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A CATEGORICAL APPROACH TO INTEGRATION

REINHARD BÖRGER

Abstract. We present a general treatment of measures and integrals in certain (monoidal
closed) categories. Under appropriate conditions the integral can be defined by a uni-
versal property, and the universal measure is at the same time a universal multiplicative
measure. In the multiplicative case this assignment is right adjoint to the formation of
the Boolean algebra of idempotents. Now coproduct preservation yields an approach to
product measures.

1. Introduction

Integration is a map that assigns to each integrable function its integral. If we exclude
improper integrals and admit signed measures (which may be negative), integration is a
linear map from some vector space LB of integrable functions to R. It is desirable that
every function in this space can be integrated with respect to every bounded measure;
thus we consider spaces of bounded measurable functions. Now we observe that mapping
each set to its indicator function (sometimes called characteristic function) also yields
a charge (i.e. a finitely additive set function) from B to a set of simple functions (i.a.
measurable functions attaining only finitely many values) on B. Moreover it is a given
by a universal property. Naturally this is not restricted to real-valued measures but also
works for vector measures. The integral of a function x with respect to the “indicator
function measure” is x itself.

Furthermore, a map m : B → R has a linear extension to the vector space of all
simple functions if and only if m is a charge. It is possible to introduce topologies on
the spaces such that integration is the unique continuous linear extension of this map.
It is convenient to work with abstract Boolean algebras rather than set algebras. Then
certain analogues of function spaces can be defined by the universal property, though
their elements can no longer be interpreted as functions in the usual way. So integration
becomes a morphism in a suitable category rendering certain diagrams commutative. A
measure should be a map from some internal Boolean algebra B over a reasonable category
X to some object in some additive category A; its objects should carry a vector space
structure. Then the set M(B,A) of measures from some (internal) Boolean algebra B

Dedicated to Dominique Bourn on the occasion of his sixtieth birthday
Received by the editors 2009-05-30 and, in revised form, 2010-04-06.
Published on 2010-04-28 in the Bourn Festschrift.
2000 Mathematics Subject Classification: 06E05 16A32, 18A15, 18A30, 18A35, 18A40, 18E05, 28A30,

28A33, 28A40, 28A45, 46G10.
Key words and phrases: internal Boolean algebra, universal measure, multiplicative measure, product

measure, Boolean algebra of idempotents, symmetric monoidal closed category, cartesian closed category.
c© Reinhard Börger, 2010. Permission to copy for private use granted.

243



244 REINHARD BÖRGER

to A is in bijection with A(LB,A). Convergence theorems like dominated and monotone
convergence should mean continuity in certain topologies ; these should be encoded in X .
It is convenient to work in a cartesian closed category (e.g. sequential spaces); this yields
nice spaces of measurable functions and nice spaces of measures. Then σ-additivity can be
interpreted as finite additivity together with continuity in an appropriate topology; this
leads to a special choice of the object of A. Moreover, it is often useful to impose certain
completeness conditions on the target spaces of the measures. In the classical situation
each function this enforces inclusion of bounded measurable functions, because they are
uniform limits of step functions and thus limits in the given topology.

In the preprint [3] we give a tratment in some special categories as in the author’s
habilitationsschrift [1] based on Linton’s [5] approach. Here we want to reveal the cat-
egorical reasons behind the machinery and point out which conditions are necessary for
which conclusions. This more flexible approach allows us also to consider other sorts of
convergence and to see what holds in a more general context, e.g. for positive measures, if
we consider only semi-additive categories rather than additive ones. The main categorical
ideas become clear without convergence; for X the category of sets and A the category
of modules over a commutative unital ring the results are presented in [2].

