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EXTENSIONS IN THE THEORY OF LAX ALGEBRAS

Dedicated to Walter Tholen on the occasion of his 60th birthday

CHRISTOPH SCHUBERT AND GAVIN J. SEAL

Abstract. Recent investigations of lax algebras—in generalization of Barr’s relational
algebras—make an essential use of lax extensions of monad functors on Set to the cate-
gory Rel(V) of sets and V-relations (where V is a unital quantale). For a given monad
there may be many such lax extensions, and different constructions appear in the liter-
ature. The aim of this article is to shed a unifying light on these lax extensions, and
present a symptomatic situation in which distinct monads yield isomorphic categories
of lax algebras.

1. Introduction

In addition to a monad T on Set and a unital quantale V, the definition of (T,V)-algebras
requires a lax extension of the monad functor T to V-Rel, the 2-category of sets and V-
relations. Until recently, such extensions were obtained by using Barr’s original construc-
tion [2] (indeed, if 2 denotes the two-chain {⊥,>}, then 2-Rel is just the category Rel of
sets and relations). In [3], Clementino and Hofmann describe a process that essentially
produces a lax extension to V-Rel out of a lax extension to Rel. Two other constructions
were proposed by Seal: the first, in [19], was based on the assumption that T was a taut
monad, while the second, in [20], required that the monad be conveniently Sup-enriched.
In other directions, Schubert [18] showed that Barr’s method could be adapted to an
order-based setting, and Hofmann [10] generalized the original construction by exploiting
the structure of a particular Eilenberg-Moore algebra on V.

These extensions all yield topological spaces as instances of lax algebras, but they are
nonetheless very different in nature, and therefore in their realizations. Roughly put, the
lax extensions obtained via Barr’s construction are Set-based and do not take into account
any order-related considerations, on the contrary of those introduced by Schubert, which
are intrinsically Ord-based; the lax extensions studied by Seal live in-between the previous
two, as they are originally defined over Set, but nonetheless exploit an existing underlying
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order of the monad. Thus, even in the simple case where V = 2, these constructions
lead to very different lax extensions (a striking illustration of this is given in Example
4.6(3)). The intent of this article is to study the Kleisli extension introduced in [20] for
Sup-enriched monads, and its interaction with four other types of extensions: the initial
extension of a Set-functor described below, the canonical and op-canonical extensions of
a taut Set-functor defined in [19], the strata extension of a lax Rel-functor [3], and the
tower extension of a topological category [21].

The multiplicity of lax extensions is a manifestation of a rich ambient categorical struc-
ture; indeed, for a fixed V, lax extensions are the objects of a “topological quasicategory”
over the quasicategory of Set-endofunctors (see 3.5 for details). This remark leads us to
a central theme of our work: if T is provided with a lax extension T , then any monad
morphism α : S → T allows for a lax extension S of S via the initial lift of α : S → T .
For example, the “op-canonical” extension of a taut functor described in [19] is obtained
as an initial lift of the filter functor’s Kleisli extension.

More generally, if one considers for T the Kleisli extension of T , the initial lift con-
struction allows us to identify the category Alg(S,2) of (S,2)-algebras with the concep-
tually simpler category KlMon(T) of Kleisli monoids. This is the theme of Theorem 5.6.
The strata extension of S then provides a suitable ingredient to pass from Alg(S,2) to
Alg(S,V), while the tower extension of KlMon(T) yields a category KlMon(T,V). Theorem
6.10 exploits the previous result to show that these new categories are again isomorphic,
emphasizing in the process the importance of the original V = 2 case.

The examples used throughout this work support the thesis that “topological-related”
lax extensions tend to appear either as Kleisli extensions, or as initial lifts of these (Exam-
ple 4.6(2)). A similar line of investigation has been followed by Colebunders and Lowen
in [5], where the authors show that many important lax extensions are initial extensions
of a certain “functional power monad”.

2. The setting

2.1. Quantales. Throughout this article, V = (V,⊗, k) denotes a unital quantale
with tensor ⊗, and unit k. In other words, V is a complete lattice equipped with an
associative binary operation ⊗ that preserves suprema in each variable, and admits k as
neutral element:(∨

i∈Iui
)
⊗v =

∨
i∈I(ui⊗v) , u⊗

(∨
i∈Ivi

)
=
∨
i∈I(u⊗vi) , k⊗v = v = v⊗k ,

for all u, v, ui, vi ∈ V (i ∈ I). The bottom and top elements of V are denoted by ⊥ and
>, respectively. In this article, we always suppose that V is non-trivial, that is, V is not a
singleton (or equivalently, ⊥ 6= k). Moreover, the quantale is said to be integral if k = >.

2.2. Examples.

1. The two-chain 2 = ({⊥,>},∧,>) is the simplest non-trivial quantale. Of course,
any frame is a unital quantale with binary meet and neutral element >, but 2
already leads to interesting examples of lax algebras.
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2. The diamond lattice 22 = ({⊥, u, v,>},∧,>) (with u and v incomparable) is obvi-
ously isomorphic to the powerset of 2, and provides another meaningful example of
a non-trivial quantale.

3. The extended real line P+ = ([0,∞]op,+, 0) with its addition extended via x+∞ =
∞ =∞+x for all x ∈ [0,∞] is a quantale. Notice that the opposite order has been
taken on the chain [0,∞], so that the neutral element 0 is also the top element of
the lattice.

4. The non-integral three-chain 3 = ({⊥, k,>},⊗, k) is the smallest non-integral quan-
tale. The tensor is commutative, and necessarily defined by ⊥⊗v = ⊥ and k⊗v = v
for all v ∈ 3, while >⊗> = >.

2.3. V-relations and relations. The objects of the category V-Rel are sets, and
its morphisms r : X −→7 Y are V-relations, that is, maps of the form r : X × Y → V.
Composition of r : X −→7 Y with s : Y −→7 Z is given by the “matrix multiplication”
formula:

(s · r)(x, z) =
∨
y∈Y

r(x, y)⊗ s(y, z) .

The identity 1X : X −→7 X is the V-relation defined by 1X(x, y) = k if x = y and
1X(x, y) = ⊥ otherwise. The category Rel of sets and relations is identified with 2-Rel,
and embeds into V-Rel via composition of r : X × Y → 2 with

λ : 2→ V , ⊥ 7→ ⊥ , > 7→ k .

A V-relation with values in {⊥, k} is called a relation in V-Rel, while the term relation
alone means a 2-relation.

Similarly, Set can be embedded into V-Rel by sending each map f : X → Y to its
graph (or more precisely its V-graph), defined by

f(x, y) =

{
k if f(x) = y
⊥ otherwise .

Note that we will not insist on distinguishing between a map and its graph, since the
context will always determine which level we are working on.

Equipped with the pointwise order induced by V, the hom-sets of V-Rel become sup-
semilattices, and we have

r ≤ r′ , s ≤ s′ =⇒ s · r ≤ s′ · r′

for all r, r′ : X −→7 Y and s, s′ : Y −→7 Z. The transpose r◦ : X −→7 Y of a V-relation
r : X −→7 Y is defined by r◦(y, x) = r(x, y). Since the quantale V is not necessarily
commutative, we do not have in general that (s · r)◦ = r◦ · s◦ in V-Rel, although this
formula does hold if either r or s is a relation in V-Rel.
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By composing a map f : X → Y , a V-relation s : Y −→7 Z, and the transpose of
h : W → Z, we get the convenient formula

h◦ · s · f(x,w) = s(f(x), h(w)) .

Notice also that 1X ≤ f ◦ · f and f · f ◦ ≤ 1X , so the following equivalences hold

t ≤ s · f ⇐⇒ t · f ◦ ≤ s and g · r ≤ t ⇐⇒ r ≤ g◦ · t

for any V-relation t : X −→7 Z and map g : Y → Z.

2.4. Strata. Let Inf denote the category of inf-semilattices and inf-preserving maps.
For a V-relation r : X −→7 Y and v ∈ V, the v-stratum of r is the relation rv : X −→7 Y
defined by

rv(x, y) = > ⇐⇒ v ≤ r(x, y) .

In the case where s : X −→7 Y is a relation in V-Rel, the relation sk is simply the preimage
of s via the embedding Rel ↪→ V-Rel.

For any A ⊆ V, we have r∨
A =

∧
v∈A rv, so the map

φr : Vop → Rel(X, Y ) , v 7→ rv

preserves arbitrary infima. On the other hand, every inf-map φ : Vop → Rel(X, Y ) yields
a V-relation

rφ : X −→7 Y , (x, y) 7→
∨
{ v ∈ V | φ(v)(x, y) = >} .

These correspondences describe an order-preserving isomorphism

V-Rel(X, Y ) ∼= Inf(Vop,Rel(X, Y )) .

Furthermore, for any maps f : X → Y , g : Y → Z, V-relations r : X −→7 Y , s : Y −→7 Z
and u, v ∈ V, we have

sv · f = (s · f)v , g◦ · rv = (g◦ · r)v and su · rv ≤ (s · r)v⊗u .

2.5. Remark. As pointed out to the authors by Walter Tholen, the previous isomor-
phism is a particular case of the order-preserving isomorphism

Set(A,V) ∼= Inf(Vop, PA) .

Indeed, whenever A = X × Y , we have Set(A,V) = V-Rel(X, Y ), and PA ∼= Rel(X, Y ).
Moreover, this isomorphism is the restriction to fixpoints of the adjunction

φ a ψ : Set(A,V)→ Set(V, PA) ,

where Set(A,V) and Set(V, PA) are endowed with their respective pointwise order, and

φ(f)(a) :=
∨
{v ∈ V | a ∈ f(v)} , ψ(g)(v) := {a ∈ A | v ≤ g(a)}

for all maps f : V→ PA, g : A→ V, and elements a ∈ A, v ∈ V.
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2.6. Monads. Recall that a monad T on Set is a triple (T, η, µ), where T : Set → Set
is a functor, and the unit η : Id → T and multiplication µ : T 2 → T of T are natural
transformations satisfying

µ · Tη = 1 = µ · ηT and µ · Tµ = µ · µT .

