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CLOSED CATEGORIES VS. CLOSED MULTICATEGORIES

OLEKSANDR MANZYUK

Abstract. We prove that the 2-category of closed categories of Eilenberg and Kelly
is equivalent to a suitable full 2-subcategory of the 2-category of closed multicategories.

1. Introduction

The notion of closed category was introduced by Eilenberg and Kelly [2]. It is an ax-
iomatization of the notion of category with internal function spaces. More precisely,
a closed category is a category C equipped with a functor C(−,−) : Cop × C → C,
called the internal Hom-functor ; an object 1 of C, called the unit object ; a natural
isomorphism iX : X

∼
−→ C(1, X), and natural transformations jX : 1 → C(X,X) and

LXY Z : C(Y, Z) → C(C(X, Y ),C(X,Z)). These data are to satisfy five axioms; see Defini-
tion 2.1 for details.

A wide class of examples is provided by closed monoidal categories. We recall that a
monoidal category C is called closed if for each object X of C the functor X ⊗ − admits
a right adjoint C(X,−); i.e, there exists a bijection C(X ⊗ Y, Z) ∼= C(Y,C(X,Z)) that is
natural in both Y and Z. Equivalently, a monoidal category C is closed if and only if
for each pair of objects X and Z of C there exist an internal Hom-object C(X,Z) and an
evaluation morphism evCX,Z : X⊗C(X,Z) → Z satisfying the following universal property:
for each morphism f : X ⊗ Y → Z there exists a unique morphism g : Y → C(X,Z)
such that f = evCX,Z ◦(1X ⊗ g). One can check that the map (X,Z) 7→ C(X,Z) extends
uniquely to a functor C(−,−) : Cop × C → C, which together with certain canonically
chosen transformations iX , jX , and L

X
Y Z turns C into a closed category.

While closed monoidal categories are in prevalent use in mathematics, arising in cat-
egory theory, algebra, topology, analysis, logic, and theoretical computer science, there
are also important examples of closed categories that are not monoidal. The author’s
motivation stemmed from the theory of A∞-categories.

The notion of A∞-category appeared at the beginning of the nineties in the work of
Fukaya on Floer homology [3]. However its precursor, the notion of A∞-algebra, was intro-
duced in the early sixties by Stasheff [13]. It as a linearization of the notion of A∞-space,
a topological space equipped with a product operation which is associative up to ho-
motopy, and the homotopy which makes the product associative can be chosen so that
it satisfies a collection of higher coherence conditions. Loosely speaking, A∞-categories
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are to A∞-algebras what linear categories are to algebras. On the other hand, A∞-cate-
gories generalize differential graded categories. Unlike in differential graded categories, in
A∞-categories composition need not be associative on the nose; it is only required to be
associative up to a homotopy that satisfies a certain equation up to another homotopy,
and so on.

Many properties of A∞-categories follow from the discovery, attributed to Kontsevich,
that for each pair of A∞-categories A and B there is a natural A∞-category A∞(A,B)
with A∞-functors from A to B as its objects. These A∞-categories of A∞-functors were
also investigated by many other authors, e.g. Fukaya [4], Lefèvre-Hasegawa [10], and
Lyubashenko [12]; they allow us to equip the category of A∞-categories with the structure
of a closed category.

In the recent monograph by Bespalov, Lyubashenko, and the author [1] the theory of
A∞-categories is developed from a slightly different perspective. Our approach is based
on the observation that although the category of A∞-categories is not monoidal, there
is a natural notion of A∞-functor of many arguments, and thus A∞-categories form a
multicategory.

The notion of multicategory (known also as colored operad or pseudo-tensor category)
was introduced by Lambek [7, 8]. It is a many-object version of the notion of operad.
If morphisms in a category are considered as analogous to functions, morphisms in a
multicategory are analogous to functions in several variables. An arrow in a multicategory
looks like X1, X2, . . . , Xn → Y , with a finite sequence of objects as the domain and one
object as the codomain. The most familiar example of multicategory is the multicategory
of vector spaces and multilinear maps.

Multicategories generalize monoidal categories: a monoidal category C gives rise to a
multicategory Ĉ whose objects are those of C and whose morphisms X1, X2, . . . , Xn → Y

are morphisms X1 ⊗ X2 ⊗ · · · ⊗ Xn → Y of C. Multicategories arising from monoidal
categories can be described by a simple axiom, which leads to the notion of representable
multicategory [5]. The essence of the axiom is the existence, for each finite sequence
X1, . . . , Xn of objects, of an arrow X1, . . . , Xn → X that enjoys a universal property
resembling that of tensor product of modules. Hermida proved [5] that the 2-category
of monoidal categories, strong monoidal functors, and monoidal transformations is 2-
equivalent to the 2-category of representable multicategories, multifunctors that preserve
universal arrows, and multinatural transformations. This result was later extended by
Bespalov, Lyubashenko, and the author [1] to a 2-equivalence (in fact, a Cat-equivalence)
between the 2-category of lax monoidal categories, lax monoidal functors, and monoidal
transformations, and the 2-category of lax representable multicategories, multifunctors,
and multinatural transformations. Together with these works, the present papers finishes
the program of giving a complete multicategorical expression of Eilenberg and Kelly’s
seminal work [2] by making explicit a precise relation between closed categories and closed
multicategories.

Lambek defined closed multicategories in [7]. They generalize closed monoidal cat-
egories in the obvious way. Lambek’s definition of a closed multicategory is equivalent
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to the following one. A multicategory C is closed if for every sequence X1, . . . , Xm, Z of
objects of C there exists an internal Hom-object C(X1, . . . , Xm;Z) together with an evalu-
ation morphism evCX1,...,Xm;Z : X1, . . . , Xm,C(X1, . . . , Xm;Z) → Z satisfying the following
universal property: for each morphism f : X1, . . . , Xm, Y1, . . . , Yn → Z there is a unique
morphism g : Y1, . . . , Yn → C(X1, . . . , Xm;Z) such that f = evC

X1,...,Xm;Z ◦(1X1, . . . , 1Xm
, g).

Bespalov, Lyubashenko, and the author proved [1] that the multicategory of A∞-cate-
gories is closed, thus obtaining a conceptual explanation of the origin of the A∞-categories
of A∞-functors.

This paper arose as an attempt to understand in general the relation between closed
categories and closed multicategories. It turned out that these notions are essentially
equivalent in a very strong sense. Namely, on the one hand, there is a 2-category of closed
categories, closed functors, and closed natural transformations. On the other hand, there
is a 2-category of closed multicategories with unit objects, multifunctors, and multinatural
transformations. Because a 2-category is the same thing as a category enriched in Cat, it
makes sense to speak about Cat-functors between 2-categories; these can be called strict
2-functors because they preserve composition of 1-morphisms and identity 1-morphisms
strictly. We construct a Cat-functor from the 2-category of closed multicategories with
unit objects to the 2-category of closed categories, and prove that it is a Cat-equivalence;
see Proposition 4.6 and Theorem 5.1.

Both closed categories and multicategories can bear symmetries. With some additional
work it can be proven that the 2-category of symmetric closed categories is Cat-equivalent
to the 2-category of symmetric closed multicategories with unit objects. We are not going
to explore this subject here.

Although we have not done so in this paper, the notion of closedness can be generalized
to multicategories enriched in monoidal categories or even multicategories. The usefulness
of such a generalization is indicated by the paper of Hyland and Power on pseudo-closed
2-categories [6], in which the notion of closed Cat-multicategory (i.e., multicategory en-
riched in the category Cat of categories) is implicitly present, although not spelled out.
Martin Hyland told the author that he had known about the equivalence discussed in this
paper and even made it a base for his considerations in computer science.

We should mention that the definition of closed category we adopt in this paper
does not quite agree with the definition appearing in [2]. Closed categories have been
generalized by Street [14] to extension systems; a closed category in our sense is an
extension system with precisely one object. We discuss carefully the relation between
these definitions because it is crucial for our proof of Theorem 5.1; see Remark 2.3 and
Proposition 2.19. Our definition of closed category also coincides with the definition
appearing in Laplaza’s paper [9], to which we would like to pay special tribute because it
allowed us to give an elegant construction of a closed multicategory with a given underlying
closed category.

1.1. Notation We use interchangeably the notations g ◦ f and f · g for the composition
of morphisms f : X → Y and g : Y → Z in a category, giving preference to the latter
notation, which is more readable. Throughout the paper the set of nonnegative integers
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is denoted by N, the category of sets is denoted by S, and the category of categories is
denoted by Cat.

1.2. Acknowledgements I would like to thank Volodymyr Lyubashenko and Yuri Be-
spalov for many fruitful discussions. This work was written up during my stay at York
University. I would like to thank Professor Walter Tholen for inviting me to York and
for carefully reading preliminary versions of this paper. I am grateful to the anonymous
referee for pointing out that closed multicategories were known already to Lambek, and
for making suggestions that have improved the exposition.

2. Closed categories

In this section we give preliminaries on closed categories. We begin by recalling the
definition of closed category appearing in [14, Section 4] and [9].

2.1. Definition. A closed category (C,C(−,−),1, i, j, L) consists of the following data:

• a category C;

• a functor C(−,−) : Cop × C → C;

• an object 1 of C;

• a natural isomorphism i : IdC

∼
−→ C(1,−) : C → C;

• a transformation jX : 1 → C(X,X), dinatural in X ∈ ObC;

• a transformation LXY Z : C(Y, Z) → C(C(X, Y ),C(X,Z)), natural in Y, Z ∈ ObC and
dinatural in X ∈ ObC.

These data are subject to the following axioms.

CC1. The following equation holds true:

[
1

jY
−→ C(Y, Y )

LX
Y Y−−→ C(C(X, Y ),C(X, Y ))

]
= jC(X,Y ).

CC2. The following equation holds true:

[
C(X, Y )

LX
XY−−→ C(C(X,X),C(X, Y ))

C(jX ,1)
−−−−→ C(1,C(X, Y ))

]
= iC(X,Y ).
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CC3. The following diagram commutes:

C(U, V ) C(C(Y, U),C(Y, V ))

C(C(X,U),C(X, V ))

C(C(C(X, Y ),C(X,U)),C(C(X, Y ),C(X, V ))) C(C(Y, U),C(C(X, Y ),C(X, V )))

LY
UV

LX
UV

C(1,LX
Y V )

L
C(X,Y )
C(X,U),C(X,V )

C(LX
Y U

,1)

CC4. The following equation holds true:

[
C(Y, Z)

L1

Y Z−−→ C(C(1, Y ),C(1, Z))
C(iY ,1)
−−−−→ C(Y,C(1, Z))

]
= C(1, iZ).

CC5. The map γ : C(X, Y ) → C(1,C(X, Y )) that sends a morphism f : X → Y to the
composite

1
jX−→ C(X,X)

C(1,f)
−−−→ C(X, Y )

is a bijection.

We shall call C(−,−) the internal Hom-functor and 1 the unit object.

2.2. Example. The category S of sets becomes a closed category if we set S(−,−) =
S(−,−); take for 1 a set {∗}, chosen once and for all, consisting of a single point ∗; and
define i, j, L by:

iX(x)(∗) = x, x ∈ X ;

jX(∗) = 1X ;

LXY Z(g)(f) = f · g, f ∈ S(X, Y ), g ∈ S(Y, Z).

2.3. Remark. Definition 2.1 is slightly different from the original definition by Eilenberg
and Kelly [2, Section 2]. They require that a closed category C be equipped with a functor
C : C → S such that the following axioms are satisfied in addition to CC1–CC4.

CC0. The following diagram of functors commutes:

Cop × C C

S

C(−,−)

C(−,−)
C
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CC5’. The map

CiC(X,X) : C(X,X) = CC(X,X) → CC(1,C(X,X)) = C(1,C(X,X))

sends 1X ∈ C(X,X) to jX ∈ C(1,C(X,X)).

[2, Lemma 2.2] implies that

γ = CiC(X,Y ) : C(X, Y ) = CC(X, Y ) → CC(1,C(X, Y )) = C(1,C(X, Y )),

so that a closed category in the sense of Eilenberg and Kelly is also a closed category in
our sense. Furthermore, as we shall see later, an arbitrary closed category in our sense is
isomorphic to a closed category in the sense of Eilenberg and Kelly.

