //

comp

��

X (UA,UB)⊗X (X,UA)

comp

��
A(FX,B) π

// X (X,UB)

(3.1)

X (Y, UA)⊗X (X, Y )
π−1⊗FX,Y //

comp

��

A(FY,A)⊗A(FX,FY )

comp

��
X (X,UA)

π−1
// A(FX,A)

(3.2)

Proof. We deal first with the version involving diagram (3.1). For an adjunction, (3.1)
expresses the V-naturality of π in A ∈ A. Conversely, given an adjunction core satisfying
(3.1), we paste to the left of (3.1) with X = UC, the diagram

A(A,B)⊗A(C,A)
1⊗A(αC ,1) //

comp

��

A(A,B)⊗A(FUC,A)

comp

��
A(C,B)

A(αC ,1)
// A(FUC,B)

(3.3)

which commutes by naturality of composition. This leads to the following commutative
square.

A(A,B)⊗A(C,A)
U⊗U //

comp

��

X (UA,UB)⊗X (UC,UA)

comp

��
A(C,B)

U
// X (UC,UB)

(3.4)

We also have the equality(
I

j−→ A(A,A)
U−→ X (UA,UB)

)
=

(
I

j−→ X (UA,UB)
)

(3.5)

straight from the definitions (b) and (c). Together (3.4) and (3.5) tell us that U is a
V-functor. Now the general diagram (3.1) expresses the V-naturality of π in A. By
Proposition 2.1, we have an adjunction determined uniquely by the core.

Writing Vrev for V with the reversed monoidal structure A⊗revB = B⊗A, and applying
the first part of this proof to the Vrev-enriched adjunction π−1 : Uop a F op : X op −→ Aop,
which is the same as an adjunction π : F a U : A −→ X , we see that it is equivalent to
an adjunction core satisfying (3.2).

3.3. Corollary. If V is a poset then adjunction cores are adjunctions.

Proof. All diagrams, including (3.1), commute in such a V .
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An object X of a category is often called preterminal when, for all objects K, there
is at most one morphism K −→ X. In the category Set, both the initial and terminal
objects are preterminal. A poset is a category in which every object is preterminal. A
V-category A is locally preterminal when each hom A(A,B) is preterminal in V . Using
this terminology, we can state a more general corollary.

3.4. Corollary. If in Definition 3.1 either A or X is locally preterminal then the ad-
junction core is an adjunction.

4. Adjunctions between monads

This section will discuss adjunctions in a particular bicategory KL(K) of monads in a
bicategory K. The results will apply to adjunctions between categories internal to a
category C with pullbacks.

As well as defining bicategories Bénabou [1] defined, for each pair of bicategories A
and K, a bicategory Bicat(A,K) whose objects are morphisms A −→ K of bicategories
(also called lax functors), whose morphisms are transformations (also called lax natural
transformations), and whose 2-cells are modifications. In particular, Bicat(1,K) is one
bicategory whose objects are monads in K; it was called Mnd(K) in [17] for the case of a
2-category K, where it was used to discuss Eilenberg–Moore objects in K. We shall also
use the notation Mnd(K) when K is a bicategory.

We write Kop for the dual of K obtained by reversing morphisms (not 2-cells). Monads
in Kop are the same as monads in K. So we also have the bicategory

Mndop(K) = Bicat(1,Kop)op

whose objects are monads in K. This was used in [17] to discuss Kleisli objects in K.
Two more bicategories EM(K) and KL(K), with objects monads in K, were defined

in [13]. The first freely adjoins Eilenberg–Moore objects and the second freely adjoins
Kleisli objects to K. In fact, EM(K) has the same objects and morphisms as Mnd(K)
but different 2-cells while KL(K) has the same objects and morphisms as Mndop(K) but
different 2-cells.

