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KAN EXTENSIONS IN DOUBLE CATEGORIES
(ON WEAK DOUBLE CATEGORIES, PART III)

MARCO GRANDIS AND ROBERT PARÉ

Abstract.

This paper deals with Kan extensions in a weak double category. Absolute Kan exten-
sions are closely related to the orthogonal adjunctions introduced in a previous paper.
The pointwise case is treated by introducing internal comma objects, which can be
defined in an arbitrary double category.

Introduction

This is a sequel to two papers on the general theory of weak (or pseudo) double categories,
‘Limits in double categories’ [9] and ‘Adjoint for double categories’ [10], which will be
referred to as Part I and II, respectively.

In Part I, it was proved that, in a weak double category A, all (small) double limits
can be constructed from (small) products, equalisers and tabulators, the latter being the
double limit of a vertical arrow. Part II deals with the natural notion of adjunctions G a R
between weak double categories, where G is a colax double functor, while R is lax. It is
called a colax/lax adjunction, and is an instance of an orthogonal adjunction in a particular
double category (in the sense recalled here in 1.3), namely the (strict) double category Dbl
consisting of weak double categories, lax double functors (as horizontal arrows) and colax
double functors (as vertical arrows), with suitable cells (see 1.4).

Here we address Kan extensions in a weak double category D, and we begin considering
extensions for weak double categories.

Section 1 recalls some notions of Part II which are crucial here: orthogonal companions,
orthogonal adjoints and Dbl. Section 2 defines right Kan extensions in a pseudo double
category, and studies the absolute ones. In particular, Thm. 2.5 shows that an orthogonal
adjunction amounts to an absolute Kan extension of the identity.

Section 3 introduces internal comma objects, in a strict double category D; again,
when this is Dbl, we find the double comma F ↓↓R defined in Part II (for a colax F and a
lax R having the same codomain). The general definition of comma objects implies that
the solution is, at the same time, a horizontal and a vertical double limit, as made precise
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in Thm. 3.6; the comments of 3.3 give a motivation for choosing such a strong definition
(which also requires D to be strict).

Section 4 defines pointwise Kan extensions, via the previous internal comma objects.
Also here, an absolute Kan extension corresponding to an orthogonal adjunction is point-
wise (Thm. 4.3).

Then, Section 5 studies deeper properties of comma cells. The main result is the Past-
ing Theorem 5.3, analogous to the pasting properties of homotopy pullbacks in algebraic
topology. It follows that pointwise extensions are ‘stable under composition’ (Thm. 5.4).
Kan extensions for weak double categories are briefly considered in the last two sections,
taking D to be Dbl or some other double category of weak double categories. They will
be the subject of Part IV.

As to literature, let us recall that strict double categories where introduced by C.
Ehresmann [5, 6], while bicategories - the weak version of 2-categories - are due to J.
Bénabou [1]. Weak (or pseudo) double categories, the natural common extension of these
two structures, are much more recent and have probably first appeared in published form
in our Part I. Other contributions on double categories, weak or strict, are referred to in
the previous Parts. Furthermore, [7, 13] deal with homotopy theory and topology, [11, 3]
with computer science, [12] with theoretical physics, and [2, 4, 14] with the general theory
of double categories.

Size aspects (for double categories of double categories, for instance) can be easily
settled working with suitable universes. A reference I.2, or I.2.3, or I.2.3.4 relates to Part
I, namely its Section 2, or Subsection 2.3, or item (4) in the latter. Similarly for Part II.

1. Preliminaries

We review some points from Part II: orthogonal companions and adjoints in a double
category D (1.3), the double category Dbl (1.4) and some double adjunctions (1.5).

1.1. Terminology. For double categories, we use the same terminology and notation
as in the previous Parts. The composite of two horizontal arrows f : A→ A′, g : A′ → A′′

is written gf, while for vertical arrows u : A •→ B, v : B •→ C we write u⊗v or v•u, or
just vu (note the reversion and the dot-marked arrows). The boundary of a double cell
α, consisting of two horizontal arrows and two vertical ones, as in the left diagram

A
f //

•u

��

A′

•v

��

A
•u

��

A
•v

��
α α

B g
// B′ B B

(1)

is displayed as α : (u (f, g) v) or also α : u → v. It is a special cell when the horizontal
arrows are identities (as at the right). The horizontal and vertical compositions of cells
are written as (α|β) and (α

γ
); or also α | β and α⊗γ. The symbols 1A, 1u (resp. 1•

A, 1•
f )
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denote horizontal (resp. vertical) identities. The set of cells with boundary as in the left
diagram above is written [u (f, g) v].

We generally work with pseudo double categories (I.7.1), also called weak double cat-
egories, where the horizontal structure behaves categorically, while the composition of
vertical arrows is associative up to comparison cells α(u, v, w) : (u⊗v)⊗w → u⊗(v⊗w);
these are special isocells - horizontally invertible. But we always assume that vertical
identities behave strictly, a useful simplification, easy to obtain.

Note that, by this unitarity assumption, the vertical composite of three arrows is
well-defined whenever one of them is an identity: in this case, the associativity isocell
α(u, v, w) is an identity (because of its coherence with the relevant unit-comparison cells,
which are assumed to be so). Consequently, the vertical composite of three cells is well-
defined whenever each of their two triples of vertical arrows falls in the previous situation:
both associativity isocells are identities (even if identities are placed at different levels).
We shall refer to this situation as a normal ternary (vertical) composition, of arrows or
cells.

A weak double category A contains a bicategory VA of vertical arrows and special
cells, as well as (because of unitarity) a 2-category HA of horizontal arrows and ‘vertically
special’ cells (I.1.9).

Now, a lax double functor R : A → X between pseudo double categories (II.2.1) pre-
serves the horizontal structure in the strict sense, and the vertical one up to laxity com-
parisons, which are special cells (the identity and composition comparison)

R[A] : 1•
RA → R(1•

A) : RA •→ RA, R[u, v] : Ru⊗Rv → R(u⊗v) : RA •→ RC, (2)

for A and u⊗v : A •→ B •→ C in A. All this has to satisfy naturality and coherence
axioms. (To remember the direction of these cells, one can think of a vertical monad in
A as a lax double functor 1 → A, defined on the singleton double category.)

This lax R is unitary if, for every A in A, the special cell R[A] : 1•
RA → R1•

A is an
identity; then, by coherence, also the following cells are (for u : B •→ A and v : A •→ C)

R[u, 1•
A] : Ru⊗R1•

A → Ru, R[1•
A, v] : R1•

A⊗Rv → Rv. (3)

Dually, a colax double functor F : A → X has comparison cells in the opposite direction

[FA] : F (1•
A) → 1•

FA, F [u, v] : F (u⊗v) → Fu⊗Fv. (4)

A pseudo (resp. strict) double functor is a lax one, whose comparison cells are hor-
izontally invertible (resp. identities); or, equivalently, a colax one satisfying the same
condition. A pseudo double functor can always be made unitary.

Finally, note that, as a consequence of (3), a unitary lax (or colax) double functor
defined on the singleton 1 is necessarily strict. More generally, this fact holds on every
double category where all vertical compositions are trivial (i.e., all pairs of consecutive
vertical arrows contain a vertical identity).
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1.2. Some examples. Among the pseudo double categories listed in I.3, we shall mostly
refer here to Cat (formed of categories, functors and profunctors, I.3.1), Set (sets, map-
pings and spans, I.3.2) and Rel (sets, mappings and relations, I.3.4). In Cat, a profunctor
F : A •→ B is defined as a functor F : Aop×B → Set.

The double category Dbl will be recalled below (1.4). We also consider Ehresmann’s
double category of quintets QA on a 2-category A, where a double cell α : (F (R,S) G)
is defined as a 2-cell α : GR→ SF of A (cf. I.1.3); in particular QCat gives quintets for
the 2-category of categories.

Since our attention is mostly devoted to double categories of ‘categories’ and ‘functors’,
arrows in double categories will be henceforth denoted with capital letters, like R,S, T...
for the horizontal arrows and F,G,H... for the vertical ones.

1.3. Orthogonal companions and adjoints. . Let us recall a few notions, from
II.1.2-3. We are in a pseudo double category D.

