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DUALITY FOR CCD LATTICES

FRANCISCO MARMOLEJO, ROBERT ROSEBRUGH, AND R.J. WOOD

Abstract. The 2-category of constructively completely distributive lattices is shown
to be bidual to a 2-category of generalized orders that admits a monadic schizophrenic
object biadjunction over the 2-category of ordered sets.

1. Introduction

1.1. Constructively completely distributive (CCD) lattices were introduced in [F&W]
and further studied in the series of papers [RW2], [RW3], [RW4], [P&W], [MRW], [RWb],
and [CMW] . For background not explicitly given here, we refer the reader to [RW4].
For an ordered set (A,≤), a subset S of A is said to be a downset if b ≤ a ∈ S implies
b ∈ S. The downsets of the form ↓a = {b | b ≤ a} are said to be principal . Denote
by DA the lattice of downsets ordered by inclusion. Recall that an ordered set (A,≤) is
said to be complete if the embedding of principal downsets ↓ :A // DA has a left adjoint∨

: DA // A. If
∨

has a left adjoint ⇓ : A // DA then A is said to be constructively
completely distributive. Recall too that, for any complete ordered set (A,≤), the totally
below relation is defined by b � a if and only if (∀S ∈ DA)(a ≤

∨
S =⇒ b ∈ S). To say

that A is CCD is equivalent to

(∀a ∈ A)(a =
∨
{b | b� a})

A restricted class of CCD lattices, called totally algebraic in [RW4], are those complete A
for which

(∀a ∈ A)(a =
∨
{b | b� b ≤ a})

1.2. At the International Category Theory Conference held in Vancouver in 1997, Paul
Taylor raised two questions about the adjunction

ord(−,Ω)op a ord(−,Ω) :ordop // ord

Here ord is the 2-category of ordered sets, order-preserving functions, and inequalities
and Ω is the subobject classifier of the base topos S, which is not assumed to be Boolean.
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i) What are the algebras for the generated monad?

ii) Is ord(−,Ω) monadic?

Taylor had conjectured that the answer to his first question is ccd, the 2-category of CCD
lattices, order preserving functions that have both left and right adjoints and inequalities.
In [MRW] this was affirmed and the second question was answered negatively by recalling
from [RW4] that ordop is biequivalent to the full subcategory of ccd determined by the
totally algebraic lattices described in 1.1. (More precisely, we should say that ordcc

op, the
ord-category of antisymmetric ordered sets, is biequivalent to that of totally algebraic
lattices. The (−)cc terminology will be explained in the sequel.)

1.3. Nevertheless, there is value in expanding on the second question, which sought to
generalize Paré’s celebrated result in [PAR] that Ω(−) : Sop // S is monadic, for S any
elementary topos. However, since ord is a 2-category and earlier results on CCD lattices
fully exploited the extra dimension we asked:

iii) Is there a bimonadic schizophrenic object biadjunction whose domain is biequivalent
to ccd?

The answer we give here was anticipated in [RW4] but is somewhat subtle. Write idm
for a certain 2-category in which the objects (X,<) consist of a set together with a
transitive, interpolative relation and the arrows are functions that preserve the relation.
The 2-category ccd is biequivalent to idmcc

op, where idmcc is the full sub-2-category of
idm consisting of the Cauchy complete objects. The emphasized term refers to a slight
generalization of the concept given by F.W. Lawvere in [LAW]. What is truly new here is
that idmcc(−, iΩ) : idmcc

op // ord, where iΩ is the subobject classifier seen as an object
of idm, is bimonadic.

1.4. Lawvere’s definition of Cauchy completeness was given for categories enriched over
a symmetric monoidal category V , in terms of the pseudofunctor (−)∗ :V-cat // V-prof
which sends a V-functor f : A // B to the V-profunctor f∗ = B(−, f−) : A // B. The
2-category idm, is not of the form V-cat for some V . However, there is a a pseudofunctor
(−)# : idm // krl, where krl is the idempotent splitting completion of rel, the 2-category
of sets, relations, and containments, such that (−)# shares important properties with the
(−)∗ : V-cat // V-prof . Such pseudofunctors were called proarrow equipments in [Wd1]
and [Wd2] and already in [RW4] they were used to study CCD lattices. Moreover, it
was recognized in [RW4] that Cauchy completeness could be defined in the generality
of proarrow equipment and that applied to (−)# : idm // krl it expressed results about
left adjoints in krl in terms of arrows in idm. We refer here to Remark 22 and the
last paragraph of Section 4 in [RW4]. What was not understood in [RW4] was that the
ordered set of (strong) downsets DX of an object of idm is equivalent to the ordered set
idm(Xop, iΩ) and that iD provides a very special right biadjoint to (−)# : idm // krl.
The use of equivalences, as opposed to isomorphisms, of ordered sets is critical throughout
this paper.
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1.5. In Section 2 we review proarrow equipment in a general way and give examples,
before introducing the idea of a KZ-adjunction. These are to KZ-doctrines what ordinary
adjunctions are to ordinary monads. We define existence of power objects relative to a
proarrow equipment (−)∗ :K // M to mean the existence of a right KZ-adjoint for (−)∗ :
K // M. The general KZ-adjunction simplifies considerably in this case and we explore
precisely what is needed to provide power objects. Any proarrow equipment (−)∗ :K // M
factors to give (−)∗ : K // mapM, where mapM is the locally full subbicategory of M
determined by the left adjoints. In Section 3 we define existence of Cauchy completions
relative to (−)∗ to mean the existence of a strong right KZ-adjoint for (−)∗ :K // mapM.
Strong KZ-adjunctions are to KZ-adjunctions what pseudo idempotent pseudomonads
are to KZ-doctrines. We prove some basic results about the relationship between power
objects and Cauchy completions, noting in particular that power objects are Cauchy
complete. In Section 4 we introduce (−)# : idm // krl formally and provide a full context
for it, especially relative to ordered sets and order ideals. The most important result of
this section is Proposition 4.12 which, together with power objects for (−)# : idm // krl,
provides the essential ingredients setting this work apart from earlier CCD papers. In
Section 5 we apply the results of Sections 2 and 3 to (−)# : idm // krl, identifying some
additional features present in this example, notably that the dual, Y op, of a Cauchy
complete object Y is also Cauchy complete. Finally, in Section 6 we assemble what we
have developed so as to state and prove the main bimonadicity result.

2. Proarrow Equipments Redux and Power Objects

2.1. For K and M bicategories, a pseudofunctor (−)∗ :K // M is said to be proarrow
equipment in the sense of [Wd1] and [Wd2] if

i) (−)∗ is the identity on objects;

ii) (−)∗ is locally fully faithful;

iii) (for all f :A // B in K) (there is an adjunction f∗ a f ∗ :B // A in M).