A monad in a bicategory K is an object A equipped with a morphism s : A −→ A and
2-cells η : 1A −→ s and µ : ss −→ s such that

s(ss)

sµ

!!
(ss)s

∼=
;;

µs

��

ss

µ

��
ss µ

// w

(4.1)

and the composites

s1
sη−→ ss

µ−→ s and 1s
ηs−→ ss

µ−→ s (4.2)
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should be the canonical isomorphisms. We shall use the same symbols η and µ for the
unit and multiplication of all monads; so we simply write (A, s) for the monad.

For monads (A, s) and (A′, s′) in K, a monad opmorphism (f, φ) : (A, s) −→ (A′, s′)
consists of a morphism f : A −→ A′ and a 2-cell φ : fs −→ s′f in K such that(

(fs) s
φs−→ (s′f) s

∼=−→ s′(fs)
s′φ−→ s′(s′f)

∼=−→ s′(s′f)
µf−→ s′f

)
=

(
(fs) s

∼=−→ f(ss)
fµ−→ fs

φ−→ s′f
)

(4.3)

and (
f1

fη−→ fs
φ−→ s′f

)
=

(
f1

∼=−→ 1f
ηf−→ s′f

)
. (4.4)

The composite of monad opmorphisms (f, φ) : (A, s) −→ (A′, s′) and (f ′, φ′) : (A′, s′) −→
(A′′, s′′) is defined to be (f ′f, φ′ ? φ) : (A, s) −→ (A′′, s′′) where φ′ ? φ is the composite

(f ′f) s
∼=−→ f ′(fs)

f ′φ−→ f ′(s′f)
∼=−→ (f ′s′) f

φ′f−→ (s′′f ′) f
∼=−→ s′′(f ′f) . (4.5)

The objects of both Mndop(K) and KL(K) are monads (A, s) in K. The morphisms
in both are the opmorphisms (f, φ). The 2-cells σ : (f, φ) −→ (g, ψ) : (A, s) −→ (A′, s′)
in Mndop(K) are 2-cells σ : f −→ g in K such that the following square commutes.

fs
φ //

σs

��

s′f

s′σ
��

gs
ψ

// s′g

(4.6)

Vertical and horizontal composition in Mndop(K) are performed in the obvious way so
that the projection Und : Mndop(K) −→ K, taking (A, s) to A, (f, φ) to f , and σ to σ,
preserves them. The associativity and unit isomorphisms in Mndop(K) are also such that
Und preserves them, making Und a strict morphism of bicategories.

A 2-cell ρ : (f, φ) −→ (g, ψ) : (A, s) −→ (A′, s′) in KL(K) is a 2-cell ρ : f −→ s′g in K
such that(

fs
φ−→ s′f

s′ρ−→ s′(s′g)
∼=−→ (s′s′) g

µg−→ s′g
)

=
(
fs

ρs−→ (s′g) s
∼=−→ s′ (gs)

s′ψ−→ s′ (s′g)
∼=−→ (s′s′) g

µg−→ s′g
)
. (4.7)

The vertical composite of the 2-cells ρ : (f, φ) −→ (g, ψ) and τ : (g, ψ) −→ (h, θ) is the
2-cell

f
ρ−→ s′g

s′τ−→ s′(s′h)
∼=−→ (s′s′)h

µh−→ s′h . (4.8)

The horizontal composite of 2-cells ρ : (f, φ) −→ (g, ψ) : (A, s) −→ (A′, s′) and ρ′ :
(f ′, φ′) −→ (g′, ψ′) : (A′, s′) −→ (A′′, s′′) is the 2-cell

f ′f
f ′ρ−→ f ′(s′g)

∼=−→ (f ′s′) g
φ′g−→ (s′′f ′) g

(s′′ρ′)g−→ (s′′(s′′g′)) g
∼=−→ (s′′s′′) (g′g)

µ(g′g)−→ s′′(g′g) . (4.9)
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Each 2-cell σ : (f, φ) −→ (g, ψ) in Mndop(K) defines a 2-cell ρ : (f, φ) −→ (g, ψ) in KL(K)
via ρ = ηg ·σ. The associativity and unit isomorphisms for KL(K) are determined by the
condition that we have a strict morphism of bicategories

K : Mndop(K) −→ KL(K)

which is the identity on objects and morphisms and takes each 2-cell σ to ηg · σ.
Henceforth we shall invoke the coherence theorem (see [15] and [5]) that every bi-

category is biequivalent to a 2-category to write as if we were working in a 2-category
KL(K). We also recommend reworking the proofs below using the string diagrams of [6]
as adapted for bicategories in [19] and [20].

