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APPROXIMATE MAL’TSEV OPERATIONS

Dedicated to Walter Tholen on the occasion of his 60th birthday

DOMINIQUE BOURN AND ZURAB JANELIDZE

Abstract. Let X and A be sets and α : X → A a map between them. We call a
map µ : X ×X ×X → A an approximate Mal’tsev operation with approximation α, if
it satisfies µ(x, y, y) = α(x) = µ(y, y, x) for all x, y ∈ X. Note that if A = X and the
approximation α is an identity map, then µ becomes an ordinary Mal’tsev operation. We
prove the following two characterization theorems: a category X is a Mal’tsev category
if and only if in the functor category SetXop×X there exists an internal approximate
Mal’tsev operation homX×homX×homX → A whose approximation α satisfies a suitable
condition; a regular category X with finite coproducts is a Mal’tsev category, if and
only if in the functor category XX there exists an internal approximate Mal’tsev co-
operation A → 1X + 1X + 1X whose approximation α is a natural transformation with
every component a regular epimorphism in X. Note that in both of these characterization
theorems, if require further the approximation α to be an identity morphism, then the
conditions there involving α become equivalent to X being a naturally Mal’tsev category.

1. Introduction

A Mal’tsev category is usually defined as a category X with finite limits such that

(C1) every reflexive internal relation in X is an equivalence relation,

although its original definition in [3] required in addition X to be exact in the sense of
M. Barr [1]. The roots of this concept go back to the work [14] of A. I. Mal’tsev, where
it was shown that for a variety X of universal algebras,

(C2) the composition of congruences on any object in X is commutative

if and only if

(C3) the algebraic theory of X contains a ternary term µ satisfying the term equations

µ(x, y, y) = x = µ(y, y, x). (1)
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Such varieties were later called Mal’tsev varieties (e.g. see [17]). In [6] G. D. Findlay
showed that for a variety X, (C3) implies (C1), and the converse implication was obtained
by H. Werner in [19]. The following similar “relational reformulation” of (C3) is due to
J. Lambek [11]:

(C4) every internal relation R in X is difunctional, i.e. it satisfies

(x1Ry2 ∧ x2Ry2 ∧ x2Ry1) ⇒ x1Ry1.

An advantage of conditions (C1) and (C4), to (C2) and (C3), is that (C1) and (C4)
can be formulated in any category; indeed, an internal relation in a category is simply a
diagram

X R
r1oo r2 // Y

where r1 and r2 are jointly monomorphic, i.e. for any two parallel morphisms f, g with
codomain R, we have

(r1f = r1g ∧ r2f = r2g) ⇒ f = g

(if the category has products, then this, of course, amounts to saying that the induced
morphism (r1, r2) : R → X × Y is a monomorphism). Then “reflexivity”, “symmetry”,
“transitivity” and “difunctionality” of R can be expressed using the Yoneda embedding;
that is, we say that R is reflexive, symmetric, transitive or difunctional (assuming X = Y
for the first three cases), if for every object S in the given category, the relation

hom(S, X) hom(S, R)
hom(1S ,r1)oo hom(1S ,r2) // hom(S, Y )

between sets is, respectively, reflexive, symmetric, transitive or difunctional in the usual
sense. So, (C1) and (C4) make sense when X is an arbitrary category. In [4] the equiva-
lence of (C1) and (C4) was shown for arbitrary categories with finite limits (for general
categories we only have (C4)⇒(C1) — an observation which is clear but never explicitly
written, as far as we know). There are also many other relational conditions equivalent
to (C1) and (C4) for finitely complete categories (see [8] for a unified exposition of many
of those relational conditions).

Condition (C2) is also categorical, but it can be formulated only in special categories
such as exact categories.

For exact categories, the equivalence of (C1), (C2) and (C4) was obtained by J. Meisen
in [15]; in [5] T. Fay generalized this result to categories equipped with a suitable factor-
ization system, and two decades later in [3] the same was proved in the more special case
of regular categories.

Condition (C3) cannot be formulated even for exact categories, since we do not have
“terms” there. However, we can still give a “categorical form” to (C3) by using F. W. Law-
vere’s observation [12] that an n-ary term in the algebraic theory of a variety X is the
same as an internal n-ary operation Un → U in the functor category SetX, where U is
the forgetful functor U : X → Set. Then (C3) can be rephrased as follows:
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(C3′) The object U in the functor category SetX admits an internal Mal’tsev operation,
i.e. a ternary operation µ satisfying (1).

Now if we take X to be an abstract category, then the above condition makes sense as
long as we have a specified functor U : X → Set. In [16] M. C. Pedicchio showed the
equivalence of (C1) and (C3′) in the case when U is a monadic functor.