We can regard K via (−)∗ as a locally-full subbicategory ofM. In the context of proarrow
equipment, an arrow in K is representably fully faithful if and only if its given adjunction
in M has an invertible unit. It is in fact unambiguous in this context to call such an
arrow in K fully faithful .

2.2. As examples of proarrow equipment we mention:

i) (−)∗ :V-cat // V-prof , for a cocomplete symmetric monoidal category V . Here for
a V-functor f :B // A, the V-profunctor f∗ :B // A is given by f∗(a, b) = A(a, fb).

ii) (−)# : V-tax // V-dist, for a cocomplete symmetric monoidal category V . The
objects of V-tax are V-taxons (called V-taxonomies in [KOS]). Taxons are similar
to categories except that the existence of identity data is replaced by the requirement
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that the associativity of composition diagram (suitably expressed) be a coequalizer.
The arrows are what might be called V-semi-functors. The arrows of V-dist, that
we call V-distributors, are the i-modules of [KOS]. The 2-cells of V-tax are defined
by generalizing Mac Lane’s “arrows only” description of natural transformations.
(See [MAC], page 19.) This paper will involve a very special case of this example
and we forego further mention of the general case, referring the interested reader to
[KOS].

iii) (−)∗ : TOPgeo
// TOPlex

co, in which a geometric morphism between toposes is
sent to its direct image. This example was studied extensively in [RWp] and [RWc].

iv) The previous example is a special case of mapM // M which is proarrow equipment,
for M an arbitrary bicategory. Here mapM is the locally full subbicategory of M
determined by the left adjoint arrows. We follow the convention of calling a left
adjoint arrow a map.

v) (−)∗ : set // rel, which sends a function f :B // A to its graph f∗ :B // A so that
af∗b if and only if a = fb.

2.3. In [LAW] an object B in V-cat was said to be Cauchy complete if, for all A,
every adjunction L a R : B // A in V-prof arises as one of the form f∗ a f ∗ : B // A
for an f : A // B in V-cat. It is clear immediately that for any proarrow equipment
(−)∗ :K // M one can define an object Y in K to be Cauchy complete if, for every map
L :X // Y in M, there is an arrow f :X // Y in K and an isomorphism f∗ ∼= L in M.
If V is complete, the question of Cauchy completeness of an object B in V-cat can be
concentrated in a single V-functor, the inclusion of B in its Cauchy completion B // QB,
making the condition far more tractable. We turn shortly to the possibility of doing this
for a general proarrow equipment (−)∗ :K // M.

2.4. It will be convenient to write S :K // M for a general pseudofunctor and recall the
concept of a right biadjoint P :M // K for S. In addition to the pseudofunctors S and
P , a biadjunction (S a P ; y, e; η, ε) consists of a unit y : 1K // PS, a counit e :SP // 1M,
and invertible constraints ε and η as shown below.

S SPSSy //S

S

1S

��?
??

??
??

??
??

??
SPS

S

eS

��

εoo

PSP Poo yPPSP

P

Pe

��

P

P

1P

����
��

��
��

��
��

�ηoo

The constraints ε : eS.Sy // 1S and η : 1P // Pe.yP for a biadjunction are required to
satisfy coherence equations, for which [S&W] is a convenient reference. But since our
application will be to locally orderedM, the coherence equations are not relevant for this
paper. In [M&W] it was shown that to give an adjunction Sy a eS, with unit ε−1 (and
components in M), is to give an adjunction Pe a yP , with counit η−1 (and components
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in K). Moreover, Sy a eS is an adjoint equivalence if and only if Pe a yP is an adjoint
equivalence. A biadjunction (S a P ; y, e; η, ε) satisfying either of the equivalent conditions

Sy a eS with unit ε−1 (1)

or
Pe a yP with counit η−1 (2)

is called a KZ-adjunction. It should be noted that for such a biadjunction, for each object
X in K, the component SyX is necessarily fully faithful in M and, for each object Y
in M, the component yPY is necessarily fully faithful in K. A KZ-adjunction will be
said to be strong if the counit for the adjunction Sy a eS is also invertible, equivalently
the unit for the adjunction Pe a yP is also invertible. It was shown in [M&W] that a
KZ-adjunction generates a KZ-doctrine on K and that a strong KZ-adjunction generates
a pseudo-idempotent pseudomonad on K.

2.5. A proarrow equipment (−)∗ :K // M is said to have power objects if it has a right
KZ-adjoint. Since (−)∗ is the identity on objects, the notion of KZ-adjunction simplifies
in this case. We will show in the next four subsections that to give a right KZ-adjoint for
a proarrow equipment (−)∗ :K // M is to give, for each object Y , an arrow yY :Y // PY
in K with invertible unit 1Y // yY

∗yY ∗ inM so that, for each object X, composition with
yY
∗ :PY // Y preceded by (−)∗ provides an equivalence of categories

K(X,PY )
y∗Y (−)∗ //M(X, Y ) (3)

2.6. Lemma. The equivalence (3) provides, for each M :X // Y in M, a diagram

PY Y
y∗Y

//

X

PY

m∗

����
��

��
��

��
��

�
X

Y

M

��?
??

??
??

??
??

??

µ //

with m in K and invertible µ, universal among diagrams of the form

PY Y
y∗Y

//

X

PY

n∗

����
��

��
��

��
��

�
X

Y

M

��?
??

??
??

??
??

??

ν //

for n in K and arbitrary ν. Moreover if ν is invertible then the induced n // m is invertible.
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Proof. Given M : X // Y in M we find m : X // PY in K and invertible µ as shown
using the essential surjectivity of y∗Y (−)∗. For the universal property, assume that we have
n :X // PY in K and arbitrary ν : y∗Y n∗

// M . In this event we have µ−1.ν : y∗Y n∗
// y∗Ym∗.

By fully faithfulness of y∗Y (−)∗ there is a unique 2-cell τ :n // m in K so that the whisker
composite y∗Y τ∗ is equal to the pasting of µ−1 to ν along M . Of course this immediately
says that τ is unique with the property that τ∗ pasted to µ along m∗ is equal to ν. If ν
is invertible then invertibility of τ follows from fully faithfulness of y∗Y (−)∗.

2.7. It is now standard that P :M // K is given on arrows by requiring, for M :X // Y
inM, that PM be obtained from the procedure of Lemma 2.6 applied to My∗X as in the
diagram

PY Y
y∗Y

//

PX

PY

(PM)∗

����
��

��
��

��
��

�
PX

Y

PX

X

y∗X

��?
??

??

X

Y

M

��?
??

??
∼= (4)

(with the universal property of that in Lemma 2.6). From the universal property, we
deduce the effect of P on 2-cells. Moreover, pseudofunctoriality of P with respect to
composition follows from consideration of

PY Y
y∗Y //

PX

PY

(PM)∗
��

��
�

����
��

�

PX

Y

PX

X

y∗X

��?
??

??

X

Y

M

��?
??