Now we are in a position to examine what is involved in an adjunction

(f, φ) a (u, υ) : (A, s) −→ (X, t) (4.10)

with counit α : (f, φ) · (u, υ) −→ 1(A,s) and unit β : 1(X,t) −→ (u, υ) · (f, φ) in KL(K).
We have morphisms u : A −→ X and f : X −→ A in K. We have 2-cells υ : uf −→

tu and φ : ft −→ sf both satisfying (4.3) and (4.4) with the variables appropriately
substituted.

We have a 2-cell α : fu −→ s satisfying(
fus

αs−→ ss
µ−→ s

)
=

(
fus

fυ−→ ftu
φu−→ sfu

sα−→ ss
µ−→ s

)
(4.11)

which is (4.7) for α.
We have a 2-cell β : 1X −→ tuf satisfying(

t
tβ−→ ttuf

µuf−→ tuf
)

=
(
t

βt−→ tuft
tuφ−→ tusf

tυf−→ ttuf
µuf−→ tuf

)
(4.12)

which is (4.7) for β.
Using the rules for compositions in KL(K), we see that the two triangle conditions for

the counit and unit of an adjunction become, in this case, the identities(
f

ηf−→ sf
)

=
(
f

fβ−→ ftuf
φuf−→ sfuf

sαf−→ ssf
µf−→ sf

)
(4.13)

and (
u

ηu−→ tu
)

=
(
u

βu−→ tufu
tuα−→ tus

tυ−→ ttu
µu−→ tu

)
. (4.14)

It is common to call a morphism f : X −→ A in a bicategory K a map when it has a
right adjoint. We write f ? : A −→ X for a selected right adjoint, ηf : 1X −→ f ?f for the
unit, and εf : ff ? −→ 1A for the counit.

4.1. Theorem. Suppose (4.10) is an adjunction in KL(K) with counit α and unit β, and
suppose f : X −→ A is a map in K. Then the composite 2-cell

π : f ?s
βf?s−→ tuff ?s

tuεf s−→ tus
tυ−→ ttu

µu−→ tu (4.15)

in K is invertible with inverse defined by the composite 2-cell

π−1 : tu
ηf tu−→ f ?ftu

f?φu−→ f ?sfu
f?sα−→ f ?ss

f?µ−→ f ?s. (4.16)
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Proof. Without yet knowing that π−1 as given by (4.16) is inverse to π, we calculate
ππ−1:

µu · tυ · tuεfs · βf ?s · f ?µ · f ?sα · f ?φu · ηf tu
= µu · tυ · tuµ · tusα · tuφu · tuεfftu · tufηf tu · βtu
= µu · tυ · tuµ · tusα · tuφu · βtu
= µu · µtu · ttυ · tυs · tusα · tuφu · βtu
= µu · tυ · tuα · µufu · tυfu · tuφu · βtu
= µu · tυ · tuα · µufu · tβu
= µu · tυ · µus · ttuα · tβu
= µu · tµu · ttυ · ttuα · tβu
= µu · tηu
= 1tu.

The first, fourth, sixth and seventh equalities above follow purely from properties of
composition in K. The second equality uses the triangular equation appropriate to the
unit and counit for f and its right adjoint. The third equality uses the opmorphism
property of (u, υ) and associativity of µ. The fifth equality uses (4.12). The eighth
equality uses (4.14).

Now we calculate π−1π:

f ?µ · f ?sα · f ?φu · ηf tu · µu · tυ · tuεfs · βf ?s
= f ?µ · f ?sµ · f ?ssα · f ?sφu · f ?φtu · ηf ttu · tυ · tuεfs · βf ?s
= f ?µ · f ?µs · f ?sαs · f ?φus · ηf tus · tuηfsβf ?s
= f ?µ · f ?sεfs · f ?ηff ?s · ηff ?s
= 1f?s,

using the associativity and unit conditions for the monads, the opmorphism property of
(f, φ), equation (4.11), and equation (4.14).