A monad morphism α : S → T from S = (S, δ, ν) to T = (T, η, µ) is a natural transfor-
mation α : S → T such that

η = α · δ and µ · α2 = α · ν (with α2 = Tα · αS = αT · Sα) .

We say that α is an embedding if the components αX are injections.

2.7. Examples. The following monads will be used throughout the text.

1. The identity monad is the obvious monad I = (Id, 1, 1).

2. The powerset monad is P = (P, ι,
⋃

) with unit given by ιX(x) := {x}. Note that
for A ∈ PX and a map f : X → Y we will often write

f [A] := { f(x) | x ∈ A },

instead of Pf(A).

3. The double-dualization monad (also called the “contravariant” double-powerset mo-
nad) D2 = (D2, −̇,Σ) is described by D2X := PPX for every set X, together with
the following three equivalences:

B ∈ D2f(f) ⇐⇒ f−1(B) ∈ f , A ∈ ẋ ⇐⇒ x ∈ A , A ∈ ΣX(F) ⇐⇒ AD2 ∈ F ,

for f : X → Y , f ∈ D2X, x ∈ X, F ∈ D2D2X, and where

AD2 := { f ∈ D2X | A ∈ f } .

It will also be convenient to use the following notation:

f [f] := D2f [f] .

4. An element f ∈ D2X = PPX is up-closed if A ∈ f and A ⊆ B implies B ∈ f for all
B ⊆ X. For any f ⊆ PX, the up-closure of f is defined by

↑f := {B ⊆ X | ∃A ∈ f : A ⊆ B } .

The up-set monad U = (U, −̇,Σ) is just the restriction of D2 to up-closed elements
of D2X. In this case, ΣX(F) = {AU | AU ∈ F } for F ∈ UUX, where AU := { f ∈
UX | A ∈ f }.
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5. The filter monad F = (F, −̇,Σ) is the restriction of the up-set monad to filters.
Here, we must use AF := { f ∈ FX | A ∈ f } in lieu of AU in the definition of the
components of Σ : FF → F . Let us point out that we consider the improper filter
f = PX as an element of FX.

6. The ultrafilter monad B = (β, −̇,Σ) is the restriction of the filter monad to ultrafil-
ters. Here we use the sets AB := { x ∈ βX | A ∈ x } instead of AF.

7. The previous monads may all be considered as submonads of D2. Indeed, the power-
set monad P embeds into F via the principal filter natural transformation τ : P → F ,
defined componentwise by τX(A) := ↑{A} for A ∈ PX, and the identity monad I
obviously embeds both into P and B. Therefore, we have the following diagram of
monad embeddings:

P
&&NNNNNN

I
88qqqqqq

&&MMMMMM F // U // D2 .

B
88pppppp

2.8. Monads as Kleisli triples. For our purpose, the alternate description of mon-
ads from ([15], Exercise 1.3.12) will be useful. A Kleisli triple (T, η,−T) on Set consists
of

(i) a map T : ob Set→ ob Set,

(ii) for each set X, a map ηX : X → TX,

(iii) an operation −T which sends f : X → TY to fT : TX → TY ,

subject to the conditions

(ηX)T = 1TX , fT · ηX = f and gT · fT = (gT · f)T .

Each Kleisli triple (T, η,−T) yields a monad T = (T, η, µ) by setting

Tf := (ηY · f)T and µX := (1TX)T ,

and every monad T = (T, η, µ) defines a Kleisli triple via

fT := µY · Tf .

Since these processes are mutually inverse, we will freely switch between the two descrip-
tions.

Given Kleisli triples (S, δ,−S) and (T, η,−T), a family (αX : SX → TX)X∈ob Set defines
a monad morphism α : S→ T if and only if the equalities

αX · δX = ηX and (αY · f)T · αX = αY · fS

hold for all sets X and maps f : X → SY .
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2.9. Kleisli categories. We recall that the Kleisli category SetT of a monad T =
(T, η,−T) has as objects sets, and as morphisms f : X ⇀ Y maps f : X → TY . The
composite of f : X ⇀ Y with g : Y ⇀ Z is given via Set-composition as

g ◦ f := gT · f = µZ · Tg · f ,

and the identity at X is ηX : X ⇀ X. Observe that the conditions on a Kleisli triple
are equivalent to the left and right unit laws of the identity, and to the associativity of
composition, respectively.

Every monad morphism α : S → T induces a functor SetS → SetT by composing
morphisms with αX . The conditions for monad morphisms between Kleisli triples are
then equivalent to preservation of identities and composition, respectively.

The Kleisli category SetP of the powerset monad is the category Rel of sets and re-
lations. Using the isomorphism Rel ∼= Relop, we will exploit the description of a relation
r : X −→7 Y by its preimage-mapping

r[ : Y → PX , y 7→ {x | r(x, y) = >}

(notice the transposition). This description is functorial since for s : Y −→7 Z, we have

(s · r)[ = (r[)P · s[ = r[ ◦ s[ .

When f : X −→7 Y is the graph of a map, the preimage-mapping is related to well-known
operations on f :

(f [)P = f−1 : PY → PX and (f ◦)[ = ιY · f : X → PY .

In particular, we have ((f ◦)[)P = Pf : PX → PY .

3. Lax extensions and lax algebras

3.1. Lax extensions. A lax extension of a Set-functor T : Set → Set along the em-
bedding Set ↪→ V-Rel, (or simply a lax extension of T to V-Rel), is a map

T : V-Rel→ V-Rel , (r : X −→7 Y ) 7→ (Tr : TX −→7 TY )

satisfying for all r : X −→7 Y , s : Y −→7 Z, and f : X → Y the conditions

(i) s ≤ r =⇒ Ts ≤ Tr ,

(ii) Ts · Tr ≤ T (s · r) ,

(iii) Tf ≤ Tf and (Tf)◦ ≤ Tf ◦ .
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The last condition implies in particular that 1TX ≤ T1X , so a lax extension of T :
Set → Set is simply a lax functor satisfying the extension conditions (iii). Notice that
a lax extension is a structure on a functor and not a mere property. A morphism of
lax extensions α : (S, S) → (T, T ) is a natural transformation α : S → T between
the underlying Set-functors which extends to an oplax transformation S → T ; that is,
αY · Sr ≤ Tr · αX , or equivalently

Sr ≤ α◦Y · Tr · αX ,

for all r : X −→7 Y . Often, we simply write α : S → T instead of α : (S, S)→ (T, T ).
If T : V-Rel→ V-Rel is a lax extension of T : Set→ Set, then it satisfies

T (s · f) = Ts · Tf = Ts · Tf and T (g◦ · s) = Tg◦ · Ts = (Tg)◦ · Ts ,

for all s : Y −→7 Z, f : X → Y , and g : W → Z. Indeed, we have

T (s · f) ≤ T (s · f) · Tf ◦ · Tf ≤ T (s · f · f ◦) · Tf ≤ Ts · Tf ≤ Ts · Tf ≤ T (s · f) ,

and the other set of equalities follows in a similar way.

3.2. Associated preorders. Any lax functor T : V-Rel → V-Rel yields a preorder
on the sets TX via

x ≤T y ⇐⇒ k ≤ T1X(x, y)

for all x, y ∈ TX. A lax extension T : V-Rel → V-Rel of a functor T : Set → Set takes
this process one step further and induces a factorization of T through the category Ord
of preordered sets and monotone maps. Indeed, a map f : X → Y is sent to a monotone
map Tf : TX → TY , since

T1X ≤ T (f ◦ · 1Y · f) = (Tf)◦ · T1Y · Tf .

If α : S → T is a morphism of lax extensions, then each αX : SX → TX is monotone.
Let us stress moreover that ≤T is a relation, while T1X is a V-relation so that ≤T 6= T1X
even if ≤T is seen as a V-relation (this distinction will be important in the definition of
an antitone V-relation in 5.4).

When the sets TX are equipped with this order, the V-relation Tr reverses it in its
first variable and preserves it in its second; indeed, if x′ ≤T x and y ≤T y′, then

Tr(x, y) ≤ T1X(x′, x)⊗ Tr(x, y)⊗ T1Y (y, y′) ≤ T1Y · Tr · T1X(x′, y′) = Tr(x′, y′)

for all x, x′ ∈ TX, y, y′ ∈ TY .
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3.3. Initial extensions. Let α : S → T be a natural transformation of Set-functors,
and T a lax extension of T to V-Rel. The initial extension of S along α is the lax extension
given by

α∗Tr := α◦Y · Tr · αX ,

for any V-relation r : X −→7 Y . The morphism of lax extensions α : (S, α∗T ) → (T, T )
is initial in the following sense: if β : R → S is a natural transformation and R is a
lax extension of R, then β : R → α∗T is a morphism of lax extensions if and only if
α · β : R→ T is one.

In presence of the initial extension α∗T of S, the maps αX : SX → TX become
order-embeddings with respect to the associated preorders:

x ≤α∗T x′ ⇐⇒ αX(x) ≤T αX(x′)

for all x, x′ ∈ SX.

3.4. Proposition. Let α : S → T be a morphism of Set-monads S = (S, δ, ν) and
T = (T, η, µ). If T has a lax extension T to V-Rel for which η : Id → T is oplax, then
δ : Id → S is also oplax for the initial extension S = α∗T of S along α. Similarly, if
µ : T T → T is oplax for T , then ν : SS → S is oplax for S = α∗T .