If A is a symmetric monoidal closed category (i.e. has an appropriate tensor product),
there is a canonical notion of a commutative monoid in A; this is a triple (A, r, u) of an
A ∈ A and A-morphisms r : A ⊗ A → A (“multiplication”) and u : I → A (“unit”),
subject to appropriate axioms. Then the universal measure turns out to be also a univer-
sal multiplicative measure, i.e. the set M×(B,A) of multiplicative measures from some
object B ∈ |B| for the category B of (internal) Boolean algebras in X to some A ∈ |A|
is in bijection with B(L̂B,A), where L̂B is LB with some canonical algebra structure
corresponding to pointwise multiplication. For valuable comments on monoidal categories
the author is indebted to his deceased colleague Harald Lindner. Here a measure is called
multiplicative if it maps the top element to the unit element of the algebra and binary in-
tersections to products. In general, multiplicative measures are quite rare; e.g. real-valued
ones correspond to ultrafilters.

But M×(B,A) is also in bijection with the set of all Boolean morphisms from B to the
Boolean algebra ΘA of idempotents of A. This yields an adjunction L̂ a Θ; thus the left
adjoint functor L̂ preserves colimits, in particular binary coproducts. So for the coproduct
B0⊗̌B1 of two Boolean algebrasB0, B1 we obtain an isomorphism L(B0⊗̌B1) ∼= LB0⊗̌LB1.
This allows us to define product measures, and we obtain a version of Fubini’s Theorem.

2. Measures and bimeasures

In a category X with finite products we can define the category B of internal Boolean
algebras, we assume every Boolean algebra to have a top element 1. An object B =
(B, t∨, t∧, t0, t1, t⊥) ∈ |B| is given by an object B ∈ |X | and X -morphisms t∧, t∨ : B×B →
B, t0, t1 : 1 → B, t⊥ : B → B, where the last one corresponds to the complementation
x 7→ x⊥. These morphisms should satisfy the usual axioms, i.e. for each X ∈ X the
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hom-set X (X,B) is a Boolean algebra (i.e. a complemented distributive lattice).
Now let A be a semi-additive category, i.e. a category enriched over the symmetric

monoidal category of commutative monoids. Assume that A has finite products; note
that by semi-additivity they are also finite coproducts. Let U : A → X be a functor
that preserves finite products; think of U as a forgetful functor. This induces a canonical
structure of a commutative monoid on X (X,UA) for all X ∈ X , A ∈ A. If A also has
coequalizers, then it has all finite colimits; for additive A it suffices that A has cokernels.

For B = (B, t∧, t∨, t0, t1, t⊥) ∈ |B|, A ∈ |A|, we call an X -morphism m : B → UA an
A-valued measure on B if it satisfies mt0 = m.Uo and m.U(p+ q) = m.t∨ +m.t∧, where
the addition on X (B,UA) is as above, p, q : A ⊕ A → A are the canonical projections,
and o : 0→ A is the unique morphism in the semi-additive category A (with zero object,
i.e. empty product 0). M(B,A) denotes the set of all A-valued measures on B; then M
is a functor from Bop ×A into the category of sets. Since U preserves finite products, it
follows immediately that for all A,A′ ∈ |A| the induced map A(A,A′)→ X (UA,UA′) is
a homomorphism of commutative monoids. Now for each B ∈ |B| the set-valued functor
M(B,−) on A is a finite limit of representable functors.

2.1. Theorem. If the functor U from a semi-additive category A with finite colomits
into a category X has a left adjoint F : X → A, then for each B = (B, t∧, t∨, t0, t1, t⊥) ∈ B
the functor M(B,−) is represented by the codomain LB of the joint coequalizer of the pairs
idB⊕B, (t∨ + t∧) : B ⊕B → B and o, t0 : 0→ B. In particular, M(B,−) is representable,
and L : B → A is a functor.

Proof. By adjunction, for each X ∈ |X | the functor X (X,U(−)) is represented by
FX ∈ |A|. Therefore the above colimit in A induces a limit of representable functors,
that yields that M(B,−) is represented by LB. The functoriality of F follows from the
Yoneda Lemma.