As expected by general principles of doctrinal adjunction [9], a monad opmorphism
(f, φ) : (X, t) −→ (A, s) for which f is a map in K gives rise to a monad morphism
(f ?, φ̂) : (A, s) −→ (X, t) where φ̂ : tf ? −→ f ?s is the mate of φ under the adjunction
f a f ? in the sense of [11].

4.2. Remark. The Kleisli construction for K is a left biadjoint for the pseudofunctor
K −→ KL(K) taking A to (A, 1A). The value of the biadjoint at (A, t) is denoted by
At. When the Kleisli construction exists, it takes the adjunction (4.10) in KL(K) to an
adjunction fφ a uυ : As −→ Xt in K.
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5. Cores between monads

5.1. Definition. An adjunction core (u, g, π) between monads (A, s) and (X, t) in a
bicategory K consists of the following data in K:

1. morphisms u : A −→ X and g : A −→ X;

2. an invertible 2-cell π : gs −→ tu.

Given such a core, we make the following definitions:
(a) β̄ : g −→ tu is the composite

g
gη−→ gs

π−→ tu;

(b) ᾱ : u −→ gs is the composite

u
ηu−→ tu

π−1

−→ gs;

(c) υ : us −→ tu is the composite

us
ᾱs−→ gss

gµ−→ gs
π−→ tu;

(d) ψ : tg −→ gs is the composite

tg
tβ̄−→ ttu

µu−→ tu
π−1

−→ gs.

5.2. Proposition. An adjunction core between monads (A, s) and (X, t) is obtained from
the data of Theorem 4.1 by putting g = f ?. Moreover, the β̄ of (a) and the ᾱ of (b) are
the mates of the unit β and counit α, respectively, the composite in (c) recovers υ, and
the ψ of (d) is the mate φ̂ of φ.

Proof. That we have an adjunction core follows from the invertibility of π according to
Theorem 4.1. Next we look at the composite in (a):

π · f ?η
= µu · tυ · tuεfs · βf ?s · f ?η
= µu · tυ · tuη · tuεf · βf ?

= µu · tηu · tuεf · βf ?

= tuεf · βf ?

which is the mate β̄ of β. That the composite in (b) gives ᾱ is a similar calculation.
Next we calculate:

π−1s · ηus
= f ?µs · f ?sαs · f ?φus · ηf tus · ηus
= f ?µs · f ?sαs · f ?φus · f ?fηfus · ηfus
= f ?µs · f ?sαs · f ?ηfus · ηfus
= f ?µs · f ?ηss · f ?αs · ηfus
= f ?αs · ηfus,
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so the composite in (c) is:

µu · tυ · tuεfs · βf ?sa · f ?µ · π−1s · ηus
= µu · tυ · tuεfs · βf ?s · f ?µ · f ?αs · ηfus
= µu · tυ · tuεfs · tuff ?µ · βf ?ss · f ?αs · ηfus
= µu · tυ · tuεfs · tuff ?µ · tuff ?αs · βf ?fus · ηfus
= µu · tυ · tuµ · tuεfss · tuff ?αs · βf ?fus · ηfus
= µu · tµu · ttυ · tυs · tuεfss · tuff ?αs · βf ?fus · ηfus
= µu · tµu · ttυ · tυs · tuαs · tuεffus · βf ?fus · ηfus
= µu · tµu · ttυ · tυs · tuαs · tuεffus · tufηfs · βus
= µu · tµu · ttυ · tυs · tuαs · βus
= µu · tυ · µus · tυs · tuαs · βus
= µu · tυ · ηus
= µu · ηtu · υ
= υ,

as required. The calculation for the composite in (d) is similar.

The Corollary of the following result should be compared with Theorem 3.2.

