Algebraic categories whose projectives are explicitly free

Matías Menni

Let M = (M, m, u) be a monad and let (MX, m) be the free M-algebra on the object X. Consider an M-algebra (A, a), a retraction r : (MX, m) --> (A, a) and a section t : (A, a) --> (MX, m) of r. The retract (A, a) is not free in general. We observe that for many monads with a `combinatorial flavor' such a retract is not only a free algebra (MA_0, m), but it is also the case that the object A_0 of generators is determined in a canonical way by the section t. We give a precise form of this property, prove a characterization, and discuss examples from combinatorics, universal algebra, convexity and topos theory.

Keywords: monads, combinatorics, projective objects, free objects

2000 MSC: 18C20, 05A19, 08B30

Theory and Applications of Categories, Vol. 22, 2009, No. 20, pp 509-541.

TAC Home