FB can be viewed as a space of integrable functions on B. Representability of M(B,−)
can be interpreted as a universal property of the measure χB ∈ M(B,LB) that corre-
sponds to the identity morphism on B. Then χB(x) plays the role of the indicator function
of x. The induced map LB → A can be viewed as integration with respect to m; usually
it is a continuous linear extension; a suitable completeness condition allows to extend
the integral to more general measurable functions than just step functions. σ-Additivity
means the same as finite additivity plus continuity in a reasonable sequential topology.
So it might be appropriate to work in a category X of topological spaces. This approach
automatically leads to vector integration, since A = R is not necessary. Observe that
integration along χB is the identity morphism.

Now we enrich the structure of M(B,A). First observe that M(B,A) is isomorphic to
A(LB,A) and a commutative submonoid of X (B,UA) ∼= A(FB,A). If A is an additive
category, M(B,A) is even always an abelian group. If X is cartesian closed, we can define
an object of measures as a subobject of the cartesian power (UA)B ∈ |X |; this subobject
is mapped to M(B,A) ⊂ X (B,UA) by U if U is represented by the terminal object. Now
assume that we have a symmetric monoidal structure on A with a functor ⊗ : A×A → A,
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a unit object I ∈ |A|, natural associativity morphisms α(A0, A1, A2) : (A0 ⊗ A1)⊗ A2 →
A0⊗(A1⊗A2) for all A0, A1, A2 ∈ |A|, unit isomorphisms ρA : A⊗I → A, λA : I⊗A→ A
and a symmetry σ(A0, A1) : A0 ⊗ A1 → A1 ⊗ A0 for A0, A1 ∈ |A|. Then we can use the
above isomorphism and obtain a function space object [L̂B,A] in A.

By a symmetric monoidal functor we mean a functor U : A → X together with
a natural transformation β that assigns to each (A0, A1) ∈ |A × A| an X -morphism
β(A0, A1) : UA0 × UA1 → U(A0 ⊗ A1) and also with an X -morphism j : T → UI,
where T ∈ |X | is the terminal object (i.e. the unit object in the cartesian symmetric
monoidal (closed) structure), subject to the following conditions: Uα(A0, A1, A2).β(A0 ⊗
A1, A2).β(A0, A1) × idUA2 = β(A0, A1 ⊗ A2).idUA0 ⊗ β(A1, A2).t for A0, A1, A2 ∈ |A| and
the canonical associativity isomorphism t : (UA0 × UA1)× UA2 → UA0 × (UA1 × UA2).
Moreover, UλA.β(I, A).j × idUA and UρA.β(A, I).idUA × j are the canonical projection
isomorphisms T × UA → UA and UA × T → UA for all A ∈ |A|; moreover, we assume
Uσ(A0, A1).β(A0, A1) = β(A1, A0).s for A0, A1 ∈ |A| and the canonical interchange iso-
morphism s : A0×A1 → A1×A0. This can be done analogously for an arbitrary symmetric
monoidal structure on X (not only for the cartesian one). A symmetric monoidal functor
always induces a functor between the corresponding categories of commutative monoids;
in our case a commutative monoid (A, r, u) in A (with A ∈ |A|, r : A⊗A→ A, u : I → A)
is mapped to the commutative monoid (UA,Ur.β(A,A), Uu.j).

For a left adjoint F a U we obtain A-morphisms F (X0×X1)→ F (UFX0×UFX1)→
FU(X0 ⊗X1) → X0 ⊗X1, where the first arrow is given by the units Xi → UFXi; the
second one is Fβ(FX0, FX1), and the third one is the counit. Moreover, the A-morphism
Fj : FT → FUI followed by the counit FUI → I yields an A-morphism FT → I. In
this way, F becomes a symmetric comonoidal functor, i.e. the analogues of the above
equations hold in Aop. If the above natural morphisms F (X0 × FX1) → FX0 ⊗ FX1

and FT → I are isomorphisms, their inverses yield a symmetric monoidal structure on
F , hence F and U are both symmetric monoidal functors. In this case we call F a U
a symmetric monoidal adjunction; it induces an adjunction between the corresponding
categories of monoids (cf. [4]). Note that β need not be a natural isomorphism, and j
need not be invertible either.