5.3. Theorem. For an adjunction core (u, g, π) between monads (A, s) and (X, t) in a
bicategory K, the following two commutativity conditions (5.1) and (5.2) are equivalent.

tus
tυ

""
gss

πs

<<

gµ

��

ttu

µu

��
gs π

// tu

(5.1)

tgs
ψs

!!
ttu

tπ−1
==

µu

��

gss

gµ

��
tu

π−1
// gs

(5.2)

Moreover, under these conditions, using definitions (a), (b), (c) and (d),
(i) (u, υ) : (A, s) −→ (X, t) is a monad opmorphism;
(ii) (g, ψ) : (A, s) −→ (X, t) is a monad morphism;
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(iii) π is equal to the composite

gs
β̄s−→ tus

tυ−→ ttu
µu−→ tu;

(iv) π−1 is equal to the composite

tu
tᾱ−→ tgs

ψs−→ gss
gµ−→ gs;

(v) the following identity holds

(us
ᾱs−→ gss

gµ−→ gs) = (us
υ−→ tu

tᾱ−→ tgs
ψs−→ gss

gµ−→ gs);

(vi) the following identity holds

(tg
tβ̄−→ ttu

µu−→ tu) = (tg
ψ−→ gs

β̄s−→ tus
tυ−→ ttu

µu−→ tu);

(vii) the following identity holds

(g
gη−→ gs) = (g

β̄−→ tu
tᾱ−→ tgs

ψs−→ gss
gµ−→ gs);

(viii) the following identity holds

(u
ηu−→ tu) = (u

ᾱ−→ gs
β̄s−→ tus

tυ−→ ttu
µu−→ tu).

Proof. Assuming (5.1) at the first step, we have the calculation:

π · gµ · ψs
= µu · tυ · πs · ψs
= µu · tυ · πs · π−1s · µus · tβ̄s
= µu · tυ · µus · tβ̄s
= µu · µtu · ttυ · tβ̄s
= µu · tµu · ttυ · tβ̄s
= µu · tπ,

proving (5.2). The converse is dual.
(i) Using (5.1) at the second step, we have the calculation:

µu · tυ · υs
= µu · tυ · πs · gµs · ᾱss
= π · gµ · gµs · ᾱss
= π · gµ · gsµ · ᾱss
= π · gµ · ᾱs · uµ
= υ · uµ.
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We also have:

υ · uη
= π · gµ · ᾱs · uη
= π · gµ · π−1s · ηus · uη
= π · gµ · π−1s · tuη · ηu
= π · gµ · gsη · π−1 · ηu
= π · π−1 · ηu
= ηu.

Hence (u, υ) is a monad opmorphism.
(ii) This is dual to (i) using (5.2) instead of (5.1).
(iii) Using (5.1), we have:

π

= π · gµ · gηs
= µu · tυ · πs · gηs
= µu · tυ · β̄s.

(iv) This is dual to (iii) using (5.2) instead of (5.1).
(v) Using (iv), we immediately have:

gµ · ψs · tᾱ · υ
= π−1 · υ
= π−1 · π · gµ · ᾱs
= gµ · ᾱs.

(vi) This is dual to (v) using (iii) instead of (iv).
(vii) Using (iv), we immediately have:

gµ · ψs · tᾱ · β̄
= π−1 · β̄
= π−1 · π · gη
= gη.

(viii) This is dual to (vii) using (iii) instead of (iv).

5.4. Corollary. An adjunction core of the form (u, f ?, π) between monads (A, s) and
(X, t) in a bicategory K extends to an adjunction (4.10) in KL(K) if and only if one of
the diagrams (5.1) or (5.2) commutes. The adjunction is unique when it exists.

Proof. Properties (i)–(viii) of Theorem 5.3, when re-expressed with the mates α, β and
φ replacing ᾱ, β̄ and ψ, give precisely what is required for an adjunction (4.10). The
converse is Proposition 5.2.
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5.5. Remark. Recall from [13] that the free completion EM(K) of K with respect to the
Eilenberg–Moore construction is obtained as

EM(K) = KL(Kop)op .