In the present paper we add two new conditions to the list of conditions above, which
are analogous to (C3′) but they have the advantage that the functor U is determined
uniquely by X, so that those conditions are on a category X, rather than a pair (X, U),
just as conditions (C1), (C2) and (C4). The main “trick” is to replace Mal’tsev operations
with “approximate Mal’tsev operations”:

Let X, A be sets and consider a map µ : X ×X ×X → A and a map α : X → A. We
say that µ is an approximate Mal’tsev operation on X with approximation α, if

µ(x, y, y) = α(x) = µ(y, y, x) (2)

holds true for all x, y ∈ X. In particular, an approximate Mal’tsev operation with ap-
proximation 1X is a Mal’tsev operation in the usual sense. Our first new condition states
that

(C5) the object homX in the functor category SetX×Xop

admits an internal approximate
Mal’tsev operation µ : homX×homX×homX → A whose approximation α : hom →
A satisfies a suitable condition — the condition (*) in Section 3 below.

We show that (C4) and (C5) are equivalent to each other for any category X (Theorem
3.2). The important aspect of this result is that the condition (*) itself is not related to
the Mal’tsev property (see Section 5).

Notice that if we require α in (C5) to be an identity natural transformation (in which
case the condition (*) would be satisfied trivially), then we get a condition which is
equivalent, in the presence of binary products, to the following condition:

(C6) The identity functor 1X admits an internal Mal’tsev operation µ in the functor
category XX.

Categories satisfying (C6) were called naturally Mal’tsev categories by P. T. Johnstone in
[9]. Note however that condition (C6) is much stronger than conditions (C1)-(C5), even
in the case of varieties. Indeed, for instance, a pointed variety (that is, a variety which
admits unique constant) is a naturally Mal’tsev variety if and only if it is abelian, i.e. it
is the variety of R-modules for some ring R. Thus, for instance, the variety of groups is
a Mal’tsev variety, but it is not a naturally Mal’tsev variety.

Our second condition is on a category X with binary coproducts, and it states that

(C7) the identity functor 1X admits an internal approximate Mal’tsev co-operation µ :
A → 1X + 1X + 1X in the functor category XX whose approximation α : A → 1X is a
natural transformation with every component a strong epimorphism in X.
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This condition turns out to be equivalent to (C5) with the following additional requirement
on A in (C5): for every object X in X the functor A(X,−) : X → Set is representable
(see Proposition 6.8 below).

We show that (C7) is equivalent to (C4) (and hence to (C1), (C2) and (C5)) for any
regular category X with binary coproducts (Theorem 4.2). And again, if α in (C7) is
an identity morphism, then (under the presence of binary products in X) we obtain the
condition (C6) (since when X has binary products and coproducts, the condition (C6) is
self-dual) which defines a naturally Mal’tsev category.

2. Preliminaries

We will work in a category C with binary products and finite colimits. For two objects X
and Y in C, by X × Y and X + Y we denote the product and coproduct, respectively, of
X and Y . If X = Y then we also write X2 = X ×X and 2X = X + X; more generally,
for a natural number n, we write

Xn = X ×X × ...×X︸ ︷︷ ︸
n

and nX = X + X + ... + X︸ ︷︷ ︸
n

.

For an n-tuple X1, ..., Xn of objects in C, and for i ∈ {1, ..., n}, we write πi and ιi for the
i-th product projection X1×...×Xn → Xi and i-th coproduct injection Xi → X1+...+Xn,
respectively.

2.1. Definition. Let µ : X3 → A and α : X → A be morphisms in C. We say that µ
is an approximate Mal’tsev operation with approximation α if the diagram

X3
µ // A

X2 + X2

„
π1 π2 π2
π2 π2 π1

« OO

„
π1
π1

« // X

α

OO

(3)

commutes. Note that in this case α = µ(1X , 1X , 1X), so that α is uniquely determined by
µ. We say that µ is a universal approximate Mal’tsev operation when the diagram (3) is
a pushout. This is the case if and only if µ is the following coequalizer:

X2

(π1,π2,π2) //
(π1,π1,π1) //

(π2,π2,π1)
// X

3
µ // A

If A = X and α = 1X then µ is said to be a Mal’tsev operation on X.

We will also consider approximate Mal’tsev operations in a category C with binary
products, which may not have finite colimits (and in particular, binary coproducts). In
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this case, instead of requiring the diagram (3) to commute, we should require the equalities
µ(π1, π2, π2) = απ1 = µ(π2, π2, π1) to hold, i.e. the commutativity of the two diagrams

X3
µ // A

X2

(π1,π2,π2)

OO

π1

// X

α

OO X3
µ // A

X2

(π2,π2,π1)

OO

π1

// X

α

OO

2.2. Observation. A morphism µ : X3 → A in C is an approximate Mal’tsev operation
with approximation α : X → A if and only if for any object C in C and for any two
morphisms x, y : C → X we have µ(x, y, y) = αx = µ(y, y, x).