For B0, B1 ∈ B and A ∈ A an element of M(B0, [LB1, A]) corresponds to an A-
morphism LB0 → [LB1, A] by adjunction; the monoidal structure on A yields a corre-
spondingA-morphism LB0⊗LB1 → A. If the above joint coequalizers ci : FBi → LBi ex-
ist for i ∈ {0, 1}, ci corresponds to χBi

: Bi → ULBi. Composing U [L(c0⊗c1), A] with our
above A-morphism B0 → U [LB0⊗LB1, A] yields another A-morphism LB0⊗LB1 → A.

On the other hand, if X is cartesian closed, U [LB1, A] is canonically equivalent to
a subobject of (UA)B1 the X -morphism ŵ : B0 → U [LB1, A] yields a morphism B0 →
(UA)B1 ; by cartesian closedness this corresponds to some w : B0 ×B1 → UA. Since ŵ is
a measure, we get w.(t∨,0 + t∧,0)× idB1

= w.(p0 + q0)× idB1
and wt0,0 = o; we might say

roughly that b is a measure in the first component. Since the codomain of ŵ is the object
[LB̂1, A] of measures, we also obtain b.(idB0

×(t∨,1+t∧,1)) = w.(idB0×(p1+q1)) and bt0,1 =
o, i.e. w is also a measure in the second component (for Bi = (Bi, t∧,i, t∨,i, t0,i, t1,i, t⊥,i). So
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we call w a bimeasure in this case. Conversely, if w is a bimeasure, i.e. satisfies the above
equations, we get the morphisms ŵ as above and then the morphism LB0⊗LB1 → A. A
bimeasure w : B0×B1 → R with values in [0, 1] may indicate the joint probability of some
event from B0 and some event from B1; it describes their dependence. For independent
Boolean algebras B0, B1 and probability measures m0 : B0 → R, m1 : B1 → R we have
w(x0, x1) = m0(x0)m1(x1) for all x0 ∈ X0, x1 ∈ X1.

2.2. Lemma. Assume that F a U : A → X is a monoidal adjunction for the cartesian
structure on a cartesian closed category X with finite limits and that A is semi-additive
and has finite colimits. Then the set-valued functor that assigns to each pair of Boolean
algebras B0, B1 in B the set of A-valued bimeasures for each A ∈ A is represented by
LB0 × LB1.

3. Multiplicative measures and idempotents

If we have two Boolean algebras B0, B1 ∈ |B| (of events), whose dependence is described
by a bimeasure w, it may be useful to have common Boolean algebra and a probability
measure on it. One important case is independence, (i.e. w(x, y) = m0(x)m1(y) for some
mi ∈ M(Bi,R)); the other extremal case is B0 = B1 =: B and w(x, y) := m(x ∧ y) for
some probability measure m : B → R. It turns out that mt∧ : B × B → UA is an
A-valued bimeasure on B for all B = (B, t∧, t∨, t0, t, 1, t⊥) ∈ |B|. In particular, for the
universal measure χB : B → LB, it corresponds to some r : LB ⊗ LB → LB by 2.2.
Moreover, for the terminal object T of X the X -morphism t1 : T → B corresponds to some
A-morphism I ∼= FT → FB by adjunction; composition with the canonical morphism
u : FB → LB. By a direct check we see that L̂B := (LB, r, u) is even a monoid in the
symmetric monoidal category A; this follows from associativity and the unit law of ∧ in
Boolean algebras.