??∼=
Y

Z

N

��?
??

??
??

?PY

PZ

(PN)∗
���

�����

PZ Z
y∗z

//

∼=

PX

PZ

(P(NM))∗

��

X

Z

NM

��

Here each of the smaller triangle, the trapezoid, and the entire region are as provided
by Lemma 2.6. It follows from the universality of P(NM) that we have an isomorphism
(PN)(PM) // P(NM) in K. Pseudofunctoriality with respect to identities is even easier
and left for the reader.

2.8. The un-named isomorphisms given by (4) provide the pseudonaturalities for a
pseudonatural transformation y∗ : (−)∗P // 1M, playing the role of e in 2.4. Taking mates
we have, for each M :X // Y inM, a 2-cell yY ∗M // (PM)∗yX∗ inM. In particular, for
each k :X // Y in K we have

yY ∗k∗ // (Pk∗)∗yX∗ and yX∗k
∗ // (Pk∗)∗yY ∗

For each k in K, the first of these gives, by pseudofunctoriality and local fully faithfull-
ness of (−)∗, a 2-cell yY k // (Pk∗)yX in K, the second has a mate (Pk∗)∗yX∗ // yY ∗k∗
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in M (using (Pk∗)∗ ∼= (Pk∗)∗ via pseudofunctoriality of P) and this last gives a 2-cell
(Pk∗)yX // yY k in K, provably inverse to yY k // (Pk∗)yX . Again, it follows that the
isomorphisms yY k // (Pk∗)yX provide the pseudonaturalities for a pseudonatural trans-
formation y : 1K // P(−)∗. Turning again to the terminology of subsection 2.4, we can
construct the invertible constraint ε by using the inverses for the unit of the family of
adjunctions yX∗ a yX

∗ since we have y fully faithful. To construct the constraint η,
consider

PY Y
y∗Y

//

PPY

PY

(P(yY
∗)∗
��

��
�

����
��

�

PPY

Y

PPY

PY

yPY
∗

��?
??

??

PY

Y

yY
∗

��?
??

??
∼=

PY

PPY
yPY ∗ ��

PY

PY

1PY ∗

��

PY

PY

1PY ∗

��

∼=

The triangle is as provided by Lemma 2.6 while the other displayed isomorphism is another
instance of the fully faithfulness of y. Finally since the entire region can also be seen as an
instance of the diagram in Lemma 2.6, universality provides us with a unique isomorphism
P(yY

∗)yPY // 1PY in K whose image under (−)∗ coheres with the pasting of the other
isomorphisms in the diagram. This completes the exhibition of the data needed for a
biadjunction (−)∗ a P . Again we point out that since our application will be to locally
ordered bicategories, verification of 2-cell equations will not be considered here.

2.9. By the very construction of the counit e as y∗ we have (1) so that the biadjunction
(−)∗ a P has the KZ-property. Finally, we note that the defining fully faithful adjoint
string, in the sense of [MAR], showing that (P(−)∗, y) is a KZ-doctrine on K is given by

PY PPY
P(yY ∗) //

PY PPYoo P(yY
∗)PY PPY

yPY

//

⊥
⊥

(5)

2.10. Remark. It should not be supposed that all proarrow equipments with right
biadjoints provide KZ-adjunctions. For example, the proarrow equipment (−)∗ : set // rel
which sends a function to its graph has the power set construction as right adjoint.
The unit is singleton with components {−}Y : Y // PY ; the counit is membership with
components ∈Y :PY // Y and ∈Y is not the right adjoint of the graph of {−}Y in rel.

3. Cauchy Completion Relative to Proarrow Equipments

3.1. We now consider the question of existence of a strong right KZ-adjoint Q for
(−)∗ :K // mapM. From the general discussion in Section 2 we see that to give such a
biadjunction (−)∗ a Q it suffices to give, for each object Y , an arrow zY : Y // QY in K
with invertible unit 1Y // zY

∗zY ∗ and invertible counit zY ∗zY
∗ // 1QY in mapM so that,
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for each object X, composition with e :QY // Y preceded by (−)∗ provides an equivalence
of categories

K(X,QY )
zY
∗(−)∗ // mapM(X, Y ) (6)

It should be noted that to say z∗ is the counit for the biadjunction (−)∗ a Q makes
the components zY

∗ themselves maps in M. The proof of the following Lemma is easily
adapted from that of Lemma 2.6.

3.2. Lemma. The equivalence (6) provides, for each map L :X // Y in M, a diagram

QY Y
z∗Y

//

X

QY

l∗

����
��

��
��

��
��

�
X

Y

L

��?
??

??
??

??
??

??

λ //

with l in K and invertible λ, universal among diagrams of the form

QY Y
z∗Y

//

X

QY

n∗

����
��

��
��

��
��

�
X

Y

L

��?
??

??
??

??
??

??

ν //

for n in K and arbitrary ν.

3.3. Just as we did for (P , y), we can carry out a similar discussion for (Q, z) to show
that our assumptions about zY : Y // QY lead to a strong KZ-adjunction (−)∗ a Q :
mapM // K which in turn leads to a string of adjoint equivalences

QY QQY
Q(zY ∗) //

QY QQYoo Q(zY
∗)QY QQY

zQY

//

⊥
⊥

(7)

showing that (Q(−)∗, z) is a pseudo-idempotent pseudo monad on K. In this generality
we refer to zY : Y // QY as the Cauchy completion of Y and we say that the proarrow
equipment (−)∗ :K // M has Cauchy completions if (−)∗ :K // mapM has a strong right
KZ-adjoint. In any bicategory K, an arrow s : X // Y is a pseudo section if there is an
arrow r : Y // X and an isomorphism 1X ∼= rs. For a pseudo-idempotent pseudo monad
(T , t) on any bicategory K, it is standard that an object Y in K underlies a (T , t)-algebra
if and only if tY :Y // T Y is an equivalence if and only if tY :Y // T Y is a pseudo section.
We recall from 2.3 that an object Y in K is Cauchy complete if, for every map L :X // Y
in M, there is an arrow f : X // Y in K and an isomorphism f∗ ∼= L in M. Since
(−)∗ : K(X, Y ) // mapM(X, Y ) is in any event fully faithful, we see that Y is Cauchy
complete if and only if, for all X, (−)∗ : K(X, Y ) // mapM(X, Y ) is an equivalence of
categories.
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3.4. Proposition. For a proarrow equipment (−)∗ :K // M such that (−)∗ :K // mapM
has a strong right KZ-adjoint Q with unit z, an object Y in K is Cauchy complete if and
only if it is a (Q(−)∗, z) algebra if and only if zY :Y // QY is a pseudo section in K.

