The coalgebraic structure of cell complexes

Thomas Athorne

The relative cell complexes with respect to a generating set of cofibrations are an important class of morphisms in any model structure. In the particular case of the standard (algebraic) model structure on Top, we give a new expression of these morphisms by defining a category of relative cell complexes, which has a forgetful functor to the arrow category. This allows us to prove a conjecture of Richard Garner: considering the algebraic weak factorisation system given in that algebraic model structure between cofibrations and trivial fibrations, we show that the category of relative cell complexes is equivalent to the category of coalgebras.

Keywords: relative cell complexes, algebraic weak factorisation systems, small object argument

2000 MSC: 18A32, 55U35

Theory and Applications of Categories, Vol. 26, 2012, No. 11, pp 304-330.

Published 2012-06-13.

http://www.tac.mta.ca/tac/volumes/26/11/26-11.dvi
http://www.tac.mta.ca/tac/volumes/26/11/26-11.ps
http://www.tac.mta.ca/tac/volumes/26/11/26-11.pdf
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/26/11/26-11.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/26/11/26-.11ps

TAC Home