Now assume that A is even a symmetric monoidal category and that F a U is a
symmetric monoidal adjunction; then L̂ is a functor from B into the category R of com-
mutative monoids in A. For B ∈ |B| and Â = (A, r, u) ∈ |R| we call an m ∈ X (B,UA)
a multiplicative Â-valued measure on B if it is an A-valued measure on B and satisfies
mt∧ = r.(m ⊗ m) and mt1 = uj for the canonical isomorphism j : LT → I. In the
classical case of set-functions these equations mean m(x∧ y) = m(x)m(y) for all x, y ∈ B
and m(1) = 1. Then we denote the space of all Â0-valued multiplicative measures on
B by M×(B, Â). Multiplicative measures do not play an important role in practice; e.g.
multiplicative real-valued measures correspond to ultrafilters. But the universal measure
χB : B → LB is always multiplicative if the space LB is equipped with pointwise mul-
tiplication: The indicator function of the intersection of two sets is the product of the
indicator functions, and the constant function with value is a unit element.

3.1. Lemma. Let A be a semi-additive symmetric monoidal closed category with finite
colimits; let X be a cartesian closed category with finite limits, and let F a U : A → X be
a symmetric monoidal adjunction. Then for each Boolean algebra in B the functor that
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assigns to each monoid Â ∈ |R| the set M×(B, Â) of multiplicative Â-valued measures on
B is represented by L̂B.

Proof. For m ∈M×(B,A), Â = (A, r, u) ∈ R, and the induced A-morphism l : LB → A
with lχB = m we obtain lr̂ = r.(l⊗ l) and lû = u for L̂B = (LB, r̂, û) by multiplicativity
of m. Hence l is even (induced by) a monoid homomorphism, i.e. some R-morphism
L̂B → A.

The functor M× (a opposed to M) is also representable in the first argument if A
is even an additive category (i.e. admits subtraction). Since our adjunction F a U is a
symmetric monoidal adjunction, U transforms an object of R, i.e. a commutative monoid
in A, into a commutative monoid in the cartesian closed category X , hence a commutative
monoid in X in the usual Linton-Lawvere universally algebraic sense. Moreover the right-
adjoint functor U preserves limits, in particular finite products; since A is an additive
category, this leads to an addition on the corresponding X -object. This addition and the
above monoid multiplication together yield an internal commutative unital ring in X .

In a commutative unital ring R, the idempotent elements (i.e. elements x ∈ R with
x2 = x) form a Boolean algebra with 0 and 1 as in R, the meet as multiplication; the join
given by x ∨ y := x + y − xy and the complement given by x⊥ := 1 − x. For A ∈ |R|
as above, these operations also yield X -morphisms for the internal ring structure on UA.
Moreover, we can restrict them to the object of idempotents; this can be constructed as
the equalizer of the identity morphism of UA and r.Uβ(A,A).d where D : UA→ UA×UA
is the diagonal. This yields an internal Boolean algebra in X , i.e. an object ΘA ∈ |B|.
Then Θ : R → B is a functor.

3.2. Theorem. For an additive symmetric monoidal closed category A with finite colim-
its, a cartesian closed category X with finite limits and a symmetric monoidal adjunction
F a U : A → X and for each commutative unital ring A in (the given symmetric monoidal
structure of) A the set-valued functor that maps each internal Boolean algebra B in X to
M×(B,A) is representable (by the internal Boolean algebra ΘA of idempotents).

Proof. It has to be shown that every multiplicative A-valued measure M on B induces
a B-morphism (i.e. an internal Boolean homomorphism) B → ΘA. This is shown as
in ordinary rings; all elements are idempotent, because multiplicativity of the measure
implies m(x)2 = m(x ∧ x) = m(x) for all x in the Boolean algebra.

