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ON THE ITERATION OF WEAK WREATH PRODUCTS

GABRIELLA BÖHM

Abstract. Based on a study of the 2-category of weak distributive laws, we
describe a method of iterating Street’s weak wreath product construction. That is,
for any 2-category K and for any non-negative integer n, we introduce 2-categories
Wdl(n)(K), of (n + 1)-tuples of monads in K pairwise related by weak distributive

laws obeying the Yang-Baxter equation. The first instance Wdl(0)(K) coincides with

Mnd(K), the usual 2-category of monads in K, and for other values of n, Wdl(n)(K)
contains Mndn+1(K) as a full 2-subcategory. For the local idempotent closure K of
K, extending the multiplication of the 2-monad Mnd, we equip these 2-categories
with n possible ‘weak wreath product’ 2-functors Wdl(n)(K) → Wdl(n−1)(K), such

that all of their possible n-fold composites Wdl(n)(K) → Wdl(0)(K) are equal; that
is, such that the weak wreath product is ‘associative’. Whenever idempotent 2-
cells in K split, this leads to pseudofunctors Wdl(n)(K) → Wdl(n−1)(K) obeying
the associativity property up-to isomorphism. We present a practically important
occurrence of an iterated weak wreath product: the algebra of observable quantities
in an Ising type quantum spin chain where the spins take their values in a dual
pair of finite weak Hopf algebras. We also construct a fully faithful embedding of
Wdl(n)(K) into the 2-category of commutative n + 1 dimensional cubes in Mnd(K)
(hence into the 2-category of commutative n + 1 dimensional cubes in K whenever
K has Eilenberg-Moore objects and its idempotent 2-cells split). Finally we give a
sufficient and necessary condition on a monad in K to be isomorphic to an n-ary
weak wreath product.

Introduction

At the heart of the iteration of wreath products in the work [Cheng (2011)] of Eugenia
Cheng, lies the 2-monad Mnd on the 2-category 2-Cat of 2-categories, 2-functors and
2-natural transformations, first discussed in [Street (1972)]. For any 2-category K, the
iteration of its associative multiplication Mndn(K) → Mndn−1(K) → . . . → Mnd(K)
takes an (n + 1)-tuple of monads, pairwise related by distributive laws obeying the
Yang-Baxter equality, to a unique monad in K. The resulting monad (that appeared
already in [Jara Mart́ınez et al. (2008)] in the case when K is the monoidal category
of vector spaces) can be interpreted as an iterated wreath product.

The aim of this paper is to find a similar iteration process for weak wreath products
introduced by Ross Street in [Street (2009)] and by Stefaan Caenepeel and Erwin De
Groot in [Caenepeel, De Groot (2000)].

These weak wreath products are defined in 2-categories in which idempotent 2-cells
split, see [Street (2009)]. They are induced by weak distributive laws; that is, certain 2-
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cells relating two monads. They obey the usual compatibility conditions of distributive
laws with the multiplications of the monads, but the compatibility conditions with
the units are weakened [Caenepeel, De Groot (2000)], [Street (2009)]. Making weak
distributive laws conceptually different from their non-weak counterparts, they are
not known to be monads in any 2-category. (However, a weak distributive law can be
characterized as a pair of monads in 2-categories extending Mnd(K) and its variant
Mnd∗(K), respectively, see [Böhm (2010)]).

In Section 2, for any 2-category K, we construct a 2-category Wdl(n)(K) for ev-
ery non-negative integer n. Its objects are (n + 1)-tuples of monads in K pairwise
related by weak distributive laws obeying the Yang-Baxter equation. The first one,
Wdl(0)(K) is isomorphic to Mnd(K), the 2-category of monads in K as defined in
[Street (1972)]. The next one, Wdl(1)(K) is the 2-category of weak distributive laws,
obtained by dualizing the definition in [Böhm, Lack, Street (2011)]. For every n,
Wdl(n)(K) contains Mndn+1(K) as a full 2-subcategory. But, in contrast to the clas-
sical (that is, non-weak) case, Wdl(n)(K) is not known to arise by the (n + 1)-fold
application of some 2-monad. Although in this way we can not interpret them as
multiplications of some 2-monad, for each value of n we describe n different 2-functors
Wdl(n)(K)→ Wdl(n−1)(K) (where K denotes the local idempotent closure of K). They
extend the n possible multiplications Mndn+1(K) → Mndn(K). They give rise to a
unique composite Wdl(n)(K) → Wdl(0)(K) whose value on an object of Wdl(n)(K) is
regarded as the (associatively iterated) weak wreath product of the n + 1 occurring
monads in K. Whenever idempotent 2-cells in K split; that is, K and K are biequiva-
lent, our construction yields pseudofunctors Wdl(n)(K)→ Wdl(n−1)(K) giving rise to a
composite Wdl(n)(K)→ Wdl(0)(K) which is unique up-to a pseudonatural equivalence
in the choice of the biequivalence K → K.

Our motivation to study iterated weak wreath products comes from mathematical
physics. The Ising model is a quantum spin chain in which the spins take their values
in the sign group Z(2). In its various generalizations, the spins may take their values
in arbitrary finite groups [Szlachányi, Vecsernyés (1993)], in finite dimensional Hopf
algebras [Nill, Szlachányi (1997)] or in finite dimensional weak Hopf algebras [Nill,
Szlachányi, Wiesbrock (preprint 1998)], [Böhm (1997)]. In all of these, except the last
quoted family of models, the algebra of the observable quantities in any finite interval
is given by an iterated wreath product. In quantum spin chains based on weak Hopf
algebras, however, the algebras of observables are iterated weak wreath products. In
Section 3 we present this example in some detail.

The definition of Wdl(n)(K) is further motivated in Section 4 by a fully faithful
embedding of it into the 2-category of n + 1 dimensional cubes in the 2-category of
monads in K. Whenever idempotent 2-cells in K split, this yields a fully faithful
embedding of Wdl(n)(K) into the 2-category of n + 1 dimensional cubes in the 2-
category of monads in K; and also into the 2-category of n + 1 dimensional cubes in
K whenever in addition K admits Eilenberg-Moore objects for monads.

In our final Section 5 we analyze the n-ary factorization problem associated to
weak distributive laws. That is, we give a complete characterization of those monads
in the local idempotent closure of a 2-category which arise as iterated weak wreath
products of n monads.
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Throughout, for a technical simplification, we work with 2-categories. There is no
difficulty, however, to extend our considerations to bicategories.

Acknowledgement I would like to express my gratitude to Ross Street and Kornél
Szlachányi for their helpful comments on this work. Partial support by the Hungarian
Scientific Research Fund OTKA K68195 is gratefully acknowledged.

1. Preliminaries on weak distributive laws

In this section we revisit some recent ‘weak’ generalizations of the formal theory of
monads that will be used in the sequel.

1.1. Local idempotent closure To any 2-category K we associate another 2-
category K by freely splitting idempotent 2-cells. In more detail, the 0-cells of K are
the same as those in K. The 1-cells in K are pairs consisting of a 1-cell v and a 2-cell
v : v → v in K such that v.v = v; that is, v is idempotent. The 2-cells (v, v)→ (v′, v′)
in K are 2-cells ω : v → v′ in K such that v′.ω = ω = ω.v. Horizontal and vertical
compositions in K are induced by those in K. The identity 2-cell is v : (v, v)→ (v, v).

Throughout, we shall use the notation seen above: If it is not otherwise stated, in
a 1-cell in K, for the idempotent 2-cell part we use the overlined version of the same
symbol that denotes the 1-cell part.

For any 2-category K, there is an evident inclusion 2-functor K → K, acting on
the 0-cells as the identity map, taking a 1-cell v to (v, v) – that is, the 1-cell with
identity 2-cell part – and acting on the 2-cells again as the identity map.

We say that idempotent 2-cells in a 2-category K split if, for any idempotent 2-cell
θ : v → v there exist a 1-cell w and 2-cells ι : w → v and π : v → w such that
π.ι = w and ι.π = θ. If the splitting exists then it is unique up-to an isomorphism of
w. Clearly, in K idempotent 2-cells split for any 2-category K.

Whenever in K idempotent 2-cells split, the inclusion K → K becomes a biequiv-
alence. (Since it acts on the 0-cells as the identity map, this simply means that it
induces an equivalence of the hom categories.) Hence there is a pseudofunctor K → K
which is its inverse (in the sense of inverse biequivalences). On the 0-cells also this
pseudofunctor acts as the identity map. On a 1-cell (v, v) its action is constructed
via a chosen splitting of the idempotent 2-cell v. If (ι : w → v, π : v → w) is this
chosen splitting, then the image of (v, v) is w. A 2-cell ω : (v, v)→ (v′, v′) is taken to
w ι // v ω // v′ π′ // w′ . Let us stress that the biequivalence K → K is not a 2-functor
in general and it is unique only up-to a pseudonatural equivalence arising from the
choice of the splitting of each idempotent 2-cell.

1.2. Demimonads In simplest terms, a demimonad in a 2-category is a monad
(A, (t, t)) in the local idempotent closure, cf. [Böhm, Lack, Street (2012)]. Explicitly,
it is given by a 1-cell t : A → A and 2-cells µ : t2 → t and η : 1A → t such that the
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following diagrams commute.

t3
µt //

tµ

��

t2

µ

��
t2 µ

// t

t
ηt //

tη

��

t2

µ

��
t2 µ

// t

1A
ηη //

η
  AAAAAAAA t2

µ

��
t

t2
ηt2 //

µ
��???????? t3

µ2

��
t

For a monad (A, (t, t)) in the local idempotent closure, the 2-cell η being a two-sided
unit for µ means that the idempotent 2-cell t must be equal to µ.tη = µ.ηt (hence it
is a redundant information that will be often omitted in the sequel). This structure
occurred in [Böhm (2010)] under the name ‘pre-monad’.

A demimonad (A, (t, t)) is the image of a monad under the inclusion K → K if
and only if t is the identity 2-cell t.

1.3. Weak distributive laws Extending the notion of distributive law due to
Jon Beck (see [Beck (1969)]), weak distributive laws in a 2-category were introduced
by Ross Street in [Street (2009)] as follows. They consist of two monads (A, t) and
(A, s) on the same object, and a 2-cell λ : ts → st such that the following diagrams
commute.

t2s
tλ //

µs

��

tst
λt // st2

sµ

��
ts

λ
// st

s
ηs //

sη

��

ts

λ
��

st
stη
// sts

sλ
// s2t µt

// st

ts2 λs //

tµ

��

sts
sλ // s2t

µt

��
ts

λ
// st

t
tη //

ηt

��

ts

λ
��

st
ηst
// tst

λt
// st2 sµ

// st

(1)

The same set of axioms occurred also in [Caenepeel, De Groot (2000)]. By Proposition
2.2 in [Street (2009)], the second and fourth diagrams can be replaced by a single
diagram

st
ηst //

stη

��

tst
λt // st2

sµ

��
sts

sλ
// s2t µt

// st .

(2)

The equal paths around (2) give rise to an idempotent 2-cell λ : st→ st (which occurs
also in the bottom rows of the second and fourth diagrams in (1)). It is an identity
if and only if λ is a distributive law in the strict sense. Since (2) generalizes the
‘unitality conditions’ λ.tη = ηt and λ.ηs = sη on a distributive law λ, we refer to it
as the ‘weak unitality condition’.

Note that a weak distributive law in K is the same as a weak distributive law in
Kop, the dual of K with respect to 1-cells.