Proof. Only the first part of the statement requires comment. Consider

K(X,QY ) mapM(X,QY )
(−)∗

//

K(X, Y )

K(X,QY )

K(X,zY )

��

K(X, Y )

mapM(X,QY )mapM(X,QY ) mapM(X, Y )
mapM(X,zY

∗)
//

K(X, Y )

mapM(X, Y )

(−)∗

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

∼=

which commutes to within isomorphism since zY is fully faithful. Our global assumption
ensures that the bottom side of the triangle is an equivalence of categories (and we use
here that zY

∗ is also a map inM). Now Y is Cauchy complete if and only if, for all X, the
hypotenuse is an equivalence of categories which is so if and only if, for all X, K(X, zY )
is an equivalence of categories if and only if zY :Y // QY is an equivalence in K.

3.5. We assume now that we have both P and Q as above. Because mapM(X, Y )
is a full subcategory of M(X, Y ), for all X, we have K(X,QY ) a full subcategory of
K(X,PY ), for all X, so that by the bicategorical Yoneda lemma we have iY :QY // PY in
K representably fully faithful. Hence 1QY // iY

∗iY ∗. is invertible. From pseudonaturality
we have

mapM(QY, Y ) M(QY, Y )� � //

K(QY,QY )

mapM(QY, Y )

z∗(−)∗

��

K(QY,QY ) K(QY,PY )
K(QY,i) // K(QY,PY )

M(QY, Y )

y∗(−)∗

��

∼=

and

mapM(Y, Y ) M(Y, Y )� � //

K(Y,QY )

mapM(Y, Y )

z∗(−)∗

��

K(Y,QY ) K(Y,PY )
K(Y,i) // K(Y,PY )

M(Y, Y )

y∗(−)∗

��

∼=

Chasing the identity on QY around the first diagram and zY around the second diagram
we have isomorphisms

Y QYoo zY
∗

Y

PY

__

yY
∗

??
??

??
??

??
??

? QY

PY

iY ∗

��

∼=

and

Y QYzY //Y

PY

yY

��?
??

??
??

??
??

??
QY

PY

iY

��

∼=
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with the first in M and the second in K (since it results from y∗(iz)∗ ∼= z∗(z)∗ ∼= 1Y ∼=
y∗(y)∗ and y∗(−)∗ being an equivalence is a fully faithful functor). It follows immediately
that i(−)∗ : Q(−)∗ // P(−)∗ is a morphism of pseudomonads. It will be a convenient
abuse of notation to omit (−)∗ in such contexts and speak of P and Q as pseudomonads
on K and i :Q // P as a morphism of pseudomonads. An example is our usage in:

3.6. Proposition. The morphism of pseudofunctors zP :P // QP is an equivalence.

Proof. By Proposition 3.4, it suffices to show that each zPY :PY // QPY is a pseudo
section. But from

(y∗PY.iPY ).zPY ∼= y∗PY.(iPY.zPY ) ∼= y∗PY.yPY ∼= 1PY

(using the second triangle in 3.5 instantiated at Py) we see this is so.

3.7. Corollary. Any object of the form PY in K is Cauchy complete.

3.8. We denote by Kcc the full sub 2-category of K determined by the Cauchy complete
objects. Any object of the form QY is Cauchy complete (since Q is a pseudo-idempotent
pseudomonad). If, for each Y in K, the Cauchy completion of Y exists then it is a
formality that (−)∗ :Kcc // mapM is a biequivalence with inverse given by Q.

4. Proarrow Equipments for Orders and Idempotents

4.1. As with earlier papers on CCD lattices, we would like to make our work constructive
so that in the sequel the word set refers to an object of the base topos S. The words
ordered set refer to a set together with a reflexive and transitive relation, what some
authors call a preordered set. Many of the ordered sets (A,≤) that we consider are
definitely not anti-symmetric. We write ord for the 2-category of ordered sets, order-
preserving functions, and inequalities. We always have in mind that ord is a symmetric
monoidal 2-category via its finite products and most categories occurring in the rest of
this paper are ord-categories in the sense of enriched category theory. In fact, ord is itself
Ω-cat. (The subobject classifier Ω is an ordered set with finite products which endow
it with symmetric monoidal structure.) For much of this paper it would be possible to
replace Ω by a general symmetric monoidal category V . However, we limit further mention
of Ω-cat to this section while we clarify the relationship of ord, especially in the context
of proarrow equipment, with a more general ord-category of sets equipped with a relation.

4.2. The bicategory of order ideals idl has objects those of ord and an arrow R :A // B
in idl is a relation R :A // B for which ((b′ ≤ bRa ≤ a′) =⇒ (b′Ra′)). We have a 2-cell
from R :A // B to S :A // B in idl if and only if the relation R is contained in S. It is
easy to see that idl is Ω-prof and that idl is an ord-category. We have (−)∗ :ord // idl,
given by the identity on objects and, for f : A // B in ord, we have f∗ : A // B in idl
given by bf∗a if and only if b ≤ fa. For f :A // B in ord, there is also f ∗ :B // A in idl,
where af ∗b if and only if fa ≤ b. It is standard that f∗ a f ∗ in idl and (−)∗ : ord // idl
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is precisely the proarrow equipment of example i) of subsection 2.2 for the case of V = Ω.
Moreover, (−)∗ : ord // idl has a right KZ-adjoint that we call D, with DB being the
lattice of downsets of B ordered by inclusion. Clearly

DB = idl(1, B) ∼= ord(Bop,Ω)

4.3. In [C&S] the authors studied the notion of Cauchy completeness of objects of
ord. In the terminology of Section 3, (−)∗ :ord // mapidl has a strong right KZ-adjoint
(Cauchy completion) that sends an ordered set B to QB = {↓b | b ∈ B}, the set of
principal downsets of B. This amounts to the antisymmetrization of B. In [C&S] it is
shown that zB :B // QB is an equivalence, for each B, if and only if supports split in S.

4.4. An idempotent in the bicategory rel of relations consists of a set X together with
a relation < : X // X equal to its composite with itself. One containment providing
the equality makes < transitive; the other makes it interpolative, meaning that if x < y
then there exists z in X with x < z < y. Any order ≤ : X // X provides an example
of an idempotent in rel since interpolation can be realized trivially via reflexivity. It is
convenient to read x < y as “x is below y”. If (X,<) and (Y,<) are idempotents then a
function f :X // Y is said to be below-preserving if x < x′ implies fx < fx′. Idempotents
and below-preserving functions form a category that we denote idm0. The category idm0

becomes an ord-category that we call idm as follows. For f, g :X // Y in idm0 we define
f � g to mean (∀x, x′ in X)(x < x′ =⇒ fx < gx′).

4.5. Another ord-category whose objects are the idempotents (X,<) is the idempotent
splitting completion of rel. We call it krl (a contraction of “the Karoubian envelope
of the category of relations”). From the standard description of idempotent splitting
completions, an arrow R : (X,<) // (Y,<) in krl is a relation R :X // Y such that

X Y
R

//

X

X

<

��

X Y
R // Y

Y

<

��

X

Y

R
??