First, the horizontal morphism R : A→ B and the vertical morphism F : A •→ B are
presented as companions by assigning a pair (η, ε) of cells as below, called the unit and
counit, satisfying the identities η | ε = 1•

R, η⊗ε = 1F

A

•1

��

A

•F

��

A
R //

•F

��

B

•1

��
η ε

A
R

// B B B

(5)

Given R, this is equivalent (by unitarity, again) to saying that the pair (F, ε) satisfies
the following universal property:

(a) for every cell ε′ : (F ′ (R,S) B) there is a unique cell λ : (F ′ (A, S) F ) such that
ε′ = λ | ε

A
R //

•F ′

��

B

•1

��

A

•F ′

��

A
R //

•F

��

B

•1

��
ε′ = λ ε

A′
S

// B A′
S

// B B

(6)

(Dually, (F, η) is also characterised by a universal property, see II.1(b).) Therefore, if
R has a vertical companion, this is determined up to a unique special isocell, and will often
be written as R∗. Companions compose in the obvious (covariant) way. Companionship
is preserved by unitary lax or colax double functors.

We say that A has vertical companions if every horizontal arrow has a vertical compan-
ion. For instance, in Cat, the vertical companion to a functor R : A→ B is the associated
profunctor R∗ : A •→ B, R∗(a, b) = B(R(a), b); in Set or Rel, the vertical companion of
a function R : A → B is the associated span or relation A •→ B (often identified with
R). Any double category of quintets QA has companions: for a map R, take the same
arrow. (In fact, as proved in II.1.8, QA is the result of freely adding companions to the
2-category A, viewed as a double category in the usual way.)
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Below, we will denote R and R∗ with the same letter and view it as a strong arrow,
which can be placed horizontally or vertically in a diagram, as R : A→ B or R : A •→ B,
respectively. In most relevant examples, such arrows can be identified without problem,
or already are ‘the same thing’.

Secondly, transforming companionship by vertical (or horizontal) duality, the arrows
R : A→ B and G : B •→ A are presented as orthogonal adjoints by a pair (ε, η) of cells as
below

A
R //

•1

��

B

•G

��

B

•G

��

B

•1

��
ε η

A A A
R

// B

(7)

with ε | η = 1•
R and η⊗ ε = 1G. R is called the horizontal adjoint and G the vertical

one. Again, given R, these relations can be described by universal properties for (G, η)
or (G, ε) (cf. II.1.3).

The vertical adjoint of R is determined up to a special isocell and can be written R∗;
vertical adjoints compose, contravariantly: (SR)∗ can be obtained as R∗S∗. A is said to
have vertical (orthogonal) adjoints if every horizontal arrow has a vertical adjoint.

In Cat, the vertical adjoint to a functor R : A → B is the associated profunctor
R∗ : B •→ A, defined by R∗(b, a) = B(b, R(a)). In Set or Rel, the vertical adjoint of a
function R : A → B is the ‘reversed’ span or relation R] : B •→ A. On the other hand, a
double category of quintets QA does not have, generally, all vertical adjoints, since our
data amount to an adjunction in the 2-category A, G a R, with ε : GR→ 1, η : 1 → RG.

1.4. A double category of double categories. . Lax and colax double functors
do not compose well. But they can be organised in a strict double category Dbl (introduced
in II.2.2) which was, in Part II, the basis for our general notion of an external double
adjunction, between (weak) double categories, and will be, here, one of the basis for Kan
extensions in the same external sense.

Its objects are pseudo double categories A,B, ...; its horizontal arrows are the lax
double functors R,S... between them; its vertical arrows are colax double functors F,G...
(II.2.1). A cell α

A R //

•F

��

B
•G

��
α



C
S

// D
(8)

is - loosely speaking - a ‘horizontal transformation’ α : GR → SF (as stressed by the
arrow we are placing in the square). But writing GR→ SF is an abuse of notation: these
composites are neither lax nor colax (just morphisms of double graphs, respecting the
horizontal structure), and the coherence conditions of α require the individual knowledge
of the four ‘functors’, with their comparison cells.

Precisely, the cell α consists of:
- the lax double functors R,S; the colax double functors F,G,
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- maps αA : GR(A) → SF (A) and cells αu in D (for all objects A and all vertical
arrows u : A •→ A′ in A),

GRA
αA //

•GRu

��

SFA
•SFu

��
αu

GRA′
αA′

// SFA′

(9)

These data must satisfy the naturality conditions (c0), (c1) and the coherence condi-
tions (c2), (c3)

(c0) αA′.GRf = SFf.αA,

(c1) (GRa |αv) = (αu |SFa),
(c2) (GR[A] |α1•

A |SF [A]) = (G[RA] | 1•
αA |S[FA]),

(c3) (GR[u, v] |αw |SF [u, v]) = (G[Ru,Rv] | (αu⊗αv) |S[Fu, Fv]),

(10)

for a horizontal arrow f : A → A′, a cell a : (u (f, g) v), an object A and a vertical
composite w = u⊗v in A, respectively. (Actually, (c0) is a consequence of (c1); but
writing it down makes things clearer.)

The horizontal and vertical compositions of cells, in Dbl, are computed in the obvious
way, based in both cases on the horizontal composition of cells (in weak double categories),
which is strictly associative. This explains, in part, the fact that Dbl is a strict double
category, as proved in II.2.2.

1.5. External adjunctions. As we have already recalled, an orthogonal adjunction
in Dbl is a colax/lax adjunction G a R between weak double categories, where G is a colax
double functor, while R is lax. The cells ε : GR→ 1, η : 1 → RG of (5) will now be called
the counit and unit of the adjunction. Various examples can be found in II.5. We only
recall two of them.

In II.5.5, we considered the pseudo double categories Set(= SpSet) and CospSet of
spans and cospans of sets, linked by an obvious colax/lax adjunction G a R

G : SpSet � CospSet :R, ε : GR→ 1, η : 1 → RG, (11)

where, loosely speaking, G turns a span into its pushout, while R turns a cospan into its
pullback. Both G and R are unitary (or can be made so). One can replace Set with any
category C with pullbacks and pushouts.

A variant shows a non-unitary example (II.5.6), based on a 2-category C with 2-
pullbacks, 2 -pushouts, comma and cocomma squares. There is then a second colax/lax
adjunction C a K, where C is constructed with cocomma and K with comma squares

C : SpC � CospC :K, ε : CK → 1, η : 1 → KC. (12)
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2. Kan extensions in weak double categories

We introduce general and absolute Kan extensions in an arbitrary weak double category
D.

2.1. Kan extensions in a 2-category. Let us recall that, in a 2-category D, the
right Kan extension of an arrow S along an arrow R is an arrow G = RanR(S) equipped
with a 2-cell ε : GR→ S so that the pair (G, ε) is universal

I
R // J

G

��

J

G′

��

I
R // J

G′

��
ε

��

τ

��

= α

��
I

S
// A A I

S
// A

(13)

i.e., every similar pair (G′, α) factors through the former, by a unique 2-cell τ : G′ → G.
This extension is said to be absolute if, for every R′, S ′, G′ as below, the following

mapping between sets of 2-cells is bijective

[G′R′, S ′G] → [G′R′R, S ′S], τ 7→ (ε | τ), (14)

I
R // J

R′
//

G

��

J ′

G′

��

I
R′R // J ′

G′

��
ε

��

τ





= α




I

S
// A

S′
// A′ I

S′S
// A′

(A more faithful rendering of the definition would have R′ the identity, but we stated
it in this equivalent form with an eye on our version for double categories.)

On the other hand, assuming that our 2-category D has comma objects, G is the
pointwise right Kan extension of S along R [15] if it is stable under comma squares: for
every arrow H

H↓R
P //

Q

��

J ′

H
��

ω




I

R
// J

G
��

ε




I

S
// A

(15)

the comma-object H↓R gives GH = RanP (SQ), via the pasted cell ϑ = εQ.Gω.
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2.2. Kan extensions in a double category. We introduce now Kan extensions in
a pseudo double category D. Given a vertical arrow F and two horizontal arrows R,S

I
R //

•F

��

J
•G

��
ε

X
S

// A

(16)

we say that the vertical arrow G : J •→ A is the right Kan extension of F along the
horizontal arrows R,S (or, from R to S), via the cell ε, if:

(Ran) for every G′ : J •→ A, the mapping [G (J,A) G′] → [F (R,S) G′], τ 7→ (ε | τ) is
bijective.

The vertical arrow G is determined up to a special isocell and written RanR,S(F ). The
cell ε is called the counit of the extension, and a right Kan square.

Further, we say that G is an absolute extension if, for every R′, S ′ and G′ as below,
there is a bijection:

[G (R′, S ′) G′] → [F (R′R,S ′S) G′], τ 7→ (ε | τ), (17)

I
R //

•F

��

J
R′

//

•G

��

J ′

G′

��

I
R′R //

•F

��

J ′

•G′

��
ε τ = α

X
S

// A
S′

// A′ X
S′S

// A′

The pointwise case needs comma objects in D and will be treated in Section 4.