2.4. Proposition. [2, Proposition 2.5] iC(1,X) = C(1, iX) : C(1, X) → C(1,C(1, X)).

Proof. The proof given in [2, Proposition 2.5] translates word by word to our setting.

2.5. Proposition. [2, Proposition 2.7] j1 = i1 : 1 → C(1,1).

Proof. The proof given in [2, Proposition 2.7] relies on the axiom CC5’, and thus is not
applicable here; we provide an independent proof for the sake of completeness. The map
γ : C(1,C(1,1)) → C(1,C(1,C(1,1))) is a bijection by the axiom CC5, so it suffices to
prove that γ(j1) = γ(i1). We have:

γ(i1) =
[
1

j1
−→ C(1,1)

C(1,i1)
−−−→ C(1,C(1,1))

]

=
[
1

j1
−→ C(1,1)

iC(1,1)
−−−→ C(1,C(1,1))

]
(Proposition 2.4)

=
[
1

j1
−→ C(1,1)

L1

11−−→ C(C(1,1),C(1,1))
C(j1,1)
−−−−→ C(1,C(1,1))

]
(axiom CC2)

=
[
1

jC(1,1)
−−−→ C(C(1,1),C(1,1))

C(j1,1)
−−−−→ C(1,C(1,1))

]
(axiom CC1)

=
[
1

j1
−→ C(1,1)

C(1,j1)
−−−−→ C(1,C(1,1))

]
(dinaturality of j)

= γ(j1).

The proposition is proven.

2.6. Corollary.
[
C(1, X)

γ
−→ C(1,C(1, X))

C(1,i−1
X

)
−−−−→ C(1, X)

]
= 1C(1,X).

Proof. An element f ∈ C(1, X) is mapped by the left hand side to the composite

1
j1
−→ C(1,1)

C(1,f)
−−−→ C(1, X)

i−1
X−−→ X,

which is equal to
[
1

j1
−→ C(1,1)

i−1
1−−→ 1

f
−→ X

]
= f

by the naturality of i−1
X , and because j1 = i1 : 1 → C(1,1) by Proposition 2.5. The

corollary is proven.
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2.7. Proposition. The following diagram commutes:

C(Y, Z) C(C(X, Y ),C(X,Z))

C(1,C(Y, Z)) C(1,C(C(X, Y ),C(X,Z)))

C(X,−)

γ γ

C(1,LX
Y Z

)

Proof. For each f ∈ C(Y, Z), we have:

γ(C(1, f)) =
[
1

jC(X,Y )
−−−−→ C(C(X, Y ),C(X, Y ))

C(1,C(1,f))
−−−−−−→ C(C(X, Y ),C(X,Z))

]

=
[
1

jY−→ C(Y, Y )
LX
Y Y−−→ C(C(X, Y ),C(X, Y ))

C(1,C(1,f))
−−−−−−→ C(C(X, Y ),C(X,Z))

]

=
[
1

jY−→ C(Y, Y )
C(1,f)
−−−→ C(Y, Z)

LX
Y Z−−→ C(C(X, Y ),C(X,Z))

]

= C(1, LXY Z)(γ(f))

where the second equality is by the axiom CC1, and the third equality is by the naturality
of LXY Z in Z.

2.8. Proposition. For each f ∈ C(X, Y ), g ∈ C(Y, Z), we have

γ(f · g) = γ(f) · C(1, g) = γ(g) · C(f, 1).

Proof. Indeed, γ(f · g) = jX · C(1, f · g) = jX · C(1, f) · C(1, g) = γ(f) · C(1, g), proving
the first equality. Let us prove the second equality. We have:

γ(f) · C(1, g) =
[
1

jX−→ C(X,X)
C(1,f)
−−−→ C(X, Y )

C(1,g)
−−−→ C(X,Z)

]

=
[
1

jY−→ C(Y, Y )
C(f,1)
−−−→ C(X, Y )

C(1,g)
−−−→ C(X,Z)

]
(dinaturality of j)

=
[
1

jY
−→ C(Y, Y )

C(1,g)
−−−→ C(Y, Z)

C(f,1)
−−−→ C(X,Z)

]
(functoriality of C(−,−))

= γ(g) · C(f, 1).

The proposition is proven.

We now recall the definitions of closed functor and closed natural transformation
following [2, Section 2].

2.9. Definition. Let C and D be closed categories. A closed functor Φ = (φ, φ̂, φ0) :
C → D consists of the following data:

• a functor φ : C → D;

• a natural transformation φ̂ = φ̂X,Y : φC(X, Y ) → D(φX, φY );

• a morphism φ0 : 1 → φ1.
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These data are subject to the following axioms.

CF1. The following equation holds true:

[
1

φ0

−→ φ1
φjX
−−→ φC(X,X)

φ̂
−→ D(φX, φX)

]
= jφX .

CF2. The following equation holds true:

[
φX

φiX
−−→ φC(1, X)

φ̂
−→ D(φ1, φX)

D(φ0,1)
−−−−→ D(1, φX)

]
= iφX .

CF3. The following diagram commutes:

φC(Y, Z) φC(C(X, Y ),C(X,Z)) D(φC(X, Y ), φC(X,Z))

D(φY, φZ) D(D(φX, φY ),D(φX, φZ)) D(φC(X, Y ),D(φX, φZ))

φLX
Y Z φ̂

φ̂

L
φX
φY,φZ D(φ̂,1)

D(1,φ̂)

2.10. Proposition. Let V be a closed category. There is a closed functor E = (e, ê, e0) :
V → S, where:

• e = V(1,−) : V → S;

• ê =
[
V(1,V(X, Y ))

γ−1

−−→ V(X, Y )
V(1,−)
−−−−→ S(V(1, X),V(1, X))

]
;

• e0 : {∗} → V(1,1), ∗ 7→ 11.

Proof. Let us check the axioms CF1–CF3. The reader is referred to Example 2.2 for a
description of the structure of a closed category on S.

CF1 We must prove that the composite

{∗}
e0

−→ V(1,1)
V(1,jX)
−−−−→ V(1,V(X,X))

γ−1

−−→ V(X,X)
V(1,−)
−−−−→ S(V(1, X),V(1, X))

equals jV(1,X), which is obvious, as the image of ∗ is V(1, γ−1(jX)) = V(1, 1X) = 1V(1,X),
which is precisely jV(1,X)(∗).

CF2 We must prove the following equation:

[
V(1, X)

V(1,iX )
−−−−→ V(1,V(1, X))

γ−1

−−−−→ V(1, X)

V(1,−)
−−−−→ S(V(1,1),V(1, X))

S(e0,1)
−−−−→ S({∗},V(1, X))

]
= iV(1,X).
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By Corollary 2.6 the left hand side is equal to

V(1, X)
V(1,−)
−−−−→ S(V(1,1),V(1, X))

S(e0,1)
−−−−→ S({∗},V(1, X)),

and so it maps an element f ∈ V(1, X) to the function {∗} → V(1, X), ∗ 7→ f , which is
precisely iV(1,X)(f).

CF3 We must prove that the exterior of the following diagram commutes:

V(1,V(Y, Z)) V(1,V(V(X, Y ),V(X,Z)))

V(V(X, Y ),V(X,Z))V(Y, Z)

S(V(1,V(X, Y )),V(1,V(X,Z)))S(V(1, Y ),V(1, Z))

S(V(1,V(X, Y )),V(X,Z))S(S(V(1, X),V(1, Y )), S(V(1, X),V(1, Z)))

S(V(X, Y ), S(V(1, X),V(1, Z))) S(V(1,V(X, Y )), S(V(1, X),V(1, Z)))

V(1,LX
Y Z

)

γ−1 γ−1

V(X,−)

V(1,−) V(1,−)

L
V(1,X)
V(1,Y ),V(1,Z) S(1,γ−1)

S(V(1,−),1) S(1,V(1,−))

S(γ−1,1)

The upper square commutes by Proposition 2.7. Let us prove that so does the remaining
region. Taking an element f ∈ V(Y, Z) and tracing it along the top-right path we obtain
the function

V(1,V(X, Y )) → S(V(1, X),V(1, Z)),

g 7→
(
h 7→ h · γ−1(g · V(1, f))

)
,

whereas pushing f along the left-bottom path yields the function

V(1,V(X, Y )) → S(V(1, X),V(1, Z)),

g 7→
(
h 7→ h · γ−1(g) · f

)
.

These two functions are equal by Proposition 2.8. The proposition is proven.

2.11. Definition. Let Φ = (φ, φ̂, φ0),Ψ = (ψ, ψ̂, ψ0) : C → D be closed functors. A
closed natural transformation η : Φ → Ψ : C → D is a natural transformation η : φ→ ψ :
C → D satisfying the following axioms.
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CN1. The following equation holds true:

[
1

φ0

−→ φ1
η1
−→ ψ1

]
= ψ0.

CN2. The following diagram commutes:

φC(X, Y ) D(φX, φY )

D(φX, ψY )ψC(X, Y ) D(ψX, ψY )

φ̂

ηC(X,Y ) D(1,ηY )

D(ηX ,1)ψ̂

Closed categories, closed functors, and closed natural transformations form a 2-cat-
egory [2, Theorem 4.2], which we shall denote by ClCat. The composite of closed
functors Φ = (φ, φ̂, φ0) : C → D and Ψ = (ψ, ψ̂, ψ0) : D → E is defined to be
X = (χ, χ̂, χ0) : C → E, where:

• χ is the composite C
φ
−→ D

ψ
−→ E;

• χ̂ is the composite ψφC(X, Y )
ψφ̂
−→ ψD(φX, φY )

ψ̂
−→ E(ψφX, ψφY );

• χ0 is the composite 1
ψ0

−→ ψ1
ψφ0

−−→ ψφ1.

Compositions of closed natural transformations are defined in the usual way.
We can enrich in closed categories. Below we recall some enriched category theory for

closed categories mainly following [2, Section 5].

2.12. Definition. Let V be a closed category. A V-category A consists of the following
data:

• a set ObA of objects;

• for each X, Y ∈ ObA, an object A(X, Y ) of V;

• for each X ∈ ObA, a morphism jX : 1 → A(X,X) in V;

• for each X, Y, Z ∈ ObA, a morphism LXY Z : A(Y, Z) → V(A(X, Y ),A(X,Z)) in V.

These data are to satisfy axioms [2, VC1–VC3]. If A and B are V-categories, a V-functor
F : A → B consists of the following data:

• a function ObF : ObA → ObB, X 7→ FX;

• for each X, Y ∈ ObA, a morphism F = FXY : A(X, Y ) → B(FX, FY ) in V.

These data are subject to axioms [2, VF1–VF2].
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2.13. Example. By [2, Theorem 5.2] a closed category V gives rise to a category V if we
take the objects of V to be those of V, take V(X, Y ) to be the internal Hom-object, and
take for j and L those of the closed category V. Furthermore, if A is a V-category and X
is an object of A, then we get a V-functor LX : A → V if we take LXY = A(X, Y ) and
(LX)Y Z = LXY Z . In particular, for each X ∈ ObV, there is a V-functor LX : V → V such
that LXY = V(X, Y ) and (LX)Y Z = LXY Z .

There is also a notion of V-natural transformation. We recall it in a particular case,
namely for V-functors A → V.

2.14. Definition. Let F,G : A → V be V-functors. A V-natural transformation α :
F → G : A → V is a collection of morphisms αX : FX → GX in V, for each X ∈ ObA,
such that the diagram

A(X, Y ) V(FX, FY )

V(GX,GY ) V(FX,GY )

FXY

GXY V(1,αY )

V(αX ,1)

commutes, for each X, Y ∈ ObA.

2.15. Example. By [2, Proposition 8.4] if f ∈ V(X, Y ), the morphisms

V(f, 1) : V(Y, Z) → V(X,Z), Z ∈ ObV,

are components of a V-natural transformation Lf : LY → LX : V → V.

By [2, Theorem 10.2] V-categories, V-functors, and V-natural transformations form a
2-category, which we shall denote by V-Cat.

2.16. Proposition. [2, Proposition 6.1] If Φ = (φ, φ̂, φ0) : V → W is a closed functor
and A is a V-category, the following data define a W-category Φ∗A:

• ObΦ∗A = ObA;

• (Φ∗A)(X, Y ) = φA(X, Y );

• jX =
[
1

φ0

−→ φ1
φjX
−−→ φA(X,X)

]
;

• LXY Z =
[
φA(Y, Z)

φLX
Y Z−−−→ φV(A(X, Y ),A(X,Z))

φ̂
−→ W(φA(X, Y ), φA(X,Z))

]
.

