We introduce a notion of weakly Mal'cev category, and show that: (a) every internal reflexive graph in a weakly Mal'tsev category admits at most one multiplicative graph structure in the sense of Janelidze, and such a structure always makes it an internal category; (b) (unlike the special case of Mal'tsev categories) there are weakly Mal'tsev categories in which not every internal category is an internal groupoid. We also give a simplified characterization of internal groupoids among internal categories in this context.
Keywords: Admissible reflexive graph, multiplicative graph, internal category, internal groupoid, weakly Mal'cev category, naturally weakly Mal'cev category, Mal'cev variety of universal algebras
2000 MSC: Primary 18E05; Secondary 18B40
Theory and Applications of Categories,
Vol. 21, 2008,
No. 6, pp 91-117.
http://www.tac.mta.ca/tac/volumes/21/6/21-06.dvi
http://www.tac.mta.ca/tac/volumes/21/6/21-06.ps
http://www.tac.mta.ca/tac/volumes/21/6/21-06.pdf
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/21/6/21-06.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/21/6/21-06.ps