A weak distributive law in K is then given by demimonads (A, t) and (A, s) and a
2-cell λ : ts→ st rendering commutative the diagrams in (1) and obeying in addition
the normalization conditions

ts
tµ.tηs //

λ
��

λ

""EEEEEEEE ts

λ
��

ts
µs.tηs //

λ
��

λ

##GGGGGGGGG ts

λ
��

st
µt.sηt

// st st
sµ.sηt

// st .
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In the sequel we shall need some identities on weak distributive laws (in K). The
axioms imply commutativity of the following diagrams, see [Street (2009)].

ts
λ //

λ

��9999999999 st

λ

��

s2t2
sλt //

µµ

��

s2t2

µµ

��

sts
sλ //

λs ��
s2t

µt

��

tst
λt //

tλ ��
st2

sµ

��

sts
sλ ��

tst
λt ��

st st
λ

// st s2t µt
// st st2 sµ

// st

(3)

Moreover, by the associativity of µ, the left-bottom path in the last diagram in (1)
commutes with the multiplication by t on the right; in the sense that sµ.λt.ηt2 =
λ.ηt.µ. Hence also the top-right path in the last diagram in (1) commutes with the
right multiplication by t, meaning the commutativity of the first diagram in

t2

µ

��

tηt // tst
λt // st2

sµ

��

s2

µ

��

sηs // sts
sλ // s2t

µt

��
t

tη
// ts

λ
// st s ηs

// ts
λ
// st.

(4)

Commutativity of the second diagram follows symmetrically.

1.4. The 2-category of weak distributive laws Dualizing in the appropriate
sense the definition of the 2-category of mixed weak distributive laws in the paper
[Böhm, Lack, Street (2011)], the following 2-category Wdl(K) of weak distributive
laws in K is obtained (see [Böhm, Gómez-Torrecillas (preprint 2011), Paragraph 1.9]).
The 0-cells are the weak distributive laws λ : ts → st. The 1-cells λ → λ′ are triples
consisting of a 1-cell v : A → A′ and 2-cells ξ : t′v → vt and ζ : s′v → vs in K, such
that (v, ξ) : (A, t) → (A′, t′) and (v, ζ) : (A, s) → (A′, s′) are 1-cells in Mnd(K) (also
called monad morphisms in [Street (1972)]) and the following diagram commutes.

t′s′v
t′ζ //

λ′v
��

t′vs
ξs // vts

vλ
��

s′t′v
s′ξ
// s′vt

ζt
// vst

vλ

// vst

(5)

The 2-cells (v, ξ, ζ) → (v′, ξ′, ζ ′) are 2-cells ω : v → v′ in K which are 2-cells in
Mnd(K) (called monad transformations in [Street (1972)]); both (v, ξ) → (v′, ξ′) and
(v, ζ)→ (v′, ζ ′). Horizontal and vertical compositions are induced by those in K. As
in [Böhm, Lack, Street (2011)], this definition can be interpreted in terms of (weak)
liftings.

There is a fully faithful embedding Mnd2(K)→ Wdl(K) as follows. It takes a 0-cell
((A, t), (s, λ)) to the distributive law λ : ts→ st, regarded as a weak distributive law.
It takes a 1-cell ((v, ξ), ζ) to (v, ξ, ζ) and it acts on the 2-cells as the identity map.

1.5. Weak wreath product The weak wreath product induced by a weak dis-
tributive law in a 2-category in which idempotent 2-cells split, was discussed by Ross
Street in [Street (2009), Theorem 2.4]. In the particular case of the monoidal category
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(that is, one object bicategory) of modules over a commutative ring, it appeared in
[Caenepeel, De Groot (2000), Theorem 3.2].

For an arbitrary 2-category K, there is a weak wreath product 2-functor Wdl(K)→
Mnd(K), which sends a weak distributive law λ : ts → st to the monad (st, λ) in K,
with multiplication and unit

(st)2 sλt // s2t2
µµ // st and 1

ηη // ts
λ // st .

It sends a 1-cell ((v, v), ξ, ζ) : λ → λ′ to the monad morphism with the same 1-cell
part (v, v) and the 2-cell part

s′t′v
s′ξ // s′vt

ζt // vst
vλ // vst .

On the 2-cells it acts as the identity map.
Whenever idempotent 2-cells in K split, the biequivalence K ' K induces a pseudo-

functor Wdl(K)
'→ Wdl(K)→ Mnd(K)

'→ Mnd(K). (It can be chosen, in fact, to be a
2-functor by choosing the biequivalence K → K adopting the convention that we split
identity 2-cells trivially; that is, via identity 2-cells.) Its object map yields Street’s
weak wreath product in K.

1.6. Binary factorization Let K be any 2-category. As proved in the work
[Böhm, Gómez-Torrecillas (preprint 2011)], a demimonad (A, r) is isomorphic to a
weak wreath product induced by some weak distributive law ts→ st in K if and only
if the following hold.

(a) There are 1-cells in Mnd(K) with trivial 1-cell parts

(A, (t, t)) (A, (r, r))
((A,A),α)oo ((A,A),β) // (A, (s, s)) ;

(b) The 2-cell

π :=
(

(st, st)
βα // (rr, r r)

µ // (r, r)
)

in K possesses section ι (meaning π.ι = r ≡ µ.rη) which is an s-t bimodule
morphism with respect to the t- and s-actions induced on r by α and β, respec-
tively.

Indeed, for the weak wreath product induced by a weak distributive law λ : ts→ st,
we have 1-cells

(A, (t, t)) (A, (st, λ))
((A,A),λ.tη)oo ((A,A),λ.ηs) // (A, (s, s))

in Mnd(K). Moreover, the 2-cell π in part (b) comes out as(
(st, st)

λλ.ηstη // (stst, λ λ)
µµ.sλt // (st, λ)

)
=
(

(st, st)
λ // (st, λ)

)
,

which is split by the bimodule morphism λ : (st, λ)→ (st, st).
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Conversely, if properties (a) and (b) hold, then

ts
αβ // rr

µ // r ι // st

is a weak distributive law with corresponding idempotent equal to ι.π : st→ st. The
isomorphism between the induced weak wreath product and (A, r) is provided by

(st, ι.π)
π // (r, r)
ι

oo in K. For the details of the proof we refer to the article [Böhm,

Gómez-Torrecillas (preprint 2011)].

2. 2-categories of weak distributive laws and the iterated weak wreath
product

Throughout this section, K is an arbitrary 2-category and K stands for its local
idempotent closure. For any non-negative integer n, we define a 2-category Wdl(n)(K).
Its objects are (n + 1)-tuples of monads pairwise related by weak distributive laws
obeying the Yang-Baxter condition (see (6) below). For each value of n, we construct
n different 2-functors Wdl(n)(K) → Wdl(n−1)(K) corresponding to taking the weak
wreath product of two consecutive monads of the n+ 1 occurring ones. We show that
these 2-functors give rise to a unique composite Wdl(n)(K) → Wdl(0)(K) = Mnd(K).
We regard its object map as the n-ary weak wreath product of the involved monads.

2.1. The 2-category Wdl(n)(K) For any non-negative integer n, a 0-cell is given
by n + 1 monads s0, s1, . . . , sn together with weak distributive laws λi,j : sjsi → sisj
for all 0 ≤ i < j ≤ n, obeying for all 0 ≤ i < j < k ≤ n the Yang-Baxter relation

sksjsi
λj,ksi //

skλi,j
��

sjsksi
sjλi,k // sjsisk

λi,jsk
��

sksisj
λi,ksj

// sisksj
siλj,k

// sisjsk.

(6)

The 1-cells consist of a 1-cell v and 2-cells ξi : s′iv → vsi in K for all 0 ≤ i ≤ n, such
that (v, ξi, ξj) is a 1-cell λi,j → λ′i,j in Wdl(K) (see Paragraph 1.4), for all 0 ≤ i < j ≤
n. The 2-cells are those 2-cells ω : v → v′ in K which are 2-cells (v, ξi, ξj)→ (v′, ξ′i, ξ

′
j)

in Wdl(K) (in the sense of Paragraph 1.4), for all 0 ≤ i < j ≤ n. Since Wdl(K) is
closed under the horizontal and vertical compositions in K, so is Wdl(n)(K). Hence it
is a 2-category with the horizontal and vertical compositions induced by those in K.

Recall from [Cheng (2011)] that a 0-cell in Mndn(K) is given by n monads, pairwise
related by distributive laws obeying the Yang-Baxter condition. The 1-cells consist
of n monad morphisms for the n involved monads with a common underlying 1-cell,
obeying (5) (though in that case the occurring idempotents are identities). The 2-
cells are those 2-cells in K which are monad transformations for all of the n monad
morphisms. With this description in mind, extending that in Paragraph 1.4, there is
an evident fully faithful embedding Mndn+1(K)→ Wdl(n)(K).

Taking any m + 1-element subset of {0, 1, . . . , n} induces an evident 2-functor
Wdl(n)(K)→ Wdl(m)(K).
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2.2. Lemma. Take any object {λi,j : sjsi → sisj}0≤i<j≤2 of Wdl(2)(K). In addition to
si : si → si for 0 ≤ i ≤ 2, and λi,j : sisj → sisj for 0 ≤ i < j ≤ 2, let us introduce the
the following idempotent 2-cells in K.

−→
λ 0,p,q :=

(
s0spsq

s0spsqη0// s0spsqs0
s0spλ0,q// s0sps0sq

s0λ0,psq// s2
0spsq

µ0spsq// s0spsq
)
,

←−
λ k,l,2 :=

(
sksls2

η2sksls2// s2sksls2
λk,2sls2// sks2sls2

skλl,2s2// sksls
2
2

skslµ2 // sksls2

)
,

for p = 1, q = 2 and p = 2, q = 1; and for k = 0, l = 1 and k = 1, l = 0. They obey
the following equalities.

−→
λ 0,p,q.λ0,psq =

−→
λ 0,p,q = λ0,psq.

−→
λ 0,p,q (7)

−→
λ 0,1,2.s0λ1,2 = s0λ1,2.

−→
λ 0,2,1 (8)

−→
λ 0,p,q.λ0,psq = λ0,psq.spλ0,q (9)
←−
λ k,l,2.skλl,2 =

←−
λ k,l,2 = skλl,2.

←−
λ k,l,2 (10)

←−
λ 0,1,2.λ0,1s2 = λ0,1s2.

←−
λ 1,0,2 (11)

←−
λ k,l,2.skλl,2 = skλl,2.λk,2sl (12)
←−
λ 0,1,2.

−→
λ 0,1,2 =

←−
λ 0,1,2.λ0,1s2 =

−→
λ 0,1,2.s0λ1,2 =

−→
λ 0,1,2.

←−
λ 0,1,2 . (13)

In what follows, we shall denote by λ012 the equal 2-cells in (13) (we shall see later
the irrelevance of inserting any comma between the labels).

Proof. We only present a proof of (13), verification of the other equalities is left to
the reader.