If 2 = 1+1 is invertible in a commutative unital ring R, then an R-valued charge m (i.e.
an additive set function) with m(1) = 1 on a Boolean algebra B is already multiplicative
if it attains only idempotent values. Indeed, for x, y ∈ B with x ∧ y = 0 we obtain
m(x) +m(y) = m(x∨ y) = m(x∨ y)2 = (m(x) +m(y))2 = m(x)2 + 2m(x)m(y) +m(y)2 =
m(x) +m(y) + 2m(x)m(y), hence 2m(x)m(y) = 0 an thus m(x)m(y) = 0 by invertibility
of 2. For arbitrary x, y ∈ B this leads to m(x)m(y) = (m(x∧ y) +m(x∧ y⊥))(m(x∧ y) +
m(x⊥∧y)) = m(x∧y)2 +m(x∧y)m(x∧y⊥)+m(x⊥∧y)m(x∧y)+m(x⊥∧y)m(x∧y⊥) =
m(x∧y)+0+0+0 = m(x∧y) because x∧y∧x∧y⊥ = x⊥∧y∧x∧y = x⊥∧y∧x∧y⊥ = 0. By
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internalization we see that an A-valued measure with mt1 = uj as above is multiplicative
if idA + idA is invertible in A(A,A).

Combining the above natural isomorphisms B(B,ΘA) ∼= M×(B,A) ∼= A(L̂B,A), we
immediately see:

3.3. Theorem. For an additive symmetric monoidal closed category A with finite colim-
its, a cartesian closed category X with finite limits and a symmetric monoidal adjunction
F a U : A → X , the functor Θ : R → B that assigns to every internal commutative
unital ring A in A the internal Boolean algebra ΘA of idempotents is right adjoint to the
functor L̂ : B → R.

So the left adjoint functor L̂ : B → R preserves colimits, in particular binary coprod-
ucts. But it is well-known that binary coproducts in R can be constructed as tensor prod-
ucts. The tensor product A0 ⊗ A1 of two R-objects (i.e. monoids in A) Â0 = (A0, r0, u0)
and Â1 = (A1, r1, u1) is defined by Â0⊗Â1 := (A0⊗A1, (r0⊗r1).s, (u0⊗u1).(λI)−1), where
s : (A0⊗A1)⊗(A0⊗A1)→ (A0⊗A0)⊗(A1⊗A1) is the canonical interchange isomorphism
from the symmetric monoidal structure that interchanges the two middle arguments; re-
member λI = ρI : I ⊗ I → I. The underlying A-morphisms A0, A1 → A0 ⊗A1 of the co-
product injections are the composites A0 → A0⊗I → A0⊗A1 and A1 → I⊗A1 → A0⊗A1,
where the left-hand morphisms are the coherence isomorphisms from the monoidal struc-
ture and the right-hand ones are idA0 ⊗ u1 and u0 ⊗ idA1 . Combination with 2.2 yields
the following

3.4. Theorem. For an additive symmetric monoidal closed category A with finite col-
imits, a cartesian closed category X with finite limits and a symmetric monoidal adjunc-
tion F a U : A → X and for a coproduct B0 ⊗ B1 of internal Boolean algebras in X
there is a monoid isomorphism L̂(B0 ⊗B1) ∼= L̂B0 ⊗ L̂B1 (in particular an isomorphism
L(B0 ⊗B1) ∼= LB0 ⊗LB1 in A), natural in both arguments. For each A ∈ |A|, the set of
A-valued bimeasures on B0, B1 is in natural bijection with M(B0 ⊗B1, A).

By induction this can be extended to finitely many internal Boolean algebras. If X
and A have filtered colimits, they even yield product measures of more than two measures;
observe that ⊗ preserves the involved colimits in A by monoidal closedness. If we consider
two measures m0 ∈ M(B0, A), m1 ∈ M(B1, A) for some (A, r, u) ∈ R, the bimeasure
r.(m0 ×m1) : B0 ×B1 → A induces a product measure on B0 ⊗B1; this can be extended
to finitely many measures as above, if A has filtered colimits (which are preserved by all
−⊗ A because A is monoidal closed).
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