2.3. Dual notions. Applying transpose duality in D (i.e., symmetry with respect to
the ‘main diagonal’), we get a left Kan extension S = LanF,G(R): the horizontal arrow S
is the left Kan extension of R along the vertical arrows F,G (or, from F to G), via the
cell η, if:

I
R //

•F

��

J

•G

��
η

X
S

// A

(18)

(Lan) for every S ′ : X → A, the mapping [X (S, S ′) A] → [F (R,S ′) G], τ 7→ η⊗τ is
bijective.

On the other hand, horizontal duality in D yields the notion of Kan liftings, which
will not be studied here. In the left diagram below, the lifting (F, ε) gives a bijection
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τ 7→ (τ | ε)
I

R′
// J

I

•F ′

��

I
R //

•F

��

A

G

��

τ

τ ε I
R

//

•F

��

A

•G

��
X X

S
// A ε

X
S

// A

(19)

while, at the right hand, the lifting (R, ε) gives a bijection τ 7→ τ⊗ε.

2.4. Theorem. [Pasting properties] Let ε′′ = (ε | ε′) be a horizontal composition of cells,
in a pseudo double category D, and ε be an absolute right Kan square. Then:

I
R //

•F

��

J
R′

//

•G

��

J ′ R′′
//

•G′

��

J ′′

•G′′

��
ε ε′ τ

X
S

// A
S′

// A′
S′′

// A′′

(20)

(a) ε′ is a right Kan square if and only if ε′′ is;

(b) ε′ is an absolute right Kan square if and only if ε′′ is.

Proof. We prove (b); the proof of (a) is the same, taking R′′ and S ′′ to be horizontal
identities.

Suppose that ε′ is an absolute right Kan square; given a cell α on the ‘outer perimeter’
of (20), there is precisely one β : (G (R′′R′, S ′′S ′) G′′) such that (ε | β) = α, and then
precisely one τ : (G′ (R′′, S ′′) G′′) such that (ε′ | τ) = β.

Conversely, if (ε|ε′) is an absolute right Kan square, given a cell β : (G (R′′R′, S ′′S ′)G′′),
the cell α = (ε | β) yields precisely one τ such that (ε | ε′ | τ) = (ε | β), which means - by
the universal property of ε - precisely one τ such that (ε′ | τ) = β.

2.5. Theorem. [The formal vertical adjoint theorem] In a pseudo double category D,
the horizontal arrow R has a vertical adjoint (1.3) if and only if the right Kan extension
RanR,1(1A) exists and is absolute. Then, G = RanR,1(1A) is the vertical adjoint and the
counit ε of the extension is also the ε-cell of the orthogonal adjunction

A
R //

•1

��

X
•G

��
ε

A
1

// A

(21)
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Proof. First, let R and G be orthogonal adjoints in D, with cells ε and η (as in the
diagrams below) satisfying the equations (ε | η) = 1•

R, η⊗ε = 1G.
Given α : (1• (R′R,S ′) G′), the equation (ε | τ) = α has precisely one solution as a

cell τ : (G (R′, S ′) G′), namely τ = (η | 1•
R′)⊗α (see the left diagram below)

X

•G

��

X
R′

//

•1•

��

X ′

•1•

��

η 1• A
R //

•1•

��

X

•G

��

X

•1•

��
A

R
//

•1•

��

X
R′

// X ′

•G′

��

ε η

α A A
R

// X

A A
S′

// A′

(22)

Conversely, let G = RanR,1(1A) be an absolute extension, via ε. Then, ε satisfies the
universal property II.1.3(b), which says that it is a part of an orthogonal adjunction.

(Directly, one can obtain the other cell η by the equation (ε | η) = 1•
R in the right

diagram, and then prove the second triangular identity η⊗ ε = 1G by cancelling ε in
the equation (ε | η⊗ε) = ε. The latter follows from the previous equation by middle-four
interchange.)

2.6. Examples of internal Kan extensions. . The previous statement gives ex-
amples of absolute Kan extensions in various weak double categories.

In fact, orthogonal adjoints in Cat, Set and Rel, have been recalled in 1.3. We have
also recalled that an orthogonal adjunction in Dbl is an external colax/lax adjunction
G a R between weak double categories, as studied in Part II (1.5); this leads to external
Kan extensions for weak double categories, whose examination will begin in Section 6.

2.7. Lemma. [Replacement] In a strict double category D, two cells ε, λ are given, as in
the diagram below

I ′
T //

•L

��

J ′

•L′

��
λ

I
R //

•F

��

J
•G

��
ε

X
S

// A

(23)

(a) Suppose there exist two cells ϕ, µ as below, with (ϕ |µ⊗λ) = 1•
R. If GL

′ = RanT,S(FL)
via λ⊗ε, then G = RanR,S(F ) via ε.
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I

•1•

��

I
R //

•M

��

J
•M ′

��
µ

ϕ I ′
T //

•L

��

J ′

•L′

��
λ

I I
R

// J

(b) Suppose there exist three cells ϕ, µ, ψ as in the diagrams below, with 1L⊗ϕ = 1L and
(λ⊗µ |ψ) = 1•

T . Then the converse holds: if G = RanR,S(F ) via ε, then GL′ = RanT,S(FL)
via λ⊗ε.

I

•1•

��

I

•M

��

I ′
T //

•L

��

J ′

•L′

��

J ′

•1•

��

λ

ϕ I ′

•L

��

I
R //

•M

��

J

•M ′

��

ψ

µ

I I I ′
T

// J ′ J ′

Note. This statement will become clearer under stronger hypotheses (5.2), assuming
that T is a ‘vertical deformation retract’ of R via λ, µ, ϕ, in the sense of 5.1.

Proof. (a) Take a ‘test’ vertical arrow G′ : J •→ A and a cell α as in the left diagram
below. Then, the cell λ⊗α gives a (unique) special cell ρ : (GL′ (1, 1) G′L′) such that
(λ⊗ε | ρ) = λ⊗α; but then

(ϕ⊗1F |µ⊗λ⊗ε | 1M ′⊗ρ) = (ϕ⊗1F |µ⊗λ⊗α). (24)

Applying on both sides of this equality the hypothesis (ϕ |µ⊗λ) = 1•
R, we obtain

(ε | 1M ′⊗ρ) = α. On the other hand, if (ε | τ) = (ε | τ ′), then (λ⊗ε | 1L′⊗τ) = (λ⊗ε | 1L′⊗τ ′)
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and 1L′⊗τ = 1L′⊗τ ′, whence τ = τ ′ (precomposing with 1M ′ and recalling that L′M ′ = 1).

I ′

•L

��

I ′
T //

•

��

J ′

•L′

��

J ′

•1•

��

I

•1•

��

I
R //

•M

��

J

•M ′

��

1L λ

µ I

•1•

��

I
R //

•M

��

J

•M ′

��

ψ

ϕ I ′
T //

•L

��

J ′

•L′

��

µ

λ ϕ I ′
T //

•L

��

J ′

•K

��

J ′

•K

��

I

•F

��

I
R //

•F

��

J

•G′

��

1F α I

•F

��

I

•F

��

β 1K

X X
S

// A 1F

X X
S

// A A

(25)

(b) Now G = RanR,S(F ) via ε, and we must prove that GL′ = RanT,S(FL), via λ⊗ε.
Take a cell β as in the right diagram above. Then, for the cell (ϕ⊗1F |µ⊗β) there exists
a (unique) cell τ such that (ε | τ) = (ϕ⊗1F |µ⊗β); therefore, the cell (1L′⊗τ |ψ⊗1K)
satisfies

(λ⊗ε | 1L′⊗τ |ψ⊗1K) = (λ⊗(ϕ⊗1F |µ⊗β) |ψ⊗1K) = (1L⊗ϕ⊗1F | ((λ⊗µ |ψ)⊗β)) = β, (26)

because (λ⊗µ |ψ) = 1 and 1L⊗ϕ = 1. Finally, if (λ⊗ ε | ρ) = (λ⊗ ε | ρ′), we have
(µ⊗λ⊗ ε | ρ) = (µ⊗λ⊗ ε | ρ′) and, precomposing with ϕ⊗1F , (ε | ρ) = (ε | ρ′), whence
ρ = ρ′.

3. Internal comma objects

Comma objects in Dbl have been constructed in Part II, and shown to satisfy both
a horizontal and a vertical universal property. Here, we define comma objects in an
abstract (strict) double category D, by a system of three universal properties based on
the orthogonal companions of 1.3 and the commutative cells they produce. (The last
notion makes sense also in weak double categories.)