Note that there is a bijection between Mal’tsev operations on X and left inverses of
the approximation α of the universal approximate Mal’tsev operation on X. In particular,
this gives that α is a split monomorphism if and only if there exists a Mal’tsev operation
on X. When C = Set, every X has a Mal’tsev operation and hence α is always an
injective map.

2.3. Lemma. Let X be a set and µ a universal approximate Mal’tsev operation on X
with approximation α. Then for any four elements x, y, z, t ∈ X we have

µ(x, y, z) = α(t) ⇒ (x = t ∧ y = z) ∨ (x = y ∧ z = t).

Proof. This follows from the general fact that for a pushout

Y
m // A

Z

f

OO

g
// X

a

OO

in Set, if a is a monomorphism then for any y ∈ Y and x ∈ X we have

m(y) = a(x) ⇒ ∃z∈Z((f(z) = y) ∧ (g(z) = x)). (4)

This general fact is well known in the case when f is also a monomorphism, since then
it simply states that the diagram above is a pullback (e.g. see Corollary 1.28 in [10]). In
our case f may not be a monomorphism, but then we can reduce this more general case
to the case of a monomorphic f as follows: decompose f as f = f ′e with f ′ an injection
and e a surjection. Then we can obtain the above pushout square by pasting together
two pushout squares, as indicated in the diagram

Y
m // A

•
f ′

OO

// •
f ′′

OO

Z

e

OO

g
// X

e′

OO a

]]
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Since e′ is a pushout of a surjection, it is itself surjective and since a is injective and
f ′′e′ = a we obtain that e′ is also injective, and hence bijective. Then, without loss of
generality we can assume e′ = 1X , so that f ′′ = a. Now the top square in the above
diagram is a pullback since it is a pushout and f ′ is injective. After this, the fact that e
is surjective immediately gives (4) for any y ∈ Y and x ∈ X.

Suppose C is a functor category C = DE, where D is a category with binary products,
and E is an arbitrary category.

2.4. Observations.

(a) A morphism µ : X3 → A in DE is an approximate Mal’tsev operation with approxi-
mation α : X → A, if and only if for each object E in E the E-component µE of µ
is an approximate Mal’tsev operation in D with approximation the E-component αE

of α. Further, if D has finite colimits, then µ is universal if and only if so is every
µE.

(b) Suppose D has finite colimits. If a functor X : E → D is given, then, taking a
universal approximate Mal’tsev operation µE : (X(E))3 → A(E) in D for each
object E in E, results in a unique approximate Mal’tsev operation µ : X3 → A in
DE such that each E-component of µ is µE, and, moreover, by (a) above, the µ so
constructed is universal.

In the present paper, by a Mal’tsev category we mean a category X satisfying (C4)
from Introduction. Note that we do not assume the existence of finite limits, as this
is usually the case.1 Rephrasing (C4) as a suitable “diagram condition”, we obtain the
following

1The authors thank the Referee for reminding us to say a few words about examples of Mal’tsev
categories (in the sense of Definition 2.5) without finite limits: In any non-trivial Mal’tsev variety C, take
any full subcategory X which contains at least one algebra free over a non-empty set of generators, and
which is not closed under certain finite limits in C. Then, X is a Mal’tsev category without finite limits,
since the inclusion X ↪→ C preserves internal relations and all limits which exist in X. Thus, for instance,
the categories of free/infinite groups, rings, and other similar group-like structures are examples.
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2.5. Definition. A category X is said to be a Mal’tsev category if in X, for any com-
mutative diagram of solid arrows

S

z1

��

x1
��

�

����
� y2

??
?

��?
??

X Y

S

x1���

??���

y1

??
?

��?
??

z4 // R

r1???

__???
r2���

??���

r1

??
?

��?
??r2

��
�

����
�

Sz2oo

y2???

__???

x2
��

�

����
�

Y X

S

x2���

??���y1???

__???
z3

OO (5)

with r1, r2 jointly monomorphic, there exists the dotted arrow z4 making the diagram
commute.