Proof. Oplaxness of δ follows immediately from η = α · δ. Since α : S → T is oplax,
α2 : SS → T T is too. Thus, oplaxness of ν follows from µ · α2 = α · ν.

3.5. Remark. For a source α = (αi : S → Ti)i∈I , where each Ti carries a lax extension
T i to V-Rel, we can define an initial lift via the lax extension S of S defined by

Sr :=
∧
i∈I

(αi)
◦
Y · T ir · (αi)X ,

for any V-relation r : X −→7 Y . In other words, the quasicategory1 of lax extensions to
V-Rel is topological over the quasicategory of Set-functors.

3.6. Examples.

1. A lax extension of the identity functor Id : Set→ Set to V-Rel is given by the identity
Id : V-Rel→ V-Rel. In this case, the preorder associated with this extension is the
discrete order on X.

2. A lax extension of the powerset functor P : Set→ Set to V-Rel is given by

Pr(A,B) =
∨
{ v ∈ V | A ⊆ r[v[B] }

for any A ∈ PX, B ∈ PY , and V-relation r : X −→7 Y . The preorder associated
with this extension is just subset inclusion. Moreover, the previous lax extension of
the identity functor is the initial extension induced by the unit ι : Id→ P of P.

1Due to size restrictions on the hom-sets, the term “quasicategory” is used in lieu of “category”. This
distinction is made here because topologicity is classically defined for locally small categories only [1].
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3. A lax extension of the up-set functor U : Set→ Set to V-Rel is given by

Ur(f, g) =
∨
{ v ∈ V | f ⊇ r[v[g] }

for r : X −→7 Y , f ∈ UX, and g ∈ UY . The preorder obtained on UX is the “finer
than” relation, which is opposite to subset inclusion. One obtains lax extensions of
the filter and ultrafilter functors by restricting this lax extension accordingly. The
extensions obtained are the initial lifts along the corresponding embeddings (see
Example 2.7(7)). Similarly, the extension P described above is the initial lift of the
restriction F along the principal filter transformation τ : P→ F.

The resulting lax extension of the ultrafilter functor is the well-known extension
described originally in [2], or in the present form in [3].

4. Another lax extension of the filter functor F is given by

F̃ r(A,B) =
∨
{ v ∈ V | g ⊇ (r◦v)

[[f] }

for any V-relation r : X −→7 Y , A ∈ PX, B ∈ PY . This extension differs from
the one above in that it uses and induces the opposite order on the sets FX. The
corresponding initial extension of the powerset functor (along the principal filter
transformation) is

P̃ r(A,B) =
∨
{ v ∈ V | B ⊆ (r◦v)

[[A] } .

In [19], these extensions were called the “canonical” extensions of their respective
functors.

3.7. Strata extensions. Reviewing the lax extensions to V-Rel of Examples 3.6, it
becomes clear that they are formed from the corresponding extension to Rel according to
a certain pattern. These lax extensions are all instances of a construction that allows us
to extend any lax functor T : Rel → Rel to a lax functor TV : V-Rel → V-Rel as follows.
For a set X, let TVX := TX and

TVr(x, y) :=
∨
{ v ∈ V | Trv(x, y) = >} ,

for any V-relation r : X −→7 Y . We call TV the strata extension of T . This extension
process was extensively studied in [3] and [18], to which we refer for further details. For
any V-relation r : X −→7 Y and v ∈ V, we obviously have

Trv ≤ (TVr)v , (1)

and TV is the least extension of a lax functor T : Rel → Rel to V-Rel for which this
inequality holds. By identifying a 2-relation s : X −→7 Y with its image in V-Rel, we may
write Ts = Tsk in Rel. This equality can be transported to V-Rel, where we then have

Ts = Tsk ≤ (TVs)k ≤ TVs .
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Let us point out en passant that these inequalities are in fact equalities if V is integral,
or if T preserves every empty 2-relation ⊥ : X −→7 Y . In any case, this shows that if
T : Rel → Rel is a lax extension of a Set-functor T , then TV is a lax extension of T to
V-Rel.

Finally, if α : S → T is a natural transformation between Set-functors, and T is a lax
Rel-extension of T , then we have

α∗(TV) = (α∗T )V .

In other words, initial lifts commute with strata extensions.

3.8. Proposition. The preorders induced on the sets TX by a lax functor T : Rel→ Rel
and its strata extension TV coincide.

Proof. Note that we already have (≤T ) ≤ (≤TV
) by (1) in 3.7 above. For the other in-

equality, assume that x ≤TV
y holds for x, y ∈ TX, that is, k ≤

∨
{ v ∈ V | T ((1X)v)(x, y) =

>}. Non-triviality of V implies that there is some u in V \ {⊥} with T ((1X)u)(x, y) = >.
Since u 6= ⊥, we have (1X)u ≤ 1X , and therefore T1X(x, y) = >, so that x ≤T y.

3.9. Lax algebras. Let T = (T, η, µ) be a monad on Set equipped with a lax extension
T of T . The category Alg(T,V) of (T,V)-algebras, or lax algebras, has as objects pairs
(X, a), where X is a set, and its structure a : TX −→7 X is a reflexive and transitive
V-relation:

1X ≤ a · ηX and a · Ta ≤ a · µX .

Morphisms f : (X, a)→ (Y, b) are Set-maps f : X → Y satisfying:

f · a ≤ b · Tf ,

and composing as in Set. It will sometimes be useful to identify the lax extension that is
being used; in such cases, we will write Alg(T, T ,V) instead of Alg(T,V).

Using the—not necessarily associative—Kleisli convolution b ∗ a of V-relations a :
TX −→7 Y , b : TY −→7 Z defined by

b ∗ a := b · Ta · µ◦X ,

we can rewrite the reflexivity and transitivity conditions above as

η◦X ≤ a and a ∗ a ≤ a. (2)

If (X, a) is a lax algebra, then a · (≤T ) = a · T1X = a, since

a = a · 1TX ≤ a · (≤T ) ≤ a · T1X ≤ a · Ta · TηX ≤ a · µX · TηX = a

by applying T to the reflexivity, and combining with the transitivity of a. Therefore, a
reverses the order ≤T in its first variable:

x ≤T y =⇒ k ≤ T1X(x, y) =⇒ a(y, z) ≤ T1X(x, y)⊗ a(y, z) ≤ a · T1X(x, z) = a(x, z)

for all x, y ∈ TX, z ∈ X.
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3.10. Examples. Two of the original examples of lax algebras, called relational algebras
in [2], are given by the categories Ord of preordered sets, and Top of topological spaces:

Ord ∼= Alg(I,2) , Top ∼= Alg(B,2) .

Other examples (as well as a proof of these isomorphisms) will be given further on.

3.11. Remark. Since the structure relation a : TX −→7 X of a (T,V)-algebra reverses
the preorder on TX in its first variable, it is reasonable to expect that it also preserves a
non-trivial preorder in its second. In fact, this depends on the lax extension. To see this,
notice first that

η◦X · Ta = a · ηX · η◦X · Ta ≤ a · Ta ≤ a · µX ,

so the inequality η◦X · Ta · ηTX ≤ a always holds. In the case where the unit η : 1→ T is
oplax, this inequality becomes an equality, and a induces the dual specialization preorder
on X via

x ≤a y ⇐⇒ k ≤ a(ηX(x), y) .

The structure a is then monotone in its second variable with respect to this preorder:

x ≤a y =⇒ a(x, x) ≤ Ta(ηTX(x), ηX(x))⊗ a(ηX(x), y) ≤ a(x, y)

for all x, y ∈ X, x ∈ TX. Notice also that the Kleisli extension introduced further on
does make η into an oplax transformation (Proposition 4.8).

3.12. Functoriality of Alg(−,V). We have seen that every monad T equipped with
a lax extension T : V-Rel → V-Rel of the underlying functor T gives rise to a category
Alg(T,V). For a monad S equipped with a lax extension S, a morphism α : (S, S) →
(T, T ) is a monad morphism α : S → T which is also a morphism of lax extensions. In
this case, α induces a 2-functor

Fα = Alg(α,V) : Alg(T,V)→ Alg(S,V)

sending (X, a) to (X, a · αX), and mapping morphisms identically (see [4], Section 3.7).
The correspondence

(α : S→ T) 7→ (Fα : Alg(T,V)→ Alg(S,V))

is functorial, so that Fα·β = FβFα and F1 = Id for all morphisms β : (R, R)→ (S, S) and
α : (S, S)→ (T, T ).

3.13. Induced adjunctions. Let S, T be two Set-functors admitting lax extensions
S, T , and

α a β : T → S

a natural adjunction; that is, a pair (α : S → T , β : T → S) of morphisms of lax extensions
whose components form an adjunction αX a βX : TX → SX for every set X, so that

1X ≤S βX · αX and αX · βX ≤T 1X .
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In the case where α : S → T, β : T → S are also monad morphisms, then there is an
induced adjunction

Fα a Fβ : Alg(S,V)→ Alg(T,V) .

Indeed, since a reverses the order in its first variable, we obtain the inequalities a ≤
a·(αX ·βX) and b·(βX ·αX) ≤ b, for any lax algebra structures a : TX −→7 X, b : SX −→7 X.
These inequalities yield the unit η : Id → FβFα and co-unit ε : FαFβ → Id of the
adjunction.

3.14. Proposition. Let T be a lax extension of T , and α : S → T a retraction (so
there exists a monad morphism β : T → S with α · β 'T 1). If S is the initial extension
induced by α, then Alg(S,V) and Alg(T,V) are concretely equivalent categories.