3.1. Commutative cells. In the weak double category D four arrows are given, as
below

•
R //

•F

��

•

•G

��
•

S
// •

(27)

In the following two cases one can define the commutative cell on this boundary, using
a ‘flipping procedure’ already considered in II.1.6 in a more general form. It will be
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written as λ : (GR = SF ); in a diagram, such commutative cells will often be denoted by
a boldface Greek letter.

(a) If the vertical arrows F,G are strong (with horizontal companions denoted by the
same letters) and GR = SF, then λ is defined by the pasting of the left diagram below
(containing the unit of G, the counit of F and two vertical identities)

•
R //

•1•

��

•

•1•

��

•

•G∗

��

•

•F

��

•
R //

•F

��

•R

��

•

•1•

��

1• ηG 1F εR

•
R //

F
//

•F∗

��

•
•

G //

S
//

•1•

��

•

•1•

��

•

•1•

��

• •

•S

��

•G

��

•

•G

��

εF 1• ηS 1G

• •
S

// • •
S

// • •

(28)

(b) If the horizontal arrows R,S are strong (with vertical companions denoted by the
same letters) and SF = GR (i.e., S∗F = GR∗), then λ is defined by the pasting of the
right diagram above.

If all the four arrows of the boundary are strong, we can proceed either way, and
we get strictly the same result, provided we proceed in a coherent way, as made explicit
in Lemma 3.5. Here, one should carefully distinguish between horizontal and vertical
arrows, starting with a commutative square GR = SF of horizontal arrows (for instance),
then replacing F and G in diagram (27) with their vertical companions F∗ and G∗, and
constructing, with the given units and counits, a special isocell realising the identification
G∗R∗ = S∗F∗.

Let us assume we have chosen in D a ‘coherent choice of companions’, consistent
with composition (also for units and counits); this choice need not be global, but might
be restricted to a suitable subcategory of horizontal arrows. Then, with reference to this
system, a commutative cell is determined by its boundary and commutative cells are closed
under horizontal and vertical composition (forming a flat double subcategory of D).

3.2. Comma objects. Suppose we have, in the strict double category D, a vertical
arrow F and a horizontal arrow R with the same codomain. The (internal) comma object
F ↓R comes with two projections P,Q which are strong arrows (1.3) and a cell ω, called a
comma cell

F ↓R
P //

•Q

��

A
•F

��
ω

X
R

// C

(29)

satisfying the following three universal properties:

(a) (horizontal property) For every pair of horizontal arrows S : U → A, T : U → X and
every cell α : (1 (S,RT ) F ) there is a unique horizontal arrow L such that PL = S,
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QL = T and moreover the commutative cell λ : (QL = T ) gives (λ |ω) = α

U
S //

•1•

��

A

•F

��

U
L //

•1•

��

F ↓R
P //

•Q

��

A

•F

��
α = λ ω

U
T

// X
R

// C U
T

// X
R

// C

(30)

(b) (vertical property) For every pair of vertical arrows G : V •→ X, H : V •→ A and every

cell β : (G (1, R) FH) there is a unique vertical arrow M such that PM = H, QM = G
and the commutative cell µ : (H = PM) gives µ⊗ω = β

V

•G

��

V

•H

��

V

•M

��

V

•H

��

µ

β A

•F

��

= F ↓R
P

//

•Q

��

A

•F

��
ω

X
R

// C X
R

// C

(31)

(c) (global property) Suppose we have four arrows L,L′,M,M ′, as in the left diagram

below. Form the commutative cells λ, µ, and let α = (λ |ω), β = µ⊗ω (as in the previous
properties)

W
L′

//

•M ′

��

V

•M

��

V

•H

��

• //

•

��

• •

•

��

• //

•

��

•

•

��

•

•

��

σ µ α′

U
L //

•1•

��

F ↓R
P //

•Q

��

A

•F

��

= • //

•1•

��

• // •

•

��

= •

•1•

��

β′ •

•

��

β •

•

��

λ ω α

U
T

// X
R

// C • // • // • • // • // •

(32)

then, for every pair of cells (α′, β′) as above, linked by the coherence equation α′⊗α =

(β′ | β) (displayed at the right), there is precisely one cell σ : (M ′ (L′, L) M) such that:

σ |µ = α′, σ⊗λ = β′

(α′⊗α = (β′ | β), α′ ∈ [M ′ (L′, PL) H], β′ ∈ [M ′ (L′, T ) QM ]).
(33)

We say that D has comma objects when all comma objects F ↓R exist, for every vertical
F and horizontal R having the same codomain.

To study the relationship of comma objects with double limits, it will be useful to
consider two particular instances of the global property:
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(d) we shall speak of the horizontal 2-dimensional property when we restrict M to be the
vertical identity of F ↓R; and of the vertical 2-dimensional property when we restrict L to
be the horizontal identity of F ↓R.

It is easy to see, in the examples below, that the uniqueness of λ (or µ) fails if we do
not require that it be a commutative cell: one can start with a non-commutative cell λ′

with the same boundary and replace it with the commutative λ such that (λ |ω) = (λ′ |ω).

3.3. Comments. . A comma object is a sort of ‘symmetric double limit’, related with
the horizontal double limits dealt with in Part I and with the symmetrical notion of
a vertical double limit, by transpose duality (the symmetry with respect to the main
diagonal of double cells).

In fact, by flipping the strong arrow Q : F ↓R •→ C to its horizontal companion, the
cell ω (29) ‘becomes’ a cell ζ = (ηQ |ω)

F ↓R
P //

•1•

��

A

•F

��

F ↓R

•1•

��

F ↓R
P //

•Q

��

A

•F

��
ζ = ηQ ω

F ↓R
RQ

// C F ↓R
Q

// X
R

// C

(34)

which is (or trivially amounts to) a horizontal cone for the diagram (F,R) in D, as defined
in Part I.

Symmetrically, by flipping the strong arrow P : F ↓R •→ A to its vertical companion,
the cell ω becomes a cell ϑ

F ↓R

•1•

��

F ↓R

•P

��
F ↓R

•1•

��

F ↓R

•FP

��

ηP

ϑ = F ↓R
P //

•Q

��

A

•F

��
X

R
// C ω

X
R

// C

(35)

which is a vertical cone of the diagram (F,R) in D (as defined by transpose duality).
We shall prove, in Thm. 3.6, that the horizontal (resp. vertical) universal property of

the comma is equivalent to the 1-dimensional universal property of the horizontal (resp.
vertical) double limit of the diagram (F,R). Furthermore, the global universal property
3.2(c) is a symmetric way of ‘upgrading’ both properties to dimension 2. Thus, a comma
object as defined above is at the same time a horizontal and a vertical double limit (in the
full, 2-dimensional sense), linked by companionship of projections. Of course, requiring
that both such limits exist and coincide is a very strong condition, and we can only
expect our comma objects to exist in very particular double categories, having some sort
of symmetry in themselves, like Dbl and the double categories of quintets (cf. 3.4). We
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also note that, without assuming D to be strict, the vertical properties should be stated
in a much more complex way.

We end with remarking that it would be possible to deal with right Kan extensions
using just vertical comma objects, defined as vertical double limits or, equivalently, by the
vertical property 3.2(b) together with the vertical 2-dimensional property in 3.2(d) (cf.
Thm. 3.6). Symmetrically, left Kan extensions would be dealt with horizontal comma
objects, defined as horizontal double limits. However, since we need both aspects and
since both kind of limits coincide wherever we need them, it seems simpler to assume this
coincidence from the beginning.

3.4. Examples. (a) In the double category of quintets QCat, we get the usual comma
category F ↓R, with objects (a, x; c : Fa→ Rx), where a is an object of A, x an object of
X and c a map of C.

The first two universal properties work in the usual way, with functors L,M defined
as follows, on the objects:

L(u) = (Su, Tu; αu : FSu→ RTu) (for u in U),

M(v) = (Hv,Gv; βv : FHv → RGv) (for v in V ).
(36)

But the global universal property, in this context, is interesting, and perhaps new. The
natural transformation σ : ML′ → LM ′ must have components σ(w) = (α′(w), β′(w))

HL′w

α′w
��

GL′w

β′w
��

FHL′w
βL′w //

Fα′w
��

RGL′w

Rβ′w
��

SM ′w TM ′w FSM ′w
αM ′w

// RTM ′w

(37)

Conversely, defining σ this way is legitimate: the square above commutes precisely
because of the coherence condition α′⊗α = (β′ | β). Finally:

(σ |µ)(w) = Pσ(w) = α′w, (σ⊗λ)(w) = Qσ(w) = β′w. (38)

(b) Comma objects in Dbl have been constructed in II.2.5 and will be a crucial tool of
Part IV. Here, we only recall that a colax double functor F and a lax double functor R
with the same codomain have a comma pseudo double category F ↓↓R, forming a cell ω in
Dbl

F ↓↓R
P //

•Q

��

A
•F

��

FA
c //

•Fa

��

RX

•Rx

��

FA
c //

•Fu

��

RX

•Rv

��
ω

��

= γ

X
R

// C FA′
c′

// RX ′ FB
d

// RY

(39)

An object of the pseudo double category F ↓↓R is a triple (A,X; c : FA → RX); a
horizontal map (a, x) : (A,X; c) → (A′, X ′; c′) comes from a commutative square of C, as
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in the middle diagram above; a vertical arrow (u, v; γ) : (A,X; c) •→ (B, Y ; d) comes from
a cell γ : (Fu (c, d) Rv) in C, as in the right diagram above. The projections P,Q are
strict double functors (and strong arrows in Dbl).