2.17. Example. Let us study the effect of the closed functor E from Proposition 2.10
on V-categories. Let A be a V-category. Then the ordinary category E∗A has the same
set of objects as A and its Hom-sets are (E∗A)(X, Y ) = V(1,A(X, Y )). The morphism
jX for the category E∗A is given by the composite

{∗}
e0

−→ V(1,1)
V(1,jX)
−−−−→ V(1,A(X,X)),
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i.e., 1X ∈ (E∗A)(X,X) identifies with jX . The morphism LXY Z for the category E∗A is
given by the composite

V(1,A(Y, Z))
V(1,LX )
−−−−−→ V(1,V(A(X, Y ),A(X,Z)))

γ−1

−−−−−→ V(A(X, Y ),A(X,Z))

V(1,−)
−−−−−→ S(A(1,A(X, Y )),V(1,A(X,Z))).

It follows that composition in E∗A is given by

V(1,A(X, Y ))× V(1,A(Y, Z)) → V(1,A(X,Z)), (f, g) 7→ f · γ−1(g · LXY Z).

2.18. Proposition. The bijections γ : V(X, Y ) → V(1,V(X, Y )) define an isomorphism
of categories γ : V → E∗V identical on objects.

Proof. For each X ∈ ObV, we have γ(1X) = jX , so γ preserves identities. Let us
check that it also preserves composition. For each f ∈ V(X, Y ), g ∈ V(Y, Z), we have
γ(f) · γ(g) = γ(f) · γ−1(γ(g) ·LXY Z). By Proposition 2.7, γ(g) ·LXY Z = γ(V(1, g)), therefore
γ(f) · γ(g) = γ(f) · V(1, g) = γ(f · g) by Proposition 2.8. The proposition is proven.

2.19. Theorem. Every closed category is isomorphic to a closed category in the sense of
Eilenberg and Kelly.

More precisely, for every closed category V in the sense of Definition 2.1 there is a
closed category W in the sense of Eilenberg and Kelly such that W, when viewed as a
closed category in the sense of Definition 2.1, is isomorphic as a closed category to V.

Proof. Let V be a closed category. Take W = E∗V. The isomorphism γ from Proposi-
tion 2.18 allows us to translate the structure of a closed category from V to W. Thus the
unit object of W is that of V, the internal Hom-functor is given by the composite

W(−,−) =
[
W

op ×W
(γop×γ)−1

−−−−−−→ V
op × V

V(−,−)
−−−−→ V

γ
−→ W

]
.

In particular, W(X, Y ) = V(X, Y ) for each pair of objects X and Y . The transformations
iX , jX , L

X
Y Z for W are just γ(iX), γ(jX), γ(L

X
Y Z) respectively. The category W admits a

functor W : W → S such that the diagram

Wop ×W W

S

W(−,−)

W(−,−)
W

commutes, namely W =
[
W

γ−1

−−→ V
E
−→ S

]
. The commutativity on objects is obvious.

Let us check that it also holds on morphisms. Let f ∈ W(X, Y ), h ∈ W(U, V ); i.e.,
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suppose that f : 1 → V(X, Y ) and h : 1 → V(U, V ) are morphisms in V. Then the map
W(f, g) : W(Y, U) → W(X, V ) is given by g 7→ f · g · h, where the composition is taken
in W. We must show that it is equal to the map

V(1,V(γ−1(f), γ−1(h))) : V(1,V(Y, U)) → V(1,V(X, V )), g 7→ g · V(γ−1(f), γ−1(h)).

We have:

g · V(γ−1(f), γ−1(h)) = γ(γ−1(g)) · V(γ−1(f), 1) · V(1, γ−1(h)) (functoriality of V(−,−))

= γ(γ−1(f) · γ−1(g)) · V(1, γ−1(h)) (Proposition 2.8)

= γ(γ−1(f) · γ−1(g) · γ−1(h)) (Proposition 2.8)

= f · g · h, (Proposition 2.18)

hence the assertion. The functor W also satisfies the axiom CC5’. Indeed, we need to
show that

WiW(X,X) = V(1, iV(X,X)) : V(1,V(X,X)) → V(1,V(1,V(X,X)))

maps jX ∈ V(1,V(X,X)) to γ(jX) ∈ V(1,V(1,V(X,X))). In other words, we need to
show that the diagram

1 V(X,X)

V(1,1) V(1,V(X,X))

jX

j1 iV(X,X)

V(1,jX)

commutes. However j1 = i1 : 1 → V(1,1) by Proposition 2.5, so the above diagram is
commutative by the naturality of i. The theorem is proven.

Finally, let us recall from [2] the representation theorem for V-functors A → V.

2.20. Proposition. [2, Corollary 8.7] Suppose that V is a closed category in the sense
of Eilenberg and Kelly; i.e., it is equipped with a functor V : V → S satisfying the axioms
CC0 and CC5’. Let T : A → V be a V-functor, and let W be an object of A. Then the
map1

Γ : V-Cat(A,V)(LW , T ) → V TW, p 7→ (V pW )1W ,

is a bijection.

2.21. Example. For each f ∈ V LXY = V V(X, Y ) = V(X, Y ), the V-natural trans-
formation Lf : LY → LX : V → V from Example 2.15 is uniquely determined by the
condition (V (Lf)Y )1Y = f .

1It is denoted by Γ′ in [2, Corollary 8.7].
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3. Closed multicategories

We begin by briefly recalling the notions of multicategory, multifunctor, and multinatural
transformation. The reader is referred to the excellent book by Leinster [11] or to [1,
Chapter 3] for a more elaborate introduction to multicategories.

3.1. Definition. A multigraph C is a set ObC, whose elements are called objects of C,
together with a set C(X1, . . . , Xn; Y ) for each n ∈ N and X1, . . . , Xn, Y ∈ ObC. Elements
of C(X1, . . . , Xn; Y ) are called morphisms and written as X1, . . . , Xn → Y . If n = 0,
elements of C(; Y ) are written as () → Y . A morphism of multigraphs F : C → D consists
of a function ObF : ObC → ObD, X 7→ FX, and functions

F = FX1,...,Xn;Y : C(X1, . . . , Xn; Y ) → D(FX1, . . . , FXn;FY ), f 7→ Ff,

for each n ∈ N and X1, . . . , Xn, Y ∈ ObC.

3.2. Definition. A multicategory C consists of the following data:

• a multigraph C;

• for each n, k1, . . . , kn ∈ N and Xij, Yi, Z ∈ ObC, 1 ≤ i ≤ n, 1 ≤ j ≤ ki, a function

n∏

i=1

C(Xi1, . . . , Xiki; Yi)×C(Y1, . . . , Yn;Z) → C(X11, . . . , X1k1, . . . , Xn1, . . . , Xnkn;Z),

called composition and written (f1, . . . , fn, g) 7→ (f1, . . . , fn) · g;

• for each X ∈ ObC, an element 1CX ∈ C(X ;X), called the identity of X.

These data are subject to the obvious associativity and identity axioms.

3.3. Example. A strict monoidal category C gives rise to a multicategory Ĉ as follows:

• Ob Ĉ = ObC;

• for each n ∈ N and X1, . . . , Xn, Y ∈ ObC, Ĉ(X1, . . . , Xn; Y ) = C(X1⊗· · ·⊗Xn, Y );

in particular Ĉ(; Y ) = C(1, Y ), where 1 is the unit object of C;

• for each n, k1, . . . , kn ∈ N and Xij , Yi, Z ∈ ObC, 1 ≤ i ≤ n, 1 ≤ j ≤ ki, the
composition map

n∏

i=1

C(Xi1 ⊗ · · · ⊗Xiki, Yi)× C(Y1 ⊗ · · · ⊗ Yn, Z)

→ C(X11 ⊗ · · · ⊗X1k1 ⊗ · · · ⊗Xn1 ⊗ · · · ⊗Xnkn, Z)

is given by (f1, . . . , fn, g) 7→ (f1 ⊗ · · · ⊗ fn) · g;

• for each X ∈ ObC, 1ĈX = 1CX ∈ Ĉ(X ;X) = C(X,X).
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3.4. Definition. Let C and D be multicategories. A multifunctor F : C → D is a
morphism of the underlying multigraphs that preserves composition and identities.

3.5. Definition. Suppose that F,G : C → D are multifunctors. A multinatural trans-
formation r : F → G : C → D is a family of morphisms rX ∈ D(FX ;GX), X ∈ ObC,
such that Ff · rY = (rX1 , . . . , rXn

) ·Gf, for each f ∈ C(X1, . . . , Xn; Y ).

Multicategories, multifunctors, and multinatural transformations form a 2-category,
which we shall denote by Multicat.

3.6. Definition. [1, Definition 4.7] A multicategory C is called closed if for each m ∈ N

and X1, . . . , Xm, Z ∈ ObC there exist an object C(X1, . . . , Xm;Z), called internal Hom-ob-
ject, and an evaluation morphism

evC = evCX1,...,Xm;Z : X1, . . . , Xm,C(X1, . . . , Xm;Z) → Z

such that, for each Y1, . . . , Yn ∈ ObC, the function

ϕC = ϕC

X1,...,Xm;Y1,...,Yn;Z
: C(Y1, . . . , Yn;C(X1, . . . , Xm;Z)) → C(X1, . . . , Xm, Y1, . . . , Yn;Z)

that sends a morphism f : Y1, . . . , Yn → C(X1, . . . , Xm;Z) to the composite

X1, . . . , Xm, Y1, . . . , Yn
1CX1

,...,1CXm
,f

−−−−−−−→ X1, . . . , Xm,C(X1, . . . , Xm;Z)
evCX1,...,Xm;Z

−−−−−−−→ Z

is bijective. Let ClMulticat denote the full 2-subcategory of Multicat whose objects are
closed multicategories.

3.7. Remark. Notice that for m = 0 an object C(;Z) and a morphism evC;Z with the
required property always exist. Namely, we may (and we shall) always take C(;Z) = Z and
evC;Z = 1CZ : Z → Z. With these choices ϕC

;Y1,...,Yn;Z
: C(Y1, . . . , Yn;Z) → C(Y1, . . . , Yn;Z)

is the identity map.

3.8. Example. Let C be a strict monoidal category, and let Ĉ be the associated multi-
category, see Example 3.3. It is easy to see that the multicategory Ĉ is closed if and only
if C is closed as a monoidal category.

3.9. Proposition. Suppose that for each pair of objects X,Z ∈ ObC there exist an
object C(X ;Z) and a morphism evC

X;Z : X,C(X ;Z) → Z of C such that the function
ϕC

X;Y1,...,Yn;Z
is a bijection, for each finite sequence Y1, . . . , Yn of objects of C. Then C is a

closed multicategory.

Proof. Define internal Hom-objects C(X1, . . . , Xm;Z) and evaluations

evCX1,...,Xm;Z : X1, . . . , Xm,C(X1, . . . , Xm;Z) → Z

by induction on m. For m = 0 choose C(;Z) = Z and evC;Z = 1CZ : Z → Z as explained
above. For m = 1 we are already given C(X ;Z) and evCX;Z . Assume that we have defined
C(X1, . . . , Xk;Z) and evCX1,...,Xk;Z

for each k < m, and that the function

ϕC

X1,...,Xk;Y1,...,Yn;Z
: C(Y1, . . . , Yn;C(X1, . . . , Xk;Z)) → C(X1, . . . , Xk, Y1, . . . , Yn;Z)
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is a bijection, for each k < m and for each finite sequence Y1, . . . , Yn of objects of C. For
X1, . . . , Xm, Z ∈ ObC define

C(X1, . . . , Xm;Z)
def
= C(Xm;C(X1, . . . , Xm−1;Z)).

The evaluation morphism evCX1,...,Xm;Z is given by the composite

X1, . . . , Xm,C(Xm;C(X1, . . . , Xm−1;Z))

X1, . . . , Xm−1,C(X1, . . . , Xm−1;Z)

Z.