??
??

��?
??

??
?

commutes. It follows that, for all y ∈ Y and x ∈ X we have

(∃y′)(y < y′Rx) iff yRx iff (∃x′)(yRx′ < x)

There is a 2-cell from R : X // Y to S : X // Y in krl if and only if the relation R is
contained in S.

4.6. As explained in more detail in [RW4], for f :X // Y in idm, we define f# :X // Y
in krl by yf#x if and only if (∃x′)(y < fx′ and x′ < x). We have also f# : Y // X with
xf#y if and only if (∃x′)(x < x′ and fx′ < y). It is easy to verify that both f# and f#

are arrows in krl and that (−)# : idm // krl is a (strict) pseudofunctor. Moreover, if X
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and Y are idempotents in rel in virtue of being ordered sets then any such f is in ord,
any arrow of krl is in idl and f# = f∗ in idl. The following was stated in [RW4] after
Proposition 1 but in that paper f � g :X // Y was defined to mean that f# ⊆ g#.

4.7. Proposition. The pseudofunctor (−)# : idm // krl is proarrow equipment.

Proof. Proposition 1 of [RW4] showed that f# a f# in krl. We have only to show here
that f � g if and only if f# ⊆ g# using our current definition of f � g. So assume f � g
and for y ∈ Y , x ∈ X, assume that (∃x′)(y < fx′ and x′ < x). Interpolate x′ < x to
get x′ < x′′ < x. Since f � g we have fx′ < gx′′ and hence (∃x′′)(y < gx′′ and x′′ < x).
Conversely, assume f# ⊆ g# and x < x′. Interpolate x < x′ to get x < x′′ < x′ giving
fx < fx′′ and x′′ < x′. Since f# ⊆ g# we have (∃x̄)(fx < gx̄ and x̄ < x′) from which
follows fx < gx′.

4.8. It should not be supposed that (−)# : idm // krl is an ad hoc proarrow equipment.
It is precisely the proarrow equipment of example ii) of subsection 2.2 for the case of
V = Ω. In general, there is a 2-functor i : V-cat // V-tax which interprets a V-category
as a V-taxon. We have nothing further to say here about V-taxons and the like for general
V . Rather, we will shortly exhibit a right KZ-adjoint to (−)# : idm // krl and a strong
right KZ-adjoint (Cauchy completion) to (−)# : idm // mapkrl but we think that these
are best understood as generalizations to their counterparts for ordered sets.

4.9. Consider the following diagram of ordinary categories and functors.

ord0 idm0

oo a

ord0 idm0i //ord0 idm0
oo

c

⊥
⊥

Here i is the literal inclusion of orders as idempotents. For an idempotent X = (X,<),
aX = (X,<∪ 1X), where 1X is the identity relation on X, and cX = ({x ∈ X|x < x}, < |),
where < | is the restricted idempotent. It is clear that we have ordinary adjunctions
a a i a c. It is also clear that i is an ord-functor, for if f ≤ g :X // A in ord then if � ig
in idm. Similarly, if f � g :X // A in idm then cf ≤ cg in ord and it follows that we
can regard i a c as an ord-adjunction.

ord idm
i //

ord idmoo
c
⊥

But a : idm0
// ord0 does not admit enrichment to an ord-functor. For example, consider

the two distinct sum injections f, g : 1 // 2 in S. These give rise to distinct arrows
f, g : (1, ∅) // (2, ∅) in idm, where each idempotent in question has no instances of <. We
have f � g (and g � f) but we do not have af ≤ ag.
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4.10. We have also the commuting diagram of forgetful functors

ord0

S

|−|
��?

??
??

??
??

??
??

ord0 idm0
i // idm0

S

|−|
����

��
��

��
��

��
�

and note that ord0(1,−) = | − | : ord0
// S, where 1 is the one-point ordered set —

the terminal object of ord and the identity object for the cartesian monoidal structure.
Clearly i1 is terminal in idm and we have idm(1,−) ∼= c : idm // ord. By contrast,
idm0(N,−) = |−| : idm0

// S, whereN = (1, ∅) is ‘the naked one’. Since a : idm0
// ord0

commutes with the forgetful functors, it follows that the chaotic order construction k :
S // ord0, right adjoint to | − | : ord0

// S, yields ik : S // idm right adjoint to | − | :
idm0

// S. Penultimately, in regard to this diagram, observe that the discrete order
construction d : S // ord0 is left adjoint to | − | : ord0

// S while n : S // idm0, the left
adjoint to |−| : idm0

// S is given by nS = (S, ∅). Finally, we have π0 a d :S // ord0, with
π0A the set of connected components of A, but there is no left adjoint for n : S // idm0

because n does not preserve the terminal object.

4.11. In [RW4] and [MRW] the ord-functor D = krl(1,−) : krl // ord was studied in
detail. For X an idempotent, DX = D(X,<) is the set of downsets of (X,<) ordered by
inclusion. Recall that a downset S of (X,<) is a subset S of X with the property that
x ∈ S if and only if (∃y)(x < y ∈ S). Of course as with any subset, such an S has a
characteristic function that takes values in Ω. Note that the inclusion ordering of subsets
is that given by the pointwise-order for Ω-valued functions. For (X,<) an idempotent,
the set idm0(Xop, iΩ) can be identified with the set of those subsets T of X with the
property that x < y ∈ T implies x ∈ T . Call such a T a weak downset of (X,<). (Xop

for idempotents is just as for orders, that is Xop = (X,<)op = (X,<op), where x <op y
if and only if y < x.) For the record, observe that, for any idempotent X and any order
A, the set idm0(X, iA) admits the order f ≤ g defined by (∀x)(fx ≤ gx) but this is
in general distinct from the order � of idm(X, iA). In general, f ≤ g implies f � g
but not conversely. For example, for any parallel pair of the form f, g : (X, ∅) // (A,≤)
we have f � g, but not necessarily f ≤ g. Identifying subsets with their characteristic
functions we see that idm(Xop, iΩ) is the set of weak downsets of X with T � U if and
only x < y ∈ T implies x ∈ U .

4.12. Proposition. For any idempotent (X,<), the inclusion iDX // idm(Xop, iΩ)
is an equivalence of ordered sets.

Proof. Since a downset is a weak downset and, by our generalities about orders, R ⊆ S
implies R � S; it follows that inclusion provides a functor iDX // idm(Xop, iΩ). For T
a weak downset, define T ◦ = {x|(∃t)(x < t ∈ T )}. Then T ◦ is certainly a downset. If
T � U and x ∈ T ◦ then x < t ∈ T implies (∃y)(x < y < t ∈ T ) which implies (∃y)(x <
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y ∈ U) (by T � U) and hence x ∈ U◦. Thus T ◦ ⊆ U◦ and (−)◦ : idm(Xop, iΩ) // iDX
is a functor, right adjoint to the inclusion iDX // idm(Xop, iΩ), since T ◦ ⊆ T and
hence T ◦ � T provides a counit. For T a downset we have also T ⊆ T ◦ so that (−)◦ :
idm(Xop, iΩ) // iDX is split by the inclusion. To show that we have an equivalence it
suffices to show that T ◦ � T is invertible, meaning here that T � T ◦, for every weak
downset T . But if x < y ∈ T then, by definition, x ∈ T ◦ which shows T � T ◦.