The first two universal properties of 3.2 have been proved in Thm. II.2.6. The global
property can be easily verified, as for QCat above, noting that the coherence of the double
cell σ can be easily deduced from the coherence of its ‘projections’ on A and X, which are
the given cells (σ |µ) = α′, σ⊗λ = β′.

In all these examples, one can note that - coherently with the relationship already
mentioned - the comma object is constructed as a (horizontal) double limit, with elements
already known from the previous Parts: first the tabulator of the vertical arrow, then a
pullback with the given horizontal arrow; finally, one has to take the vertical companion
of the ‘second’ projection of this pullback.

3.5. Lemma. [Commutative cells are well determined] Suppose we have, in the weak
double category D, a commutative diagram GR = SF of four horizontal arrows. If all these
arrows are strong, the commutative cell λ on the following boundary is well determined:
the two constructions considered in 3.1, by flipping the horizontal or the vertical arrows,
give the same result

•
R //

•F∗

��

•

•G∗

��
λ

•
S

// •

(40)

provided we use, in identifying G∗R∗ = S∗F∗, the special isocell given by the equality
GR = SF, via the units and counits of companionship (see the diagram below).

Proof. The proof is trivial, once the statement is correctly understood. The special
isocell referred to above is constructed as follows:

•

•1•

��

•

•R∗

��

•

•R∗

��

ηR 1

•
R //

•1•

��

•

•1•

��

•

•G∗

��

1• ηG

•
R //

F
//

•F∗

��

•
•

G //

S
//

•1•

��

•

•1•

��

εF 1•

•

•S∗

��

•
S

//

•S∗

��

•

•1•

��
1 εS

• • •

(41)

Note that this quaternary vertical composition is uniquely determined, because of a
remark in 1.1 on ‘normal composition’: in each of its ‘ternary parts’ there is at least one
vertical arrow which is an identity.
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3.6. Theorem. [Comma objects and double limits] A comma object F ↓R is at the
same time the horizontal and the vertical double limit of the diagram (F,R), where the
projections are companions.

More precisely, let us consider a cell ω in the double category D, where P,Q are strong
arrows

Z
P //

•Q

��

A

•F

��

Z
P //

•1•

��

A

•F

��

Z

•Q

��

Z

•FP

��

ω ζ ϑ

X
R

// C Z
RQ

// C X
R

// C

(42)

and let us write ζ = (ηQ |ω) and ϑ = ηP⊗ω the ‘equivalent’ cells obtained by flipping Q
or P, as in (34)-(35).

(a) The object Z, equipped with the cell ω, satisfies the horizontal property of comma
objects if and only if it satisfies the 1-dimensional universal property of the horizontal
double limit of (R,F ), when equipped with the horizontal arrows P,Q and the cell ζ.

(a′) The object Z, equipped with the cell ω, satisfies the vertical property of comma objects
if and only if it satisfies the 1-dimensional universal property of the vertical double limit
of (R,F ), when equipped with the vertical arrows P,Q and the cell ϑ.

(b) Assume that ζ satisfies the 1-dimensional universal property, or equivalently that ω
satisfies the horizontal property. Then, adding the 2-dimensional universal property of ζ
is equivalent to adding the horizontal 2-dimensional property of ω (cf. 3.2(d)).

(b′) Assume that ϑ satisfies the 1-dimensional universal property, or equivalently that ω
satisfies the vertical property. Then, adding the 2-dimensional universal property of ϑ is
equivalent to adding the vertical 2-dimensional property of ω (cf. 3.2(d)).

Proof. It is sufficient to prove (a) and (b).

(a) Indeed, the horizontal universal property (30) can be rewritten without commutative
cells, saying that

U
S //

•1•

��

A

•F

��

U
L //

•1•

��

F ↓R
P //

•1•

��

A

•F

��

α = 1• ζ

U
T

// X
R

// C U
L

// F ↓R
RQ

// C

(43)

- for every pair of horizontal arrows S : U → A, T : U → X and every cell α : (1 (S,RT ) F )
there is a unique horizontal arrow L such that PL = S, QL = T and (1•

L | ζ) = α. Which
is equivalent to saying that F ↓R is the one-dimensional horizontal double limit of the
diagram (F,R) in D, as defined in Part I.

(b) Let us begin by writing down the 2-dimensional property of ζ as a horizontal limit, in a
simplified form which takes advantage of the 1-dimensional property, already considered.
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A cell σ as below

U ′ L′
//

•H

��

F ↓R
P //

•1•

��

A

•F

��

σ ζ

U ′′
L′′

// F ↓R
RQ

// C

(44)

produces two cells

π = (σ | 1•
P ) : (H (PL′, PL′′) 1•

A), ρ = (σ | 1•
Q) : (H (QL′, QL′′) 1•

X), (45)

satisfying the following relations with the cells ζ ′ = (1•
L′ | ζ), ζ ′′ = (1•

L′′ | ζ) which
determine the horizontal arrows L′, L′′:

π⊗ζ ′′ = ζ ′⊗ (ρ | 1•
R), (46)

since they both coincide with (σ | ζ).
The 2-dimensional universal property says that this mapping is bijective. Precisely,

given three arrows and two cells satisfying the following bonds

L′ : U ′ → F ↓R, L′′ : U ′′ → F ↓R, H : U ′ •→ U ′′,

π : (H (PL′, PL′′) 1•
A), ρ : (H (QL′, QL′′) 1•

X), π⊗ζ ′′ = ζ ′⊗(ρ | 1•
R),

(47)

U ′ PL′
//

•H

��

A

•1•

��

U ′ L′
//

•1•

��

F ↓R
P //

•1•

��

A

•F

��

π 1• ζ

U ′′ L′′
//

•1•

��

F ↓R
P //

•1•

��

A

•F

��

= U ′ L′
//

•H

��

F ↓R
Q // X

R //

•1•

��

C

•1•

��
1• ζ ρ 1•

U ′′
L′′

// F ↓R
RQ

// C U ′′
QL′′

// X
R

// C

there is precisely one cell σ : (H (L′, L′′) 1•) satisfying (45), i.e.:

(σ | 1•
P ) = π, (σ | 1•

Q) = ρ. (48)

It will be useful to remark that the coherence condition expressed in the diagram
above can be equivalently written as follows, by flipping the (strong) projection Q in the
right-hand part (εQ is its counit)

π⊗ζ ′′ = (ρ′ |ω), (ρ = (ρ′ | εQ)), (49)

U ′ PL′
//

•H

��

A

•1•

��

π U ′ L′
//

•H

��

F ↓R
P //

•Q

��

A

•F

��

U ′′ PL′′
//

•1•

��

A

•F

��

= ρ′ ω

ζ ′′ U ′′
QL′′

// X
R

// C

U ′′
RQL′

// C
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Now, always by flipping the projections P,Q, we can translate the data of (47) into the
following ones, arranged as in the global property of ω, and actually as in the horizontal
2-dimensional property, because of the presence of the vertical identity of F ↓R :

U ′ L′
//

•H

��

F ↓R

•1•

��

F ↓R

•P

��

•
L′

//

•H

��

• •

•P

��

•
L′

//

•H

��

•

•1•

��

•

•P

��

? µ π′

U ′′ L′′
//

•1•

��

F ↓R
P //

•Q

��

A

•F

��

= • //

•1•

��

• // •

•F

��

= •

•1•

��

ρ′ •

•Q

��

ϑ •

•F

��

λ ω ζ ′′

U ′′
QL′′

// X
R

// C •
QL′′

// •
R

// • •
QL′′

// •
R

// •

(50)

where

- λ : (QL′′ = QL′′) and µ : (P = P ) are commutative cells,

- ζ ′′ = (λ |ω) = (1•
L′′ | ζ), as above, and ϑ = µ⊗ω,

- π′ : (H (L′, PL′′) P ) corresponds to π : (H (PL′, PL′′) 1•
A), by flipping P ,

- ρ′ : (H (L′, QL′′) Q) corresponds to ρ : (H (QL′, QL′′) 1•
X), by flipping Q (as in (48)).