Proof. By composing each side of the equality Sr = α◦Y ·Tr ·αX with β◦Y on the left and
βX on the right, we obtain β◦Y · Sr · βX = Tr, so that β is a morphism of lax extensions.
Moreover, we have

1X ≤ α◦X · T1X · αX = α◦X · β◦X · α◦X · T1X · αX = α◦X · β◦X · S1X ,

so that 1 ≤S β · α, and β · α ≤S 1 by composing each side of αX · βX ' 1X with S1X .
Therefore we have β · α 'S 1, so that α ∼ β induces a concrete equivalence Fβ ∼ Fα.

4. Kleisli extensions

4.1. Sup-enriched monads. Let us recall that the Eilenberg-Moore category SetP of
the powerset monad is the category Sup of sup-semilattices and sup-maps. A Sup-enriched
monad on Set is a pair (T, τ) made up of a monad T and a monad morphism τ : P→ T.
Any such monad morphism induces a concrete functor SetT → Sup. In particular, every
set TX carries the structure of a sup-semilattice, with∨

A := µX · τTX(A) ,

for all A ⊆ TX; moreover, the multiplications µX and each Tf : TX → TY preserve these
suprema. Thus, every Sup-enriched monad (T, τ) induces a factorization of T through Sup.
Conversely, given a monad T = (T, η, µ) factoring through Sup, one can define a monad
morphism τ : P→ T (as in [20]) via

τX(A) :=
∨
x∈A ηX(x) .

Since the operations described above are inverse of each other, Sup-enriched monads and
monads factoring through Sup are equivalent concepts.

A morphism of Sup-enriched monads α : (S, σ) → (T, τ) is a monad morphism α :
S → T such that τ = α · σ. As we show below, this is equivalent to stating that the
components of α are sup-maps.
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We say that a Sup-enriched monad (T, τ) is coherent if the operation −T is monotone
with respect to the order induced by τ ; that is, for any g, h : X → TY , we must have

g ≤ h =⇒ gT ≤ hT .

For any Sup-enriched monad (T, τ), coherence is equivalent to the fact that the Kleisli-ca-
tegory SetT is a 2-category with respect to the pointwise order, i.e., the Kleisli-composition
g ◦ f = gT · f is monotone in each variable.

4.2. Proposition. Let S = (S, δ, ν), T = (T, η, µ) be monads on Set, and α : S → T
a monad morphism. The following statements are equivalent for Sup-enrichments σ of S
and τ of T:

(a) α is a morphism (S, σ)→ (T, τ);

(b) each αX : SX → TX preserves suprema.

Proof. Since Sup ∼= SetP, αX preserves suprema if and only if the diagram

PSX

νX ·σSX
��

PαX // PTX

µX ·τTX
��

SX
αX // TX

(3)

commutes. Thus, if α : (S, σ)→ (T, τ) is a morphism, then

αX · νX · σSX = µX · αTX · σTX · PαX = µX · τTX · PαX ,

as required. Conversely, if the diagram above commutes, we have

αX · σX = αX · νX · SδX · σX = µX · τTX · P (αX · δX)

= µX · τTX · PηX = µX · TηX · τX = τX .

4.3. Examples.

1. Although there are two trivial monads on Set, there is only one which is Sup-
enriched, namely the monad T! for which T!X = {∗} for all sets X.

2. The powerset monad P is coherent Sup-enriched via 1P, and the supremum operation
is given by set union. Moreover, (P, 1P) is an initial object in the quasicategory of
Sup-enriched monads and their morphisms.

3. The filter monad F and the up-set monad U are coherent Sup-enriched via the
principal filter natural transformations τ : P → F and τ : P → U, respectively. In
both cases, supremum is given by intersection.



132 CHRISTOPH SCHUBERT AND GAVIN J. SEAL

4. The monad D2 becomes a Sup-enriched monad in at least two different ways. Indeed,
there are monad morphisms ♦,@ : P→ D2, defined componentwise for A ∈ PX by

♦X(A) = {B ⊆ X | A ∩B 6= ∅ } , @X(A) = {B ⊆ X | A ⊆ B } ,

(see [15], Exercise 3.2.18; the notations @ and ♦ come from coalgebraic modal logic,
where these natural transformations play a vital role). This demonstrates that a
factorization through Sup is a structure on the monad, and not a property. The
suprema induced on D2X by @ are given by intersection, while the ones induced by
♦ are given by union. However, it can be seen that neither (D2,♦) nor (D2,@) is
coherent.

Since the natural transformation τ : P → U above is just the restriction of @, the
embeddings

(P, 1P)→ (F, τ)→ (U, τ)→ (D2,@)

form a chain of Sup-enriched monads (although only the first three are coherent).

4.4. The Kleisli extension. Let (T, τ) be a Sup-enriched monad. If r : X −→7 Y is a
relation, we denote by rτ : TY → TX the composite

rτ := (τX · r[)T = µX · T (τX · r[) .

For a relation s : Y −→7 Z and a map g, we obtain the following useful formulas:

rτ · ηX = τX · r[, (s · r)τ = rτ · sτ , (g◦)τ = Tg. (4)

The first equation is obvious; the other two follow from the fact that τ is a monad
morphism.

The Kleisli extension T τ : Rel→ Rel of T with respect to τ is defined by

T τr(x, y) = > ⇐⇒ x ≤ rτ (y).

for a relation r : X −→7 Y and x ∈ TX, y ∈ TY . Using strata extensions, we can define
T τV := (T τ )V : V-Rel→ V-Rel as

T τVr(x, y) =
∨
{ v ∈ V | x ≤ (rv)

τ (y) } ,

for a V-relation r : X −→7 Y and x ∈ TX, y ∈ TY . This formula was used in [20] to define
T τV in one step. There, it is shown that if τ is a coherent Sup-enrichment, then T τV is a
lax extension of T , and that whenever V is non-trivial (as we assumed in this work), then
the preorder ≤T τV associated with this extension is identical to the original order on TX.
In particular, all µX and Tf preserve this order.

4.5. Remark. The previous definition of the Kleisli extension does not require that
(T, τ) be coherent Sup-enriched, so that T τV is not necessarily a lax extension of T . How-
ever, one can still exploit this definition to put forth meaningful mechanisms that underly
the coherent case (see in particular Example 4.6(3) below, or Corollary 4.13).
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4.6. Examples.

1. For the trivial Sup-enriched monad T!, we have τX = !X : PX → {∗} and
T !

Vr(∗, ∗) = > for any V-relation r : X −→7 Y . In particular, (T!, T
!
V) is a final

object in the quasicategory of lax extensions.

2. The Kleisli extensions of the powerset, filter and up-set functors are the lax exten-
sions described in 3.6.

3. Example 4.3(4) shows that there are at least two lax extensions obtained as Kleisli
extensions of the up-set functor U . Indeed, the monad morphism @ : P → D2

restricts to the principal filter natural transformation τ : P → U, and ♦ : P → D2

also restricts to a coherent Sup-enrichment σ : P → U. This demonstrates that
the lax extensions presented here are fundamentally different from the extensions
obtained by the original construction of Barr in [2]. Indeed, the latter are lax
functors if and only if the original Set-functor satisfies the Beck-Chevalley condition
of ([3], Section 1.3). However, it can be seen that the up-set functor U does not
satisfy this condition, so Barr’s construction fails to yield a lax extension of U .

4.7. Proposition. The Kleisli extension T τ : Rel→ Rel preserves composition:

T τs · T τr = T τ (s · r)

for all relations r : X −→7 Y , s : Y −→7 Z.

Proof. This follows immediately from the second equation of (4) in 4.4.

4.8. Proposition. If (T, τ) is a coherent Sup-enriched monad, then η : (Id, Id) →
(T, T τV) is a morphism of lax extensions, that is: η : 1→ T is an oplax transformation.

Proof. Take a V-relation r : X −→7 Y , and for x ∈ X, y ∈ Y set v := r(x, y). By
definition, {x} ⊆ r[v(y), so that ηX(x) = τX({x}) ≤ τX · r[v(y) = (τX · r[v)T · ηY (y). We
conclude that r(x, y) = v ≤ T τVr(ηX(x), ηY (y)), so r ≤ η◦Y · T τVr · ηX , as required.

4.9. Proposition. If α : (S, σ)→ (T, τ) is a morphism of coherent Sup-enriched mon-
ads, then α : Sσ → T τ is a morphism of lax extensions.

Moreover, if the αX are order-embeddings, then we have Sσ = α∗(T τ ); that is, the
initial extension induced by α is the Kleisli extension of S.

Proof. Observe that we have αX · (rv)σ = (rv)
τ · αY for any V-relation r : X −→7 Y and

v ∈ V. Therefore,

x ≤ (rv)
σ(y) =⇒ αX(x) ≤ αX · (rv)σ(y) = (rv)

τ · αY (y)

for all x ∈ SX, y ∈ SY . This implies immediately that α is a morphism between the
Kleisli extensions. If moreover αX is an order-embedding, the implication above is an
equivalence, so that α is initial.
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4.10. Op-canonical extensions of taut monads. For any taut monad S (see [16]),
the component at a set X of the support monad morphism supp : S → F maps x ∈ SX
to the filter

suppX(x) := {A ⊆ X | x ∈ SA } ,

where SA is identified with a subset of SX. One obtains a lax extension S = supp∗(F τ ),
so that

Sr(x, y) :=
∨
{ v ∈ V | ∀B ⊆ Y (B ∈ suppY (y) =⇒ r[v[B] ∈ suppX(x)) } ,

for all r : X −→7 Y , x ∈ SX, and y ∈ SY . This lax extension is just the “op-canonical”
extension of a taut functor introduced in [19]. The natural inclusion ε : F → U is an
embedding of coherent Sup-enriched monads (F, τ) → (U, τ), and we have F τ = ε∗(U τ )
by Proposition 4.9. Thus, the op-canonical extension of S arises in fact from the Sup-
enrichment τ of U:

S = supp∗(F τ ) = supp∗(ε∗(U τ )) = (ε · supp)∗(U τ ) .