1C
X1
,...,1C

Xm−1
,evC

Xm;C(X1,...,Xm−1;Z)

evCX1,...,Xm−1;Z

It is easy to see that with these choices the function ϕC

X1,...,Xm;Y1,...,Yn;Z
decomposes as

C(Y1, . . . , Yn;C(X1, . . . , Xm;Z))

C(Xm, Y1, . . . , Yn;C(X1, . . . , Xm−1;Z))

C(X1, . . . , Xm, Y1, . . . , Yn;Z),

ϕC

Xm;Y1,...,Yn;C(X1,...,Xm−1;Z)≀

ϕC

X1,...,Xm−1;Xm,Y1,...,Yn;Z≀

hence it is a bijection, and the induction goes through.

3.10. Remark. Lambek defined [7, p. 106] a (left) closed multicategory as one having,
for each pair of objects X and Z, an internal Hom-object X\Z together with a morphism
ℓ : X,X\Z → Z such that the induced mappings

[Y1, . . . , Yn;X\Z] → [X, Y1, . . . , Yn;Z]

are bijective; here [−;−] denotes the Hom-set in the multicategory. Up to the obvious
notational changes, this is precisely the condition of Proposition 3.9. Therefore, Lambek’s
definition of closedness is equivalent to ours.

3.11. Notation. For each morphism f : X1, . . . , Xn → Y with n ≥ 1, denote by 〈f〉 the
morphism (ϕX1;X2,...,Xn;Z)

−1(f) : X2, . . . , Xn → C(X1; Y ). In other words, 〈f〉 is uniquely
determined by the equation

[
X1, X2, . . . , Xn

1C
X1
,〈f〉

−−−−→ X1,C(X1; Y )
evC

X1;Y−−−−→ Y
]
= f.

Clearly we can enrich in multicategories. We leave it as an easy exercise for the reader
to spell out the definitions of categories and functors enriched in a multicategory V.
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3.12. Proposition. A closed multicategory C gives rise to a C-category C as follows.
The objects of C are those of C. For each pair X, Y ∈ ObC, the Hom-object C(X ; Y )
is the internal Hom-object of C. For each X, Y, Z ∈ ObC, the composition morphism
µC : C(X ; Y ),C(Y ;Z) → C(X ;Z) is uniquely determined by requiring the commutativity
in the diagram

X,C(X ; Y ),C(Y ;Z) X,C(X ;Z)

Y,C(Y ;Z) Z

1C
X
,µC

evC
X;Y ,1

C

C(Y ;Z) evC
X;Z

evC
Y ;Z

The identity of an object X ∈ ObC is 1CX = 〈1CX〉 : () → C(X ;X).

Proof. The proof is similar to that for a closed monoidal category.

3.13. Notation. For each morphism f : X1, . . . , Xn → Y and object Z of a closed
multicategory C, there exists a unique morphism C(f ;Z) : C(Y ;Z) → C(X1, . . . , Xn;Z)
such that the diagram

X1, . . . , Xn,C(Y ;Z) X1, . . . , Xn,C(X1, . . . , Xn;Z)

Y,C(Y ;Z) Z

1CX1
,...,1CXn

,C(f ;Z)

f,1C
C(Y ;Z) evCX1,...,Xn;Z

evC
Y ;Z

in C is commutative. In particular, if n = 0, then C(f ;Z) = (f, 1C
C(Y ;Z)) · ev

C

Y ;Z . If n = 1,

then C(f ;Z) = 〈(f, 1C
C(Y ;Z)) · ev

C

Y ;Z〉. For each sequence of morphisms f1 : X1 → Y1,

. . . , fn : Xn → Yn in C there is a unique morphism C(f1, . . . , fn;Z) : C(Y1, . . . , Yn;Z) →
C(X1, . . . , Xn;Z) such that the diagram

X1, . . . , Xn,C(Y1, . . . , Yn;Z) X1, . . . , Xn,C(X1, . . . , Xn;Z)

Y1, . . . , Yn,C(Y1, . . . , Yn;Z) Z

1C
X1
,...,1C

Xn
,C(f1,...,fn;Z)

f1,...,fn,1CC(Y1,...,Yn;Z) evCX1,...,Xn;Z

evC
Y1,...,Yn;Z

in C is commutative. Similarly, for each morphism g : Y → Z in C, there exists a unique
morphism C(X1, . . . , Xn; g) : C(X1, . . . , Xn; Y ) → C(X1, . . . , Xn;Z) such that the diagram

X1, . . . , Xn,C(X1, . . . , Xn; Y ) X1, . . . , Xn,C(X1, . . . , Xn;Z)

Y Z

1C
X1
,...,1C

Xn
,C(X1,...,Xn;g)

evCX1,...,Xn;Y evCX1,...,Xn;Z

g
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in C is commutative. In particular, if n = 0, then our conventions force C(; g) = g. If
n = 1, then C(X ; g) = 〈evCX;Y ·g〉.

3.14. Lemma. Suppose that f1 : X1
1 , . . . , X

k1
1 → Y1, . . . , fn : X1

n, . . . , X
kn
n → Yn, and

g : Y1, . . . , Yn → Z are morphisms in a closed multicategory C.

(a) If k1 = 0, i.e., f1 is a morphism () → Y1, then (f1, . . . , fn)·g is equal to the composite

X1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

f2,...,fn
−−−−→ Y2, . . . , Yn

〈g〉
−→ C(Y1;Z)

C(f1;Z)
−−−−→ C(;Z) = Z.

(b) If k1 = 1, i.e., f1 is a morphism X1
1 → Y1, then 〈(f1, . . . , fn) · g〉 is equal to the

composite

X1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

f2,...,fn
−−−−→ Y2, . . . , Yn

〈g〉
−→ C(Y1;Z)

C(f1;Z)
−−−−→ C(X1

1 ;Z).

(c) If k1 ≥ 1, then 〈(f1, . . . , fn) · g〉 is equal to the composite

X2
1 , . . . , X

k1
1 , X

1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

〈f1〉,f2,...,fn
−−−−−−−→ C(X1

1 ; Y1), Y2, . . . , Yn
1,〈g〉

−−−−−−−→ C(X1
1 ; Y1),C(Y1;Z)

µC
−−−−−−−→ C(X1

1 ;Z).

(d) if n = 1, then 〈f1 · g〉 =
[
X2

1 , . . . , X
k1
1

〈f1〉
−−→ C(X1

1 ; Y1)
C(X1

1 ;g)−−−−→ C(X1
1 ;Z)

]
.

Proof. The proofs are easy and consist of checking the definitions. For example, in order
to prove (a) note that

C(f1;Z) =
[
C(Y1;Z)

f1,1CC(Y1;Z)

−−−−−−→ Y1,C(Y1;Z)
evCY1;Z−−−→ Z

]
,

therefore the composite in (a) is equal to

[
X1

2 , . . . , X
k2
2 , . . . , X

1
n, . . . , X

kn
n

f2,...,fn
−−−−→ Y2, . . . , Yn

〈g〉
−→ C(Y1;Z)

f1,1CC(Y1;Z)

−−−−−−→ Y1,C(Y1;Z)
evCY1;Z−−−→ Z

]

=
[
X1

2 , . . . , X
k2
2 , . . . , X

1
n, . . . , X

kn
n

f1,f2,...,fn
−−−−−−→ Y1, Y2, . . . , Yn

1C
Y1
,〈g〉

−−−−→ Y1,C(Y1;Z)
evC

Y1;Z−−−→ Z
]
.

The last two arrows compose to ϕC

Y1;Y2,...,Yn;Z
(〈g〉) = g : Y1, . . . , Yn → Z, hence the whole

composite is equal to (f1, . . . , fn) · g.
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3.15. Lemma. Let f : X → Y and g : Y → Z be morphisms in a closed multicategory C.
Then for each W ∈ ObC holds C(W ; f · g) = C(W ; f) · C(W ; g).

Proof. The composite C(W ; f) · C(W ; g) can be written as

C(W ;X)
〈evC

W ;X ·f〉
−−−−−−→ C(W ; Y )

C(W ;g)
−−−−→ C(W ;Z),

which is equal to 〈evCW ;X ·f · g〉 = C(W ; f · g) by Proposition 3.14, (d).

3.16. Lemma. Let f : W → X and g : X → Y be morphisms in a closed multicategory
C. Then for each Z ∈ ObC holds C(f · g;Z) = C(g;Z) · C(f ;Z).

Proof. The composite C(g;Z) · C(f ;Z) can be written as

C(Y ;Z)
〈(g,1C

C(Y ;Z)
)·evCY ;Z〉

−−−−−−−−−−−→ C(X ;Z)
C(f ;Z)
−−−−→ C(W ;Z),

which is equal to 〈(f, 1C
C(Y ;Z)) · ((g, 1

C

C(Y ;Z)) · ev
C

Y ;Z)〉 = 〈(f · g, 1C
C(Y ;Z)) · ev

C

Y ;Z〉 = C(f · g;Z)

by Proposition 3.14, (b).

3.17. Lemma. Let f : W → X and g : Y → Z be morphisms in a closed multicategory
C. Then C(f ; Y ) · C(W ; g) = C(X ; g) · C(f ;Z).

Proof. Both sides of the equation are equal to 〈(f, 1C
C(X;Y )) · ev

C

X;Y ·g〉 by Proposi-

tion 3.14, (b),(d).

It follows from Lemmas 3.15–3.17 that there exists a functor C(−,−) : Cop × C → C,
(X, Y ) 7→ C(X ; Y ), defined by the formula C(f ; g) = C(f ; Y ) ·C(W ; g) = C(X ; g) ·C(f ;Z)
for each pair of morphisms f : W → X and g : Y → Z in C.

For each X, Y, Z ∈ ObC there is a morphism LXY Z : C(Y ;Z) → C(C(X ; Y );C(X ;Z))
uniquely determined by the equation

[
C(X ; Y ),C(Y ;Z)

1,LX
Y Z−−−→ C(X ; Y ),C(C(X ; Y );C(X ;Z))

evC
−−→ C(X ;Z)

]
= µC. (3.1)

3.18. Proposition. There is a C-functor LX : C → C, Y 7→ C(X ; Y ), with the action
on Hom-objects given by LXY Z : C(Y ;Z) → C(C(X ; Y );C(X ;Z)).

Proof. That so defined LX preserves identities is a consequence of the identity axiom.
The compatibility with composition is established as follows. Consider the diagram

C(X ; Y ),
C(Y ;Z),
C(Z;W )

C(X ; Y ),
C(C(X ; Y );C(X ;Z)),
C(C(X ;Z);C(X ;W ))

C(X ;Z),
C(C(X ;Z);C(X ;W ))

C(X ; Y ),
C(Y ;W )

C(X ; Y ),
C(C(X ; Y );C(X ;W ))

C(X ;W )

1,LX
Y Z

,LX
ZW evC,1

1,µC 1,µC evC

1,LX
Y W evC
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By the definition of LX the exterior expresses the associativity of µC. The right square is
the definition of µC. By the closedness of C the square

C(Y ;Z),C(Z;W ) C(C(X ; Y );C(X ;Z)),C(C(X ;Z);C(X ;W ))

C(Y ;W ) C(C(X ; Y );C(X ;W ))

LX
Y Z

,LX
ZW

µC µC

LX
Y W

is commutative, hence the assertion.

3.19. Definition. [1, Section 4.18] Let C, D be multicategories. Let F : C → D be a
multifunctor. For each X1, . . . , Xm, Z ∈ ObC, define a morphism in D

FX1,...,Xm;Z : FC(X1, . . . , Xm;Z) → D(FX1, . . . , FXm;FZ)

as the only morphism that makes the diagram

FX1, . . . , FXm, FC(X1, . . . , Xm;Z)

FX1 . . . , FXm,D(FX1, . . . , FXm;FZ)

FZ

1DFX1
,...,1DFXm

,FX1,...,Xm;Z

F evCX1,...,Xm;Z

evDFX1,...,FXm;FZ

commute. It is called the closing transformation of the multifunctor F .

The following properties of closing transformations can be found in [1, Section 4.18].
To keep the exposition self-contained we include their proofs here.