The equivalence of the two universal properties follows now from the following two
remarks:

- by flipping P, the coherence condition π⊗ζ ′′ = (ρ′ |ω) of (49) is equivalent to π′⊗ζ ′′ =
(ρ′ |ϑ), i.e. the coherence condition of the global property (50),

- similarly, the conditions on σ in (48), i.e. (σ | 1•
P ) = π and (σ | 1•

Q) = ρ, are equivalent
to the conditions for the global property (50), i.e. (σ |µ) = π′ and σ⊗λ = ρ′.

4. Pointwise Kan extensions

Pointwise extensions in a strict double category D are defined, using the comma objects
of the previous section.

4.1. The pointwise case. (a) Assume that D has all comma objects (3.2). We say
that G is the pointwise right Kan extension of F, from R to S, via ε, if

H↓R
P //

•Q

��

J ′

•H

��
ω

I
R //

•F

��

J
•G

��
ε

X
S

// A

(51)
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- for every vertical arrow H : J ′ •→ J , GH = RanP,S(FQ), via ω⊗ε,
(where ω is the comma cell of H↓R). Then, G is indeed a Kan extension, as we prove
below.

(b) We also want a slightly more general definition, where D need not have all comma
objects. Let D0 be a double subcategory of D containing all its objects, all its horizontal
arrows, some distinguished vertical arrows (closed under identities and composition, of
course) and all the cells whose vertical arrows are distinguished.

Then, if D0 has comma objects, we say that G = RanR,S(F ) is pointwise on the
distinguished vertical arrows of D if the previous condition holds for every distinguished
vertical arrow H : J ′ •→ J. Note that F and G need not be distinguished: the present
generalisation does not amount to pointwise Kan extensions in D0. The fact that G is
indeed a Kan extension still holds.

4.2. Theorem. In a pseudo double category D with comma objects, every pointwise Kan
extension is a Kan extension. More generally, this fact also holds for a Kan extension
which is pointwise on a choice of distinguished vertical arrows of D, in the sense of 4.1(b).

Proof. The proof is based on the Replacement Lemma (2.7). Take, in definition 4.1, J ′ =
J and H = 1•

J (which is necessarily distinguished, according to the previous definition).
By hypothesis, G = RanP,S(FQ). Now, the vertical universal property of J↓R gives a
vertical arrow M and a (commuative) cell µ such that

I
R //

•M

��

J

•1•

��

µ PM = R,

J↓R
P //

•L

��

J

•1•

��

LM = 1•
I ,

ω µ⊗ω = 1•
R.

I
R

// J

(52)

Applying 2.7(a), the fact that G = RanP,S(FQ) via ω⊗ε implies that G = RanR,S(F )
via ε.

4.3. Theorem. [Adjunctions are pointwise extensions] Let D be a pseudo double cate-
gory with comma objects. Then an absolute right Kan extension G = RanR,1(1A), as in
Theorem 2.5, is always a pointwise extension.
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Proof. With the notation of 2.5, consider the solid left diagram below (omitting G′ and
τ), where G is vertically adjoint to R, with cells ε, η

H↓R
P //

•Q

��

J

•H

��

J

•G′

��

J

•GH

��

J

•1•

��

J

•1•

��
ω µ

A
R //

•1•

��

X
•G

��

τ = H↓R
P

//

•Q

��

J
•H

��

= 1H⊗η.

ε ω

A A A A A
R

// X

(53)

In this situation, the cell η : (G (1, R) 1) yields, with the vertical universal property of
the comma, a unique commutative cell µ such that µ⊗ω = 1H⊗η (see the right diagram
above).

A second cell σ : (1• (P, 1) L) comes from the global universal property of ω (3.2(c)),
with ω′ = ω⊗ε and η′ = 1H⊗η (since the right-hand equality below plainly holds)

H↓R
P //

•1•

��

J

•L

��

J

•1•

��

•
P //

•1•

��

• •

•1•

��

•
P //

•1•

��

•

•

��

•

•1•

��

σ µ 1•

H↓R

•Q

��

H↓R
P //

•Q

��

J

•H

��

= •

•Q

��

• // •

•H

��

= •

•Q

��

ω′ •

•

��

η′ •

•H

��

1Q ω ω

A A
R

// X • •
R

// • • •
R

// •

(54)

(One can note that we are only using the vertical 2-dimensional property, cf. 3.2(d)).
We have thus:

(σ |µ) = 1•
P , σ⊗1Q = ω⊗ε. (55)

Now, given G′ : J •→ A and α : (Q (P, 1) G′) on the outer perimeter of the left diagram
(53), the existence of a cell τ : (GH (1, 1) G′) such that (ω⊗ε | τ) = α determines it, as
τ = µ⊗α

µ⊗α = µ⊗(ω⊗ε | τ) = (µ⊗ω⊗ε | τ) = (1H⊗η⊗ε | τ) = τ, (56)

where both ternary vertical compositions, µ⊗ω⊗ε and 1H⊗η⊗ε, are normal (1.1).
Conversely, letting τ = µ⊗α, the problem is solved using (55):

(ω⊗ε | τ) = (ω⊗ε |µ⊗α) = (σ⊗1Q |µ⊗α) = (σ |µ)⊗α = α. (57)



174 MARCO GRANDIS AND ROBERT PARÉ

5. Pasting properties of comma objects

Pasting properties are proved in Thm. 5.3; as a consequence, pointwise extensions are
‘stable under composition’ (Thm. 5.4).

5.1. Vertical retracts. Recalling some classical facts will give a better understand-
ing of comma objects and their properties. In homotopy theory, a comma square cor-
responds to a standard homotopy pullback (determined by a similar universal property,
where cells are homotopies); diagrammatic lemmas for the latter generally amount to
saying that some ‘comparison map’ is a homotopy equivalence. For instance, this is the
case for a pasting of homotopy pullbacks; or between the ordinary pullback of a fibration
and its homotopy pullback. In the 2-category Cat, one obtains future retracts (i.e., full
reflective subcategories) or past retracts (i.e., full coreflective subcategories), according to
the direction of cells (cf. [8], 1.6).

Here, we shall obtain somewhat similar results. We say that the horizontal arrow T
is a vertical deformation retract of the horizontal arrow R, via the cells λ, µ, ϕ (as in the
diagram below) if we have

λ⊗µ = 1•
T (ML = 1, M ′L′ = 1),

(ϕ |µ⊗λ) = 1•
R, 1L⊗ϕ = 1L (L′M ′ = 1).

(58)

•
T //

•L

��

•

•L′

��

•

•1•

��

•
R //

•M

��

•

•M ′

��

λ µ

•
R //

•M

��

•

•M ′

��

= 1•
T , ϕ •

T
//

•L

��

•

•L′

��

= 1•
R,

µ λ

•
T

// • • •
R

// •

In particular, we shall often encounter the case where R, T are strong arrows, L′ =
M ′ = 1 and λ, µ are commutative cells. For this case, it is sufficient to have:

R = TM, ML = 1, 1L⊗ϕ = 1L, ϕ⊗1M = 1M . (59)

Then T = TML = RL, and the commutative cells λ : (T = RL), µ : (R = TM) give
λ⊗µ = 1•

T and (ϕ |µ⊗λ) = ϕ⊗1R = ϕ⊗1M⊗1T = 1R.

5.2. Lemma. [Replacement Lemma, II] In a strict double category D, two cells ε, λ are
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given, as in the left diagram below (and as in the Replacement Lemma 2.7)

I ′
T //

•L

��

J ′

•L′

��
λ

I
R //

•F

��

J
•G

��
ε

X
S

// A

(60)

If the horizontal arrow T is a vertical deformation retract of the horizontal arrow R,
via the cells λ, µ, ϕ (as in (58)), then the following two conditions are equivalent:

G = RanR,S(F ) via ε, GL′ = RanT,S(FL) via λ⊗ε. (61)

Proof. It is a straightforward consequence of the previous Replacement Lemma, 2.7.