The first and the last expressions in (13) are equal by commutativity of the fol-
lowing diagram.

s0s1s2
s0s1s2η0 //

η2s0s1s2
��

s0s1s2s0
s0s1λ0,2 // s0s1s0s2

s0λ0,1s2 // s2
0s1s2

µ0s1s2 // s0s1s2

η2s0s1s2
��

s2s0s1s2
s2s0s1s2η0//

λ0,2s1s2
��

s2s0s1s2s0
s2s0s1λ0,2// s2s0s1s0s2

s2s0λ0,1s2// s2s
2
0s1s2

s2µ0s1s2 //

λ0,2s0s1s2��
(1)

s2s0s1s2

λ0,2s1s2

��

s0s2s1s2
s0s2s1s2η0//

s0λ1,2s2 ��

s0s2s1s2s0
s0s2s1λ0,2// s0s2s1s0s2

s0s2λ0,1s2//

s0λ1,2s0s2
��

(YB)

s0s2s0s1s2

s0λ0,2s1s2��
s0s1s

2
2

s0s1s22η0 //

s0s1µ2

��

s0s1s
2
2s0

s0s1s2λ0,2//

s0s1µ2s0

��

(1)

s0s1s2s0s2

s0s1λ0,2s2
��

s2
0s2s1s2

µ0s2s1s2 //

s20λ1,2s2��

s0s2s1s2

s0λ1,2s2
��

s0s1s0s
2
2

s0λ0,1s22 //

s0s1s0µ2
��

s2
0s1s

2
2

µ0s1s22 //

s20s1µ2��

s0s1s
2
2

s0s1µ2
��

s0s1s2 s0s1s2η0
// s0s1s2s0

s0s1λ0,2
// s0s1s0s2

s0λ0,1s2
// s2

0s1s2 µ0s1s2
// s0s1s2

The first and the third expressions in (13) are equal by commutativity of the following
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diagram.

s0s1s2
s0s1s2η0 //

s0η2s1s2
��

s0s1s2s0
s0s1λ0,2 // s0s1s0s2

s0λ0,1s2 // s2
0s1s2

µ0s1s2 //

s0η2s0s1s2
��

(4)

s0s1s2

η2s0s1s2
��

s0s2s1s2
s0s2s1s2η0//

s0λ1,2s2 ��

s0s2s1s2s0
s0s2s1λ0,2// s0s2s1s0s2

s0s2λ0,1s2//

s0λ1,2s0s2
��

(YB)

s0s2s0s1s2

s0λ0,2s1s2��

s2s0s1s2

λ0,2s1s2
��

s0s1s
2
2

s0s1s22η0 //

s0s1µ2

��

s0s1s
2
2s0

s0s1s2λ0,2//

s0s1µ2s0

��

(1)

s0s1s2s0s2

s0s1λ0,2s2
��

s2
0s2s1s2

µ0s2s1s2 //

s20λ1,2s2��

s0s2s1s2

s0λ1,2s2
��

s0s1s0s
2
2

s0λ0,1s22 //

s0s1s0µ2
��

s2
0s1s

2
2

µ0s1s22 // s0s1s
2
2

s0s1µ2
��

s0s1s2 s0s1s2η0
// s0s1s2s0

s0s1λ0,2
// s0s1s0s2

s0λ0,1s2
// s2

0s1s2 µ0s1s2
// s0s1s2

Equality of the second and last expressions in (13) follows symmetrically.

2.3. Lemma. For any object {λi,j : sjsi → sisj}0≤i<j≤2 of Wdl(2)(K), consider the
monads (s0s1, λ0,1) and (s1s2, λ1,2) in K, induced by the weak distributive laws λ0,1

and λ1,2, respectively. There are weak distributive laws

λ01,2 :=
(
s2(s0s1)

λ0,2s1 // s0s2s1
s0λ1,2 // s0s1s2

−→
λ 0,1,2// (s0s1)s2

)
λ01,2 =

(
s2(s0s1)

s2λ01 // s2s0s1
λ0,2s1 // s0s2s1

s0λ1,2 // (s0s1)s2

)
and

λ0,12 :=
(
(s1s2)s0

s1λ0,2 // s1s0s2
λ0,1s2 // s0s1s2

←−
λ 0,1,2// s0(s1s2)

)
λ0,12 =

(
(s1s2)s0

λ12s0 // s1s2s0
s1λ0,2 // s1s0s2

λ0,1s2 // s0(s1s2)
)

in K. Moreover, their induced monads (s0s1s2, λ01,2) and (s0s1s2, λ0,12) are equal.

Proof. Both given forms of λ01,2 are equal by (8) and (9). It is a 2-cell in K by
(7). Compatibility with the multiplication of s2 holds since both λ0,2 and λ1,2 are
compatible with it. With the normalization conditions λ01.µ01 = µ01 = µ01.λ01s0s1 =
µ01.s0s1λ01 at hand, compatibility of λ01,2 with the multiplication of s0s1 follows by
the compatibilities of λ0,2 with µ0 and of λ1,2 with µ1 and the Yang-Baxter condition.
The weak unitality condition (2) follows by the equality of the second and third
expressions in (13) (so that λ01,2 = λ012). This proves that λ01,2 is a weak distributive
law and λ0,12 can be handled symmetrically (in particular, λ0,12 = λ012).

Equality of the units in the induced monads follows immediately by the Yang-
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Baxter condition. Concerning the multiplications, composing the equal paths around

s1s2s1s0s1
s1s2λ0,1s1 //

s1λ1,2s0s1

��

(YB)

s1s2s0s
2
1

s1s2s0µ1 //

s1λ0,2s21

��

s1s2s0s1

s1λ0,2s1
��

s1s0s2s1

λ0,1s2s1
��

s1s0s2s
2
1

λ0,1s2s21//

s1s0λ1,2s1

��

s0s1s2s
2
1

s0s1s2µ1 //

s0s1λ1,2s1
��

s0s1s2s1

s0s1λ1,2
��

s2
1s2s0s1

s21λ0,2s1//

µ1s2s0s1
��

s2
1s0s2s1

s1λ0,1s2s1//

µ1s0s2s1
��

s1s0s1s2s1
λ0,1s1s2s1// s0s

2
1s2s1

s0s21λ1,2//

s0µ1s2s1
��

s0s
3
1s2

s0s1µ1s2//

s0µ1s1s2
��

s0s
2
1s2

s0µ1s2
��

s1s2s0s1
s1λ0,2s1

// s1s0s2s1
λ0,1s2s1

// s0s1s2s1
s0s1λ1,2

// s0s
2
1s2 s0µ1s2

// s0s1s2

by s1s2η1s0s1 on the right, we obtain

s0µ1s2.λ0,1λ1,2.s1λ0,2s1.λ12s0s1 = s0µ1s2.λ0,1λ1,2.s1λ0,2s1.s1s2λ01. (14)

Inserting these equal 2-cells s1s2s0s1 → s0s1s2 into µ0s1µ2.s0(−)s2, we conclude the
equality of the multiplications induced on s0s1s2 by λ01,2 and λ0,12, respectively.

2.4. On the Yang-Baxter condition Actually, also a sort of converse of Lemma
2.3 holds. Consider weak distributive laws {λi,j : sjsi → sisj}0≤i<j≤2 in K. Assume
that

λ01,2 :=
(
s2(s0s1)

s2λ01 // s2s0s1
λ0,2s1 // s0s2s1

s0λ1,2 // (s0s1)s2

)
and

λ0,12 :=
(
(s1s2)s0

λ12s0 // s1s2s0
s1λ0,2 // s1s0s2

λ0,1s2 // s0(s1s2)
)

are weak distributive laws inducing equal monads (s0s1s2, λ01,2) and (s0s1s2, λ0,12).
Then the Yang-Baxter condition holds.

Indeed, equality of the multiplications µ0,12 and µ01,2 is equivalent to (14). With
this identity at hand, from the compatibility of λ0,12 with µ12 we obtain

λ0,12.µ12s0 = s0µ1µ2.λ0,1s1s
2
2.s1s0λ1,2s2.s1λ0,2s1s2.s1s2λ0,12 .

Precomposing this equality with η1s2s1η2s0, we conclude that

λ0,1s2.s1λ0,2.λ1,2s0 = s0s1µ2.s0λ1,2s2.λ0,2s1s2.s2λ0,1s2.s2s1λ0,2.s2λ1,2s0.s2η2s1s0 . (15)

Symmetrically,

s0λ1,2.λ0,2s1.s2λ0,1 = µ0s1s2.s0λ0,1s2.s0s1λ0,2.s0λ1,2s0.λ0,2s1s0.s2λ0,1s0.s2s1η0s0 . (16)

It follows by the associativity of µ1 that s0λ1,2.λ0,1s2 = λ0,1s2.s0λ1,2. Precompos-
ing with η0s1η2, we obtain from this s0λ1,2.s0η2s1.λ0,1.s1η0 = λ0,1s2.s1η0s2.λ1,2.η2s1.
Inserting these latter equal expressions into

s0s1µ2.s0λ1,2s2.λ0,2s1s2.s2µ0s1s2.s2s0λ0,1s2.s2s0s1λ0,2.s2(−)s0

and using (15) and (16) to simplify both sides of the resulting equality, we obtain the
Yang-Baxter condition.
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2.5. Lemma. For any 1-cell {ξi : s′iv → vsi}0≤i≤2 in Wdl(2)(K), the following yield
1-cells in Wdl(K) between the 0-cells described in Lemma 2.3.

{ξ01 :=
(
s′0s
′
1v

s′0ξ1 // s′0vs1
ξ0s1 // vs0s1

vλ01 // vs0s1

)
, s′2v

ξ2 // vs2 } and

{ s′0v
ξ0 // vs0 , ξ12 :=

(
s′1s
′
2v

s′1ξ2 // s′1vs2
ξ1s2 // vs1s2

vλ12 // vs1s2

)
}

Proof. By Paragraph 1.5, ξ01 and ξ12 are 1-cells in Mnd(K). Moreover, ξ01 and ξ2

obey (5) by commutativity of the following diagram.

s′2s
′
0s
′
1v

s′2ξ01

��

s′2λ
′
01v // s′2s

′
0s
′
1v

λ′0,2s
′
1v //

s′2s
′
0ξ1��

s′0s
′
2s
′
1v

s′0λ
′
1,2v //

s′0s
′
2ξ1��

(5)

s′0s
′
1s
′
2v

s′0s
′
1ξ2��

s′2s
′
0vs1

λ′0,2vs1 //

s′2ξ0s1��
(5)

s′0s
′
2vs1

s′0ξ2s1��

s′0s
′
1vs2

s′0ξ1s2��
s′2vs0s1

ξ2s0s1

��

s′2vs0s1

s′2vλ01oo

ξ2s0s1��

s′0vs2s1

s′0vλ1,2 //

ξ0s2s1��

s′0vs1s2

ξ0s1s2��

s′0vs1s2

s′0vλ12oo

ξ0s1s2��
vs2s0s1

vλ0,2s1 //

vs2λ01��
(9)

vs0s2s1

v
−→
λ 0,2,1��

(7)

vs0s2s1
vs0λ1,2 //

v
−→
λ 0,2,1��

vλ02s1oo

(8)

vs0s1s2

v
−→
λ 0,1,2��

(13)

vs0s1s2
vs0λ12oo

vλ012��
vs2s0s1

vs2λ01

// vs2s0s1
vλ0,2s1

// vs0s2s1 vs0s2s1
vs0λ1,2

// vs0s1s2 vs0s1s2

The top-left region commutes since ξ01 is a 2-cell in Mnd(K) of domain (s′0s
′
1v, λ

′
0,1v).