Monads in Kop are the same as monads in K. An adjunction opcore between monads (X, t)
and (A, s) in K is an adjunction core in Kop. This consists of morphisms f, v : X −→ A
and an invertible 2-cell π : sv ∼= ft. Also recall from [13] that a wreath in K is a
monad in EM(K). Many examples of wreaths were provided in that paper. A wreath on
A consists of a monad t : A −→ A with unit η : 1 =⇒ t and multiplication µ : tt =⇒ t,
an endomorphism s : A −→ A with 2-cells σ : 1 =⇒ st and ν : ss =⇒ st, and a 2-cell
λ : ts =⇒ st satisfying conditions. This gives an adjunction cocore s, 1A : A −→ A
between the monad (A, s) and the wreath product monad (A, st) where π is the identity
of st. Since 1A has itself as adjoint and condition (5.1) can be checked, we obtain an
example of an adjunction between monads from every wreath. To be explicit, we have the
adjunction

(s, sµ.νt.sλ) a (1A, sµ.σt) : (A, st) −→ (A, t)

associated with the Eilenberg–Moore construction for the monad (s, λ) on (A, t) in EM(K).

6. Cores between internal categories

This section will apply our results to categories internal to a category C which admits
pullbacks. For this example, we take the bicategory K of the previous sections to be the
bicategory Span(C) of spans in C as constructed by Bénabou in [1].

The objects of the bicategory Span(C) are those of C. A morphism S = (s0, S, s1) :
U −→ V is a so-called span

U
s0←− S

s1−→ V

from U to V in C. A 2-cell r : (s0, S, s1) −→ (t0, T, t1) : U −→ V is a morphism r : S −→ T
in C such that t0r = s0 and t1r = s1. Vertical composition of 2-cells is simply that of C.
Horizontal composition uses pullback in C; more precisely,

(U
(s0,S,s1)−→ V

(t0,T,t1)−→ W ) = (U
(s0p,P,t1q)−→ W )

where
P

q //

p

��

T

t0
��

S s1
// V

(6.1)

is a pullback square.
Each morphism f : U −→ V in C determines a span f? = (1U , U, f) : U −→ V . We

write f ? : V −→ U for the span (f, V, 1V ) : V −→ U . It is well known that we have an
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adjunction f? a f ? in Span(C); in fact, it is shown in [3] that the maps in Span(C) are all
isomorphic to spans of the form f? : U −→ V for some f : U −→ V in C.

One of the reasons for interest in the free Kleisli object cocompletion KL(K) in the
paper [13] is that the 2-category Cat(C) of categories in C is equivalent to the sub-2-
category of KL(Span(C)) obtained by restricting to the morphisms whose underlying
morphisms in Span(C) are maps. We shall explain this in a bit more detail.

A category in C is a monad (A, S) in Span(C)). The object A of C is called the object of
objects. The span S = (s0, S, s1) : A −→ A provides the object of morphisms S, the source
operation s1 and the target operation s0. The multiplication for the monad provides the
composition operation and the unit for the monad provides the identities operation.

A functor between categories in C is a monad opmorphism of the form (f?, φ) :
(X,T ) −→ (A, S) in Span(C)). The morphism f : X −→ A in C is called the effect
on objects of the functor and the morphism φ : T −→ S in C is called the effect on
morphisms of the functor.

A natural transformation between functors in C is precisely a 2-cell between them in
KL(Span(C)).

As an immediate consequence of Corollary 5.4 we have:

6.1. Corollary. An adjunction core of the form (u?, f
?, π) between categories (A, S)

and (X,T ) in a category C extends to an adjunction (f?, φ) a (u?, υ) in Cat(C) if and
only if one of the diagrams (5.1) or (5.2) mutatis mutandis commutes. The adjunction is
unique when it exists.