3. The first characterization theorem

In this section C is the functor category C = SetX×Xop

, where X is an arbitrary category.
We are interested in approximate Mal’tsev operations µ : X3 → A in C, where X = homX.
We will consider the following condition on the approximation α : homX → A of µ:

(*) In X, for any diagram of solid arrows

R
r1

~~~~
~~

~~
~

r2

��@
@@

@@
@@

X Y

S

q

OO

s1

``@@@@@@@@ s2

??~~~~~~~

(6)

with r1, r2 jointly monomorphic, the dotted arrow q exists, making the diagram com-
mutative, if and only if there exists an element a ∈ A(S, R) such that A(1S, r1)(a) =
αS,X(s1) and A(1S, r2)(a) = αS,Y (s2).

Notice that the “only if” part in (*) is always true (indeed, for each q there we can take
a = αS,R(q)).

3.1. Lemma. In a Mal’tsev category X, consider a diagram of solid arrows (6) with
r1, r2 jointly monomorphic. The following conditions are equivalent to each other:

(a) There exists the dotted arrow q making the diagram (6) commute.
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(b) There exist morphisms z1, z2, z3 : S → R such that µS,X(r1z1, r1z2, r1z3) = αS,X(s1)
and µS,Y (r2z1, r2z2, r2z3) = αS,Y (s2) where µ is the universal approximate Mal’tsev
operation on homX with approximation α.

Proof. (a)⇒(b) is obvious (take z1 = z2 = z3 = q).
(b)⇒(a): Suppose we have

µS,X(r1z1, r1z2, r1z3) = αS,X(s1),

µS,Y (r2z1, r2z2, r2z3) = αS,Y (s2).

By Observations 2.4(a) we have:

• µS,X is a universal approximate Mal’tsev operation on homX(S, X) with approxima-
tion αS,X ,

• µS,Y is a universal approximate Mal’tsev operation on homX(S, Y ) with approxima-
tion αS,Y .

Now we apply Lemma 2.3 (two times) to obtain from the above equalities that one of the
following four systems of equalities holds true:

(I)


r1z1 = s1,
r1z2 = r1z3,
r2z3 = s2,
r2z1 = r2z2;

(II)


r1z1 = s1,
r1z2 = r1z3,
r2z1 = s2,
r2z2 = r2z3;

(III)


r1z3 = s1,
r1z1 = r1z2,
r2z3 = s2,
r2z1 = r2z2;

(IV)


r1z3 = s1,
r1z1 = r1z2,
r2z1 = s2,
r2z2 = r2z3.

In each case, we obtain the desired q as follows:

(I): For x1 = s1, y1 = s2 form a commutative diagram (5), and then take q = z4.

(II): Take q = z1.

(III): Take q = z3.

(IV): For x1 = s2, y1 = s1 form a commutative diagram (5), with the places of z1 and z3

interchanged, and then take q = z4.
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3.2. Theorem. For a category X the following conditions are equivalent to each other:

(a) The approximation α : homX → A of the universal approximate Mal’tsev operation
on homX satisfies (*).

(b) There exists an approximate Mal’tsev operation on homX whose approximation α
satisfies (*).

(c) X is a Mal’tsev category.

Proof. (a)⇒(b) is trivially true.
(b)⇒(c): Let µ be an approximate Mal’tsev operation on homX whose approximation

α : homX → A satisfies (*). Consider a commutative diagram of solid arrows (5), with
r1, r2 jointly monomorphic. We want to show that there exists the dotted arrow z4 making
the diagram (5) commute. Consider the element a = µS,R(z1, z2, z3) in A(S, R). We have

A(1S, r1)(a) = µS,X(r1z1, r1z2, r1z3) = µS,X(x1, x2, x2) = αS,X(x1),

A(1S, r2)(a) = µS,Y (r2z1, r2z2, r2z3) = µS,Y (y2, y2, y1) = αS,Y (y1).

Now, applying (*) we get the existence of the desired z4.
(c)⇒(a): Let µ : homX × homX × homX → A be a universal approximate Mal’tsev

operation on homX with approximation α. Consider a diagram (6) of solid arrows with
r1, r2 jointly monomorphic. Suppose for an element a ∈ A(S, R) we have A(1S, r1)(a) =
αS,X(s1) and A(1S, r2)(a) = αS,Y (s2). We want to show that there exists the dotted arrow
q in the diagram (6) making it commutative. The fact that the approximate Mal’tsev
operation µ is universal implies that its every component is a surjective map, and in
particular, µS,R is surjective. So there exist morphisms z1, z2, z3 : S → R such that
µS,R(z1, z2, z3) = a. Now, we have

αS,X(s1) = A(1S, r1)(a) = µS,X(r1z1, r1z2, r1z3),

αS,Y (s2) = A(1S, r2)(a) = µS,Y (r2z1, r2z2, r2z3).

Applying Lemma 3.1 we obtain the existence of the desired q.

4. The second characterization theorem