Also ξ0 and ξ12 obey (5), hence constitute a 1-cell in Wdl(K), by commutativity of
the similar diagram below. The bottom-left region commutes by the normalization of
ξ12.

s′1s
′
2s
′
0v

λ′12s′0v //

s′1s
′
2ξ0 ��

s′1s
′
2s
′
0v

s′1λ
′
0,2v //

s′1s
′
2ξ0��

(5)

s′1s
′
0s
′
2v

λ′0,1s
′
2v //

s′1s
′
0ξ2��

s′0s
′
1s
′
2v

s′0s
′
1ξ2��

s′1s
′
2vs0

ξ12s0

��

λ′12vs0 // s′1s
′
2vs0

s′1ξ2s0��

s′1s
′
0vs2

λ′0,1vs2 //

s′1ξ0s2��
(5)

s′0s
′
1vs2

s′0ξ1s2��
s′1vs2s0

s′1vλ0,2 //

ξ1s2s0��

s′1vs0s2

ξ1s0s2��

s′1vs0s2

s′1vλ02oo

ξ1s0s2��

s′0vs1s2

ξ0s1s2��
vs1s2s0

vs1λ0,2 //

vλ12s0��
(12)

vs1s0s2

v
←−
λ 1,0,2��

(10)

vs1s0s2
vλ0,1s2 //

v
←−
λ 1,0,2��

vs1λ02oo

(11)

vs0s1s2

v
←−
λ 0,1,2��

(13)

vs0s1s2
vλ01s2oo

vλ012��
vs1s2s0

vλ12s0

// vs1s2s0
vs1λ0,2

// vs1s0s2 vs1s0s2
vλ0,1s2

// vs0s1s2 vs0s1s2

2.6. Theorem. For any 2-category K, and any positive integer n, there are n differ-
ent 2-functors Ck : Wdl(n)(K)→ Wdl(n−1)(K), for 1 ≤ k ≤ n, as follows. They take a
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0-cell {λi,j : sjsi → sisj}0≤i<j≤n to
sjsi

λi,j // sisj if i, j /∈ {k − 1, k}

sj(sk−1sk)
sjλk−1,k// sjsk−1sk

λk−1,jsk// sk−1sjsk
sk−1λk,j// (sk−1sk)sj if k < j

(sk−1sk)si
λk−1,ksi// sk−1sksi

sk−1λi,k// sk−1sisk
λi,k−1sk// si(sk−1sk) if i < k − 1


(17)

where (sk−1sk, λk−1,k) is the monad in K induced by the weak distributive law λk−1,k.
They send a 1-cell {ξi : s′iv → vsi}0≤i≤n to

s′iv
ξi // vsi if 0 ≤ i < k − 1

(s′k−1s
′
k)v

s′k−1ξk// s′k−1vsk
ξk−1sk// vsk−1sk

vλk−1,k// v(sk−1sk)

s′i+1v
ξi+1 // vsi+1 if k − 1 < i < n

 (18)

On the 2-cells they act as the identity map.

Proof. By Lemma 2.3, each line in (17) is a weak distributive law in K. We only
need to check the Yang-Baxter conditions. For 0 ≤ i < j < k−1 < n the Yang-Baxter
condition follows by commutativity of

sk−1sksjsi
λk−1,ksjsi //

λk−1,ksjsi

**UUUUUUUUUUUU
sk−1skλi,j

��

sk−1sksjsi
sk−1λj,ksi // sk−1sjsksi

λj,k−1sksi // sjsk−1sksi

sjλk−1,ksi��
sk−1sksisj

λk−1,ksisj

**UUUUUUUUUUUU
λk−1,ksisj ��

sk−1sksjsi
sk−1λj,ksi //

sk−1skλi,j
��

(YB)

sk−1sjsksi
λj,k−1sksi //

sk−1sjλi,k
��

sjsk−1sksi

sjsk−1λi,k
��

sk−1sksisj

sk−1λi,ksj
��

sk−1sksisj

sk−1λi,ksj
��

sk−1sjsisk
λj,k−1sisk //

sk−1λi,jsk
��

(YB)

sjsk−1sisk

sjλi,k−1sk
��

sk−1sisksj

λi,k−1sksj
��

sk−1sisksj
sk−1siλj,k //

λi,k−1sksj
��

sk−1sisjsk

λi,k−1sjsk
��

sjsisk−1sk

λi,jsk−1sk
��

sisk−1sksj
siλk−1,ksj

// sisk−1sksj
sisk−1λj,k

// sisk−1sjsk
siλj,k−1sk

// sisjsk−1sk .

The top-right region and the bottom-left region commute by Lemma 2.3. The 0 <
k < i < j ≤ n case is treated symmetrically. The Yang-Baxter condition in the last
case, when 0 ≤ i < k − 1 and k < j ≤ n, follows by commutativity of the similar
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diagram

sjsk−1sksi
sjλk−1,ksi//

sjλk−1,ksi

))SSSSSSSSSSS
sjλk−1,ksi ��

sjsk−1sksi
λk−1,jsksi// sk−1sjsksi

sk−1λk,jsi// sk−1sksjsi
sk−1skλi,j//

λk−1,ksjsi��

sk−1sksisj

λk−1,ksisj��
sjsk−1sksi

sjsk−1λi,k
��

sjsk−1sksi
λk−1,jsksi//

sjsk−1λi,k
��

sk−1sjsksi
sk−1λk,jsi//

sk−1sjλi,k
��

(YB)

sk−1sksjsi
sk−1skλi,j// sk−1sksisj

sk−1λi,ksj
��

sjsk−1sisk

sjλi,k−1sk
��

sjsk−1sisk
λk−1,jsisk//

sjλi,k−1sk
��

(YB)

sk−1sjsisk
sk−1λi,jsk// sk−1sisjsk

sk−1siλk,j//

λi,k−1sjsk

��

sk−1sisksj

λi,k−1sksj

��

sjsisk−1sk
sjsiλk−1,k//

λi,jsk−1sk
��

sjsisk−1sk

λi,jsk−1sk
��

sisjsk−1sk
sisjλk−1,k

// sisjsk−1sk
siλk−1,jsk

// sisk−1sjsk
sisk−1λk,j

// sisk−1sksj .

Both regions at the top-left commute by Lemma 2.3. This proves that (17) describes
a 0-cell in Wdl(n−1)(K). By Lemma 2.5, (18) is a 1-cell in Wdl(n−1)(K). Evidently,
2-cells in Wdl(n)(K) are 2-cells in Wdl(n−1)(K) as well. Hence the stated maps define
2-functors Ck which clearly preserve the horizontal and vertical compositions.

Via the fully faithful embedding Mndn+1(K) → Wdl(n)(K) in Paragraph 2.1, the
2-functors in Theorem 2.6 extend the multiplication C of the 2-monad Mnd. That is,
the following diagram commutes, for all 1 ≤ k ≤ n.

Mndn+1(K)
Mndk−1CMndn−k(K) //

��

Mndn(K)

��
Wdl(n)(K)

Ck

//Wdl(n−1)

By associativity of the 2-monad Mnd, the n-fold iteration of the 2-functor in the top
row; that is,

Mndn+1(K)
Mndkn−1CMndn−kn (K)// . . . Mndk2−1CMnd2−k2 (K)//Mnd2(K)

C //Mnd(K)

does not depend on the values of ki ∈ {1, . . . , i}, for 1 ≤ i ≤ n. That is, its object
map describes an ‘associative’ wreath product of monads. Although the 2-functor in
the bottom row is not known to correspond to the multiplication in any 2-monad, in
the rest of this section we show that it describes an associative weak wreath product
in an appropriate sense.

2.7. Lemma. For any integer n > 1, and for any 0-cell {λi,j : sjsi → sisj}0≤i<j≤n of

Wdl(n)(K), consider the idempotent 2-cell

←−
λ 0,1,...,n :=

(
s0s1 . . . sn

ηns0s1...sn // sns0s1 . . . sn // s0s1 . . . sn−1s
2
n

s0s1...sn−1µn// s0s1 . . . sn
)

in K (where the unlabelled arrow denotes the unique composite of λi,js of the given
domain and codomain) and

λ01...n :=
←−
λ 0,1,...,n.

←−
λ 0,1,...,n−1sn. · · · .

←−
λ 0,1,2s3s4 . . . sn.λ01s2s3 . . . sn . (19)
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This construction in (19) associates the same idempotent 2-cell to any 0-cell {λi,j :

sjsi → sisj}0≤i<j≤n of Wdl(n)(K) and to its image under any of the 2-functors Ck in
Theorem 2.6. That is, for all 1 ≤ k ≤ n, λ01...n = λ01...k−2(k−1,k)k+1...n.

Proof. Using commutativity of

sk+1s0 . . . sk
sk+1ηks0...sk

//

sk+1

←−
λ 0,...,k

--

sk+1

←−
λ 0,...,k

''

sk+1sks0 . . . sk //

��

((RRRRRRRRRRRRRRR sk+1s0 . . . sk−1s
2
k

sk+1s0...sk−1µk

//

��
(1)

sk+1s0 . . . sk

��
sks0 . . . sk+1 //

((RRRRRRRRRRRRRR

(YB)

s0 . . . sk−1s
2
ksk+1

s0...sk−1µksk+1

//

←−
λ 0,...,ksksk+1
��

s0 . . . sk+1

←−
λ 0,...,ksk+1

��

sk+1s0 . . . sk−1s
2
k

//

sk+1s0...sk−1µk
��

(YB)

(1)

s0 . . . sk−1s
2
ksk+1

s0...sk−1µksk+1

��
sk+1s0 . . . sk // s0 . . . sk+1 s0 . . . sk+1

(20)
for any 1 ≤ k < n, it follows easily that λ0...n is idempotent. By (17) on one hand,
and by (20) on the other,
←−
λ 0,...,k−2,(k−1,k),k+1,...m =

←−
λ 0,...,m.s0 . . . sk−2λk−1,ksk+1 . . . sm

= s0 . . . sk−2λk−1,ksk+1 . . . sm.
←−
λ 0,...,m.s0 . . . sk−2λk−1,ksk+1 . . . sm

for all k < m ≤ n. Moreover, by commutativity of

s0 . . . sk
ηkηk−1s0...sk //

ηk−1s0...sk
��

sksk−1s0 . . . sk
λk−1,ks0...sk //

λk−1,ks0...sk

(3)

,,XXXXXXXXXXXXXXX

��

sk−1sks0 . . . sk
λk−1,ks0...sk��

sk−1s0 . . . sk

��

(YB)

sk−1sks0 . . . sk

��
s0 . . . sk−2(sk−1sk)

2

��
s0 . . . sk−2s

2
k−1sk

ηks0...sk−2s
2
k−1sk//

s0...sk−2µk−1sk
��

sks0 . . . sk−2s
2
k−1sk //

sks0...sk−2µk−1sk
��

(1)

s0 . . . sk−2s
2
k−1s

2
k

s0...sk−2µk−1s
2
k��

s0 . . . sk ηks0...sk
// sks0 . . . sk // s0 . . . sk−1s

2
k

we obtain
←−
λ 0,...,k−2,(k−1,k) =

←−
λ 0,...,k.

←−
λ 0,...,k−1sk = s0 . . . sk−2λk−,k.

←−
λ 0,...,k.

←−
λ 0,...,k−1sk.

Combining these identities we conclude the claim.

2.8. Lemma. In terms of the 2-functors in Theorem 2.6, for any integer n > 1, the
composite

Wdl(n)(K)
C1 //Wdl(n−1)(K)

C1 // . . . C1 //Wdl(K)

takes a 0-cell {λi,j : sjsi → sisj}0≤i<j≤n to the weak distributive law

λ0...n−1,n :=
(
sn(s0 . . . sn−1)

snλ0...n−1 // sns0 . . . sn−1 // (s0 . . . sn−1)sn
)
, (21)

where the unlabelled arrow denotes the unique combination of λi,js with the given
domain and codomain.



44 GABRIELLA BÖHM

Proof. We proceed by induction in n. For n = 2 the claim follows by Theorem 2.6.
Assume that it holds for some n ≥ 2. Then the following diagram commutes.

s0 . . . sn
ηns0...sn //

λ0...n−1sn
��

sns0 . . . sn

snλ0...n−1sn
��

λ0...n−1,nsn

��

(∗)

s0 . . . sn
ηns0...sn //

←−
λ 0,...,n 22

sns0 . . . sn // s0 . . . sn−1s
2
n

s0...sn−1µn

��
s0 . . . sn

The region marked by (∗) commutes by the induction hypothesis. The left bottom
path is equal to λ0...n, see (19). Hence we conclude that λ0...n is equal to λ0...n−1,n;
that is, the idempotent associated to the weak distributive law λ0...n−1,n. Using this
observation and (17) (for the monads s0 . . . sn−1, sn and sn+1), in the top-right path
of the following diagram we recognize λ0...n,n+1.

sn+1s0 . . . sn
sn+1λ0...n //

sn+1λ0...n ))TTTTTTTTTTTTTTT
sn+1s0 . . . sn

sn+1λ0...n−1sn
��

λ0...n−1,n+1sn

��

(∗)

sn+1s0 . . . sn //

**UUUUUUUUUUUUUUUU
s0 . . . sn−1sn+1sn

s0...sn−1λn,n+1

��
s0 . . . sn+1

The region marked by (∗) commutes by the induction hypothesis and the triangle on
the left commutes by (20).