3.20. Proposition. [1, Lemma 4.19] The diagram

C
(
Y1, . . . , Yn;C(X1, . . . , Xm;Z)

)
D
(
FY1, . . . , FYn;FC(X1, . . . , Xm;Z)

)

D
(
FY1, . . . , FYn;D(FX1, . . . , FXm;FZ)

)

C
(
X1, . . . , Xm, Y1, . . . , Yn;Z

)
D
(
FX1, . . . , FXm, FY1, . . . , FYn;FZ

)

F

D(1;FX1,...,Xm;Z)

ϕD

FX1,...,FXm;FY1,...,FYn;FZ

ϕC

X1,...,Xm;Y1,...,Yn;Z

F

(3.2)
commutes, for each m,n ∈ N and objects Xi, Yj, Z ∈ ObC, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
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Proof. Pushing an arbitrary morphism g : Y1, . . . , Yn → C(X1, . . . , Xm;Z) along the
top-right path produces the composite

FX1, . . . , FXm, FY1, . . . , FYn
1D
FX1

,...,1D
FXm

,F g

−−−−−−−−−−−−−→ FX1, . . . , FXm, FC(X1, . . . , Xm;Z)

1D
FX1

,...,1D
FXm

,F (Xi);Z

−−−−−−−−−−−−−→ FX1, . . . , FXm,D(FX1, . . . , FXm;FZ)

evDFX1,...,FXm;FZ

−−−−−−−−−−−−−→ FZ.

The composition of the last two arrows is equal to F evCX1,...,Xm;Z by the definition of
FX1,...,Xm;Z . Since F preserves composition and identities, the above composite equals

F
(
(1CX1

, . . . , 1CXm
, g) · evCX1,...,Xm;Z

)
= F

(
ϕX1,...,Xm;Y1,...,Yn;Z(g)

)
,

hence the assertion.

Let F : V → W be a multifunctor, and let C be a V-category. We obtain a W-category
F∗C with the same set of objects if we define its Hom-objects by (F∗C)(X, Y ) = FC(X, Y ),
and identities and composition by respectively 1F∗C

X = F (1CX) : () → FC(X,X) and
µF∗C = F (µC) : FC(X, Y ), FC(Y, Z) → FC(X,Z).

3.21. Proposition. [cf. [1, Proposition 4.21]] Let F : C → D be a multifunctor between
closed multicategories. There is D-functor F : F∗C → D, X 7→ FX, such that

FX;Y : (F∗C)(X ; Y ) = FC(X ; Y ) → D(FX ;FY )

is the closing transformation, for each X, Y ∈ ObC.

Proof. First, let us check that F preserves identities. In other words, we must prove the
equation

[
()

F1
C

X−−→ FC(X ;X)
FX,X

−−−→ D(FX ;FX)
]
= 1DFX.

Let us check that the left hand side solves the equation that determines the right hand
side. We have:

[
FX

1CFX ,F1
C

X−−−−−→ FX, FC(X ;X)
1CFX ,FX,X

−−−−−−→ FX,D(FX ;FX)
evD
−−→ FX

]

=
[
FX

1C
FX

,F1
C

X−−−−−→ FX, FC(X ;X)
F evC
−−−→ FX

]
= F [(1CFX , 1

C

X) · ev
C] = F1CX = 1DFX .

To show that F preserves composition, we must show that the diagram

FC(X ;X), FC(Y ;Z) FC(X ;Z)

D(FX ;FY ),D(FY ;FZ) D(FX ;FZ)

FµC

µD

FX,Y ,FY,Z FX,Z (3.3)
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FX, FC(X ; Y ), FC(Y ;Z)

FY, FC(Y ;Z) FX, FC(X ;Z)

FX,D(FX ;FY ),D(FY ;FZ)

FY,D(FY ;FZ) FX,D(FX ;FZ)

FZ

F evC
X;Y ,1 FµC

1,FX;Y ,FY ;Z

1,FY ;Z

evDFX;FY ,1
1,µD

1,FX,Z

evDFY ;FZ evDFX;FZ

F evC
Y ;Z F evC

X;Z

Figure 3.1

commutes. This follows from the diagram displayed on Figure 3.1. The lower diamond
is the definition of µD. The exterior commutes by the definition of µC and because
F preserves composition. The left upper diamond and both triangles commute by the
definition of the closing transformation.

3.22. Lemma. [1, Lemma 4.25] Let C, D, E be closed multicategories and C
F
−→ D

G
−→ E

multifunctors. Then

G ◦ FX1,...,Xm;Y =
[
GFC(X1, . . . , Xm; Y )

GFX1,...,Xm;Y

−−−−−−−−−−→ GD(FX1, . . . , FXm;FY )

GFX1,...,FXm;FY

−−−−−−−−−−→ E(GFX1, . . . , GFXm;GFY )
]
.
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Proof. This follows from the commutative diagram

GFX1, . . . , GFXm, GD(FX1, . . . , FXm;FY )

GFX1, . . . , GFXm,E(GFX1, . . . , GFXm;GFY )

GFX1, . . . , GFXm, GFC(X1, . . . , Xm; Y )

GFY

1E
GFX1

,...,1E
GFXm

,GFX1,...,Xm;Y

1E
GFX1

,...,1E
GFXm

,GFX1,...,FXm;FY

evE
GFX1,...,GFXm;GFY

GF evC
X1,...,Xm;Y

G evDFX1,...,FXm;FY

The upper triangle is the definition of GFX1,...,FXm;FY , the lower triangle commutes by the
definition of FX1,...,Xm;Y and because G preserves composition.

3.23. Proposition. [1, Lemma 4.24] Let ν : F → G : C → D be a multinatural trans-
formation of multifunctors between closed multicategories. Then the diagram

FC(X1, . . . , Xm; Y ) D(FX1, . . . , FXm;FY )

GC(X1, . . . , Xm; Y )

D(GX1, . . . , GXm;GY ) D(FX1, . . . , FXm;GY )

FX1,...,Xm;Y

νC(X1,...,Xm;Y )

D(FX1,...,FXm;νY )

GX1,...,Xm;Y

D(νX1
,...,νXm ;GY )

(3.4)

is commutative.

Proof. The claim follows from the diagram displayed on Figure 3.2. Its exterior com-
mutes by the multinaturality of ν. The quadrilateral in the middle is the definition of
D(νX1 , . . . , νXm

;GY ). The trapezoid on the right is the definition of D(FX1, . . . , FXm; νY ).
The triangles commute by the definition of closing transformation.

4. From closed multicategories to closed categories

A closed category comes equipped with a distinguished object 1. We want to produce a
closed category out of a closed multicategory, so we need a notion of a closed multicategory
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FX1, . . . , FXm,

FC(X1, . . . , Xm; Y )

FX1, . . . , FXm,

GC(X1, . . . , Xm; Y )

FX1, . . . , FXm,

D(FX1, . . . , FXm;FY )

FX1, . . . , FXm,

D(GX1, . . . , GXm;GY )

FX1, . . . , FXm,

D(FX1, . . . , FXm;GY )

GX1, . . . , GXm,

GC(X1, . . . , Xm; Y )

FY

GX1, . . . , GXm,

D(GX1, . . . , GXm;GY )

GY

1DFX1
,...,1DFXm

,νC(X1,...,Xm;Y )

1D
FX1

,...,1D
FXm

,F

1DFX1
,...,1DFXm

,G

1D
FX1

,...,1D
FXm

,D(νX1
,...,νXm ;GY )

1D
FX1

,...,1D
FXm

,D(FX1,...,FXm;νY )

νX1
,...,νXm ,1

D

GC(X1,...,Xm;Y )

evD

1D
GX1

,...,1D
GXm

,G

νY

νX1
,...,νXm ,1

D

D(GX1,...,GXm;GY )

evD

evD

F evC

G evC

F
igu

re
3.2
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with a unit object. We introduce it in somewhat ad hoc fashion, which is sufficient for
our purposes though. Similarly to closedness, possession of a unit object is a property of
a closed multicategory rather than additional data.

4.1. Definition. Let C be a closed multicategory. A unit object of C is an object 1 ∈
ObC together with a morphism u : () → 1 such that, for each X ∈ ObC, the morphism

C(u; 1) : C(1;X) → C(;X) = X

is an isomorphism.

4.2. Remark. Suppose that 1 is a unit object of a closed multicategory C. Then C(u;X) :
C(1;X) → C(;X) is a bijection, as follows from the equation

[
C(;C(1;X))

ϕC

−→
∼

C(1;X)
C(u;X)
−−−−→ C(;X)

]
= C(;C(u;X)),

which is an immediate consequence of the definitions. The bijectivity of C(u;X) can be
stated as the following universal property: for each morphism f : () → X , there exists a
unique morphism f : 1 → X such that u · f = f . In particular, a unit object, if it exists,
is unique up to isomorphism.

4.3. Proposition. A closed multicategory C with a unit object gives rise to a closed
category (C,C(−,−),1, i, j, L), where:

• C is the underlying category of the multicategory C;

• C(X, Y ) = C(X ; Y ), for each X, Y ∈ ObC;

• 1 is the unit object of C;

• iX =
(
C(u;X)

)−1
: X = C(;X) → C(1;X);

• jX = 1
C

X : 1 → C(X ;X) is a unique morphism such that
[
()

u
−→ 1

jX
−→ C(X ;X)

]
=

1CX ;

• LXY Z : C(Y ;Z) → C(C(X ; Y );C(X ;Z)) is determined uniquely by equation (3.1).

We shall call C the underlying closed category of C. Usually we do not distinguish
notationally between a closed multicategory and its underlying closed category; this should
lead to minimal confusion.
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Proof. We leave it as an easy exercise for the reader to show the naturality of iX , jX ,
and LXY Z , and proceed directly to checking the axioms.

CC1. By Remark 4.2 the equation

[
1

jY
−→ C(Y ; Y )

LX
Y Y−−→ C(C(X ; Y );C(X ; Y ))

]
= jC(X;Y )

is equivalent to the equation

[
()

u·jY−−→
1
C

Y

C(Y, Y )
LX
Y Y−−→ C(C(X ; Y );C(X ; Y ))

]
= u · jC(X;Y ) = 1C

C(X;Y ),

which expresses the fact that the C-functor LX preserves identities.

CC2. The equation in question

[
C(X ; Y )

LX
XY−−→ C(C(X ;X);C(X ; Y ))

C(jX ;1)
−−−−→ C(1;C(X ; Y ))

]
= iC(X;Y ) = (C(u; 1))−1

is equivalent to

[
C(X ; Y )

LX
XY−−→ C(C(X ;X);C(X ; Y ))

C(u·jX ;1)
−−−−−→
C(1

C

X
;1)

C(;C(X ; Y )) = C(X ; Y )
]
= 1C

C(X;Y ).

The left hand side is equal to

[
C(X ; Y )

LX
Y Z−−→ C(C(X ;X);C(X ; Y ))

1
C

X
,1

−−→ C(X ;X),C(C(X ;X);C(X ; Y ))
evC
−−→ C(X ; Y )

]

=
[
C(X ; Y )

1
C

X
,1

−−→ C(X ;X),C(X ; Y )
1,LX

Y Z−−−→ C(X ;X),C(C(X ;X);C(X ; Y ))
evC
−−→ C(X ; Y )

]

=
[
C(X ; Y )

1
C

X
,1

−−→ C(X ;X),C(X ; Y )
µC
−→ C(X ; Y )

]
= 1C

C(X;Y )

by the identity axiom in the C-category C.

CC3. The commutativity of the diagram

C(U ;V ) C(C(Y ;U);C(Y ;V ))

C(C(X ;U);C(X ;V ))

C(C(Y ;U);C(C(X ; Y );C(X ;V )))C(C(C(X ; Y );C(X ;U));C(C(X ; Y );C(X ;V )))

LY
UV

LX
UV

C(1;LX
Y V

)

L
C(X;Y )
C(X;U),C(X;V )

C(LX
Y U ;1)

is equivalent by closedness to the commutativity of the exterior of the diagram displayed
on Figure 4.1, which just expresses the fact that the C-functor LX : C → C preserves
composition and which is part of the assertion of Proposition 3.18.
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C(Y ;U),C(U ;V ) C(Y ;V )

C(Y ;U),C(C(Y ;U);C(Y ;V ))

C(Y ;U),C(C(X ;U);C(X ;V )) C(Y ;U),C(C(Y ;U);C(C(X ; Y );C(X ;V )))

C(Y ;U),C(C(C(X ; Y );C(X ;U));C(C(X ; Y );C(X ;V )))

C(C(X ; Y );C(X ;U)),C(C(C(X ; Y );C(X ;U));C(C(X ; Y );C(X ;V )))

C(C(X ; Y );C(X ;U)),C(C(X ;U);C(X ;V )) C(C(X ; Y );C(X ;V ))

µC

1,LY
UV

1,LX
UV

LX
Y U ,L

X
UV LX

Y V

evC

1,C(1;LX
Y V

)

1,L
C(X;Y )
C(X;U),C(X;V )

LX
Y U

,1 evC

1,C(LX
Y U

;1)

LX
Y U

,1

evC
1,L

C(X;Y )
C(X;U),C(X;V )

µC

F
igu

re
4.1
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CC4. The equation in question

[
C(Y ;Z)

L1

−→ C(C(1; Y );C(1;Z))
C(iY ;1)
−−−−→ C(Y ;C(1;Z))

]
= C(1; iZ)

is equivalent to the equation

[
C(Y ;Z)

L1

−→ C(C(1; Y );C(1;Z))
C(1;C(u;1))
−−−−−−→ C(C(1; Y );Z)

]
= C(C(u; 1); 1).