Note that Proposition 3.14 states that the functor Fsupp : Alg(F,V) → Alg(S,V)
induced by the support morphism does not yield new examples of lax algebras if the
monad S “contains” F, that is, if supp : S→ F is a retraction.

4.11. Canonical extensions of taut monads. The “canonical” extension [19] of
a taut monad S is described by

S̃r := (S(r◦))◦ ,

for all r : X −→7 Y , where S is the “op-canonical” extension given above. This canonical
extension arises as an initial lift of Uσ along ε · supp, where σ : P → U is the codomain-
restriction of the natural transformation ♦ : P→ D2 (see Example 4.6(3)). To verify our
claim, it sufficient to see that

D♦
2 (r) =

(
D@

2 (r◦)
)◦
,

since one obtains Uσ(r) =
(
U τ (r◦)

)◦
by restriction of the double-dualization monad to

the up-set one (see Corollary 4.13 below).
Thus, let us point out first that every Kleisli morphism f : Y → D2X of D2 corresponds

uniquely to a map f• : PX → PY via

f•(A) = { y ∈ Y | A ∈ f(y) } , f(y) = {A ⊆ X | y ∈ f•(A) } .

This operation −• is related to the monad operations via fD2 = f−1
• and (−̇)• = 1P . It is

also functorial, since
(f ◦ g)• = (fD2 · g)• = g• · f•

holds for all g : Z → D2Y , and we have f ⊆ f ′ pointwise if and only if f• ⊆ f ′• pointwise.

4.12. Proposition. For any relation r, we have D♦
2 (r) =

(
D@

2 (r◦)
)◦

.
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Proof. Let us write [r] := (@X · r[)• : PX → PY and 〈r〉 := (♦X · r[)• : PX → PY for
a relation r : X −→7 Y . We remark that

[r](A) = { y | ∀x : r(x, y) = > ⇒ x ∈ A } and 〈r〉(A) = { y | ∃x ∈ A : r(x, y) = >}

hold; that is, [r] and 〈r〉 are just the “necessarily” and “possibly”, respectively, modalities
associated to the relation r◦. In any case, we have an adjunction

〈r◦〉 a [r] ,

and r@ = (@X · r[)D2 = [r]−1 is left adjoint to 〈r◦〉−1 = (♦X · (r◦)[)D2 = (r◦)♦. Thus,
recalling the orders induced by @ and ♦, we have, for x ∈ D2X and y ∈ D2Y :

x ≤ r@(y) ⇐⇒ r@(y) ⊆ x ⇐⇒ y ⊆ (r◦)♦(x) ⇐⇒ D♦
2 (r◦)(y, x) = >,

so that D@
2 (r) =

(
D♦

2 (r◦)
)◦

, or equivalently D♦
2 (r) =

(
D@

2 (r◦)
)◦

.

4.13. Corollary. For any relation r, we have Uσ(r) =
(
U τ (r◦)

)◦
.

Proof. This is a direct consequence of the previous Proposition, since σ : P → U is
the codomain-restriction of ♦ : P → D2, and the principal filter natural transformation
τ : P→ U is the codomain-restriction of @ : P→ D2.

4.14. Remark. For future use, notice that a map f : Y → D2X factorizes through
UX ↪→ D2X if and only if f• is monotone, and through FX ↪→ D2X if and only if f•
preserves finite infima.

4.15. Initial lifts of Kleisli extensions. Fix a monad morphism α : S → T,
where T = (T, η, µ) is coherent Sup-enriched via τ , and S = (S, δ, ν). We will now study
extensions of the form α∗(T τV). Since initial lifts commute with strata extensions, it
actually suffices to study V = 2, and from now on we write S := α∗(T τ ). In this context,
each νX is monotone: in the commutative diagram

SSX
αSX //

νX
��

TSX
TαX // TTX

µX
��

SX αX
// TX

the upper-right path is monotone, so νX is monotone by initiality of αX . Observe that δ
and ν become oplax transformations with respect to S.

We introduce a natural transformation α∨ : PS → T via

α∨X :=
∨
PαX = µX · τTX · PαX = αT

X · τSX ,

or equivalently, α∨X(A) =
∨
αX [A] for all A ⊆ SX. Each α∨X preserves suprema, and

therefore has a right adjoint which we denote by α↓X : TX → PSX. Clearly,

α↓X(f) = { x ∈ SX | αX(x) ≤ f } .
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The maps α↓X allow for a convenient description of S = α∗(T τ ). Indeed, for r : X −→7 Y
we have (

Sr
)[

= α↓X · r
τ · αY .

In particular, the order relation ≤S on SX satisfies (≤S)[ = α↓X · αX .

4.16. Sup-generating morphisms. We say that x ∈ TX is α-approachable if it is in
the image of α∨X . We call α sup-generating in (T, τ) if each α∨X is surjective, that is, if

α∨ · α↓ = 1 ,

or equivalently,
∀f ∈ TX ∃A ⊆ SX : f =

∨
αX [A],

holds. When S is a submonad of T and the embedding is sup-generating, we simply say
that S is sup-generating in T.

Observe that a morphism of Sup-enriched monads is sup-generating if and only if every
αX is surjective. Indeed, for α : (S, σ)→ (T, τ), α∨X is just the diagonal in (3) of 4.2, and
νX · σSX is always surjective.

4.17. The first interpolation condition. We say that a morphism α : S → T
interpolates a relation r : SX −→7 Y (in the Sup-enriched monad (T, τ)) if

α↓X · α
∨
X · r[ ≤

(
≤[
SX
· νX)P · (Sr)[ · δY

holds (where S = α∗(T τ )). The above condition expands to α↓X ·α∨X · r[ ≤ (α↓X ·αX · νX)P ·
α↓SX · rτ · ηY and can be written pointwise as

αX(x) ≤
∨
{αX(y) | r(y, y) = >} =⇒ ∃X ∈ SSX : x ≤ νX(X) & αSX(X) ≤ rτ · ηY (y)

for all x ∈ SX, y ∈ Y ; note that αSX(X) ≤ rτ · ηY (y) is equivalent to Sr(X, δY (y)) = >.
If S is a submonad of T, the previous condition naturally has a simpler expression, and
may be represented graphically by

x ≤ µX · rτ · ηY (y) =⇒ ∃X :

X_

��

≤ rτ · ηY (y)

x ≤ µX(X)

The morphism α : S → T satisfies the first interpolation condition in (T, τ) if it interpo-
lates every relation r : SX −→7 Y .
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4.18. The second interpolation condition. A morphism α : S → T satisfies
the second interpolation condition (in the Sup-enriched monad (T, τ)) if the following
inequality

αT
X · rτ · αY ≤ α∨X · PνX · (Sr)[

holds for all relations r : SX −→7 Y (where S = α∗(T τ )). In pointwise notation, this
condition becomes

µX · TαX · rτ · αY (y) ≤
∨
{αX · νX(X) | X ∈ SSX : αSX(X) ≤ rτ · αY (y) } ,

for all y ∈ SY . Note that this can be read as an equality, since

α∨X · PνX · α
↓
SX · r

τ · αY ≤ αT
X · rτ · αY

always holds. Indeed, we have

α∨X · PνX = (αX · 1S
SX)T · τSSX = (αT

X · αSX)T · τSSX = αT
X · α∨SX (5)

so that α∨X · PνX · α
↓
SX ≤ αT

X , and we can conclude by composing each side with rτ · αY
on the right.

Let us point out that if α is sup-generating, then it satisfies the second interpolation
condition. This is immediate from (5) upon composing with α↓SX .

4.19. Interpolating morphisms. A monad morphism α : S → T is interpolating in
(T, τ) if it satisfies the first and second interpolation conditions. If S is a submonad of T
and the embedding is interpolating, we may simply say that S is interpolating in T.

Notice that α is interpolating whenever it is a morphism of coherent Sup-enriched
monads α : (S, σ)→ (T, τ). Indeed, if X := rσ(y) ∈ SSX, then we get

αX · νX(X) = µX · TαX · rτ · αY (y) and αSX(X) = rτ · αY (y) .

Therefore, the second interpolation condition is verified, and the first follows by setting
y := δY (y).

4.20. Examples.

1. Any Sup-enriched monad T = (T, η, µ) comes with a monad morphism η : I → T.
By the fact that τX =

∨
PηX (see 4.1), both interpolation conditions may easily be

seen to hold. That is, η is always interpolating.

2. If S = P is the powerset monad embedded in T = F via the principal filter morphism
τ : P→ F, then the interpolation conditions are immediate since P is Sup-enriched.

3. In the case where T = F is the filter monad, and S = B the ultrafilter monad, we
simply have for f ∈ FY and r : X −→7 Y that rτ (f) is the filter on X given by

rτ (f) = r[[f] = ↑{ r[[B] | B ∈ f } .
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To see that B is interpolating in F, it is sufficient to verify the first interpolation
condition, since B is sup-generating in F. For ultrafilters x, y on X and a relation
a : βX −→7 X, the inequality x ≤ ΣX · aτ (y) translates as

∀B ∈ y (a[[B] ⊆ AB =⇒ A ∈ x) ,

for all A ⊆ X (where AB = { z ∈ βX | A ∈ z }). If there existed A ∈ x and B ∈ y

with AB ∩ a[[B] = ∅, we would have a[[B] ⊆ (AB)c = (Ac)B (here Ac denotes the
set-complement of A), so that Ac ∈ x, a contradiction. Therefore, AB ∩ a[[B] 6= ∅
for all A ∈ x and B ∈ y, and there exists an ultrafilter X on βX that refines both
{AB | A ∈ x } and aτ (y). This implies that ΣX(X) = x, and we can conclude by
setting y = ηX(y).