Applying (8) and (9) to the monads s0 . . . sn−2, sn−1 and sn, from (21) we obtain
the equal expression

λ0...n−1,n =
(
sn(s0 . . . sn−1) // s0 . . . sn

λ0...n // (s0 . . . sn−1)sn
)
. (22)

2.9. Lemma. In terms of the 2-functors in Theorem 2.6, for any positive integer n,
consider the composite

Wdl(n)(K)
C1 //Wdl(n−1)(K)

C1 // . . . C1 //Wdl(K)
C1 //Mnd(K) . (23)

(1) It takes a 0-cell {λi,j : sjsi → sisj}0≤i<j≤n to the monad (s0s1 . . . sn, λ01...n) in
K, with multiplication µ0...n equal to

s0s1 . . . sns0s1 . . . sn // s2
0s

2
1 . . . s

2
n

µ0µ1...µn // s0s1 . . . sn
λ01...n // s0s1 . . . sn

(24)
and unit η0...n equal to

1
ηnηn−1...η0// snsn−1 . . . s0 // s0s1 . . . sn

λ01...n // s0s1 . . . sn, (25)

where the unlabelled arrows denote the unique (by the Yang-Baxter condition)
combinations of λi,js with the given domain and codomain.
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(2) It takes a 1-cell {ξi : s′iv → vsi}0≤i≤n to

s′0s
′
1 . . . s

′
nv
s′0s
′
1...s

′
n−1ξn// s′0s

′
1 . . . s

′
n−1vsn

s′0s
′
1...s

′
n−2ξn−1sn // . . .ξ0s1s2...sn// vs0s1 . . . sn

vλ01...n // vs0s1 . . . sn,

to be denoted by ξ01...n.

(3) On the 2-cells it acts as the identity map.

Proof. (1) We proceed by induction in n. For n = 1 the claim holds by Paragraph
1.5. Assume that it holds for some n ≥ 1. Then µ0...n+1 occurs in the top-right path
of the following diagram.

(s0 . . . sn+1)2
s0...snλ0...n,n+1sn+1 //

(22)

(s0 . . . sn)2s2
n+1

(s0 . . . sn+1)2 //

((QQQQQQQQQQQQQ
(s0 . . . sn)2s2

n+1

��
(∗)

(s0 . . . sn)2s2
n+1

s0...snλ0...n+1sn+1

//

µ0...nµn+1

��

(s0 . . . sn)2s2
n+1

µ0...nµn+1

��
s2

0 . . . s
2
n+1 µ0...µn+1

// s0 . . . sn+1
λ0...nsn+1

// s0 . . . sn+1
λ0...n+1

// s0 . . . sn+1

The region marked by (∗) commutes by the induction hypothesis and the bottom-right
region commutes by the bilinearity of λ0...n+1 = λ0...n,n+1, cf. (3). The composite of
the last two arrows in the bottom row is equal to λ0...n+1 by the explicit form in (19).

Similarly, η0...n+1 occurs in the top-right path of the following diagram.

A
ηn+1η0...n //

(∗)

sn+1s0 . . . sn

A
ηn+1...η0 // sn+1 . . . s0 //

**UUUUUUUUUUUUUUUUU
sn+1s0 . . . sn

sn+1λ0...n //

λ0...n,n+1

**UUUUUUUUUUUUUUUUU

��

sn+1s0 . . . sn

λ0...n,n+1

��
s0 . . . sn+1

λ0...n+1

//
(22)

s0 . . . sn+1

The region marked by (∗) commutes by the induction hypothesis.
Part (2) is easily proved by induction in n and part (3) is trivial.

2.10. Theorem. For any 2-category K, and any positive integer n, the 2-functors in
Theorem 2.6 give rise to a unique composite

Wdl(n)(K)
Ckn //Wdl(n−1)(K)

Ckn−1 // . . .
Ck2 //Wdl(K)

Ck1 //Mnd(K)

which is independent of the choice of the index set ki ∈ {1, 2, . . . , i}, for 1 ≤ i ≤ n.

Proof. We proceed by induction in n. For n = 1 the claim is trivial: there is only
one 2-functor C1 : Wdl(1)(K) ≡ Wdl(K) → Wdl(0)(K) ≡ Mnd(K), that recalled in
Paragraph 1.5. Assume now that the claim holds for some positive integer n; that is,
C1Ck2 . . . Ckn does not depend on ki ∈ {1, 2, . . . , i}, for 1 ≤ i ≤ n. With the explicit
form of the 2-functor (23) in Lemma 2.9, and the explicit form of Ck : Wdl(n+1)(K)→
Wdl(n)(K) in (17) and (18) at hand, the equality CkC1C1 . . . C1 = C1C1C1 . . . C1 of
the n+ 1-fold composites follows by Lemma 2.7, for all 1 ≤ k ≤ n+ 1.
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2.11. If idempotent 2-cells split Let us take a 2-category K which is locally
idempotent complete; that is, K ' K. Then we may consider the pseudofunctors

Wdl(n)(K)
' //Wdl(n)(K)

Ck //Wdl(n−1)(K)
' //Wdl(n−1)(K),

for all values of 1 ≤ k ≤ n. (Choosing the biequivalence K → K by adopting the
convention that we split identity 2-cells trivially, that is, via identity 2-cells; they
become in fact 2-functors.) Their n-fold iteration is pseudonaturally equivalent to

Wdl(n)(K)
' //Wdl(n)(K) //Mnd(K)

' //Mnd(K)

where the unlabelled arrow stands for the 2-functor in Theorem 2.10. This pseudo-
functor (or in fact 2-functor with an appropriate choice) takes an object {λi,j : sjsi →
sisj}0≤i<j≤n of Wdl(n)(K), considered as an object of Wdl(n)(K), to the image of the
idempotent λ0...n in (19). This is regarded as the weak wreath product of the monads
s0, s1, . . . , sn in K. It is unique – that is, the weak wreath product is associative –
up-to an isomorphism arising from the chosen splittings of the occurring idempotents.

3. Examples from Ising type spin chains

In this section K := Vec will be the one-object 2-category (in fact bicategory); that
is, monoidal category of vector spaces over a given field F . Thus there is only one
0-cell F ; the 1-cells are the F -vector spaces and the 2-cells are the linear maps. The
horizontal composition (that is, monoidal product) is given by the tensor product ⊗
and the vertical composition is given by the composition of linear maps. Monads are
just the F -algebras. We shall make use of the fact that the monoidal category of
vector spaces is symmetric; the symmetry natural isomorphism (that is, the flip map)
will be denoted by σ. Clearly, Vec is idempotent complete.

Our aim is to present an object of Wdl(n)(Vec) (for any positive integer n) in terms
of a finite dimensional weak bialgebra. We start with recalling the notion of weak
bialgebra from [Nill (preprint 1998)], [Böhm, Nill, Szlachányi (1999)].

3.1. Definition. A weak bialgebra is a vector space H equipped with an algebra
(that is, monad) structure µ : H ⊗ H → H, η : F → H and a coalgebra (that is,
comonad) structure ∆ : H → H ⊗ H, ε : H → F such that the following diagrams
commute.

H⊗2
∆⊗∆//

µ
��

H⊗4
H⊗σ⊗H // H⊗4

µ⊗µ
��

H
∆

// H⊗2

F
η⊗η //
η

''PPPPPPPPPPP
η⊗η
��

H⊗2
∆⊗∆ // H⊗4

H⊗µ⊗H

��

H⊗3
H⊗∆⊗H //

µ2

''PPPPPPPPP

H⊗∆⊗H
��

H⊗4
H⊗σ⊗H // H⊗4

µ⊗µ
��

H⊗2

∆⊗∆ ��

H
∆2

''PPPPPPPPP H
ε

''PPPPPPPPPPP H⊗2

ε⊗ε
��

H⊗4
H⊗σ⊗H

// H⊗4
H⊗µ⊗H

// H⊗3 H⊗4
µ⊗µ

// H⊗2
ε⊗ε

// F
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This definition can be generalized from Vec to any braided monoidal category, see
[Alonso Álvarez et al. (2008)], [Pastro, Street (2009)]. Note that the axioms of a
weak bialgebra are self-dual in the sense that they are closed under the reversing of
the arrows in the diagrams depicting them.

3.2. Duals of weak bialgebras Whenever the 1-cell underlying a monad in a
2-category possesses a (left or right) adjoint, this adjoint comes equipped with the
canonical structure of a comonad. Conversely, the adjoint of a comonad is a monad. In
the monoidal category of vector spaces, a 1-cell H – that is, a vector space – possesses
a (left and right) adjoint if and only if it is finite dimensional over F ; in which case
the adjoint is the linear dual Ĥ := Hom(H,F ); that is, the vector space of linear maps
from H to F . In particular, the dual of a finite dimensional weak bialgebra is both
an algebra – with multiplication µ̂ := Hom(∆, F ) : Ĥ ⊗ Ĥ ∼= Hom(H ⊗ H,F ) → Ĥ
and unit η̂ := Hom(ε, F ) : F → Ĥ – and a coalgebra – with comultiplication ∆̂ :=
Hom(µ, F ) and counit ε̂ := Hom(η, F ). That is to say, the (co)algebra structure of Ĥ
is defined by the following commutative diagrams

Ĥ ⊗H⊗2
∆̂⊗H⊗2

//

Ĥ⊗σ
��

Ĥ⊗2 ⊗H⊗2

Ĥ⊗ev⊗H
��

Ĥ
Ĥ⊗η //

ε̂

��3
3333333333333333 Ĥ ⊗H

ev

��

Ĥ⊗2 ⊗H
σ⊗H //

Ĥ⊗2⊗∆
��

Ĥ⊗2 ⊗H
µ̂⊗H

��

H
η̂⊗H //

ε

��3
3333333333333333 Ĥ ⊗H

ev

��

Ĥ ⊗H⊗2

Ĥ⊗µ
��

Ĥ ⊗H
ev

��

Ĥ⊗2 ⊗H⊗2

Ĥ⊗ev⊗H
��

Ĥ ⊗H
ev

��
Ĥ ⊗H ev

// F F Ĥ ⊗H ev
// F F

(26)
where ev : Ĥ ⊗ H → F stands for the evaluation map (that is, the counit of the
adjunction Ĥ a H). What is more, by self-duality of the weak bialgebra axioms, Ĥ
is a weak bialgebra again with the above algebra and coalgebra structures.

3.3. The iterated weak wreath product of a finite weak bialgebra and
its dual In terms of a finite dimensional weak bialgebra H, an object of Wdl(n)(Vec)
is given as follows. If 0 ≤ i ≤ n is even, then let si be the algebra underlying H and
if i is odd then let si be the algebra underlying Ĥ. If j − i > 1 then let λi,j be given
by the flip map σ. If i is odd, then let λi,i+1 be equal to λ defined as

H ⊗ Ĥ σ // Ĥ ⊗H
∆̂⊗∆ // Ĥ ⊗ Ĥ ⊗H ⊗H

Ĥ⊗ev⊗H// Ĥ ⊗H,

and if i is even then let λi,i+1 be equal to λ̂ given by

Ĥ ⊗H σ // H ⊗ Ĥ
∆⊗∆̂ // H ⊗H ⊗ Ĥ ⊗ Ĥ

H⊗σ⊗Ĥ// H ⊗ Ĥ ⊗H ⊗ Ĥ
H⊗ev⊗Ĥ// H ⊗ Ĥ.