The latter follows by closedness from the commutative diagram

C(1; Y ),C(Y ;Z) C(1; Y ),C(C(1; Y ),C(1;Z))

C(1;Z) C(1; Y ),C(C(1; Y );Z)

1,C(1; Y ),C(Y ;Z) 1,C(1;Z)

Y,C(Y ;Z) Z

1,L1

µC evC
1,C(1;C(u;1))

u,1,1

C(u;1),1

1,µC C(u;1)
evC

evC

u,1

evC,1

evC

in which the bottom quadrilateral is the definition of µC, the right hand side quadrilateral
is the definition of the morphism C(1;C(u; 1)), the top triangle is the definition of L1, and
the remaining triangles commute by the definition of C(u; 1).

CC5. A straightforward computation shows that the composite

C(X ; Y )
γ
−→ C(1;C(X ; Y ))

C(u;1)
−−−→

∼
C(;C(X ; Y ))

ϕC

−→
∼

C(X ; Y )

is the identity map, which readily implies that γ is a bijection.
The proposition is proven.

4.4. Proposition. Let C and D be closed multicategories with unit objects. Let C and
D denote the corresponding underlying closed categories. A multifunctor F : C → D gives
rise to a closed functor Φ = (φ, φ̂, φ0) : C → D, where:

• φ : C → D is the underlying functor of the multifunctor F ;

• φ̂ = φ̂X,Y = FX,Y : FC(X ; Y ) → D(FX ;FY ) is the closing transformation;

• φ0 = Fu : 1 → F1 is a unique morphism such that
[
()

u
−→ 1

φ0

−→ F1
]
= Fu.
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Proof. Let us check the axioms.

CF1. By Remark 4.2 the equation

[
1

φ0

−→ F1
FjX
−−→ FC(X ;X)

F
−→ D(FX ;FX)

]
= jFX

is equivalent to the equation

[
()

u
−→ 1

φ0

−→ F1
FjX
−−→ FC(X ;X)

F
−→ D(FX ;FX)

]
= u · jFX = 1DFX.

Since u ·φ0 ·FjX = Fu ·FjX = F (u · jX) = F1CX , the above equation simply expresses the
fact that the D-functor F : F∗C → D preserves identities, which is part of Proposition 3.21.

CF2. The equation in question

[
FX

F iX−−−−−−→
FC(u;1)−1

FC(1;X)
F
−→ D(F1;FX)

D(φ0;1)
−−−−→ D(1;FX)

]
= iFX = D(u; 1)−1

is equivalent to

[
FC(1;X)

F
−→ D(F1;FX)

D(φ0;1)
−−−−→ D(1;FX)

D(u;1)
−−−→ D(;FX) = FX

]
= FC(u; 1). (4.1)

The composition of the last two arrows is equal to D(Fu; 1). Hence the left hand side of
the above equation is equal to

[
FC(1;X)

F
−→ D(F1;FX)

D(Fu;1)
−−−−→ D(;FX) = FX

]

=
[
FC(1;X)

F
−→ D(F1;FX)

Fu,1
−−→ F1,D(F1;FX)

evD
−−→ FX

]

=
[
FC(1;X)

Fu,1
−−→ F1, FC(1;X)

1,F
−−→ F1,D(F1;FX)

evD
−−→ FX

]

=
[
FC(1;X)

Fu,1
−−→ F1, FC(1;X)

F evC
−−−→ FX

]
= F ((u, 1) · evC) = FC(u; 1).

CF3. We must prove that the diagram

FC(Y ;Z) FC(C(X ; Y );C(X ;Z)) D(FC(X ; Y );FC(X ;Z))

D(FY ;FZ) D(D(FX ;FY );D(FX ;FZ)) D(FC(X ; Y );D(FX ;FZ))

FLX F

F D(1;F )

LFX D(F ;1)

commutes. By closedness, this is equivalent to the commutativity of the exterior of the
diagram displayed on Figure 4.2, which expresses the fact that the D-functor F : F∗C → D

preserves composition and which is part of Proposition 3.21.
The proposition is proven.
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FC(X ; Y ), FC(Y ;Z) D(FX ;FY ),D(FY ;FZ)

FC(X ; Y ),D(FY ;FZ)

FC(X ; Y ), FC(C(X ; Y );C(X ;Z))

FC(X ; Y ),D(D(FX ;FY );D(FX ;FZ))

FC(X ; Y ),D(FC(X ; Y );FC(X ;Z))

FC(X ; Y ),D(FC(X ; Y );D(FX ;FZ))

D(FX ;FY ),D(D(FX ;FY );D(FX ;FZ))

FC(X ;Z) D(FX ;FZ)

F ,F

1,F

1,FLX

FµC

1,LFX

µD

F ,1

1,LFX

1,F

F evC
1,D(F ;1)

F ,1

1,D(1;F )

evD

evD

evD

F
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4.5. Proposition. A multinatural transformation t : F → G : C → D of multifunctors
between closed multicategories with unit objects gives rise to a closed natural transforma-
tion given by the same components.

Proof. Let Φ = (φ, φ̂, φ0),Ψ = (ψ, ψ̂, ψ0) : C → D be closed functors induced by the
multifunctors F and G respectively. The axiom CN1 reads

[
1

φ0

−→ F1
t1−→ G1

]
= ψ0.

It is equivalent to the equation

[
()

u
−→ 1

φ0

−→ F1
t1−→ G1

]
= u · ψ0,

i.e., to the equation Fu · t1 = Gu, which is a consequence of the multinaturality of t. The
axiom CN2 is a particular case of Proposition 3.23.

Let ClMulticat
u denote the full 2-subcategory of ClMulticat whose objects are

closed multicategories with a unit object. Note that a 2-category is the same thing as a
Cat-category. Thus we can speak about Cat-functors between 2-categories. These are
sometimes called strict 2-functors; they preserve composition of 1-morphisms and identity
1-morphisms on the nose.

4.6. Proposition. Propositions 4.3, 4.4, and 4.5 define a Cat-functor

U : ClMulticat
u → ClCat.

Proof. It is obvious that composition of 2-morphisms and identity 2-morphisms are
preserved. It is also clear that the identity multifunctor induces the closed identity functor.
Finally, composition of 1-morphisms is preserved by Lemma 3.22.

5. From closed categories to closed multicategories

In this section we prove our main result.

5.1. Theorem. The Cat-functor U : ClMulticat
u → ClCat is a Cat-equivalence.

We have to prove that U is bijective on 1-morphisms and 2-morphisms, and that it is
essentially surjective; the latter means that for each closed category V there is a closed
multicategory with a unit object such that its underlying closed category is isomorphic
(as a closed category) to V.

5.2. The surjectivity of U on 1-morphisms Let C and D be closed multicategories
with unit objects. Denote their underlying closed categories by the same symbols. Let
Φ = (φ, φ̂, φ0) : C → D be a closed functor. We are going to define a multifunctor
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F : C → D whose underlying closed functor is Φ. Define FX = φX , for each X ∈ ObC.
For each Y ∈ ObC, the map F;Y : C(; Y ) → D(;φY ) is defined via the diagram

C(; Y ) D(;φY )

C(1; Y ) D(φ1;φY ) D(1;φY )

F;Y

C(u;1) ≀ D(u;1)≀

φ D(φ0;1)

Recall that for a morphism f : () → Y we denote by f : 1 → Y a unique morphism such
that u · f = f . Then the commutativity in the above diagram means that

Ff =
[
()

u
−→ 1

φ0

−→ φ1
φ(f)
−−→ φY

]
, (5.1)

for each f : () → Y . For n ≥ 1 and X1, . . . , Xn, Y ∈ ObC, the map

FX1,...,Xn;Y : C(X1, . . . , Xn; Y ) → D(φX1, . . . , φXn;φY )

is defined inductively by requesting the commutativity in the diagram

C(X2, . . . , Xn;C(X1; Y )) D(φX2, . . . , φXn;φC(X1; Y ))

D(φX2, . . . , φXn;D(φX1;φY ))

C(X1, . . . , Xn; Y ) D(φX1, . . . , φXn;φY )

FX2,...,Xn;C(X1;Y )

ϕC ≀

D(1;φ̂)

ϕD≀

FX1,...,Xn;Y

(5.2)

5.3. Lemma. The following diagram commutes

C(;C(X ; Y )) D(;φC(X ; Y )) D(;D(φX ;φY ))

C(X ; Y ) D(φX ;φY )

F;C(X;Y ) D(;φ̂)

ϕC ≀ ϕD≀

φ

In particular, FX;Y = φX,Y : C(X ; Y ) → D(φX ;φY ).
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Proof. Equivalently, the exterior of the diagram

C(;C(X ; Y )) D(;φC(X ; Y )) D(;D(φX ;φY ))

C(1;C(X ; Y )) D(φ1;φC(X ; Y )) D(1;φC(X ; Y )) D(1;D(φX ;φY ))

C(X ; Y ) D(φX ;φY )

F;C(X;Y ) D(;φ̂)

C(u;1)≀ D(u;1) ≀ D(u;1) ≀

φ D(φ0;1) D(1;φ̂)

γ γ

φ

(ϕC)−1 (ϕD)−1

commutes. The upper pentagon is the definition of F;C(X;Y ). The bottom hexagon com-
mutes. Indeed, taking f ∈ C(X ; Y ) and tracing it along the left-top path yields

φ0 · φ(jX) · φC(1; f) · φ̂ = φ0 · φ(jX) · φ̂ · D(1;φ(f)) (naturality of φ̂)

= jφX · D(1;φ(f)), (axiom CF1)

which is precisely the image of f along the bottom-right path.

5.4. Lemma. For each f : () → Y and Z ∈ ObC, the diagram

φC(Y ;Z) φC(;Z) φZ

D(φY ;φZ) D(;φZ) φZ

φC(f ;1)

φ̂

D(Ff ;1)

commutes.

Proof. By definition,

Ff =
[
()

u
−→ 1

φ0

−→ φ1
φ(f)
−−→ φY

]
.

The diagram

φC(Y ;Z) φC(1;Z) φC(;Z) φZ

D(φY ;φZ) D(φ1;φZ) D(;φZ) φZ

φC(f ;1) φC(u;1)

φ̂ φ̂

D(φ(f);1) D(u·φ0;1)

φC(f ;1)

D(Ff ;1)

commutes. Indeed, the left square commutes by the naturality of φ̂, while the commuta-
tivity of the right square is a consequence of the axiom CF2, see (4.1).
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With the notation of Lemma 3.14, we can rewrite the commutativity condition in
diagram (5.2) as a recursive formula for the multigraph morphism F :

Ff = ϕD(F ((ϕC)−1(f)) · φ̂) = ϕD(F 〈f〉 · φ̂),

for each f : X1, . . . , Xn → Y with n ≥ 1, or equivalently

〈Ff〉 =
[
φX2, . . . , φXn

F 〈f〉
−−→ φC(X1; Y )

φ̂
−→ D(φX1;φY )

]
. (5.3)

5.5. Lemma. For each X, Y, Z ∈ ObC, the diagram

φC(X ; Y ), φC(Y ;Z) φC(X ;Z)

D(φX ;φY ),D(φY ;φZ) D(φX ;φZ)

FµC

φ̂,φ̂ φ̂

µD

commutes.