In this section C is the category C = (XX)op, where X is a category with finite limits and
binary coproducts. But we will work in the dual category Cop = XX; so a (universal)
approximate Mal’tsev operation µ : X3 → A in C with approximation α : X → A now
becomes a (universal) approximate Mal’tsev co-operation µ : A → 3X (in Cop) with
approximation α : A → X. In particular, we are interested in the case when X = 1X.
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4.1. Proposition. For a finitely complete category X with binary coproducts the fol-
lowing conditions are equivalent to each other:

(a) X is a Mal’tsev category.

(b) In X, for any diagram of solid arrows

S

k1

��

ι1
��

�

����
� ι2

??
?

��?
??

2S 2S

S

ι1���

??���

ι1
??

?

��?
??

k4
// R′

r′1???

__???
r′2���

??���

r′1

???

��?
??r′2

���

�����

Sk2
oo

ι2???

__???

ι2
��

�

����
�

2S 2S

S

ι2���

??���ι1???

__???
k3

OO (7)

with r′1, r
′
2 jointly monomorphic, there exists the dotted arrow k4 making the diagram

(7) commute.

Proof. (a)⇒(b): The diagram (7) is a special case of the diagram (5).
(b)⇒(a): Consider a diagram of solid arrows (5). Take the pullback

R′ p //

r′=(r′1,r′2)

��

R

r=(r1,r2)

��
2S × 2S „

x1
x2

«
×
„

y1
y2

« // X × Y

(8)

Commutativity of the diagrams

S
z1 //

(ι1,ι2)

��

R

r

��
2S × 2S „

x1
x2

«
×
„

y1
y2

« // X × Y

S
z2 //

(ι2,ι2)

��

R

r

��
2S × 2S „

x1
x2

«
×
„

y1
y2

« // X × Y
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S
z3 //

(ι2,ι1)

��

R

r

��
2S × 2S „

x1
x2

«
×
„

y1
y2

« // X × Y

implies the existence of morphisms k1, k2, k3 : S → R′ such that the diagram of solid
arrows (7) commutes. Now, take z4 = pk4, where k4 is the dotted arrow in (7), and p is
taken from the pullback (8).

4.2. Theorem. For a regular category X with binary coproducts the following conditions
are equivalent to each other:

(a) The approximation α : A → 1X of the universal approximate Mal’tsev co-operation
on 1X is a natural transformation with every component a regular epimorphism in
X.

(b) There exists an approximate Mal’tsev co-operation on 1X whose approximation α
has every component a regular epimorphism in X.

(c) X is a Mal’tsev category.

Proof. (a)⇒(b) is trivially true.
(b)⇒(c): Suppose (b) is satisfied. We show that then 4.1(b) is satisfied. Consider

a diagram (7) as in 4.1(b). Let µ : A → 1X + 1X + 1X be an approximate Mal’tsev co-
operation with approximation α whose every component is a regular epimorphism. Now,
in the diagram

A(S)
µS //

αS

��

3S

 
ι1 ι2
ι2 ι2
ι2 ι1

!

��

 
k1
k2
k3

!
$$IIIIIIIII

R′

r′=(r′1,r′2)zztttttttt

S
(ι1,ι1)

// 2S × 2S

(9)

the rectangle commutes because µS is an approximate Mal’tsev co-operation with approx-
imation αS, and the triangle commutes because the solid arrow part in (7) commutes.
Since αS is a regular epimorphism, it is also a strong epimorphism, and hence there exists
f : S → R′ with r′f = (ι1, ι1). We then take k4 = f in (7).

(c)⇒(a): Let µ be the universal approximate Mal’tsev operation on 1X with approxi-
mation α : A → 1X. Then for any object S in X the rectangle in (9) is a pullback. Form
the commutative diagram (9) by taking the arrows 3S → R′ and R′ → 2S × 2S in it to
be a regular epimorphism and monomorphism decomposition of the arrow 3S → 2S×2S.
Then we get a commutative diagram of solid arrows (7). If X is a Mal’tsev category, then
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we get an arrow k4 : S → R′ with r′k4 = (ι1, ι1). Now, the fact that the rectangle in (9)
is a pullback implies that the rectangle

A(S)

αS

��

µS // 3S 
k1
k2
k3

!
��

S
k4

// R′

is a pullback. Since the morphism 3S → R′ here is a regular epimorphism, we conclude
that αS is also a regular epimorphism.

5. Beyond Mal’tsev categories

The class of Mal’tsev categories, as well as the classes of unital and strongly unital cat-
egories in the sense of [2], and the class of subtractive categories2 in the sense of [7],
are particular instances of a class of categories with closed relations in the sense of [8].
All results obtained in this paper (including the Appendix) can be straightforwardly ex-