The symmetry σ : X ⊗ Y → Y ⊗X, for X, Y ∈ {H, Ĥ}, is a distributive law hence a
weak distributive law. We show that λ : H ⊗ Ĥ → Ĥ ⊗H is a weak distributive law.
The morphism

ξ :=
(
Ĥ ⊗H

∆̂⊗H // Ĥ⊗2 ⊗H
Ĥ⊗ev // Ĥ

)
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is an associative (and evidently unital) action in the sense of commutativity of

Ĥ ⊗H⊗2
∆̂⊗H⊗2

//

Ĥ⊗σ

��

∆̂⊗H⊗2

))TTTTTTTTTTT Ĥ⊗2 ⊗H⊗2
Ĥ⊗ev⊗H //

∆̂⊗Ĥ⊗H⊗2

��

Ĥ ⊗H
∆̂⊗H
��

Ĥ⊗2 ⊗H⊗2
Ĥ⊗∆̂⊗H⊗2

//

Ĥ⊗2⊗σ
��

Ĥ⊗3 ⊗H⊗2
Ĥ⊗2⊗ev⊗H // Ĥ⊗2 ⊗H

Ĥ⊗ev

��

Ĥ ⊗H⊗2
∆̂⊗H⊗2

//

Ĥ⊗µ
��

Ĥ⊗2 ⊗H⊗2

Ĥ⊗2⊗µ
��

Ĥ ⊗H
∆̂⊗H

// Ĥ⊗2 ⊗H
Ĥ⊗ev

// Ĥ

(27)

where the bottom-right region commutes by the first identity in (26). In terms of ξ,

λ =
(
H ⊗ Ĥ σ // Ĥ ⊗H

Ĥ⊗∆ // Ĥ ⊗H⊗2
ξ⊗H // Ĥ ⊗H

)
.

Using this form of λ, its compatibility with the multiplication of H follows by com-
mutativity of the diagram below.

H⊗2 ⊗ Ĥ
H⊗σ //

H⊗∆⊗Ĥ

++WWWWWWWWWWWWWWWWWWWWWWW

σH⊗H,Ĥ

��2
2222222222222222222222222

µ⊗Ĥ

��

H ⊗ Ĥ ⊗H
H⊗Ĥ⊗∆// H ⊗ Ĥ ⊗H⊗2

H⊗ξ⊗H //

σH,Ĥ⊗H⊗H
��

H ⊗ Ĥ ⊗H
σ⊗H

��

H⊗3 ⊗ Ĥ
H⊗σH⊗H,Ĥ

66mmmmmmmmmmmm

∆⊗H⊗2⊗Ĥ
��

Ĥ ⊗H⊗3
ξ⊗H⊗2

//

Ĥ⊗H⊗∆⊗H
��

Ĥ ⊗H⊗2

Ĥ⊗∆⊗H
��

H⊗4 ⊗ Ĥ
σH⊗4,Ĥ

��

Ĥ ⊗H⊗4
ξ⊗H⊗3

//

Ĥ⊗σ⊗H⊗2

��
(27)

Ĥ ⊗H⊗3

ξ⊗H⊗2

��

Ĥ ⊗H⊗2
Ĥ⊗∆⊗∆//

Ĥ⊗µ
��

Ĥ ⊗H⊗4
Ĥ⊗H⊗σ⊗H//

Ĥ⊗σH⊗H,H⊗H
66mmmmmmmmmmmm

Ĥ ⊗H⊗4
Ĥ⊗µ⊗H⊗2

// Ĥ ⊗H⊗3
ξ⊗H⊗2

//

Ĥ⊗H⊗µ
��

Ĥ ⊗H⊗2

Ĥ⊗µ
��

H ⊗ Ĥ σ
// Ĥ ⊗H

Ĥ⊗∆

// Ĥ ⊗H⊗2
ξ⊗H

// Ĥ ⊗H

The region at the middle of the bottom row commutes by the first weak bialgebra
axiom. Symmetrically, in terms of ζ := (ev ⊗ H).(Ĥ ⊗ ∆), we can write λ = (Ĥ ⊗
ζ).(∆̂⊗H).σ. With this form of λ at hand, its compatibility with the multiplication
of Ĥ follows symmetrically. It remains to check the weak unitality condition (2). For
that consider the (idempotent) morphism

ε̄s :=
(
H

η⊗H // H⊗2
∆⊗H // H⊗3

H⊗µ // H⊗2
H⊗ε // H

)
.

Recall from [Böhm, Caenepeel, Janssen (2011)] (equations (4) and (8), respectively)
that the following diagrams involving ε̄s commute.

H⊗2
∆⊗H //

H⊗ε̄s
��

H⊗3
H⊗µ // H⊗2

H⊗ε
��

H
η⊗H //

∆
��

H⊗2
∆⊗H // H⊗3

H⊗µ
��

H⊗2
µ

// H H⊗2
ε̄s⊗H

// H⊗2

(28)
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Using the definitions in (26), the first identity in (28) is equivalent to ξ.(Ĥ ⊗ ε̄s) =
µ̂.(Ĥ ⊗ ξ).(Ĥ ⊗ η̂ ⊗H), implying commutativity of the bottom-right region in

Ĥ ⊗H
η⊗Ĥ⊗H //

Ĥ⊗η⊗H

22H ⊗ Ĥ ⊗H
σ⊗H // Ĥ ⊗H⊗2

Ĥ⊗∆⊗H//

(28)

Ĥ ⊗H⊗3
ξ⊗H⊗2

//

Ĥ⊗H⊗µ
��

Ĥ ⊗H⊗2

Ĥ⊗µ
��

Ĥ ⊗H
Ĥ⊗∆ //

Ĥ⊗H⊗η̂
��

Ĥ⊗η̂⊗H

((PPPPPPPPPPPP Ĥ ⊗H⊗2
Ĥ⊗ε̄s⊗H//

Ĥ⊗η̂⊗H⊗2

��

Ĥ ⊗H⊗2
ξ⊗H // Ĥ ⊗H

Ĥ ⊗H ⊗ Ĥ
Ĥ⊗σ

// Ĥ⊗2 ⊗H
Ĥ⊗2⊗∆

// Ĥ⊗2 ⊗H⊗2
Ĥ⊗ξ⊗H

// Ĥ⊗2 ⊗H µ̂⊗H
// Ĥ ⊗H .

Any path in this diagram yields an alternative expression of the idempotent λ : Ĥ ⊗
H → Ĥ⊗H, proving that λ is a weak distributive law. By symmetrical considerations
so is λ̂.

With some routine computations using the weak bialgebra axioms, one checks that
λ is equal to the identity map – that is, λ is a distributive law in the strict sense – if
and only if ∆.η = η ⊗ η; that is, H is a bialgebra in the strict sense.

Our next task is to check the Yang-Baxter conditions. The symmetry operators
among themselves obey the Yang-Baxter condition, hence for {i, j, k} such that j−i >
1 and k − j > 1 we are done. For {i − 1, i, j} and {i, j, j + 1}, such that j − i > 1,
the Yang-Baxter conditions follow by naturality of the symmetry. So we are left with
the case {i− 1, i, i+ 1}. Assume first that i is odd. Then the Yang-Baxter condition
follows by commutativity of

H ⊗ Ĥ ⊗H
σ⊗H //

H⊗σ

��

Ĥ ⊗H⊗2
∆̂⊗∆⊗H //

σĤ⊗H,H

��

Ĥ⊗2 ⊗H⊗3
Ĥ⊗ev⊗H⊗2

//

σĤ⊗2⊗H⊗2,H

��

Ĥ ⊗H⊗2

Ĥ⊗σ ��

Ĥ ⊗H⊗2

σ⊗H ��

H⊗2 ⊗ Ĥ
σH,H⊗Ĥ //

H⊗∆⊗∆̂��

H ⊗ Ĥ ⊗H
H⊗∆̂⊗∆ //

∆⊗∆̂⊗H
��

H ⊗ Ĥ⊗2 ⊗H⊗2
H⊗Ĥ⊗ev⊗H//

∆⊗∆̂⊗Ĥ⊗H⊗2
��

H ⊗ Ĥ ⊗H
∆⊗∆̂⊗H ��

H⊗3 ⊗ Ĥ⊗2

H⊗2⊗ev.σ⊗Ĥ��

H⊗2 ⊗ Ĥ⊗2 ⊗H
H⊗2⊗Ĥ⊗∆̂⊗∆//

H⊗ev.σ⊗Ĥ⊗H

��

H⊗2 ⊗ Ĥ⊗3 ⊗H⊗2

H⊗⊗ev.σ⊗Ĥ⊗2⊗H⊗2

��

H⊗2 ⊗ Ĥ⊗2 ⊗H

H⊗ev.σ⊗Ĥ⊗H
��

H⊗2 ⊗ Ĥ
σH,H⊗Ĥ

**UUUUUUUUUUU
σ⊗Ĥ��

H⊗2 ⊗ Ĥ H⊗σ
// H ⊗ Ĥ ⊗H

H⊗∆̂⊗∆

// H ⊗ Ĥ⊗2 ⊗H⊗2
H⊗Ĥ⊗ev⊗H

// H ⊗ Ĥ ⊗H .

The case when i is even is treated symmetrically. This proves that the construction
in this paragraph yields an object in Wdl(n)(Vec) (which is an object of Mndn+1(Vec)
if and only if H is a bialgebra in the strict sense). Hence by Theorem 2.10 there is
a corresponding weak wreath product monad (that is, F -algebra) given as the image
of the idempotent (19). Since σ is unital, one obtains the following explicit forms of
this idempotent. If n is odd, then it is

(H ⊗ Ĥ)⊗
n+1
2

λ̂
⊗n+1

2
// H ⊗ (Ĥ ⊗H)⊗

n−1
2 ⊗ Ĥ H⊗λ ⊗

n−1
2 ⊗Ĥ // (H ⊗ Ĥ)⊗

n+1
2
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and if n is even, then it is

(H ⊗ Ĥ)⊗
n
2 ⊗H λ̂

⊗n
2 ⊗H // H ⊗ (Ĥ ⊗H)⊗

n
2
H⊗λ ⊗

n
2
// (H ⊗ Ĥ)⊗

n
2 ⊗H.

If H is a bialgebra in the strict sense (for instance it is the linear span of a finite
group), then these idempotents become identity maps and so the above weak wreath
products reduce to wreath products in the strict sense (see [Nill, Szlachányi (1997)]
and [Jara Mart́ınez et al. (2008)]).

In the quantum spin chains in [Nill, Szlachányi, Wiesbrock (preprint 1998)] and
[Böhm (1997)], where the spins take their values in a dual pair of finite dimensional
weak Hopf algebras, this (n+1)-ary weak wreath product is regarded as the algebra of
observable quantities localized in the interval [0, n] of the one dimensional lattice. In
particular, in spin chains built on dual pairs of finite dimensional Hopf algebras (for
instance on pairs of a finite group algebra and the algebra of linear functions on this
group), the observable algebra is a proper (n+1)-ary wreath product. In the classical
Ising model – where the spins only have ‘up’ and ‘down’ positions – these dual Hopf
algebras are both isomorphic to the linear span of the sign group Z(2).

4. A fully faithful embedding

In this section we show that, for any 2-category K, and any non-negative integer n,
Wdl(n)(K) admits a fully faithful embedding into the power 2-category Mnd(K)2

n+1
.