5. Kleisli structures and lax algebras

5.1. Kleisli monoids. Let (T, τ) be a coherent Sup-enriched monad. The category
KlMon(T) of Kleisli monoids has as objects pairs (X, c), where X is a set, and its structure
c : X → TX is an extensive and idempotent map:

ηX ≤ c and c ◦ c ≤ c .

Morphisms f : (X, c)→ (Y, d) are Set-maps f : X → Y satisfying:

Tf · c ≤ d · f.

Contrasting the conditions on the structure on a Kleisli monoid with the reflexivity and
transitivity conditions of a lax algebra as in (2) of 3.9, we note the strong parallel between
the two concepts. This parallel will be analyzed in more detail in Theorem 5.6 and its
subsequent results.

5.2. Examples.

1. If one takes for T the powerset monad P, then KlMon(P) is the category of reflexive
and transitive relations. That is, KlMon(P) is concretely isomorphic to the category
Ord of preordered sets.

2. Let T be the up-set monad U. Remark 4.14 tells us that a map i : X → UX
corresponds to a monotone map i• : PX → PX. The discussion in Section 4.11
then shows that i is extensive and idempotent if and only if i• satisfies

A ⊇ i•(A) and i• · i•(A) ⊇ i•(A)

for all A ∈ PX, that is, if and only if i• is an interior operator on X. One easily
checks that KlMon(U)-morphisms correspond to continuous maps f : (X, i•) →
(Y, j•), that is, maps f : X → Y such that

f−1(j•(A)) ⊆ i•(f
−1(A))
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for all A ⊆ Y . Hence, KlMon(U) is concretely isomorphic to the category Int of
interior spaces, and therefore also concretely isomorphic to the category Cls of closure
spaces.

3. Let us consider now the filter monad F. From Remark 4.14 and the previous ex-
ample, it follows that KlMon(F)-structures on a set X correspond to interior op-
erators which preserve finite infima, that is, to topologies on X. Thus, KlMon(F)
is concretely isomorphic to the category Top of topological spaces. The “monadic”
presentation of topological spaces as Kleisli monoids is exactly Hausdorff’s original
definition [9] of topological spaces by way of neighborhood systems, rephrased in
categorical terms (and without the Hausdorff separation condition). See [12] for
applications and further references.

4. Since there is a monad morphism τ : P → T, any Eilenberg-Moore algebra (X, a :
TX → X) is a sup-semilattice X with supremum given by a · τX (as in 4.1). More-
over, we have

a · (µX · τTX) = a · Ta · τTX = (a · τX) · Pa ,
so a is a sup-map and therefore has a right adjoint a∗ : X → TX. On one hand,
a · ηX ≤ 1X implies ηX ≤ a∗. On the other, a ·µX ≤ a ·Ta yields µX ≤ a∗ · a ·Ta, so

a∗ ◦ a∗ = µX · Ta∗ · a∗ ≤ a∗ · a · T (a · a∗) · a∗ ≤ a∗ .

Therefore, (X, a∗) is a Kleisli T-algebra, and the Eilenberg-Moore category SetT

is a subcategory of KlMon(T). More precisely, there is a faithful functor SetT →
KlMon(T) (not necessarily full, as the examples below demonstrate) that is injective
on objects.

This example presents the category Sup ∼= SetP of sup-semilattices as a subcategory
of Ord, and the category Cnt ∼= SetF of continuous lattices [6] as a subcategory
of Top. Moreover, the topology obtained on continuous lattices via the previous
considerations is the Scott topology [8].

5.3. Supercategories of the category of Kleisli monoids. Let us introduce
the following supercategories of KlMon(T): the objects of the category K(T) are pairs
(X, c : X → TX), and the morphisms f : (X, c)→ (Y, d) are maps f : X → Y such that
Tf · c ≤ d · f . We also introduce the following full subcategories of K(T) = KlMon0(T):

• KlMon1(T) is the full subcategory of KlMon0(T) whose objects have an extensive struc-
ture;

• KlMon2(T) is the full subcategory of KlMon0(T) whose objects have an idempotent
structure.

Giving a concrete description of the various categories of the form KlMoni(T) for the mon-
ads mentioned in Examples 5.2 is straightforward. For instance, KlMon1(F) is concretely
isomorphic to the category of pretopological spaces.
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5.4. Supercategories of lax algebras. Let T = (T, η, µ) be a monad on Set
together with a lax extension T of T . We say a V-relation a : TX −→7 Y is

• antitone if a · (≤T ) ≤ a holds, and

• left unitary if η◦Y · Ta ≤ a · µX holds.

In the notations of 3.9, the left unitary condition may be rephrased as η◦Y ∗a ≤ a. Observe
also that the structure V-relation of a lax algebra (X, a) is antitone as well as left unitary.

Denote by A(T,V) the category whose objects are pairs (X, a) (with a : TX −→7 X a
V-relation), and whose morphisms f : (X, a)→ (Y, b) are the maps f : X → Y satisfying
f · a ≤ b · Tf . We define the following full subcategories of A(T,V):

• the objects of Alg0(T,V) are those pairs (X, a) whose structure a is antitone and left
unitary;

• Alg1(T,V) is the full subcategory of Alg0(T,V) whose objects have a reflexive structure;

• Alg2(T,V) is the full subcategory of Alg0(T,V) whose objects have a transitive structure.

5.5. Relating lax algebras and Kleisli monoids. Guided by the example of
topological spaces, which can be described not only via neighborhood filters or via filter
convergence, but also by the convergence of ultrafilters, we are going to compare KlMon(T)
to Alg(S,2), where the monad S is related to the coherent Sup-enriched monad (T, τ) by
way of a monad morphism α : S → T. The following Theorem will follow directly from
Proposition 5.13:

5.6. Theorem. Let α : S→ T be a monad morphism with T coherent Sup-enriched via
τ , and set S = α∗(T τ ). If α is sup-generating and interpolating then the dotted arrows in
the following diagram are concrete isomorphisms:

KlMon(T)
∼=

&&

� � //
� _

��

KlMon1(T)
� _

��

∼=
((

Alg(S,2) � � //
� _

��

Alg1(S,2)
� _

��

KlMon2(T) � � //

∼=
&&

KlMon0(T) = K(T)
∼=

((

Alg2(S,2) � � // Alg0(S,2) � � // A(S,2)

The case of the inclusion α : B → F is treated in [11], which inspired the following
presentation.

Until the end of this section, we fix a coherent Sup-enriched monad (T, τ) with T =
(T, η, µ), a monad S = (S, δ, ν), a monad morphism α : S→ T, and we set S = α∗(T τ ).
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5.7. The underlying adjunction. For sets X and Y , we define an adjunction

Rel(SX, Y )
φ //
⊥ Set(Y, TX)
ψ

oo ,

as follows. By using the isomorphism Rel(SX, Y ) ∼= Set(Y, PSX) in Ord, we define

φ : Set(Y, PSX)→ Set(Y, TX) , r[ 7→ α∨X · r[ ,
ψ : Set(Y, TX)→ Set(Y, PSX) , c 7→ α↓X · c .

The adjunction φ a ψ follows from α∨X a α
↓
X . In pointwise notation, φ and ψ can be

expressed by

φ(r)(y) =
∨

αX [r[(y)] and ψ(c)(x, y) = > ⇐⇒ αX(x) ≤ c(y) ,

for r : SX −→7 Y , and c : Y → TX. As usual, φ and ψ restrict to mutually inverse
isomorphisms between the sets of fixpoints of ψ · φ and of φ · ψ, respectively.

5.8. Fixpoints of the adjunction. Obviously, the fixpoints of φ ·ψ are those maps
c : Y → TX such that c(y) is α-approachable for all y ∈ Y . Unwinding the fixpoint
condition for ψ · φ, we see that the fixpoints are those relations r : SX −→7 Y such that
r[(y) is α-closed for all y ∈ Y , where a subset A ⊆ SX is α-closed if

αX(x) ≤
∨
αX [A] =⇒ x ∈ A .

The latter terminology is borrowed from [11], where α : B → F is the inclusion, and
the α-closed subsets of βX are precisely the closed sets of the so-called Zariski topology,
which arises from the free compact Hausdorff space on X.

While the α-closed subsets are closed under arbitrary intersection, they are in general
not closed under finite unions.

Observe that r[(y) is 1T-closed if and only if r is continuous, that is, if and only if

r(
∨
A, y) =

∧
x∈A r(x, y)

holds for any A ⊆ TX. This concept of continuity was used in [20] and [18] to obtain
Theorem 5.6 for the special case α = 1T.

5.9. Lemma. A relation r : SX −→7 Y is a fixpoint of ψ ·φ if and only if it is interpolated
by α, left unitary, and antitone.

Proof. Observe that for any antitone and left unitary relation r : SX −→7 Y , we have
in fact r · (≤S) = r (see 3.2) and δ◦Y · Sr · ν◦X = r. Indeed, to see that the left unitary
condition δ◦Y · Sr · ν◦X ≤ r is in fact an equality, recall that δ : 1 → S is oplax, so that
r ≤ δ◦Y · Sr · δSX , hence

r = r · δ◦SX · ν◦X ≤ δ◦Y · Sr · δSX · δ◦SX · ν◦X ≤ δ◦Y · Sr · ν◦X .
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Thus, by applying −[, we observe that a relation r : SX −→7 Y is left unitary precisely
when

r[ = PνX · (Sr)[ · δY
holds, while r is antitone if and only if (≤[

S
)P · r[ = r[.