6.2. Remark. If in Corollary 6.1 we denote the categories (A, S) and (X,T ) in C by A
and X and the functors (f?, φ) and (u?, υ) by F : X −→ A and U : A −→ X then the π is
an isomorphism of spans from A to X between the object of objects of the comma category
F/A and the object of objects of the comma category X/U . We leave it to the reader to
interpret diagram (5.1) in this notation.

7. A doctrinal setting

LetD be a pseudomonad (also called a doctrine in [14], [9], [21] and [18]) on a bicategoryK.
It means that we have a pseudofunctor D : K −→ K, a unit pseudonatural transformation
denoted by n : 1K −→ D, and a multiplication pseudonatural transformation denoted by
m : DD −→ D. For example, see [16] or [12] for the axioms.

A lax D-algebra (A, s) consists of an object A, a morphism s : DA −→ A, and 2-cells
µ : s ·Ds =⇒ s ·mA and η : 1A =⇒ s · nA, satisfying coherence conditions.

For lax D-algebras (A, s) and (A′, s′) in K, a lax opmorphism (f, φ) : (A, s) −→ (A′, s′)
consists of a morphism f : A −→ A′ and a 2-cell φ : fs =⇒ s′Df in K such that
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s′Df ·Ds s′Dφ // s′Ds′ ·D2f
µD2f

''
fsDs

φDs
99

fµ %%

s′mA′D
2f

fsmA φmA

// s′Df ·mA

s′mf

77

(7.1)

fsnA
φnA // s′Df · nA

s′nf

��
f

ηf
//

fη

OO

s′nA′

(7.2)

The composite of lax opmorphisms (f, φ) : (A, s) −→ (A′, s′) and (f ′, φ′) : (A′, s′) −→
(A′′, s′′) is defined to be (f ′f, φ′ ? φ) : (A, s) −→ (A′′, s′′) where φ′ ? φ is the composite

f ′fs
f ′φ−→ f ′s′Df

φ′Df−→ s′′Df ′ ·Df . (7.3)

There is a bicategory KL(K, D) whose objects are lax D-algebras and whose mor-
phisms are lax opmorphisms. A 2-cell ρ : (f, φ) =⇒ (g, ψ) : (A, s) −→ (A′, s′) in KL(K, D)
(in non-reduced form, in the terminology of 13) is a 2-cell ρ̂ : fs =⇒ s′Dg in K such that
the diagrams (7.4) and (7.5) commute.

s′Dg ·Ds s′Dψ // s′Ds′D2g
µD2g

''
fsDs

ρ̂Ds
99

fµ %%

s′mA′D
2g

fsmA ρ̂mA

// s′Dg ·mA

s′mg

77

(7.4)

s′Df ·Ds s′Dρ̂ // s′Ds′D2g
µD2g

''
fsDs

φDs
99

fµ %%

s′mA′D
2g

fsmA ρ̂mA

// s′Dg ·mA

s′mg

77

(7.5)

The reduced form of the 2-cell KL(K, D) is a 2-cell ρ : f =⇒ s′Dg · nA in K such that
equality (7.6) holds.
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fs
φ−→ s′Df

s′Dρ−→ s′Ds′D2gDnA
µD2gDnA−→ s′mA′D

2gDnA

s′m−1
g DnA−→ s′Dg ·mADnA

∼=−→ s′Dg

=

fs
ρs−→ s′Dg · nAs

s′ngs−→ s′nA′gs
s′nA′ψ−→ s′nA′s

′Dg

s′n−1
s′ Dg−→ s′Ds′nDA′Dg

µnDA′Dg−→ s′mA′nDA′Dg
∼=−→ s′Dg. (7.6)

The bijection between reduced and non-reduced forms takes ρ to the ρ̂ defined by either
side of (7.6).