tended to those general classes of categories. In particular, this means that analogous
results also hold true for unital, strongly unital and subtractive categories. For them, the
condition (*) remains the same; however, instead of the diagram (3) we should work with
the diagrams displayed in the following table:

Unital categories

X2 // A

X + X

„
1X 0
0 1X

« OO

„
1X

1X

« // X

OO

µ(x,0)=x=µ(0,x)

Strongly unital categories

X3 // A

X2 + X2

„
π1 0 0
π2 π2 π1

« OO

„
π1
π1

« // X

OO

µ(x,0,0)=x=µ(y,y,x)

Subtractive categories

X2 // A

X + X

„
1X 0
1X 1X

« OO

„
1X

0

« // X

OO

µ(x,0)=x, µ(x,x)=0

These diagrams, in each case, naturally correspond to the term identities (displayed right-
hand side in the table) that characterize the corresponding varieties of universal algebras.

2The notion of a subtractive category introduced in [7] is a pointed categorical version of the notion
of a subtractive variety due to A. Ursini [18].
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Note also that when we replace the diagram (3) with the diagrams in the above table,
we have to replace difunctionality in (C4) with M-closedness in the sense of [8], where
M is the extended matrix associated with the corresponding term identities (see [8]).
Note: unital, strongly unital and subtractive categories are all pointed categories, and the
morphisms 0 in the diagrams in the table represent zero morphisms in a pointed category;
a variety is a pointed category if and only if its theory contains a unique constant — the
symbol 0 in the term equalities given in the third column represents this unique constant.

6. Appendix

In this more technical section we investigate how much (C5) is related to (C7). In par-
ticular (C7) turns out to be equivalent to (C5) when for any object X, A(X,−) is repre-
sentable.

Let D and E be categories. Let n be a natural number n > 1 and suppose that D has
n-fold products. Then for any two functors U, V : E → D there is a map

Φn : Nat(Un, V ) → Nat((homE)n, homD ◦ (Uop × V )), (10)

which assigns to each natural transformation ν : Un → V the natural transformation

Φn(ν) : (homE)n → homD ◦ (Uop × V ),

(Φn(ν))X,Y : (f1, ..., fn : X → Y ) 7→ (νY (U(f1), ..., U(fn)) : U(X) → V (Y )).

If, further, E has n-fold products and U preserves them, then Φn is a bijection whose
inverse (Φn)−1 is constructed as described below:

Suppose E has n-fold products. Note: to say that U preserves n-fold products is the
same as to say that for each object Y in E, the canonical morphism

(U(π1), ..., U(πn)) : U(Y n) → (U(Y ))n

(where πi denotes i-th product projection πi : Y n → Y ) is an isomorphism. For each
natural transformation µ : (homE)n → homD ◦ (Uop × V ) and for each object Y in E, the
morphism

((Φn)−1(µ))Y : (U(Y ))3 → V (Y )

is defined as the unique morphism making the triangle

(U(Y ))n ((Φn)−1(µ))Y // V (Y )

U(Y n)

(U(π1),...,U(πn))

OO

µY n,Y (π1,...,πn)

;;xxxxxxxxxxxxxxxxxxxx

commute.
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6.1. Remark. The bijection (Φn)−1 can be obtained from the bijection in Yoneda Lemma
(e.g. see [13]). Let A be an arbitrary functor A : Eop × E → Set. By the Yoneda Lemma
for Eop, we have a bijection

Nat(homE(−, E), K) → K(E), E ∈ Eop, K ∈ SetEop

,

which is natural in E and in K. This gives a bijection

Nat(homE(−, En), A(−, E ′)) → A(En, E ′), E ∈ Eop, E ′ ∈ E,

natural in E and E ′, where the product En is taken in E. This itself gives a bijection∫
E

Nat(homE(−, En), A(−, E)) →
∫

E

A(En, E).

Note that we also have a bijection

Nat((homE)n, A) →
∫

E

Nat(homE(−, En), A(−, E)).

Composing these two bijections we obtain a bijection

Nat((homE)n, A) →
∫

E

A(En, E).

Now take A = homD ◦ (Uop × V ). Then∫
E

A(En, E) = Nat(U((1E)n), V ),

so the last bijection above in this special case becomes a bijection

Nat((homE)n, homD ◦ (Uop × V )) → Nat(U((1E)n), V ).

Since U preserves n-fold products, there is a canonical isomorphism U((1E)n) → Un which
induces a bijection

Nat(U((1E)n), V ) → Nat(Un, V ).

Composing the last two bijections above we obtain precisely (Φn)−1.