Suppose that r : SX −→7 Y is antitone and left unitary. We have:

r[ = (≤[
S
)P · r[ (r antitone)

= (≤[
S
)P · PνX · (Sr)[ · δY (r left unitary)

= (≤[
S
·νX)P · (Sr)[ · δY .

Therefore, if r is interpolated by α, we have α↓X ·α∨X · r[ ≤ (≤[
S
·νX)P · (Sr)[ · δY = r[, that

is, r is a fixpoint of ψ · φ.
Conversely, any fixpoint r of ψ ·φ is of the form ψ(c) for some c, hence clearly antitone.

Similarly, if Sr(X, δX(y)) = > holds, we can apply µX ·TαX to each side of the inequality
αSX(X) ≤ rτ ·ηX(y), and conclude that r(νX(X), y) = > by the fixpoint condition. Finally,
since any fixpoint is left unitary and antitone, we see that it is interpolated by α due to
the displayed equation above.

5.10. Proposition. The ordered sets of all c : Y → TX which are pointwise α-
approachable and of all r : SX −→7 Y which are antitone, left unitary, and interpolated by
α are isomorphic.

Proof. This is immediate from the previous lemma.

5.11. Lemma. The map φ satisfies

φ(δ◦X) = ηX and φ(s ∗ r) ≤ φ(r) ◦ φ(s)

for all r : SX −→7 Y and s : SY −→7 Z. As a consequence, the conditions

δ◦X ≤ ψ(ηX) and ψ(d) ∗ ψ(c) ≤ ψ(c ◦ d)

hold for all c : Y → TX, d : Z → TY .
Moreover, φ satisfies φ(s ∗ r) = φ(r) ◦ φ(s) if and only if α satisfies the second inter-

polation condition.

Proof. By recalling that (δ◦X)[ = ιSX · δX , we obtain φ(δ◦X) = αT
X · τSX · ιSX · δX =

αT
X · ηSX · δX = αX · δX = ηX . To show φ(s ∗ r) ≤ φ(r) ◦ φ(s), observe that

(α∨X · r[)T = (αT
X · τSX · r[)T = αT

X · (τSX · r[)T = αT
X · rτ , (6)
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and recall from 4.18 that αT
X · rτ · αY ≥ α∨X · PνX · (Sr)[ holds. Therefore, we get

(α∨X · r[)T · α∨Y = αT
X · (τSX · r[)T · αT

Y · τSY
= (αT

X · rτ · αY )T · τSY
≥
(
α∨X · PνX · (Sr)[

)T · τSY
= αT

X ·
(
τSX · PνX · (Sr)[

)T · τSY
= αT

X · τSX ·
(
PνX · (Sr)[

)P

= α∨X ·
(
PνX · (Sr)[

)P

so that φ(r)◦φ(s) = (α∨X ·r[)T ·α∨Y ·s[ ≥ α∨X ·PνX ·
(
(Sr)[

)P ·s[ = α∨X ·(s·Sr ·ν◦X)[ = φ(s∗r).
If the second interpolation condition holds, then the last two inequalities become

equalities. To show the converse claim, observe that αY = αT
Y ·ηSY = αT

Y ·τSY ·ιSY = α∨Y ·ιSY
and ιSY = (1SY )[. Putting these equalities together, using (6) above, and assuming that
φ(r) ◦ φ(s) = φ(s ∗ r), we obtain:

αT
X · rτ · αY = (α∨X · r[)T · (α∨Y · 1[SY ) = φ(r) ◦ φ(1SY ) = φ(1SY ∗ r)

= α∨X · (1SY · Sr · ν◦X)[ = α∨X ·
(
(ν◦X)[

)P · (Sr)[ = α∨X · PνX · (Sr)[,

so the second interpolation condition holds. The claims for ψ follow from the adjunction
φ a ψ.

5.12. The main adjunction. We are now in a position to prove Theorem 5.6. Define
concrete functors

Ψ : K(T)→ A(S,2) and Φ : A(S,2)→ K(T)

by applying ψ and φ to the structures; that is, Ψ(X, c) = (X,ψ(c)) and Φ(X, r) =
(X,φ(r)). The fact that Ψ and Φ send morphisms to morphisms follows easily from
the definitions. These functors yield the isomorphisms of Theorem 5.6. The situation is
analyzed in detail in the following result, of which 5.6 is an immediate consequence.

5.13. Proposition. The functor Ψ is right adjoint to Φ. Moreover, Ψ and Φ restrict
as the solid arrows in the diagram below, leading to adjunctions between Algi(S,2) and
KlMoni(T) for i = 0, 1 as in the right vertical face of the diagram below.

KlMon(T)
Ψ

&&MMMMMMMM
� � //

� _

��

KlMon1(T)
� _

��

Ψ

&&MMMMMMMM

Alg(S,2) � � //
� _

��

Φ

ffM M
M

M

Alg1(S,2)
� _

��

Φ

ffMMMMMMMM

KlMon2(T) � � //

Ψ

&&MMMMMMMM
KlMon0(T)

Ψ

&&MMMMMMMM

Alg2(S,2) � � //
Φ

ffM M
M

M

Alg0(S,2)
Φ

ffMMMMMMMM
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If α satisfies the second interpolation condition, we get restrictions of Φ as the dashed
arrows above, hence adjunctions between KlMon2(T) and Alg2(S,2) as well as between
KlMon(T) and Alg(S,2).

If α is sup-generating, then Ψ and all its restrictions in the diagram above are full
reflective embeddings.

If α is interpolating, then Φ and all its restrictions as above are full coreflective em-
beddings.

Proof. The adjunction Φ a Ψ follows from φ a ψ. The other properties are immediate
from 5.9–5.11 (recall that α satisfies the second interpolation condition provided it is sup-
generating).

5.14. Corollary. There are concrete isomorphisms

KlMon0(T) ∼= Alg0(T,2) , KlMon2(T) ∼= Alg2(T,2) ,
KlMon1(T) ∼= Alg1(T,2) , KlMon(T) ∼= Alg(T,2) .

Proof. The monad morphism 1T is sup-generating and interpolating.

5.15. Corollary. If α : S → T is interpolating in (T, τ), then Algi(S,2) is a core-
flective subcategory of Algi(T,2) for i = 0, 1, 2, and Alg(S,2) is a concrete coreflective
subcategory of Alg(T,2). Moreover, if α is also sup-generating, then these coreflections
are isomorphisms.

Proof. Simply compose the coreflections from Proposition 5.13 with the isomorphisms
from Corollary 5.14.

5.16. Remark. In the case where α is interpolating, the coreflection Alg(T,2) →
Alg(S,2) is simply the functor Fα (considered in 3.12) which sends (X, a : TX −→7 X)
to (X, a · αX : SX −→7 X). The concrete coreflective embedding Alg(S,2) → Alg(T,2)
then sends a structure a : SX −→7 X to â : TX −→7 X, where

â(f, y) =
∧
{ a(x, y) | x ∈ SX : αX(x) ≤ f } ,

for all f ∈ TX, y ∈ X.

5.17. Examples.

1. The category RRel of reflexive relations and relation-preserving maps can be de-
scribed either as Alg1(I,2), KlMon1(P), or Alg1(P,2), depending on whether a rela-
tion r on a set X is seen as a map

r : X ×X → 2 , r : X → PX , or even r : PX ×X → 2

respectively. Similarly, the category Ord of preordered sets can be obtained as any
of the three categories

Alg(I,2) ∼= KlMon(P) ∼= Alg(P,2) .
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2. The category PrTop of pretopological spaces and continuous maps can be pre-
sented via convergence of ultrafilters as Alg1(B,2), via neighborhood systems as
KlMon1(F,2), or via convergence of filters as Alg1(F,2). The corresponding descrip-
tions of the category Top of topological spaces are

Alg(B,2) ∼= KlMon(F) ∼= Alg(F,2) .

3. The concretely isomorphic categories Int and Cls of interior and closure spaces re-
spectively can be described either as Alg(U,2) or as KlMon(U,2). The objects
of Alg1(U,2) ∼= KlMon1(U) are preclosure spaces, that is, sets X equipped with a
monotone and extensive map PX → PX. The resulting category is denoted by
PrCls.

4. Thanks to the previous examples, Corollary 5.15 may be applied to the diagram of
2.7(7) to get either of the two chains of coreflective embeddings below:

RRel // PrTop // PrCls

Ord // Top // Cls .

5. By example 5.2(4) and Theorem 5.6, every T-algebra is a (T,2)-algebra (for the
Kleisli extension T ), so that the latter concept is indeed a generalization of the
former. This fact is a priori not obvious because in general Ta 6= Ta for Set-maps
a : TX → X, and should be contrasted with the case of Barr’s extension that
satisfies Tf = Tf for any map f : X → Y .

6. Extending Alg(T,2) to Alg(T,V)

6.1. Tower extensions. Let us first recall the original definition of a tower extension
from [21]. Consider a topological functor G : C → Set, and denote by GX the fiber of G
over a set X. By topologicity of G, every GX is a complete lattice with respect to the
order

A ≤ B ⇐⇒ 1X : A→ B is a C-morphism,

for all A,B ∈ C with GA = X = GB. If V is a complete lattice, the tower extension
C[V] of C is the concrete category defined as follows:

(i) objects are V-towers of C-objects, that is, pairs (X,φ), with X a set and φ : Vop →
GX an inf-map;

(ii) morphisms f : (X,φ) → (Y, ψ) are given by maps f : X → Y such that for each
v ∈ V, f : φ(v)→ ψ(v) is a C-morphism.