Whenever idempotent 2-cells in K split, this gives rise to a fully faithful embedding
Wdl(n)(K) → Mnd(K)2

n+1
. If in addition K admits Eilenberg-Moore objects, this

amounts to a fully faithful embedding Wdl(n)(K)→ K2n+1
.

4.1. The 2-category K2n
The 2-category 2 has two 0-cells 0 and 1; an only non-

identity 1-cell 1→ 0; and all of its 2-cells are identities. For any 2-category K, there
is a 2-category K2 of 2-functors 2→ K, 2-natural transformations and modifications.
Iteratively, for n > 1 we define K2n

as (K2n−1
)2. That is, K2n

is isomorphic to the
2-category of 2-functors from the n-fold Cartesian product 2× . . .×2 to K, 2-natural
transformations and modifications. An explicit description is given as follows. The
0-cells are the n dimensional oriented cubes whose 2-faces are commutative squares
of 1-cells in K. A 1-cell from an n-cube of edges {vp,q : Ap → Aq} to {v′p,q : A′p → A′q}
consists of 1-cells {up : Ap → A′p} in K such that the n + 1-cube {vp,q : Ap →
Aq, up : Ap → A′p, v

′
p,q : A′p → A′q} is commutative. That is, for all values of p and

q, v′p,q.up = uq.vp,q. Finally, 2-cells consist of 2-cells ωp : up → ũp in K such that

v′p,q.ωp = ωq.vp,q.

In Cartesian coordinates, the vertices of an n-cube can be labelled by the elements
p = (p1, . . . , pn) of the set {0, 1}n. Sometimes we represent p ∈ {0, 1}n by listing those
values of i for which pi = 1. For example, 12 = (1, 1, 0, . . . , 0), 3 = (0, 0, 1, 0, . . . , 0),
etc.. The n-cube has an edge p→ q if and only if there is some integer 1 ≤ i ≤ n such
that pj = qj for all j 6= i, pi = 0 and qi = 1. We denote this situation by q = p + i.
For p, q ∈ {0, 1}n, we say that p < q if, for any 1 ≤ i, j ≤ n, the equality piqj = 1
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implies i < j. For p < q we define p + q ∈ {0, 1}n putting (p + q)i := pi + qi. We
denote by 0 := (0, 0, . . . , 0) and 1 := (1, 1, . . . , 1) the constant elements of {0, 1}n.

The construction of the promised 2-functor Wdl(n)(K) → Mnd(K)2
n+1

relies on a
few lemmas below. A routine computation proves the first one:

4.2. Lemma. For any object {λi,j : sjsi → sisj}0≤i<j≤2 of Wdl(2)(K), there is a
homomorphism of monads in K,

ϕ1
0,2 := λ012.s0η1s2 : (s0s2, λ02)→ (s0s1s2, λ012).

This means that there is a 1-cell ((A,A), ϕ1
0,2): (A, (s0s1s2, λ012))→ (A, (s0s2, λ02))

in Mnd(K) (where A is the object underlying the monads (A, si)).

4.3. Lemma. For any object {λi,j : sjsi → sisj}0≤i<j≤4 of Wdl(4)(K), the morphisms
as in Lemma 4.2 constitute a commutative diagram in K:

(s0s2s4, λ024)
ϕ1
0,24 //

ϕ3
02,4

��

(s0s1s2s4, λ0124)

ϕ3
012,4

��

(s0s2s3s4, λ0234)
ϕ1
0,234

// (s0s1s2s3s4, λ01234) .

Proof. In view of Lemma 4.2, both paths around the diagram are equal to λ01234.
s0η1s2η3s4.

4.4. Lemma. For any 1-cell {ξi : s′iv → vsi}0≤i≤2 in Wdl(2)(K), the morphisms in
Lemma 4.2 induce a commutative square

(A, (s0s1s2, λ012))
((v,v),ξ012) //

((A,A),ϕ1
0,2)

��

(A′, (s′0s
′
1s
′
2, λ
′
012))

((A′,A′),ϕ′10,2)
��

(A, (s0s2, λ02))
((v,v),ξ02)

// (A′, (s′0s
′
2, λ
′
02))

in Mnd(K).

Proof. Both paths around the diagram are computed to be equal to

vλ012.vs0η1s2.ξ0s2.s
′
0ξ2 = vλ012.ξ0s1s2.s

′
0ξ1s2.s

′
0s
′
1ξ2.λ′012v.s

′
0η
′
1s
′
2v,

where the last equality follows by the unitality of ξi and the normalization property
ξ012.λ′012v = ξ012.
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4.5. A 2-functor F : Wdl(n)(K) → Mnd(K)2
n+1

For any non-negative integer n,
and any 0 6= p = (p0, . . . , pn) ∈ {0, 1}n+1, taking those values of 0 ≤ i ≤ n for

that pi = 1, defines a 2-functor Wdl(n)(K) → Wdl(−1+
∑

i pi)(K). Composing it with
the unique iterated weak wreath product 2-functor Wdl(−1+

∑
i pi)(K) → Mnd(K) in

Section 2, yields a 2-functor Wdl(n)(K)→ Mnd(K). Denote the image of

{λi,j : sjsi → sisj}0≤i<j≤n

{ξi:s′iv→vsi}0≤i≤n

((

{ξ′i:s′iv′→v′si}0≤i≤n

66
⇓ ω {λ′i,j : s′js

′
i → s′is

′
j}0≤i<j≤n

under it by

(A, (sp, λp))

ξp:s′pv→vsp

%%

ξ′p:s′pv
′→v′sp

99
⇓ ω (A′, (s′p, λ

′
p)) .

Then (A, sp) is the weak wreath product of those demimonads (A, si) for which pi = 1.

For 0 ∈ {0, 1}n+1, put (A, s0) := (A,A) and ξ0 := v.

By Lemmas 4.2 and 4.3, for any object {λi,j : sjsi → sisj}0≤i<j≤n of Wdl(n)(K),
for any p ∈ {0, 1}n+1, and for any 0 ≤ i, j ≤ n such that pi = pj = 0, there is a
commutative square

(A, (sp+i+j, λp+i+j))
((A,A),ϕi

p+j)
//

((A,A),ϕj
p+i)

��

(A, (sp+j, λp+j))

((A,A),ϕj
p)

��

(A, (sp+i, λp+i))
((A,A),ϕi

p)
// (A, (sp, λp))

in Mnd(K). Such squares constitute a commutative n+ 1-cube in Mnd(K).
By Lemma 4.4, for any 1-cell {ξi : s′iv → vsi}0≤i≤n of Wdl(n)(K), there is a com-

mutative square

(A, (sp+i, λp+i))
((v,v),ξp+i)

//

((A,A),ϕi
p)

��

(A′, (s′p+i, λ
′
p+i))

((A′,A′),ϕ′ip)

��

(A, (sp, λp))
((v,v),ξp)

// (A′, (s′p, λ
′
p))

in Mnd(K). Hence the 1-cells ((v, v), ξp) : (A, (sp, λp)) → (A′, (s′p, λ
′
p)) constitute a

1-cell in Mnd(K)2
n+1

.
Finally, for a 2-cell ω : {ξi : s′iv → vsi}0≤i≤n → {ξ′i : s′iv

′ → v′si}0≤i≤n in Wdl(n)(K),
ω is a 2-cell ((v, v), ξp)→ ((v′, v′), ξ′p) in Mnd(K), for any p ∈ {0, 1}n+1, which consti-

tutes a 2-cell in Mnd(K)2
n+1

.
The above maps define the stated 2-functor F : Wdl(n)(K)→ Mnd(K)2

n+1
.
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4.6. Theorem. For any 2-category K, and any non-negative integer n, the 2-functor
Wdl(n)(K)→ Mnd(K)2

n+1
in Paragraph 4.5 is fully faithful.

Proof. Faithfulness is obvious. In order to prove fullness on the 1-cells, take a 1-
cell {ζp : s′pv → vsp}p∈{0,1}n+1 in Mnd(K)2

n+1
between objects arising from 0-cells

{λi,j : sjsi → sisj}0≤i<j≤n and {λ′i,j : s′js
′
i → s′is

′
j}0≤i<j≤n of Wdl(n)(K). This includes

in particular 1-cells ξi := ζi : s′iv → vsi in Mnd(K). We claim that for i ∈ {0, . . . , n}
they constitute a 1-cell in Wdl(n)(K) and each ζp is equal to their weak wreath product.
By commutativity of the squares

(A, (sisj, λij))
((v,v),ζij)//

((A,A),ϕj
i )
��

(A′, (s′is
′
j, λ
′
ij))

((A′,A′),ϕ′ji )
��

(A, (si, si))
((v,v),ξi)

// (A′, (s′i, s
′
i))

(A, (sisj, λij))
((v,v),ζij)//

((A,A),ϕi
j)

��

(A′, (s′is
′
j, λ
′
ij))

((A′,A′),ϕ′ij)
��

(A, (sj, sj))
((v,v),ξj)

// (A′, (s′j, s
′
j))

in Mnd(K), we conclude the commutativity of the diagrams

s′iv

ξi
��

s′iη
′
jv // s′is

′
jv

λ′ijv //

ζij

##GGGGGGGGG
s′is
′
jv

ζij
��

vsi vsiηj
// vsisj

vλij

// vsisj

s′jv

ξj
��

η′is
′
jv // s′is

′
jv

λ′ijv //

ζij

##GGGGGGGGG
s′is
′
jv

ζij
��

vsj vηisj
// vsisj

vλij

// vsisj

(29)

in K. Since ((v, v), ζij) is a 1-cell in Mnd(K), the following diagram commutes

s′is
′
jv

s′iξj //

s′iη
′
is
′
jv

��λ′ijv

��

(29)

s′ivsj
ξisj //

s′ivηisj��

vsisj

vsiηisj
��

vλij

��

s′ivsisj
ξisisj //

s′iη
′
jvsisj

��================

s′ivλij

������������������
(29)

vs2
i sj

vsiηjsisj
��

v(sisj)
2

vλijsisj
��

s′2i s
′
jv

s′iζij //

s′iη
′
js
′
is
′
jv

��

s′ivsisj

s′iη
′
jvsisj

��

s′is
′
jvsisj

ζijsisj // v(sisj)
2

vµij

��

(s′is
′
j)

2v
s′is
′
jζij //

µ′ijv��

s′is
′
jvsisj

ζijsisj // v(sisj)
2

vµij

''NNNNNNNNNN

s′is
′
jv ζij

// vsisj ,

(30)

where we denoted µij = µiµj.siλi,jsj. Since ζij.λ′ijv = ζij, this says that ζij is equal to
vλij.ξisj.s

′
iξj; that is, ζij is the weak wreath product of ξi and ξj. With this expression



54 GABRIELLA BÖHM

of ζij at hand, also the following diagram commutes.

s′js
′
iv

s′js
′
iη
′
jv

//

s′jξi ��

λ′i,jv

**

(29)

s′js
′
is
′
jv
η′is
′
js
′
is
′
jv
//

s′jζij��

(s′is
′
j)

2v
µ′ijv

//

s′is
′
jζij��

s′is
′
jv

ζij

��

s′iξj

��
s′jvsi

s′jvsiηj //

ξjsi
��

s′jvsisj
s′jvλij // s′jvsisj

η′is
′
jvsisj//

ξjsisj
��

(29)

s′is
′
jvsisj

ζijsisj

��

s′ivsj

ξisj

��

vsjsi
vsjsiηj // vsjsisj

vsjλij //

vηisjsisj
��

vsjsisj
vηisjsisj
��

v(sisj)
2
vsisjλij//

vµij
��

v(sisj)
2
vλijsisj// v(sisj)

2

vµij

&&NNNNNNNN
vsisj

vλijqqvsjsi
vλi,j

// vsjsi vsisj

That is, (v, ξi, ξj) is a 1-cell in Wdl(K). Thus the collection {ξi : s′iv → vsi}0≤i≤n is

a 1-cell in Wdl(n)(K). The same reasoning as in (30) shows that its image under the
2-functor in the claim is the 1-cell {ζp : spv → vsp}p∈{0,1}n+1 in Mnd(K)2

n+1
that we

started with. Fullness on the 2-cells is evident.