Proof. It suffices to prove the equation

〈FµC · φ̂〉 = 〈(φ̂, φ̂) · µD〉.

By Lemma 3.14,(c), the left hand side is equal to

φC(Y ;Z)
〈FµC〉
−−−→ D(φC(X ; Y );φC(X ;Z))

D(1;φ̂)
−−−→ D(φC(X ; Y );D(φX ;φZ)),

while the right hand side is equal to

φC(Y ;Z)
φ̂
−→ D(φY ;φZ)

〈µD〉
−−→ D(D(φX ;φY );D(φY ;φZ))

D(φ̂;1)
−−−→ D(φC(X ; Y );D(φX ;φZ))

by Lemma 3.14,(b). Note that 〈µD〉 = (ϕD)−1(µD) = LφX . Furthermore, by (5.3),

〈FµC〉 =
[
φC(Y ;Z)

φ〈µC〉
−−−→ φC(C(X ; Y );C(X ;Z))

φ̂
−→ D(φC(X ; Y );φC(X ;Z))

]

=
[
φC(Y ;Z)

φLX

−−→ φC(C(X ; Y );C(X ;Z))
φ̂
−→ D(φC(X ; Y );φC(X ;Z))

]
,

therefore the equation in question is simply the axiom CF3.

5.6. Proposition. The multigraph morphism F : C → D is a multifunctor, and its
underlying closed functor is Φ.

Proof. Trivially, F preserves identities since so does φ. Let us prove that F preserves
composition. The proof is in three steps.

5.7. Lemma. F preserves composition of the form X1, . . . , Xk
f
−→ Y

g
−→ Z.



166 OLEKSANDR MANZYUK

Proof. The proof is by induction on k. There is nothing to prove in the case k = 1.
Suppose that k = 0 and we are given composable morphisms

()
f
−→ X

g
−→ Y.

Then since u · fg = f · g = (u · f) · g = u · (f · g), it follows that f · g = f · g. By
formula (5.1),

F (f · g) = u · φ0 · φ(f · g) = u · φ0 · φ(f · g) = u · φ0 · φ(f) · φ(g) = Ff · Fg.

Suppose that k > 1. Then

〈F (f · g)〉 = F 〈f · g〉 · φ̂ (formula (5.3))

= F (〈f〉 · C(1; g)) · φ̂ (Lemma 3.14,(c))

= F 〈f〉 · φC(1; g) · φ̂ (induction hypothesis)

= F 〈f〉 · φ̂ · D(1;φ(g)) (naturality of φ̂)

= 〈Ff〉 · D(1;Fg) (formula (5.3))

= 〈Ff · Fg〉, (Lemma 3.14,(c))

and induction goes through.

5.8. Lemma. F preserves composition of the form

X1
1 , . . . , X

k1
1 , X

1
2 , . . . , X

k2
2

f1,f2
−−−→ Y1, Y2

g
−→ Z

.

Proof. The proof is by induction on k1. If k1 = 0, then by Lemma 3.14,(a),

(f1, f2) · g =
[
X1

2 , . . . , X
k2
2

f2
−→ Y2

〈g〉
−→ C(Y1;Z)

C(f1;1)
−−−−→ C(;Z) = Z

]
,

therefore

F ((f1, f2) · g) = Ff2 · φ〈g〉 · φC(f1; 1) (Lemma 5.7)

= Ff2 · φ〈g〉 · φ̂ · D(φ(f1); 1) (Lemma 5.4)

= Ff2 · 〈Fg〉 · D(Ff1; 1) (formula (5.3))

= (Ff1, Ff2) · Fg. (Lemma 3.14,(a))

If k1 = 1, then by Lemma 3.14,(b),

〈(f1, f2) · g〉 =
[
X1

2 , . . . , X
k2
2

f2
−→ Y2

〈g〉
−→ C(Y1;Z)

C(f1;1)
−−−−→ C(X1

1 ;Z)
]
,
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therefore

〈F ((f1, f2) · g)〉 = F 〈(f1, f2) · g〉 · φ̂ (formula (5.3))

= Ff2 · φ〈g〉 · φC(f1; 1) · φ̂ (Lemma 5.7)

= Ff2 · φ〈g〉 · φ̂ · D(φ(f1); 1) (naturality of φ̂)

= Ff2 · 〈Fg〉 · D(Ff1; 1) (formula (5.3))

= 〈(Ff1, Ff2) · Fg〉, (Lemma 3.14,(b))

and hence F ((f1, f2) ·g) = (Ff1, Ff2) ·Fg. Suppose that k1 > 1. Then by Lemma 3.14,(c)
〈(f1, f2) · g〉 is equal to the composite

X2
1 , . . . , X

k1
1 , X

1
2 , . . . , X

k2
2

〈f1〉,f2
−−−−→ C(X1

1 ; Y1), Y2
1,〈g〉
−−→ C(X1

1 ; Y1),C(Y1;Z)
µC
−→ C(X1

1 ;Z),

therefore

〈F ((f1, f2) · g)〉 = F 〈(f1, f2) · g〉 · φ̂ (formula (5.3))

= (F 〈f1〉, Ff2) · F ((1, 〈g〉)µC) · φ̂ (induction hypothesis)

= (F 〈f1〉, Ff2) · (1, F 〈g〉) · FµC · φ̂ (case k1 = 1)

= (F 〈f1〉, Ff2) · (1, F 〈g〉) · (φ̂, φ̂) · µD (Lemma 5.5)

= (F 〈f1〉 · φ̂, Ff2) · (1, F 〈g〉 · φ̂) · µD

= (〈Ff1〉, Ff2) · (1, 〈Fg〉) · µD (formula (5.3))

= 〈(Ff1, Ff2) · Fg〉, (Lemma 3.14,(c))

hence F ((f1, f2) · g) = (Ff1, Ff2) · Fg, and the lemma is proven.

5.9. Lemma. F preserves composition of the form

X1
1 , . . . , X

k1
1 , . . . , X

1
n, . . . , X

kn
n

f1,...,fn
−−−−→ Y1, . . . , Yn

g
−→ Z. (5.4)

Proof. The proof is by induction on n, and for a fixed n by induction on k1. We have
worked out the cases n = 1 and n = 2 explicitly in Lemmas 5.7 and 5.8. Assume that F
preserves an arbitrary composition of the form

U1
1 , . . . , U

l1
1 , . . . , U

1
n−1, . . . , U

ln−1

n−1

p1,...,pn−1
−−−−−−→ V1, . . . , Vn−1

q
−→W,

and suppose we are given composite (5.4). We do induction on k1. If k1 = 0, then by
Lemma 3.14,(a) (f1, . . . , fn) · g is equal to the composite

X1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

f2,...,fn
−−−−→ Y2, . . . , Yn

〈g〉
−→ C(Y1;Z)

C(f1;1)
−−−−→ C(;Z) = Z,
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therefore

F ((f1, . . . , fn) · g) = (Ff2, . . . , Ffn) · F (〈g〉 · C(f1; 1)) (induction hypothesis)

= (Ff2, . . . , Ffn) · (F 〈g〉 · φC(f1; 1)) (Lemma 5.7)

= (Ff2, . . . , Ffn) · (F 〈g〉 · φ̂ · D(φ(f1); 1)) (Lemma 5.4)

= (Ff2, . . . , Ffn) · (〈Fg〉 · D(Ff1; 1)) (formula (5.3))

= (Ff1, . . . , Ffn) · Fg. (Lemma 3.14,(a))

Suppose that k1 = 1. Then by Lemma 3.14,(b) 〈(f1, . . . , fn) · g〉 is equal to the composite

X1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

f2,...,fn
−−−−→ Y2, . . . , Yn

〈g〉
−→ C(Y1;Z)

C(f1;1)
−−−−→ C(X1

1 ;Z),

therefore

〈F ((f1, . . . , fn) · g)〉 = F 〈(f1, . . . , fn) · g〉 · φ̂ (formula (5.3))

= (Ff2, . . . , Ffn) · F (〈g〉 · C(f1; 1)) · φ̂ (induction hypothesis)

= (Ff2, . . . , Ffn) · F 〈g〉 · φC(f1; 1) · φ̂ (Lemma 5.7)

= (Ff2, . . . , Ffn) · F 〈g〉 · φ̂ · D(φ(f1); 1) (naturality of φ̂)

= (Ff2, . . . , Ffn) · 〈Fg〉 · D(Ff1; 1) (formula (5.3))

= 〈(Ff1, . . . , Ffn) · Fg〉, (Lemma 3.14,(b))

and hence F ((f1, . . . , fn) · g) = (Ff1, . . . , Ffn) · Fg. Suppose that k1 > 1, then by
Lemma 3.14,(c) 〈(f1, . . . , fn) · g〉 is equal to the composite

X2
1 , . . . , X

k1
1 , X

1
2 , . . . , X

k2
2 , . . . , X

1
n, . . . , X

kn
n

〈f1〉,f2,...,fn
−−−−−−−→ C(X1

1 ; Y1), Y2, . . . , Yn
1,〈g〉

−−−−−−−→ C(X1
1 ; Y1),C(Y1;Z)

µC
−−−−−−−→ C(X1

1 ;Z),

therefore

〈F ((f1, . . . , fn) · g)〉 = F 〈(f1, . . . , fn) · g〉 · φ̂ (formula (5.3))

= (F 〈f1〉, Ff2, . . . , Ffn) · F ((1, 〈g〉)µC) · φ̂ (induction hypothesis)

= (F 〈f1〉, Ff2, . . . , Ffn) · (1, F [g]) · FµC · φ̂ (Lemma 5.8)

= (F 〈f1〉, Ff2, . . . , Ffn) · (1, F 〈g〉) · (φ̂, φ̂) · µD (Lemma 5.5)

= (F 〈f1〉 · φ̂, Ff2, . . . , Ffn) · (1, F 〈g〉 · φ̂) · µD

= (〈Ff1〉, Ff2, . . . , Ffn) · (1, 〈Fg〉) · µD (formula (5.3))

= 〈(Ff1, . . . , Ffn) · Fg〉, (Lemma 3.14,(c))

hence F ((f1, . . . , fn) · g) = (Ff1, . . . , Ffn) · Fg, and induction goes through.
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Thus we have proven that F : C → D is a multifunctor. By construction, its un-
derlying functor is φ. Furthermore, the closing transformation FX;Y coincides with

φ̂X,Y : φC(X ; Y ) → D(φX ;φY ). Indeed, we first observe that FX,Y = 〈F evC〉, where
evC : X,C(X ; Y ) → Y is the evaluation morphism. Further, by formula (5.3),

FX,Y = 〈F evC〉 = φ〈evC〉 · φ̂X,Y = φ̂X,Y ,

since 〈evC〉 = 1 : C(X ; Y ) → C(X ; Y ). Finally,

Fu =
[
()

u
−→ 1

φ0

−→ φ1
]
.

Indeed, by formula (5.1),

Fu =
[
()

u
−→ 1

φ0

−→ φ1
φ(u)
−−→ φ1

]
=

[
()

u
−→ 1

φ0

−→ φ1
]
,

since u = 1 : 1 → 1. Thus we conclude that F : C → D is a multifunctor whose underlying
closed functor is Φ. The proposition is proven.

5.10. The injectivity of U on 1-morphisms The following proposition shows that
the Cat-functor U is injective on 1-morphisms.

5.11. Proposition. Let F,G : C → D be multifunctors between closed multicategories
with unit objects. Suppose that F and G induce the same closed functor Φ = (φ, φ̂, φ0)
between the underlying closed categories. Then F = G.

Proof. By assumption, the underlying functors of the multifunctors F and G are the
same and are equal to the functor φ. Let us prove that Ff = Gf , for each f :
X1, . . . , Xn → Y . The proof is by induction on n. There is nothing to prove if n = 1.
Suppose that n = 0, i.e., f is a morphism () → Y . Then since F and G are multifunctors,

Ff = F (u · f) = Fu · Ff, Gf = G(u · f) = Gu ·Gf.