For v ∈ V, we call φ(v) the component of φ at v. Observe that we have C[1] ∼= Set and
C[2] ∼= C.
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6.2. Proposition. Consider a monad T = (T, η, µ) on Set with a lax extension T of T
to Rel. The concrete functors

A(T,V)→ A(T,2)[V], (X, a) 7→ (X, (v 7→ av)),

and
A(T,2)[V]→ A(T,V), (X,φ) 7→ (X, rφ),

are mutually inverse and restrict to an isomorphism A0(T,V) ∼= A0(T,2)[V].

Proof. Using the laws from 2.4, one checks easily that the assignments above define
functors. The fact that they are mutually inverse also follows from 2.4.

6.3. Proposition. Let T = (T, η, µ) be a monad on Set with a lax Rel-extension T of
T . For any (X, a) ∈ A(T,V), we have

• a : TX −→7 X is reflexive if and only if ak ∈ Rel(TX,X) is reflexive.

• a is transitive if and only if av ∗ au ≤ au⊗v holds for all u, v ∈ V.

Proof. The first statement is obvious.
Assume now that (X, a) is transitive. It suffices to show that av · (TVa)u ≤ au⊗v · µX .

For x ∈ X, let X ∈ (av · (TVa)u)
[(x), so there exists x ∈ TX with v ≤ a(x, x) and

u ≤ TVa(X, x). Therefore,

u⊗ v ≤
∨

x∈TX

TVa(X, x)⊗ a(x, x) = a · TVa(X, x) ≤ a · µX(X, x) .

Since (a · µX)w = aw · µX holds, we are done.
Conversely, assume that av ∗ au ⊆ au⊗v holds for all u, v ∈ V. It suffices to show

TVa(X, x)⊗ a(x, x) ≤ a(µX(X), x) for all x ∈ X, x ∈ TX, X ∈ TTX. Fix such x, x,X and
set v := a(x, x), A := {u ∈ V | Tau(X, x) = >}. We have TVa(X, x)⊗a(x, x) =

∨
u∈A u⊗v.

For any u ∈ A, we have av · Tau ≤ au⊗v · µX , so u ⊗ v ≤ a(µX(X), x), and the claim is
proved.

6.4. Reflexive and transitive towers. The previous result motivates the following
definitions. We say that (X,φ) ∈ A(T,2)[V] is

• reflexive if φ(k) is reflexive,

• transitive if φ(u) ∗ φ(v) ≤ φ(v ⊗ u) holds for all u, v ∈ V, and

• lax if it is both reflexive and transitive.

Any lax tower (X,φ) in A(T,2)[V] is componentwise left unitary, hence an element of
Alg0(T,2)[V]. Indeed, we have:

η◦X ∗ φ(v) ≤ φ(k) ∗ φ(v) ≤ φ(k ⊗ v) = φ(v) .



EXTENSIONS IN THE THEORY OF LAX ALGEBRAS 147

6.5. Proposition. The functors of Proposition 6.2 restrict to concrete isomorphisms
between

• Alg1(T,V) and the full subcategory of Alg0(T,2)[V] whose objects are the reflexive tow-
ers;

• Alg2(T,V) and the full subcategory of Alg0(T,2)[V] whose objects are the transitive
towers;

• Alg(T,V) and the full subcategory of A(T,2)[V] whose objects are the lax towers.

Proof. This is immediate.

6.6. Corollary. If V is integral, then Alg1(T,V) and Alg1(T,2)[V] are concretely
isomorphic.

Proof. The statement follows from the previous result and the fact that a tower (X,φ)
in Alg0(T,2)[V] is reflexive if and only if φ(v) is reflexive for each v ≤ k.

6.7. Corollary. If V is a frame, then Alg(T,V) and Alg(T,2)[V] are concretely iso-
morphic.

Proof. Assume that ⊗ = ∧ and each φ(v) is transitive. Take any u, v ∈ V. For w = u∧v
we have φ(u) ≤ φ(w) and φ(v) ≤ φ(w), so that φ(u) ∗ φ(v) ≤ φ(w) ∗ φ(w) ≤ φ(w) =
φ(v ∧ u). The conclusion follows from the previous results.

6.8. Remark. Observe that if (X,φ) is transitive, then φ(v) is transitive whenever v is
idempotent in V. In particular, φ(k) is transitive for any transitive tower. This simple
remark turns out to be useful in a number of results where an idempotent structure is
sought in the multitude of φ(v), v ∈ V.

6.9. Tower extensions of Kleisli monoids. Let KlMon(T,V) denote the full sub-
category of KlMon(T)[V] whose objects are lax towers. Thus, an object of KlMon(T,V)
is a pair

(
X, (av : X → TX)v∈V

)
where X is a set and the family (av) satisfies

a
∨
W =

∧
w∈W aw, ηX ≤ ak, av ◦ au ≤ au⊗v,

for all W ⊆ V and u, v ∈ V .

6.10. Theorem. Let (T, τ) be a coherent Sup-enriched monad, and α : S → T an
interpolating and sup-generating monad morphism. With respect to the extension S =
α∗(T τV), there is a concrete isomorphism

Alg(S,V) ∼= KlMon(T,V).

Proof. By Lemma 5.11, the isomorphism Alg(S,2) ∼= KlMon(T) from Theorem 5.6 is
compatible with the operations ∗ and ◦ on the fibers of Alg(S,2) and KlMon(T), respec-
tively. Hence, this isomorphism lifts to the lax tower extensions.
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6.11. Corollary. Let (T, τ) be a coherent Sup-enriched monad. With respect to the
extension T τV, we have a concrete isomorphism Alg(T,V) ∼= KlMon(T,V).

Proof. One just uses the fact that 1T is interpolating and sup-generating. (Note that
a similar result has been obtained in [20] under the additional assumption that V is
constructively complete distributive).

6.12. Remark. The previous results suggest that categories fibered in “complete lat-
tices with unital convolutions” provide an adequate setting in which to study laxly indexed
towers. The latter are closely related to continuous relational presheaves on the one-object
quantaloid V (see [17]).

6.13. Examples.

1. The category PrApp of preapproach spaces [13] can be described as any one of the
concretely isomorphic categories below

Alg1(B,P+) ∼= KlMon1(F,P+) ∼= Alg1(F,P+),

and the full subcategory App of approach spaces [14] can be described as

Alg(B,P+) ∼= KlMon(F,P+) ∼= Alg(F,P+).

2. As in [21], the categories of “fuzzy neighborhood convergence spaces” and of “fuzzy
neighborhood spaces” are obtained as

Alg1(B, [0, 1]) ∼= KlMon1(F, [0, 1]) ∼= Alg1(F, [0, 1]),

Alg(B, [0, 1]) ∼= KlMon(F, [0, 1]) ∼= Alg(F, [0, 1]).

where [0, 1] carries the quantale structure given by ∧. Analogous results hold for U,
giving rise to various extensions of the category of interior (or closure) spaces.

3. Alg(B,22) is the category BiTop of bitopological spaces. This follows from 6.14
below. We can also describe BiTop as KlMon(F,22), or as Alg(F,22). Similar results
hold for interior spaces, pretopological spaces, etc.

4. Tower extensions allow to effectively describe (T,V)-algebras for simple lattices
V. For instance, Alg(B, {0, 1, 2}), where {0, 1, 2} carries ∧ as tensor, is concretely
isomorphic to the category which has as objects triples (X, τ0, τ1), where τ0 ⊆ τ1 are
topologies, and as morphisms maps which are separately continuous.

5. Another interesting example is given by the identity monad together with the non-
integral three-chain 3 of Example 2.2(4). Indeed, objects of Alg(I,3) are sets X
with a map φ : 3 → Rel(X,X) such that φ(⊥) = r⊥ satisfies r⊥(x, x) = > for all
x ∈ X, φ(k) = rk is a reflexive and transitive relation, and φ(>) = r> is a relation
such that r> ≤ rk, r> · rk ≤ r>, and rk · r> ≤ r>; morphisms of Alg(I,3) are maps
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that preserve the relations rk and r>. Therefore, Alg(I,3) is concretely isomorphic
to the category whose objects are preordered sets (X,≤) equipped with an auxiliary
relation (see [8]), that is, a relation ≺ on X such that

x ≺ y =⇒ x ≤ y and x ≤ x′ ≺ y′ ≤ y =⇒ x ≺ y ,

for all x, x′, y, y′ ∈ X, and whose morphisms are ≺-preserving monotone maps.

6.14. Proposition. Let I be a set. For any topological category G : C→ Set, the tower
extension C[PI] by the powerset of I is concretely isomorphic to the category I-C, whose
objects are pairs (X, (Ai)I) (with X a set, and each Ai an element of the fibre GA), and
morphisms f : (X, (Ai)) → (Y, (Bi)) are maps f : X → Y such that f : Ai → Bi is a
C-morphism for each i ∈ I.

Proof. Recall that PI is the free Sup-lattice on I, therefore maps s : I → GB correspond
to inf-maps s : PIop → GB via A 7→

∧
s(a), where

∧
denotes the infimum in the fiber,

that is, the initial lift.
Thus, we only need to show that this assignment is compatible with morphisms in the

following sense: if f : Aj → Bj is a morphism for each j ∈ J , J ⊆ I, then f : (
∧
J Aj)→

(
∧
J Bj) is also a morphism. To prove this, recall that each map f : X → Y gives rise to

a monotone map f∗ : GX → GY by forming final lifts along f . Thus, for each i ∈ J we
have f∗(

∧
Aj) ≤ f∗(Ai) ≤ Bi since f : Ai → Bi is a morphism. Hence, f∗(

∧
Aj) ≤

∧
Bj

also holds, that is, f is a morphism (
∧
Aj)→ (

∧
Bj).
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Richard Blute, Université d’ Ottawa: rblute@uottawa.ca
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