4.7. If idempotent 2-cells split Let K be a 2-category in which idempotent
2-cells split; that is, biequivalent to K, and consider the 2-functor

Wdl(n)(K)
' //Wdl(n)(K)

F //Mnd(K)2
n+1

, (31)

where F is the 2-functor introduced in Paragraph 4.5. By Paragraph 4.5, it takes a
1-cell {ξi : s′iv → vsi}0≤i≤n to an n+ 2-cube in Mnd(K), with faces of the form in the
first diagram in

(A, (sp+i, λp+i))
((v,v),ξp+i)

//

((A,A),ϕi
p)

��

(A′, (s′p+i, λ
′
p+i))

((A′,A′),ϕ′ip)

��

(A, zp+i)
(v,ζp+i)

//

(A,ψi
p)

��

(A′, z′p+i)

(A′,ψ′p
i)

��
(A, (sp, λp))

((v,v),ξp)
// (A′, (s′p, λ

′
p)) (A, zp)

(v,ζp)
// (A′, z′p).

(32)
Let us choose a biequivalence pseudofunctor K → K adopting the convention that
we split any identity 2-cell trivially; that is, via identity 2-cells. Then the induced
biequivalence Mnd(K) → Mnd(K) takes the first square in (32) to a commutative
square in Mnd(K) of the form in the second diagram. Mapping {ξi : s′iv → vsi}0≤i≤n
to the n + 2-cube in Mnd(K) formed by these faces; and mapping a 2-cell ω to the
2-cell in Mnd(K)2

n+1
whose value at each p ∈ {0, 1}n+1 is given by ω; we obtain a fully

faithful 2-functor Wdl(n)(K) → Mnd(K)2
n+1

. Its composition with the biequivalence

Mnd(K)2
n+1 '→ Mnd(K)2

n+1
is 2-naturally isomorphic to (31).
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4.8. If Eilenberg-Moore objects exist Recall (from [Street (1972)]) that a
2-category K is said to admit Eilenberg-Moore objects provided that the evident
inclusion I : K → Mnd(K) possesses a right 2-adjoint J . Whenever J exists, it
induces a fully faithful 2-functor Mnd(K)→ K2 as follows. It takes a monad (A, t) to
the 1-cell part of the counit of the 2-adjunction I a J evaluated at (A, t); that is, the
so-called “forgetful morphism” J(A, t) → A in K. (The terminology certainly comes
from its form in K = Cat.) It takes a 1-cell (v, ψ) to the pair (v, J(v, ψ)) and it takes
a 2-cell ω to the pair (ω, Jω).

4.9. Corollary. Let K be a 2-category in which idempotent 2-cells split and which
admits Eilenberg-Moore objects. Then composing the fully faithful 2-functor Wdl(n)(K)
→ Mnd(K)2

n+1
in Paragraph 4.7 with J2n+1

: Mnd(K)2
n+1 → K2n+1

, we obtain a fully
faithful embedding.

5. The n-ary factorization problem

The aim of this section is to find sufficient and necessary conditions on a demimonad
(that is, a monad in the local idempotent closure of a 2-category) to be isomorphic
to a weak wreath product of n demimonads. Some facts about the n = 2 case are
recalled in Paragraph 1.6.

In the next theorem we shall use the notation introduced after Paragraph 4.1.

5.1. Theorem. For any demimonad (A, s) in an arbitrary 2-category K, the following
assertions are equivalent.

(i) There is an object {λi,j : sjsi → sisj}1≤i<j≤n of Wdl(n−1)(K) such that the
corresponding n-ary weak wreath product (that is, its image under the 2-functor
in Theorem 2.10) is isomorphic to (A, s).

(ii) There is an n dimensional cube whose 2-faces are commutative squares of monad
morphisms in K of the form (A,ϕip) : (A, sp+i)→ (A, sp), such that the following

hold. For p < q ∈ {0, 1}n, denote by ϕp
q and by ϕpq the (unique) morphisms

composed along any path to p+ q from p and from q, respectively. Then

(a) (A, s0) is the trivial monad (A,A) and (A, s1) is isomorphic to (A, s).

(b) For all p < q ∈ {0, 1}n, the 2-cell

πp,q :=
(
spsq

ϕp
q ϕp

q
// sp+qsp+q

µp+q
// sp+q

)
possesses an sp-sq bimodule section ιp,q in K.

(c) For all p < q < r ∈ {0, 1}n, the morphisms ι in part (b) render commutative
the following diagrams.

sp+q+r
ιp,q+r

//

ιp+q,r

��

spsq+r

spιq,r

��
sp+qsr

ιp,qsr
// spsqsr

(33)
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sq+rsp
ιq,rsp

//

ϕp
q+r ϕp

q+r

��

sqsrsp

sqϕ
p
r ϕp

r

��

srsp+q
srιp,q

//

ϕp+q
r ϕp+q

r

��

srspsq

ϕp
r ϕp

rsq��
sqsp+rsp+r

sqµp+r
��

sp+rsp+rsq
µp+rsq
��

sp+q+rsp+q+r

µp+q+r

��

sqsp+r
sqιp,r
��

sp+q+rsp+q+r

µp+q+r

��

sp+rsq
ιp,rsq
��

sqspsr
ϕp

q ϕp
qsr

��

spsrsq

spϕ
q
r ϕq

r

��
sp+q+r

ιp,q+r

��

sp+qsp+qsr
µp+qsr
��

sp+q+r

ιp+q,r

��

spsq+rsq+r
spµq+r
��

sp+qsr
ιp,qsr
��

spsq+r
spιq,r
��

spsq+r
spιq,r

// spsqsr sp+qsr
ιp,qsr

// spsqsr

(34)

Proof. (i)⇒(ii). The 2-functor in Paragraph 4.5 takes {λi,j : sjsi → sisj}1≤i<j≤n to

a commutative n-cube in Mnd(K) with edges (A,ϕip) : (A, sp+i)→ (A, sp) of the form

in Lemma 4.2. In this cube (A, s0) is the trivial monad (A,A) and (A, s1) is the n-ary
weak wreath product which is isomorphic to (A, s) by assumption. Thus property
(a) holds. By construction of the 2-functor in Paragraph 4.5, (A, sp+q) is the weak
wreath product of (A, sp) and (A, sq), for all p < q ∈ {0, 1}n. Hence the 2-cell πp,q in
part (b) possesses a bilinear section ιp,q by Paragraph 1.6. It remains to show that
the diagrams in part (c) commute.

The monic 2-cell ιp,q is given by λp+q : (spsq, λp+q)→ (spsq, spsq); ιp,q+r is equal to

λp+q+r : (spsqsr, λp+q+r)→ (spsqsr, spλq+r) and so on. Hence (33) takes the form

(spsqsr, λp+q+r)
λp+q+r

//

λp+q+r

��

(spsqsr, spλq+r)

spλq+r

��
(spsqsr, λp+qsr)

λp+qsr

// (spsqsr, spsqsr)

which commutes by (7) and (10). In the vertical paths of the diagrams in (34), note
the occurrence of the weak distributive laws λp,q, λp,q+r, etc. Thus the first diagram
in (34) takes the form

(sqsrsp, λq+rsp)

λq+rsp
��

λp,q+r
// (spsqsr, spλq+r)

spλq+r

��
(sqsrsp, sqsrsp)

sqλp,r
// (sqspsr, sqspsr)

λp,qsr
// (spsqsr, spsqsr)

which is evidently commutative in view of (17). Commutativity of the second diagram
in (34) follows symmetrically.
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(ii)⇒(i). By assumption, for all 1 ≤ i < j ≤ n, the 2-cell

πi,j :=
(
sisj

ϕi
j ϕi

j // sijsij
µij // sij

)
possesses an si-sj bimodule section ιi,j. Hence by Paragraph 1.6, there is a weak
distributive law λi,j := ιi,j.µij.ϕ

i
j ϕi

j : sjsi → sisj in K such that the corresponding
weak wreath product is isomorphic to sij. Let us prove that the collection {λi,j :
sjsi → sisj}1≤i<j≤n obeys the Yang-Baxter conditions, for all 1 ≤ i < j < k ≤ n.
This follows by commutativity of the following diagram.

sksjsi
skϕ

i
j ϕi

j

//

ϕj
k ϕj

ksi

��

sksijsij
skµij //

ϕij
k ϕij

k ϕij
k

��

sksij
skιi,j //

ϕij
k ϕij

k

��
(34)

sksisj
ϕi

k ϕi
ksj��

siksiksj
µiksj
��

sjksjksi
ϕi

jk ϕ
i
jk ϕi

jk

//

µjksi

��

sijksijksijk
sijkµijk//

µijksijk

��

sijksijk

µijk

��

siksj
ιi,ksj
��

sisksj
siϕ

j
k ϕj

k

��
sjksi

ϕi
jk ϕi

jk

//

ιj,ksi
��

(34)

sijksijk
µijk // sijk

ιij,k //

ιi,jk
��

(33)

sijsk
ιi,jsk

��@@@@@@@@@@@@@
sisjksjk

siµjk
��

sjsksi
sjϕ

i
k ϕi

k

��

sisjk
siιj,k

++WWWWWWWWWWWWWWWWWWW sisjk
siιj,k
��

sjsiksik sjµik
// sjsik sjιi,k

// sjsisk
ϕi

j ϕi
jsk

// sijsijsk µijsk
// sijsk ιi,jsk

// sisjsk

Thus {λi,j : sjsi → sisj}1≤i<j≤n is an object of Wdl(n−1)(K). It remains to show that
the corresponding n-ary weak wreath product is isomorphic to (A, s1) ∼= (A, s).

As observed above, (A, s12) is isomorphic to the weak wreath product of (A, s1) and
(A, s2) with respect to the weak distributive law λ1,2 := ι1,2.µ12.ϕ

1
2 ϕ1

2 : s2s1 → s1s2.
Similarly, (A, s123) is isomorphic to the weak wreath product of (A, s12) and (A, s3)
with respect to λ12,3 := ι12,3.µ123.ϕ

12
3 ϕ12

3 : s3s12 → s12s3. Moreover, precomposing
both paths around the second diagram in (34) (for p = 1, q = 2 and r = 3) by s3π1,2 =
s3µ12.s3ϕ1

2ϕ1
2, we obtain that the weak distributive law λ12,3 : (s3s12, s3s12) →

(s12s3, s12s3) differs by the isomorphisms ι1,2 : (s12, s12) // (s1s2, λ12) : π1,2oo from

the image s1λ2,3.λ1,3s2.s3λ12 : (s3s1s2, s3λ12) → (s1s2s3, λ12s3) of {λi,j : sjsi →
sisj}1≤i<j≤3 under the 2-functor C1 : Wdl(2)(K) → Wdl(1)(K) in Theorem 2.6. Hence
(A, s123) is isomorphic to the ternary weak wreath product of {(A, si)}1≤i≤3. Iterat-
ing this reasoning we conclude that (A, s1) is isomorphic to the n-ary weak wreath
product of {(A, si)}1≤i≤n.
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quantum double cosymmetry. Commun. Math. Phys. 187 (1997), 159-200.
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