Since F and G coincide on morphisms with one source object, it follows that Ff = Gf .
Furthermore,

Fu =
[
()

u
−→ 1

φ0

−→ F1 = G1
]
= Gu,

hence Ff = Gf . The induction step follows from the commutative diagram

C(X2, . . . , Xn;C(X1; Y )) D(φX2, . . . , φXn;φC(X1; Y ))

D(φX2, . . . , φXn;D(φX1;φY ))

C(X1, . . . , Xn; Y ) D(φX1, . . . , φXn;φY )

F

ϕC ≀

D(1;φ̂)

ϕD≀

F

and a similar diagram for G, which are particular cases of Proposition 3.20.
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5.12. The bijectivity of U on 2-morphisms The following proposition implies that
U is bijective on 2-morphisms.

5.13. Proposition. Let F,G : C → D be multifunctors between closed multicategories
with unit objects. Denote by Φ = (φ, φ̂, φ0) and Ψ = (ψ, ψ̂, ψ0) the corresponding closed
functors. Let r : Φ → Ψ be a closed natural transformation. Then r is also a multinatural
transformation F → G : C → D.

Proof. We must prove that, for each f : X1, . . . , Xn → Y , the equation

Ff · rY = (rX1 , . . . , rXn
) ·Gf

holds true. The proof is by induction on n. Suppose that n = 0, and that f is a morphism
() → Y . The axiom CN1

[
1

φ0

−→ F1
r1−→ G1

]
= ψ0

implies [
()

Fu
−→ F1

r1−→ G1
]
= Gu.

It follows that

Ff · rY = Fu · Ff · rY = Fu · r1 ·Gf = Gu ·Gf = Gf,

where the second equality is due to the naturality of r. There is nothing to prove in the
case n = 1. Suppose that n > 1. It suffices to prove that

〈Ff · rY 〉 = 〈(rX1, . . . , rXn
) ·Gf〉 : FX2, . . . , FXn → D(FX1;GY ).

By Lemma 3.14,(c), the left hand side expands out as 〈Ff〉 · D(1; rY ), which by for-
mula (5.3) is equal to F 〈f〉 · φ̂ · D(1; rY ). By Lemma 3.14,(b), the right hand side of the
equation in question is equal to (rX2 , . . . , rXn

) · 〈Gf〉 · D(rX1 ; 1), which by formula (5.3)
is equal to (rX2 , . . . , rXn

) ·G〈f〉 · ψ̂ · D(rX1 ; 1). By the induction hypothesis, the latter is
equal to F 〈f〉 · rC(X1;Y ) · ψ̂ ·D(rX1 ; 1). The required equation follows then from the axiom
CN2.

5.14. The essential surjectivity of U Let us prove that for each closed category V

there is a closed multicategory V with a unit object whose underlying closed category is
isomorphic to V. First of all, notice that by Theorem 2.19 we may (and we shall) assume
in what follows that V is a closed category in the sense of Eilenberg and Kelly; i.e., that
V is equipped with a functor V : V → S such that V V(−,−) = V(−,−) : Vop × V → S

and the axiom CC5’ is satisfied. In particular, we can use the whole theory of closed
categories developed in [2] without any modifications. We are now going to construct a
closed multicategory V with a unit object whose underlying closed category is isomorphic
to V. The construction is based on ideas of Laplaza’s paper [9].

We begin by recalling that for each object X of the category V one can assign a
V-functor LX : V → V, and for each f ∈ V V(X, Y ) = V(X, Y ) there is a unique V-natural
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transformation Lf : LY → LX : V → V such that (V (Lf )Y )1Y = f , see Examples 2.13,
2.15, 2.21, or [2, Section 9]. Moreover, by [2, Proposition 9.2] the assignments X 7→ LX

and f 7→ Lf determine a fully faithful functor from the category Vop to the category
V-Cat(V,V) of V-functors V → V and their V-natural transformations. For us it is
more convenient to write it as functor from V to V-Cat(V,V)op. Note that the latter
category is strict monoidal with the tensor product given by composition of V-functors.
More precisely, the tensor product of F and G in the given order is FG = F ·G = G ◦F .
Consider the multicategory associated with V-Cat(V,V)op (see Example 3.3) and consider
its full submulticategory whose objects are V-functors LX , X ∈ ObV. That is, in essence,
our V. More precisely, ObV = ObV and

V(X1, . . . , Xn; Y ) = V-Cat(V,V)op(LX1 · . . . · LXn , LY )

= V-Cat(V,V)(LY , LXn ◦ · · · ◦ LX1).

Identities and composition coincide with those of the multicategory associated with the
strict monoidal category V-Cat(V,V)op. Note that by Proposition 2.20 there is a bijection

Γ : V(X1, . . . , Xn; Y ) → (V ◦ LXn ◦ · · · ◦ LX1)Y, f 7→ (V fY )1Y .

5.15. Theorem. The multicategory V is closed and has a unit object. The underlying
closed category of V is isomorphic to V.

Proof. First, let us check that the multicategory V is closed. By Proposition 3.9, it
suffices to prove that for each pair of objects X and Z there exist an internal Hom-object
V(X ;Z) and an evaluation morphism evV

X;Z : X,V(X ;Z) → Z such that the map

ϕ : V(Y1, . . . , Yn;V(X ;Z)) → V(X, Y1, . . . , Yn;Z), f 7→ (1X , f) · ev
V

X;Z ,

is bijective, for each sequence of objects Y1, . . . , Yn. We set V(X ;Z) = V(X,Z). The
evaluation map evVX;Z : X,V(X ;Z) → Z is by definition a V-natural transformation

LZ → LV(X,Z) ◦ LX . We define it by requesting (V (evVX;Z)Z)1Z = 1V(X,Z) (we extensively
use the representation theorem for V-functors in the form of Proposition 2.20). Let us
check that the map ϕ is bijective. Note that the codomain of ϕ identifies via the map Γ
with the set (V ◦ LYn ◦ · · · ◦ LY1 ◦ LX)Z, and that the domain of ϕ identifies via Γ with
the set

(V ◦ LYn ◦ · · · ◦ LY1)V(X,Z) = (V ◦ LYn ◦ · · · ◦ LY1 ◦ LX)Z.

The bijectivity of ϕ follows readily from the diagram

V(Y1, . . . , Yn;V(X ;Z)) V(X, Y1, . . . , Yn;Z)

(V ◦ LYn ◦ · · · ◦ LY1 ◦ LX)Z

ϕ

Γ Γ
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whose commutativity we are going to establish. Take an f ∈ V(Y1, . . . , Yn;V(X ;Z)), i.e.,
a V-natural transformation f : LV(X,Z) → LYn ◦ · · · ◦ LY1 . Then ϕ(f) is given by the
composite

LZ
evV

X;Z
−−−→ LV(X,Z) ◦ LX

fLX

−−→ LYn ◦ · · · ◦ LY1 ◦ LX .

Therefore, Γϕ(f) is equal to
(
V ((fLX) ◦ evVX;Z)Z

)
1Z =

(
V (fLX)Z

)(
V evVX;Z

)
1Z = (V fV(X,Z))1V(X,Z) = Γ(f).

Thus we conclude that V is a closed multicategory.
Let us check that 1 ∈ ObV is a unit object of V. By definition, a morphism u : () → 1

is a V-natural transformation L1 → Id. We let it be equal to i−1, which is a V-natural
transformation by [2, Proposition 8.5]. Then for each object X of V holds

V(u; 1) = (u, 1) · evV

1;X : V(1;X) → X,

i.e., V(u; 1) is the V-natural transformation

LX
evV

1;X
−−−→ LV(1;X) ◦ L1 LV(1,X)u

−−−−−→ LV(1,X).

We claim that it coincides with Li
−1
X and hence is invertible. Indeed, applying Γ to the

above composite we obtain
(
V ((LV(1,X)u) ◦ evV

1;X)X
)
1X =

(
V (LV(1,X)u)X

)(
V (evV

1;X)X
)
1X

= V(V(1, X), uX)1V(1,X)

= uX = i−1
X .

Let us now describe the underlying closed category of the closed multicategory V.
Its objects are those of V, and for each pair of objects X and Y the set of morphisms
from X to Y is V(X ; Y ) = V-Cat(V,V)(LY , LX). The unit object is 1 and the internal
Hom-object V(X ; Y ) coincides with V(X, Y ). For each object X , the identity morphism
1VX : () → V(X ;X), i.e., a V-natural transformation LV(X,X) → Id, is found from the
equation

[
X

1X ,1
V

X−−−→ X,V(X ;X)
evVX;X
−−−→ X

]
= 1X ,

or equivalently from the equation

[
LX

evV
X;X

−−−→ LV(X,X) ◦ LX
1
V

X
LX

−−−→ LX
]
= id .

Applying Γ to both sides we find that
(
V ((1VXL

X) ◦ evVX;X)X
)
1X =

(
V (1VX)V(X,X)

)(
V (evVX;X)X

)
1X

= V (1
V

X)V(X,X)1V(X,X)

= 1X .
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Here V (1VX)V(X,X) : V(V(X,X),V(X,X)) → V(X,X). The morphism jX of the underlying
closed category of V is a V-natural transformation LV(X,X) → L1; it is found from the
equation [

LV(X,X) jX−→ L1 u
−→ Id

]
= 1VX .

Applying Γ to both sides we obtain

(
V (u ◦ jX)V(X,X)

)
1V(X,X) = V (1VX)V(X,X)1V(X,X),

i.e., (
V i−1

V(X,X)

)(
V (jX)V(X,X)1V(X,X)

)
= 1X ,

or equivalently
(V (jX)V(X,X))1V(X,X) = (V iV(X,X))1X = jX ,

where the last equality is the axiom CC5’. Therefore, jX = LjX : LV(X,X) → L1. It
also follows by construction that iX for the underlying closed category of the closed
multicategory V is (V(u; 1))−1 = (Li

−1
X )−1 = LiX .

Let us compute the morphism LXY Z : V(Y ;Z) → V(V(X ; Y );V(X ;Z)). First note
that evV

X;Y : X,V(X ; Y ) → Y is the V-natural transformation LY → LV(X,Y ) ◦ LX with
components

(evVX;Y )Z = LXY Z : V(Y, Z) → V(V(X, Y ),V(X,Z)).

In other words, evVX;Y = LXY,−. Indeed, applying Γ to both side of the equation in question
we obtain an equivalent equation

(V (evV

X;Y )Y )1Y = (V LXY Y )1Y .

Since V LX = V(X,−), it follows that (V LXY Y )1Y = 1V(X,Y ), so that the above equation is
just the definition of evVX;Y .

The morphism LXY Z : V(Y ;Z) → V(V(X ; Y );V(X ;Z)) is uniquely determined by
requesting that the diagram

X,V(X ; Y ),V(Y ;Z) X,V(X ; Y ),V(V(X ; Y );V(X ;Z))

X,V(X ;Z)

Y,V(Y ;Z) Z

1,1,LX
Y Z

1,evV
V(X;Y );V(X;Z)

evVX;Z

evV
X;Y ,1

evVY ;Z
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in the multicategory V, or equivalently the diagram

LZ LV(X,Z) ◦ LX

LV(V(X,Y ),V(X,Z)) ◦ LV(X,Y ) ◦ LX

LV(Y,Z) ◦ LY LV(Y,Z) ◦ LV(X,Y ) ◦ LX

evV
X;Z

evV
V(X,Y );V(X,Z)

LX

LX
Y Z

LV(X,Y )LX

evV
Y ;Z

LV(Y,Z) evV
X;Y

in the category V-Cat(V,V) commute. Applying Γ to both paths in the latter diagram
we obtain

(
V (LXY Z)V(V(X,Y ),V(X,Z))

)(
V (evVV(X,Y );V(X,Z))V(X,Z)

)(
V (evVX;Z)Z

)
1Z

= V(V(Y, Z), (evVX;Y )Z)(V (ev
V

Y ;Z)Z)1Z ,

or equivalently

(
V (LXY Z)V(V(X,Y ),V(X,Z))

)
1V(V(X,Y ),V(X,Z)) = (evVX;Y )Z = LXY Z .

In other words, LXY Z for the underlying closed category of V is LL
X
Y Z .

Let us denote the underlying closed category of the multicategory V by the same
symbol. There is a closed functor (L, 1, 1) : V → V, where L : V → V is given by
X 7→ X , f 7→ Lf , and the morphisms V(X, Y ) → V(X ; Y ) and 1 → 1 are the identities.
The axioms CF1–CF3 follow readily from the above description of the closed category V.
Clearly, the functor L is an isomorphism. The theorem is proven.
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