5.3. Theorem. [Pasting Theorem] Let D be a strict double category. Consider the
pasting of two comma cells, in the left diagram, and the comma ω′′ of the vertical composite
FF ′, in the middle diagram

F ′↓P
P ′

//

•Q′

��

B

•F ′

��

(FF ′)↓R P ′′
//

•Q′′

��

B

•FF ′

��

•

•1•

��

F ′↓P
P ′

//

•M

��

B

•1•

��
ω′ µ

F ↓R
P //

•Q

��

A

•F

��

ω′′ ϕ (FF ′)↓R P ′′
//

•L

��

B

•1•

��
ω λ

X
R

// C X
R

// C • F ′↓P
P ′

// B

(62)

Then the strong arrow P ′′ (a projection of the comma of the composite) is a vertical
deformation retract (5.1) of P ′ (a projection of the iterated comma), in the strong sense
of (59):

- there exist commutative cells λ, µ and a comparison cell ϕ, as displayed in the right
diagram above, satisfying:

ML = 1, 1L⊗ϕ = 1L, ϕ⊗1M = 1M . (63)

Note. Recall that ML = 1 gives λ⊗µ = 1 (and actually amounts to that, since our
cells are commutative).
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Proof. First, by the vertical universal property of ω′′, there is a unique vertical arrow
M : F ′↓P •→ (FF ′)↓R such that

P ′′M = P ′, Q′′M = QQ′, µ⊗ω′′ = ω′⊗ω, (64)

F ′↓P
P ′

//

•M

��

B

•1•

��

F ′↓P
P ′

//

•Q′

��

B

•F ′

��

µ ω′

(FF ′)↓R P ′′
//

•Q′′

��

B

•FF ′

��

= F ↓R
P //

•Q

��

A

•F

��
ω′′ ω

X
R

// C X
R

// C

with the commutative cell µ : (P ′ = P ′′M).
Now, to define the second comparison L, we begin by constructing a vertical arrow

N : (FF ′)↓R •→ F ↓R, by the vertical universal property of F ↓R (3.2(b))

PN = F ′P ′′, QN = Q′′, ν⊗ω = ω′′ (ν : (F ′P ′′ = PN)), (65)

(FF ′)↓R

•N

��

(FF ′)↓R

•F ′P ′′

��

ν (FF ′)↓R P ′′
//

•N

��

B

•F ′

��
F ↓R

P //

•Q

��

A

•F

��

= ω′′, ν

ω F ↓R
P

// A

X
R

// C

Flipping horizontally the strong arrow P ′′, the cell ν will also be written as at the
right hand, above.

Then, we have a vertical L : (FF ′)↓R •→ F ′↓P, by the vertical universal property of
F ′↓P

P ′L = P ′′, Q′L = N, λ⊗ω′ = ν : (F ′P ′′ = PN). (66)

(FF ′)↓R //

•L

��

B

•1•

��
λ

F ′↓P //

•Q′

��

B

•F ′

��

= ν

ω′

F ↓R
P

// A

The equality λ⊗µ = 1•
P ′′ (i.e., ML = 1) is then detected by the vertical universal

property of (FF ′)↓R
(λ⊗µ)⊗ω′′ = λ⊗ω′⊗ω = ν⊗ω = ω′′. (67)
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As a first step for constructing ϕ, the global universal property of ω gives a cell ρ
satisfying the following equations, where ω = ω′⊗ω (notice that P ′ and Q should be
‘flipped’, to follow the pattern of 3.2(c))

•

•Q′

��

F ′↓P
P ′

//

•M

��

B

•1•

��

µ

ρ (FF ′)↓R P ′′
//

•N

��

B

•F ′

��

•

•Q′

��

•
P ′

// •

•F ′

��

•

•Q′

��

•
P ′

//

•

��

•

•F ′

��

ν ω′

•

•Q

��

F ↓R
P //

•Q

��

A
•F

��

= •

•Q

��

• // •

•F

��

= •

•Q

��

1 •

•

��

ω •

•F

��
1 ω ω

• X
R

// C • •
R

// • • •
R

// •

(68)

(ρ | (µ⊗ν)) = ω′, ρ⊗1Q = 1QQ′ . (69)

It will be useful to note that 1L⊗ρ = 1N , as it results applying λ⊗− = (1L |λ)⊗− to
all terms of diagram (68). In fact, λ⊗µ = 1, λ⊗ω′ = ν and λ⊗(ω′⊗ω) = ν⊗ω = ω′′.

•

•N

��

(FF ′)↓R P ′′
//

•N

��

B

•F ′

��

•

•N

��

•
P ′′

// •

•F ′

��

•

•Q′

��

•
P ′′

//

•

��

•

•F ′

��

1L⊗ρ ν ν

•

•Q

��

F ′↓P
P //

•Q

��

B

•F

��

= •

•Q

��

• // •

•F

��

= •

•Q

��

1 •

•

��

ω′′ •

•F

��

1 ω ω

• X
R

// C • •
R

// • • •
R

// •

(70)

Since putting 1N in the upper-left cell above also solves these equations, these solutions
coincide.

The global universal property of ω′ gives a cell ϕ satisfying the following conditions,
with µ⊗ν = ζ (we know from (68) that (ρ | ζ) = ω′)

•

•1•

��

F ′↓P
P ′

//

•M

��

B

•1•

��

µ

ϕ (FF ′)↓R P ′′
//

•L

��

B

•1•

��

•

•1•

��

•
P ′

// •

•1•

��

•

•1•

��

•
P ′

//

•

��

•

•1•

��

λ 1•

•

•Q′

��

F ′↓P //

•Q′

��

B

•F ′

��

= •

•Q′

��

• // •

•F ′

��

= •

•Q′

��

ρ •

•

��

ζ •

•F ′

��

1 ω′ ω′

• F ↓R
P

// A • •
P

// • • •
P

// •

(71)
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ϕ | (µ⊗λ) = 1•
P ′ , ϕ⊗1Q′ = ρ. (72)

Now, the equalities 1L⊗ϕ = 1L and ϕ⊗1M = 1M of the thesis are detected by the
global universal properties of ω′ and ω′′. The first comes from the fact that, applying
λ⊗− = (1L |λ)⊗− on the top of diagram (71), we get

λ⊗µ⊗λ = λ, 1L⊗ρ = 1N , λ⊗µ⊗ν = ν, (73)

•

•L

��

(FF ′)↓R P ′′
//

•L

��

B

•1•

��

•

•L

��

•
P ′′

// •

•1•

��

•

•L

��

•
P ′′

//

•

��

•

•1•

��

1L⊗ϕ λ λ

•

•Q′

��

F ′↓P //

•Q′

��

B

•F ′

��

= •

•Q′

��

• // •

•F ′

��

= •

•Q

��

1 •

•

��

ω′′ •

•F

��

1 ω′ ω′

• F ↓R
P

// A • •
P

// • • •
P

// •

(74)

and these equations are also solved by putting 1L in the upper-left cell above.
The second comes from a similar uniqueness argument applied to the following equa-

tions:

•

•M

��

(FF ′)↓R P ′′
//

•M

��

B

•1•

��

•

•M

��

•
P ′′

// •

•1•

��

•

•M

��

•
P ′′

//

•

��

•

•1•

��

ϕ⊗1M µ µ

•

•Q′′

��

(FF ′)↓R //

•P ′′

��

B

•FF ′

��

= •

•Q′′

��

• // •

•

��

= •

•Q′′

��

1 •

•

��

ω •

•

��

1 ω′′ ω′′

• X
R

// C • •
R

// • • •
R

// •

(75)

which are also solved by 1M .

5.4. Theorem. [Pointwise stability] Let D be a strict double category. If G = RanR,S(F )
is a pointwise right Kan extension, then for every vertical arrow H : J ′ •→ J the extension
GH = RanP,S(FQ) (see the diagram below) is still a pointwise extension, via the cell ω⊗ε.

Proof. Follows from the first Replacement Lemma (2.7) together with the Pasting The-
orem 5.3.
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Take an arbitrary H ′ : K ′ •→ K and its comma H ′↓P, as in the left diagram below

H ′↓P
P ′

//

•Q′

��

J ′′

•H′

��

H ′↓P
P ′

//

•L

��

J ′′

•1•

��
ω′ λ

H↓R
P //

•Q

��

J ′

•H

��

(HH ′)↓R P ′′
//

•Q′′

��

J ′′

•HH′

��
ω ω′′

I
R

//

•F

��

J
•G

��

I
R

// J

ε

X
S

// A

(76)

We have to prove that (GH)H ′ = RanP ′,S(FQQ′), via ω′⊗(ω⊗ε). Forming the comma
(HH ′)↓R, in the right diagram, the pointwise property of G with respect to the composite
HH ′ says that

G(HH ′) = RanP ′′,S(FQ′′), via ω′′⊗ε. (77)

Now, the Pasting Theorem 5.3 says that the projection P ′′ is a vertical deformation
retract of P ′, with a commutative comparison cell λ such that λ⊗ω′′ = ω′⊗ω. Applying
the Replacement Lemma 2.7(b) to (2), we get the thesis: (GH)H ′ = RanP ′,S(FQQ′), via
λ⊗(ω′′⊗ε) = ω′⊗ω⊗ε.