6.2. Proposition. If D has binary products then for any natural transformations ω :
U3 → V and ν : U → V , the condition (a) below implies (b). If, further, E has binary
products and U preserves them, then (a) is equivalent to (b).

(a) ω is an approximate Mal’tsev operation on U with approximation ν.

(b) Φ3(ω) is an approximate Mal’tsev operation on homE with approximation Φ1(ν).
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Proof. (a)⇒(b): Suppose ω is an approximate Mal’tsev operation on U with approx-
imation ν. To see that Φ3(ω) is an approximate Mal’tsev operation on homE with ap-
proximation Φ1(ν), we take any two objects X and Y in E and show that (Φ3(ω))X,Y is
an approximate Mal’tsev operation on homE(X, Y ) with approximation (Φ1(ν))X,Y . Take
any two elements f, g ∈ homE(X, Y ). We must show

(Φ3(ω))X,Y (f, g, g) = (Φ1(ν))X,Y (f) = (Φ3(ω))X,Y (g, g, f).

But this follows straightforwardly from the constructions of Φ3(ω) and Φ1(ν) and the fact
that ωY is an approximate Mal’tsev operation on U(Y ) with approximation νY .

Next, assuming that E has binary products and U preserves them, we prove (b)⇒(a):
Suppose Φ3(ω) is an approximate Mal’tsev operation on homE with approximation Φ1(ν).
Then, we have to show that for each object Y in E, the morphisms ωY and νY satisfy
ωY (π1, π2, π2) = νY π1 = ωY (π2, π2, π1), where π1 and π2 denote product projections
(U(Y ))2 → U(Y ). To show ωY (π1, π2, π2) = νY π1, consider the diagram

(U(Y ))3 ωY // V (Y )

U(Y 2)

(U(π1),U(π2))

uukkkkkkkkkkkkkkkkkkkkkkkk

(U(π1),U(π2),U(π2))

iiSSSSSSSSSSSSSSSSSSSSSSSS

(Φ3(ω))Y 2,Y (π1,π2,π2)=(Φ1(ν))Y 2,Y (π1)
55llllllllllllllllllllllll

U(π1)

))RRRRRRRRRRRRRRRRRRRRRRRR

(U(Y ))2

(π1,π2,π2)

OO

π1

// U(Y )

νY

OO

Since every triangle in this diagram commutes, and since (U(π1), U(π2)) is an isomor-
phism, we obtain that the rectangle commutes. The proof of the second equality

ωY (π2, π2, π1) = νY π1

is analogous.

We now consider a dual setting, i.e. when

D = Wop, E = Xop, U = Gop, V = F op,

where F, G are functors F, G : X → W between categories X and W. Then, for each n,
the map Φn gives rise to the map

Ψn : Nat(F, nG) → Nat((homX)n, homW ◦ (F op ×G)), (11)

which assigns to each natural transformation ν : F → nG the natural transformation

Ψn(ν) : (homX)n → homW ◦ (F op ×G),
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(Ψn(ν))X,Y : (f1, ..., fn : X → Y ) 7→ (

G(f1)
...

G(fn)

 νX : F (X) → G(Y )).

In particular, Ψn is obtained from Φn as the composite indicated in the diagram

Nat((Gop)n, F op)
Φn // Nat((homXop)n, homWop ◦ (G× F op))

Σn

��
Nat(F, nG)

Ψn

//

Θn

OO

Nat((homX)n, homW ◦ (F op ×G))

where Θn and Σn are the obvious bijections.
In this dual setting we have, dually: the map Ψn is defined when n-fold coproducts

exist in W, and it is a bijection when X also has n-fold coproducts and G preserves them.
Consider natural transformations

α : homX → homW ◦ (F op ×G), µ : (homX)n → homW ◦ (F op ×G).

It is easy to see that µ is an approximate Mal’tsev operation on homX with approxi-
mation α if and only if Σ−1

n (µ) is an approximate Mal’tsev operation on homXop with
approximation Σ−1

1 (α). So from Proposition 6.2 we get:

6.3. Proposition. [A dual of Proposition 6.2] If W has binary coproducts then for any
natural transformations ω : F → 3G and ν : F → G, the condition (a) below implies (b).
If, further, X has binary coproducts and G preserves them, then (a) is equivalent to (b).

(a) ω is an approximate Mal’tsev co-operation on G with approximation ν.

(b) Ψ3(ω) is an approximate Mal’tsev operation on homX with approximation Ψ1(ν).

Note that for n = 1 the map Ψ1 is the same as the map Φ1 in (10) where this time
U = F and V = G. That is, we have:

Ψ1 = Φ1 : Nat(F, G) → Nat(homX, homW ◦ (F op ×G)).

In this case we adopt the following special notation: for a natural transformation ν : F →
G we denote

ν̃ = Ψ1(ν) = Φ1(ν).

We can now make the following

6.4. Conclusion. Let X and D be categories, and let U,G be functors U,G : X → D.
The map

Nat(U,G) → Nat(homX, homD ◦ (Uop ×G)), ν 7→ ν̃,