The vertical composite of the 2-cells ρ : (f, φ) −→ (g, ψ) and τ : (g, ψ) −→ (h, θ) is
the 2-cell

f ′fs
f ′ρ̂−→ f ′s′Dg

s′τ−→ s′(s′h)
∼=−→ (s′s′)h

µh−→ s′h . (7.7)

The horizontal composite of 2-cells ρ : (f, φ) −→ (g, ψ) : (A, s) −→ (A′, s′) and
ρ′ : (f ′, φ′) −→ (g′, ψ′) : (A′, s′) −→ (A′′, s′′) has non-reduced form the 2-cell

f
ρ−→ s′Dg · nA

s′Dτ ·nA−→ s′Ds′D2hDnA · nA
µD2hDnA·nA−→ s′mA′D

2hDnA · nA
s′m−1

h DnA·nA−→ s′Dh ·mADnA · nA
∼=−→ s′Dh · nA . (7.8)

This completes the definition of the bicategory KL(K, D) with the exception of giving
the coherent associativity and unit isomorphisms. As forewarned, we have been writing
as if K were a 2-category in which case KL(K, D) would also be a 2-category. Putting in
all the coherent isomorphisms as we did in the definition of KL(K), we can readily give
them for KL(K, D) as we did for the special case where D was the identity pseudomonad.

In a future paper we shall explain the universal properties of the construction taking
K to KL(K).

7.1. Definition. An adjunction core (u, g, π) between lax D-algebras (A, s) and (X, t)
in a bicategory K consists of the following data in K:

1. morphisms u : A −→ X and g : A −→ X;

2. an invertible 2-cell π : gs −→ tDu.

Given such a core, we make the following definitions:
(a) β̄ : g =⇒ tDu · nA is the composite

g
gη−→ gsnA

πnA−→ tDu · nA ;

(b) ᾱ : u =⇒ gsnA is the composite

u
ηu−→ tnXu

∼=−→ tDu · nA
π−1nA−→ gsnA ;
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(c) υ : us =⇒ tDu is the composite

us
ᾱs−→ gsnAs

gsns−→ gsDs · nDA
gµnDA−→ gsmAnDA

∼=−→ gs
π−→ tDu ;

(d) ψ : tDg =⇒ gs is the composite

tDg
tDβ̄−→ tDtD2uDnA

µn−1
u−→ tmXDnXDu

∼=−→ tDu
π−1

−→ gs .

If g = f ? for some map f : X −→ A in K then ᾱ and β̄ have mates α : fu =⇒ snA
and β′ : 1X =⇒ tDu · nAf . We take β : 1X =⇒ tDuDf · nX to be the composite of β′

and tnf : tDu · nAf ∼= tDuDf · nX .

7.2. Theorem. An adjunction core of the form (u, f ?, π) between lax D-algebras (A, s)
and (X, t) in a bicategory K extends to an adjunction

(f, φ) a (u, υ) : (A, s) −→ (X, t) (7.9)

with counit α and unit β in KL(K, D) if and only if one of the diagrams (7.10) or (7.11)
commutes. The adjunction is unique when it exists.

tDuDs
tDυ // tDtD2u

µD2u

&&
gsDs

πDs

::

gµ
$$

tmXD
2u

gsmA πmA

// tDu ·mA

tmu

88

(7.10)

tDgDs
ψDs // gsDs

gµ

%%
tDtD2u

tDπ−1
88

µD2u &&

gsmA

tmXD
2u

tm−1
u

// tDu ·mA

π−1mA

99

(7.11)

References

[1] Jean Bénabou, Introduction to bicategories, Lecture Notes in Mathematics 47
(Springer-Verlag, 1967) 1–77.

[2] Renato Betti, Aurelio Carboni, Ross Street and Robert Walters, Variation through
enrichment, Journal of Pure and Applied Algebra 29 (1983) 109–127.



THE CORE OF ADJOINT FUNCTORS 63

[3] Aurelio Carboni, Stefano Kasangian and Ross Street, Bicategories of spans and re-
lations, Journal of Pure and Applied Algebra 33 (1984) 259–267.

[4] Samuel Eilenberg and G. Max Kelly, Closed categories, Proceedings of the Conference
on Categorical Algebra (La Jolla, 1965), Springer (1966) 421–562.

[5] Robert Gordon, A. John Power and Ross Street, Coherence for tricategories, Memoirs
of the American Math. Society 117 no. 558 (1995) vi+81 pp.
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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