4.13. Remark. Of course we do not have T ◦ = T for every weak downset so that the
inclusion iDX // idm(Xop, iΩ) is not an order isomorphism. Also, for A an order, weak
downsets are downsets (and the order relation on idm(iAop, iΩ) is containment, modulo
identification of subsets with their characteristic functions). Thus our use of D for both
ord(1,−) and krl(1,−) is unambiguous. We also generalize ↓ to objects of idm so that
↓X :X // iDX in idm is the arrow that sends x to ↓x = {x′ ∈ X | x′ < x}.

5. Power Objects and Cauchy Completions for (−)# : idm→krl

5.1. We first show that the proarrow equipment (−)# : idm // krl has a right KZ-
adjoint. We recall that for general f :X // Y in idm, we have f# : Y // X in krl given
by xf#y if and only if (∃x′)(x < x′ and fx′ < y). It is easy to see that y ↓#

Y S (if and
only if (∃y′)(y < y′ and ↓Y y′ ⊆ S)) simplifies to y ∈ S. For all M :X // Y in krl, define
m = m(M) :X // iDY by m(x) = {y | yMx}. Since y ∈ m(x) if and only if yMx it is at
once clear that each m(x) is a downset and that m :X // iDY is in idm.

5.2. Lemma. For all M :X // Y in krl,

iDY Y
↓#

//

X

iDY

m(M)#

����
��

��
��

��
��

�
X

Y

M

��?
??

??
??

??
??

??

commutes.

Proof. We have y(↓#m#)x if and only if (∃S)(y ∈ S and Sm#x) if and only if (∃S, x′)(y ∈
S ⊆ m(x′) and x′ < x) which holds if and only if yMx.

5.3. Lemma. The diagram in Lemma 5.2 exhibits m(M)# as a right lifting in krl of M
through ↓# : iDY // Y .

Proof. We recall from [RW4] that krl has all right liftings and, for any L :A // Y oo X :
M , the right lifting of M through L is given by the relational composite <A .(L⇒M).<X ,
where L⇒M is the right lifting in the bicategory rel of all relations. When A is an order
it is easy to see that the description simplifies to (L ⇒ M).<X . Now S((↓# ⇒ M).<)x
holds if and only if (∃x′)((∀y)(y ∈ S implies yMx′) and x′ < x) which is the case if and
only if (∃x′)(S ⊆ m(x′) and x′ < x) which means precisely Sm#x.
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5.4. Proposition. The proarrow equipment (−)# :krl // idm has power objects, given
by iD as in 4.11 with unit ↓.

Proof. As we have seen in Section 2, it suffices to show that

idm(X, iDY )
↓#.(−)# // krl(X, Y )

provides an equivalence of categories. Since ↓#.(−)# is surjective by Lemma 5.2 it suffices
to show that ↓#.(−)# is fully faithful. So assume that we have f, g : X // iDY in idm
with ↓#.f# ⊆↓#.g#. We must show that f � g. For this we must show that if x′ < x
then fx′ ⊆ gx. So along with x′ < x assume that we have y ∈ fx′ Since y ↓#.f#x
translates to (∃x′)(y ∈ fx′ and x′ < x) and we are assuming ↓#.f# ⊆↓#.g# we have
(∃x′′)(y ∈ gx′′ and x′′ < x) and hence y ∈ gx.

5.5. Remark. We know from our general study of power objects for proarrow equip-
ments in Section 2, that from fully faithfulness of ↓#.(−)# we have the universal property
for m(M) given in Lemma 2.6. For (−)# a iD : krl // idm we have the stronger right
lifting property given by Lemma 5.3.

5.6. As shown in [RW4], there is an important idempotent relation, denoted⊂⊂ , on the
set of downsets of an idempotent (Y,<), with S⊂⊂T if and only if (∃t)(S ⊆↓t and t ∈ T ).
We write DY = (|DY |,⊂⊂) for the set of downsets of (Y,<) together with⊂⊂. Since S⊂⊂T
implies S ⊆ T , the identity function provides a functor k : DY // iDY in idm. We showed
in [RW4] that ↓Y factors through k. We will let ↓ = ↓Y serve double duty and write also
↓= ↓Y :Y // DY . Observe that for this interpretation of ↓ we still have y↓#S if and only
if y ∈ S. The idempotent relation⊂⊂ on |DY | gives rise to a new idempotent relation
on idm0(X

op
, iΩ). For weak downsets U and V we define U ≺≺ V to mean U◦ ⊂⊂ V ◦

where (−)◦ : (idm0(X
op
, iΩ),≺≺) // DY is as in Proposition 4.12. Note that U◦⊂⊂V ◦ is

equivalent to saying (∃y, v)((x < u ∈ U implies x < y) and (y < v ∈ V )).

5.7. Proposition. The inclusion DY // (idm0(Y
op
, iΩ),≺≺) provides an equivalence

of objects in idm with inverse given by (−)◦ : (idm0(Y
op
, iΩ),≺≺) // DY as defined in

Proposition 4.12.

Proof. Assume that S⊂⊂T in DY . Since the inclusion of downsets in weak downsets is
split by (−)◦ we have S◦⊂⊂T ◦ which means S≺≺T in weak downsets. This shows that
the inclusion provides an arrow DY // (idm0(Y

op
, iΩ),≺≺) in idm. If, for weak downsets

U and V , U ≺≺V then U◦⊂⊂V ◦ by definition so that (−)◦ : (idm0(Y
op
, iΩ),≺≺) // DY

is an arrow in idm, split by the inclusion, call it j. To show that j and (−)◦ constitute
inverse equivalences in idm it suffices to show the inequalities

1(idm0(Y
op
,iΩ),≺≺) � j(−)◦ and j(−)◦ � 1(idm0(Y

op
,iΩ),≺≺)

For the first, assume U≺≺V . We must show U≺≺V ◦. But this just means showing that
U◦⊂⊂ V ◦ implies U◦⊂⊂ V ◦◦, which is trivial since (−)◦ is idempotent. For the second,
we must show that U≺≺V implies U◦≺≺V , which is as trivial as the first.
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5.8. It follows that we can replace DY by (idm0(Y
op
, iΩ),≺≺) in the next results. For

M :X // Y in krl we again use m = m(M) :X // iDX in idm, with m(x) = {y | yMx},
as we did in 5.1. Recall that M a R in krl if and only if 1X ⊆ RM and MR ⊆ 1Y . The
first of these, the unit condition, is equivalent to x < x′ in X implies (∃y)(xRyMx′) and
the second, the counit condition, is equivalent to yMxRy′ implies y < y′.