is a bijection. Further, for each ν ∈ Nat(U,G) we have:
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(a) If X and D have binary products and U preserves binary products, then there is a
bijection between approximate Mal’tsev operations on U with approximation ν, and
approximate Mal’tsev operations on homX with approximation ν̃.

(b) If X and D have binary coproducts and G preserves binary coproducts, then there is
a bijection between approximate Mal’tsev co-operations on G with approximation ν,
and approximate Mal’tsev operations on homX with approximation ν̃.

Let X and D be categories and let ν be a natural transformation ν : U → G between
functors U,G : X → D. The condition (*) for α = ν̃ becomes:

(*′) In X, for any diagram (6) of solid arrows with r1, r2 jointly monomorphic, the dotted
arrow q exists, making the diagram (6) commute in X, if (and only if) there exists
the dotted arrow a in the diagram

G(R)
G(r1)

{{vvv
vv

vv
vv G(r2)

##HH
HH

HH
HH

H

G(X) G(Y )

U(X)

νX

OO

U(S)

a

OO

U(s1)
oo

U(s2)
// U(Y )

νY

OO (12)

making the diagram (12) commute in D.

Note that by naturality of ν, commutativity of (12) is equivalent to commutativity of the
following diagram:

G(R)
G(r1)

{{vvv
vv

vv
vv G(r2)

##HH
HH

HH
HH

H

G(X) G(Y )

G(S)

G(s1)

OO

U(S)

a

OO

νS

oo
νS

// G(S)

G(s2)

OO (13)

If D has binary products, then we can further replace the above diagram with the following
one:

U(S)

νS

��

a // G(R)

(G(r1),G(r2))

��
G(S)

(G(s1),G(s2))
// G(X)×G(Y )

(14)

After these observations we easily get the following two lemmas:
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6.5. Lemma. Suppose both X and D have finite limits and G preserves finite limits and
reflects isomorphisms. If every component of ν is a strong epimorphism in D, then α = ν̃
satisfies (*). In particular, α = ν̃ satisfies (*) when U = G and ν = 1U .

6.6. Lemma. Suppose X = D and X has finite products, and G = 1X. Then, α = ν̃
satisfies (*) if and only if every component of ν is a strong epimorphism.

Lemma 6.5 allows to deduce the following known result from Theorem 3.2:

6.7. Corollary. [5], [16] Let X and D be categories having finite limits and U a functor
U : X → D which preserves finite limits and reflects isomorphisms. If there exists a
Mal’tsev operation on U then X is a Mal’tsev category.

Proof. According to Conclusion 6.4(a) there exists an approximate Mal’tsev operation

on homX with approximation 1̃U . By Lemma 6.5, α = 1̃U satisfies (*). Therefore, by
Theorem 3.2, X is a Mal’tsev category.

6.8. Proposition. For a category X with binary coproducts the following conditions
are equivalent to each other:

(a) There exists an approximate Mal’tsev operation on homX whose approximation α :
homX → A satisfies (*) and for each object X in X the functor A(X,−) : X → Set
is representable.

(b) There exists an approximate Mal’tsev co-operation µ on 1X such that every compo-
nent of the approximation of µ is a strong epimorphism.

Proof. For a functor A : Xop ×X → Set the following conditions are equivalent to each
other:

• For every object X in X the functor A(X,−) : X → Set is representable.

• A is naturally isomorphic to a functor of the form homX ◦ (Uop × 1X), for some
functor U : X → X.

After this observation, the equivalence of (a) and (b) follows easily from Conclusion 6.4
and Lemma 6.6.

6.9. Remark. In a regular category, regular epimorphisms coincide with strong epimor-
phisms. So when X is regular and has binary coproducts, the conditions 4.2(b) and 6.8(b)
are identical, and from Theorem 4.2 and Proposition 6.8 we get: X is a Mal’tsev category
if and only if it satisfies 6.8(a).

6.10. Remark. Recall that to prove (b)⇒(c) in Theorem 4.2 we used Proposition 4.1.
Alternatively, (b)⇒(c) in Theorem 4.2 follows from (b)⇒(a) of Proposition 6.8 and
(b)⇒(c) of Theorem 3.2.
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Lawrence Breen, Université de Paris 13: breen@math.univ-paris13.fr
Ronald Brown, University of North Wales: ronnie.profbrown (at) btinternet.com
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