5.9. Lemma. For any map M :X // Y in krl, m = m(M) :X // iDY factors through
k : DY // iDY and

DY Y
↓#

//

X

DY

m#

����
��

��
��

��
��

�
X

Y

M

��?
??

??
??

??
??

??

commutes.

Proof. Let M a R. We have seen in Lemma 5.2 that each m(x) is a downset of X. Under
the assumption that M is a map we want to show that m factors through k : DX // iDX
in idm. Assume that x < x′ in X. To show m(x)⊂⊂m(x′) is to show

(∃y′)(m(x) ⊆ ↓y′ and y′ ∈ m(x′))

which is to show
(∃y′)((yMx implies y < y′) and y′Mx′)

From the unit condition for M a R we have (∃y′)(xRy′Mx′). So if yMx then xRy′ gives
y < y′, using the counit condition for M a R, and this together with y′Mx′ shows that
y′ witnesses m(x) ⊂⊂m(x′). Now y(↓#m#)x if and only if (∃S)(y ↓#Sm#x) which is
equivalent to

(∃S)(y ∈ S and (∃x′)(S⊂⊂m(x′) and x′ < x))

which holds if and only if

(∃S)(y ∈ S and (∃x′)((∃y′)(S ⊆ ↓y′ and y′ ∈ m(x′)) and x′ < x))

which holds if and only if

(∃y′, x′)(y < y′ and y′Mx′ and x′ < x)

which is yMx.

5.10. Lemma. For any map M :X // Y in krl, the diagram in Lemma 5.9 exhibits m#

as a right lifting in krl of M though ↓# : DY // Y .

Proof. Here S(⊂⊂ .(↓# ⇒ M). <X)x holds if and only if (∃T, x′)(S⊂⊂T and (∀y)(y ∈
T implies yMx′) and x′ < x) if and only if (∃T, x′)(S⊂⊂T ⊆ m(x′)) and x′ < x) if and
only if (∃x′)(S⊂⊂m(x′) and x′ < x) which here means Sm#x.
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5.11. Proposition. The proarrow equipment (−)# : krl // idm has Cauchy comple-
tions, given by D as in 5.6 with unit ↓ : 1idm

// D(−)∗.

Proof. It suffices to show that

idm(X,DY )
↓#.(−)# // mapkrl(X, Y )

provides an equivalence of categories and that the counit

Y

DY

↓#
��?

??
??

??
??

??
??

DY

Y

↓#

����
��

��
��

��
��

�
DY

DY

1

��

⊆

is an isomorphism in krl. It is convenient to deal first with the latter, by noting that it is
part of Proposition 11 in [RW4] — which says that ↓# and ↓# are inverse isomorphisms
in krl. In particular, ↓# is also a map in krl. For the first requirement, since ↓#.(−)# is
surjective by Lemma 5.9, it suffices to show that ↓#.(−)# is fully faithful. So assume that
we have f, g :X // DY in idm with ↓#.f# ⊆↓#.g#. We must show that f � g. Since ↓#
is a map, ↓#.g# is a map whose right lifting through ↓# is easily seen to be g#. It follows
that f# ⊆ g# and hence f � g since (−)# is locally fully faithful.

5.12. Remark. From Corollary 3.7 it follows that any object of the form iDY is Cauchy
complete. Note too that, for B an order, we have DiB = DB where the second D is the
power object construction for ord.

5.13. We will also need to know that Cauchy completeness is preserved by application
of (−)op. While this topic can also be treated for general proarrow equipments that admit
a duality, we content ourselves here with the specific case of (−)# : krl // idm. For
Y = (Y,<) in idm we define UY = krl(Y, 1)op. It is easy to see that UY = D(Y op)op

(where we recall (Y,<)op = (Y,< op)) and that for T ∈ UY we have

t ∈ T iff (∃t′)(T 3 t′ < t)

We refer to the elements of UY as upsets of Y . We also write ↑= ↑Y = (↓Y op)op, so that
↑y = {y′ | y < y′}. We define UY = (DY op)op and write ⊃⊃ for the dual of ⊂⊂ for DY op.
Thus UY = (|UY |,⊃⊃) where T ′⊃⊃T if and only if (∃t′)(T ′ 3 t′ and ↑t′ ⊇ T ). We define
(−)+

Y :DY // UY by

S+ = {u | (∃v)(S ⊆ ↓v and v < u} = {u | S⊂⊂↓u}

and (−)−Y :UY // DY by
T− = {l | ↑l⊃⊃T}
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5.14. Lemma. In idm

Y

iUY

↑Y
��?

??
??

??
??

??
??

iDY

Y

??

↓Y

��
��

��
��

��
��

�
iDY

iUY

i(−)+Y

��
iUY

iDY

i(−)−

OO

a∼=

meaning that both triangles commute to within isomorphism and we have the displayed
adjunction (in idm).

Proof. The proof is routine but some care needs to be exercised in applying the definitions
pertaining to idm. Thus, for example, to show i(−)+

Y . ↓Y ∼= ↑Y we must show that if
y1 < y2 then both (↓y1)+ ⊇ ↑y2 and ↑y1 ⊇ (↓y2)+. The details are left to the reader.

5.15. Lemma. The functions (−)+
Y and (−)−Y also provide arrows (−)+

Y : DY // UY and
(−)−Y : UY // DY in idm which are inverse equivalences and in

Y

UY

↑

��?
??

??
??

??
??

??

DY

Y

??

↓

��
��

��
��

��
��

�
DY

UY

(−)+

��
UY

DY

(−)−

OO

'∼=

both triangles commute to within isomorphism.

Proof. To see that (−)+ defines an arrow (−)+ : DY // UY , suppose that, for downsets
S and S ′, we have S⊂⊂S ′. We can assume this to be witnessed by S⊂⊂↓s′ with s′ ∈ S ′
(for the asumption that S ⊆ ↓s′′ with s′′ ∈ S ′ immediately gives us s′′ < s′ ∈ S ′). It
follows that we have S+⊃⊃S ′+ witnessed by S+ 3 s′ and ↑s′ ⊇ S ′+. The first conjunct
is clear and for the second, if we have u ∈ S ′+ then we have s′ ∈ S ′⊂⊂↓u giving s′ < u,
which can be read as ↑s′ 3 u. The case of (−)− is similar.

To show that (−)+
Y : DY // UY and (−)−Y : UY // DY are inverse equivalences consider

first the task of showing that 1DY ∼= (−)+−. We assume that R⊂⊂ S in DX and show
that both R⊂⊂ S+− and R+− ⊂⊂ S. If we have R⊂⊂↓s with s ∈ S then R⊂⊂ S+− is
also witnessed by s since we have S ⊆ S+− (the unit of the adjunction in Lemma 5.14).
To show that R+− ⊂⊂ S it suffices to show that R+− ⊆ ↓s. If l ∈ R+− then we have
↑l ⊃⊃ {u | R⊂⊂↓u} 3 s which gives ↑l 3 s and hence l < s. The calculation to show
1UY ∼= (−)−+ is dual.
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Finally, we show (−)+. ↓ ∼= ↑ in idm and leave (−)−. ↑ ∼= ↓ for the reader. Assume
y1 < y2 in Y . We will show (↓y1)+⊃⊃ ↑y2 and ↑y1⊃⊃ (↓y2)+. From y1 < y2 there exists
y such that y1 < y < y2 from which we have ↓y1⊂⊂↓y and also ↑y ⊇↑y2. From these we
see that y witnesses (↓y1)+⊃⊃↑y2. The same y also witnesses ↑y1⊃⊃ (↓y2)+.

5.16. Proposition. If Y = (Y,<) is Cauchy complete then Y op is Cauchy complete.

Proof. Since ↓Y :Y // DY has a pseudo section and (−)+
Y : DY // UY is an equivalence

by Lemma 5.15, (−)+
Y . ↓Y :Y // UY has a pseudo section. Thus its isomorph ↑Y :Y // UY ,

also using Lemma 5.15, has a pseudo section so that (↑Y )op :Y op // (UY )op has a pseudo
section. But this last is ↓Y op :Y op // DY op showing that Y op is Cauchy complete.

5.17. Remark. We remark that the display in Lemma 5.14 shows that we have what is
called the “Isbell conjugation” adjunction in the context of enriched category theory. In
[K&S] it is shown, for enriched categories, that the Isbell conjugation adjunction restricted
from power objects to Cauchy completions gives an equivalence and hence the self dual
property for Cauchy completeness.

6. The Main Results

6.1. Proposition. The ord-functors

ord

idmop

iord(−,Ω)

OO

ord

idmop

��

idm(−,iΩ)a

are biadjoint in the sense indicated and give rise to an ord-monad idm(iord(−,Ω), iΩ)
on ord whose ord-category of algebras is ccd, the ord category of CCD lattices and
functors having both right and left adjoints.

Proof. To establish the biadjunction we must show that, for all X in idm and A in ord,
we have a pseudonatural equivalence of categories (here ordered sets)

idm(X, iord(A,Ω)) ' ord(A, idm(X, iΩ))

For (X,<) an idempotent, there is an equivalence idm(X, iΩ)
(vii)
' DXop by Proposi-

tion 4.12 and, for (A,≤) an order, the isomorphism ord(A,Ω)
(i)∼= DAop is standard, as

reviewed in 4.2. In Remark 5.12 we disambiguated the use of D in both ord and idm

power object contexts with the equation DiB
(ii)
= DB. In the string of pseudonatural

equivalences below, we have also explicitly used Proposition 5.4 that iD is right biadjoint
to (−)# in (iii) and in (v), while (iv) arises from the fact that (−)op : krlop // krl is an
involutory isomorphism. Finally, we have (vi) because i :ord // idm is fully faithful. (In
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anticipation of possible future developments we note that pseudo fully faithfulness of i
would have sufficed.)

idm(X, iord(A,Ω))
(i)∼= idm(X, iDAop)
(ii)
= idm(X, iDiAop)

(iii)
' krl(X, iAop)
(iv)∼= krl(iA,Xop)
(v)
' idm(iA, iDXop)
(vi)∼= ord(A,DXop)
(vii)
' ord(A, idm(X, iΩ))

The involutory isomorphism (−)op mentioned above for krl leads to an involutory iso-
morphism (−)op : idmco // idm (just as taking opposites has variance ‘co’ for categories
and functors). If the now established biadjunction of the statement is composed with

idmcoop
(−)op //oo
(−)op

idmop

seen as a trivial biadjunction, then the composite monad is unchaged (because (−)op

is involutory) but in this form it is immediately recognizable as the composite monad
DU : ord // ord arising from the distributive law UD // DU of the upset monad over
the downset monad (both on ord) studied in [MRW]. The 2-category of algebras for DU
was shown in [MRW] to be ccd.

6.2. Theorem. The ord-functors

ord

idmcc
op

iord(−,Ω)

OO

ord

idmcc
op

��

idmcc(−,iΩ)a

are biadjoint in the sense indicated, idmcc(−, iΩ) : idmop // ord is bimonadic and the
ord-category of algebras is ccd.

Proof. To establish this biadjunction we refer to that of Proposition 6.1 and first note
that the left biadjoint applied to an order A produces an isomorph of iDAop and we
have seen in 5.12 that idempotents of the form iDB are Cauchy complete so that it
factors through idmcc

op. On the other hand, Ω = D1 so that 5.12 also shows that iΩ is
Cauchy complete. It follows that the restriction of the right biadjoint of Proposition 6.1
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to idmcc
op is idmcc(−, iΩ). Now with X an arbitrary Cauchy complete idempotent we

have the following string of pseudonatural equivalences adapted from those in the proof
of Proposition 6.1

idmcc(X, iord(A,Ω))
(a)∼= idmcc(X, iDA

op)
(b)
= idmcc(X, iDiA

op)
(c)
' krl(X, iAop)
∼= krl(iA,Xop)

' idm(iA, iDXop)
∼= ord(A,DXop)
(d)
' ord(A, idmcc(X, iΩ))

Their justifications are as before except that at (a), (b), (c), and (d) we need also to
note that idmcc is the full sub-ord-category of idm determined by the Cauchy complete
objects. There is the trivial biadjunction

idmcc
coop

(−)op //oo
(−)op

idmcc
op

because we have seen in Proposition 5.16 that the dual of a Cauchy complete idempotent
is Cauchy complete. If this biadjunction is composed with that in the statement it is clear
that the biadjunction of the statement gives rise to the ord-monad DU on ord whose
ord-category of algebras was shown in [MRW] to be ccd. The comparison ord-functor
idmcc

op // ccd is evidently equivalent to D(−)op : idmcc
op // ccd by Proposition 4.12.

The latter can seen as the composite

idmcc
op (−)op // idmcc

coop // mapkrlcoop mapDcoop
// mapccdsup

coop = ccd

where ccdsup is the ord-category of CCD lattices and functors having a right adjoint.
The first displayed arrow is an isomorphism. The second is an instance of the formal
biequivalence given in subsection 3.8 since (−)# : idm // krl has Cauchy completions.
The third is obtained from the biequivalence D : krl // ccdsup of Theorem 17 in [RW4]
by application of map(−)coop. It follows that idmcc

op // ccd is a biequivalence so that
idmcc(−, iΩ) : idmcc

op // ord is bimonadic.
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