6. Kan extensions for double categories

We briefly examine now the case when D is a double category of double categories. One
of such settings will be studied in Part IV, together with its relations with double limits.

6.1. External Kan extensions. In a (pseudo) double category D, we have defined
a right Kan extension G = RanR,S(F ) via ε, as in the left diagram below (see 2.2)

I R //

•F

��

J
•G

��

I R //

•F

��

J
•G

��
ε





η



X
S

// A X
S

// A

(78)

and a left Kan extension S = LanF,G(R) via η, as in the right diagram above (2.3).
These notions will be used letting D be one of the three ‘settings’ for weak double

categories listed below. Thus, the vertices I, J,X,A will be pseudo double categories, all
arrows will be some kind of ‘weak’ double functors, and ε or η some kind of horizontal
transformation GR→ SF.
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6.2. Colax right Kan extensions. For D = Dbl (1.4), the general definition G =
RanR,S(F ) says that G is the colax right Kan extension of the colax double functor F, along
the lax double functors R,S (or from R to S), via the cell ε (the counit of the extension).
The pointwise case is defined as in 4.1, since Dbl has all comma objects (3.4(b)).

Symmetrically, S = LanF,G(R) means that S is the lax left Kan extension of a lax
double functor R, along the colax double functors F,G, via the cell η (the unit of the
extension).

We have already seen that, in a colax/lax adjunction G a R between weak double
categories, the left adjoint is an absolute right Kan extension of this type, G = RanR,1(1)
(2.5), and is always a pointwise extension (4.3). Symmetrically, the right adjoint is an
absolute left Kan extension R = Ran1,G(1) (since transpose duality exchanges left and
right adjoints).

Note that, here, transposing D is equivalent to applying ‘internal’ horizontal duality
to the vertices, arrows and cells of diagram (78); in fact the latter reverses the direction
of cells and exchanges lax with colax double functors.

6.3. Unitary colax right Kan extensions. Let Dblu be the cell-wise full double
subcategory of Dbl where the vertical arrows are unitary colax double functors, while the
horizontal ones are general. By restriction, also Dblu has all comma objects (since in Dbl
the projections of a comma are strict double functors).

Taking D = Dblu gives a unitary colax right Kan extension of a unitary colax double
functor F : I •→ X, along two lax double functors. The interest of restricting vertical
arrows to be unitary is shown by a few examples below (7.2, 7.3).

The symmetric notion we are interested in, unitary lax left Kan extensions along colax
double functors, lives in D = Dblu, where the horizontal arrows are restricted to be unitary
(lax). Again, internal horizontal duality on all data exchanges these situations.

6.4. Unitary lax right Kan extensions. . Finally, we write LxDblu the double
category of weak double categories, lax double functors (horizontally) and unitary lax
double functors (vertically); a cell α : GR → SF, as in the diagram above, simply is a
horizontal transformation of the composed lax double functors.

(Thus, LxDblu is a substructure of the double category of quintets LxDbl = QLxDbl,
over the 2-category LxDbl of weak double categories, lax double functors and their hor-
izontal transformations, already considered in II.2.2; the whole LxDbl is not of interest
for the present extensions, see 7.4.) Taking D = LxDblu gives a unitary lax right Kan
extension of a unitary lax double functor F : I •→ X, along two lax double functors. But
here, we can always compose SF obtaining an (arbitrary) lax double functor, and reduce
our data to the (equivalent) case where the left arrow is an identity

I R //

•1•

��

J
•G

��
ε



I
S

// A

(79)
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Now, LxDblu does not have all comma objects, but its double subcategory LxDblp = Dblp
(with unitary pseudo double functors as vertical arrows) does: they are again a part of
comma objects in Dbl. Speaking of pointwise Kan extensions in the present setting we
will always mean pointwise on unitary pseudo double functors, as defined in 4.1(b).

This framework is perhaps the most adequate for studying pointwise right extensions
and their relationship with double limits, and will be dealt with in Part IV.

Here, the symmetric notion of interest, unitary colax left Kan extensions along colax
double functors, lives in D = CxDblu, where the horizontal arrows are unitary colax
double functors and the vertical ones are colax. Again, it comes from internal horizontal
duality on all data. This setting is adequate for studying pointwise left extensions and
their relationship with double colimits,

7. Examples

We end with some examples showing how the different settings we have considered in the
last section can influence the resulting Kan extension.

7.1. Remarks. Some important cases arise when J is the terminal double category 1,
or the formal vertical arrow 2, i.e. the double category which has one vertical arrow 0 •→ 1
and is otherwise trivial.

Note that a unitary lax (or colax) double functor defined on 1 or 2 is necessarily strict,
as already remarked at the end of 1.1. Therefore, unitary lax or colax double functors
defined on J = 1 or 2 coincide, and the ‘colax case’ G = RanR,S(F ) (displayed below, at
the left) is more general than the ‘lax’ one, G = RanR,S(1) (displayed at the right, as in
6.4)

I R //

•F

��

J
•G

��

I R //

•1•

��

J
•G

��
ε





ε



X
S

// A I
S

// A

(80)

7.2. Double limits as pointwise unitary (co)lax extensions. By the previous
remarks, the following situation can equivalently be viewed in Dblu or LxDblu.

Let A = lim(S) be the (horizontal) double limit of a lax double functor S : I → A, as
defined in Part I.

It is easy to see that this amounts to saying that the unitary double functor A : 1 → A
is the pointwise unitary (colax or lax) right Kan extension of S along the projection
R : I → 1, via the limit cone ε : AR→ S (see the right diagram above, with J = 1).

On the other hand, a lax (resp. colax) double functor T : 1 → A is a monad (resp. a
comonad) in the bicategory VA of objects, vertical arrows and special cells of A, and the
universal such can be quite different from the limit, as shown below (7.3, 7.4).

One can note that the unitary colax extension G = RanR,S(F ), as in the left diagram
(80), would give the ‘generalised double limit’ of a composite SF : I •→ X → A, where the
colax F need not be the identity. These generalised double limits can still be constructed
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from the elementary limits of Part I; but the relevance of this fact is not clear, and we
shall not develop it here.

7.3. Unitary colax versus colax. Comparing the setting Dblu with Dbl, it is easy
to construct examples where the unitary colax Kan extension on the singleton (the limit)
is different from the ‘’general’ colax Kan extension, and actually more interesting.

Let A = QCat, the double category of quintets on the 2-category Cat, so that VA is
the cell-dual of Cat, with reversed cells.

An ordinary monad (A, T, η, µ) can be viewed as a strict double functor T : m → A,
where m is the formal vertical monoid, i.e. the strict double category generated by a
vertical arrow t : 0 •→ 0, with two special cells e : 1 → t, m : t2 → t linked by the monoid
axioms.

Its non-unitary colax Ran on the projection m→ 1 coincides with T, viewed as a colax
double functor T : 1 → A (a comonad in VA and a monad in Cat). But its double limit,
i.e. the unitary (colax or lax) Ran (see 7.1), is the category of algebras AT , with cone
based on the forgetful functor

ε0 = UT : AT → A, ε10 = ε : TUT → UT : AT → A,

ε(A, a : TA→ A) = a : TA→ A.
(81)

Indeed, let us apply our construction theorem for double limits (I.5.5) to T : m→ A.
One begins (I.6.6) by replacing the vertical arrows U = 1•

A, T , T 2 with their tabulators
and the natural transformations η, µ (viewed as cells of QCat) with the corresponding
arrows

A
•T

��

A
•U

��

A
•T

��

A
•T 2

��
η

��

µ

��

>U >T
>ηoo >µ // >T 2

A A A A

(82)

where >T has objects (A,B, f : TA→ B); similarly for >U and >T 2; and

>η : >T → >U, (>η)(A,B, f : TA→ B) = (A,B, f.ηA : A→ B),

>µ : >T → >T 2, (>µ)(A,B, f : TA→ B) = (A,B, f.µA : T 2A→ B).
(83)

Then, as explained in I.6.7, one adds the following arrows d, p, q, c, to take into account
the fact that U is a vertical identity and T 2 a vertical composite (the objects of the ‘iterated
tabulator’ >(T, T ) are specified below)

>U >T
>ηoo >µ // >T 2

A
d

OO

>(T, T )

c

OO

p

ffLLLLLLLLL

q
ffLLLLLLLLL (84)
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d(A) = (A,A, 1A),

p(A,B,C; f : TA→ B; g : TB → C) = (A,B, f),

q(A,B,C; f : TA→ B; g : TB → C) = (B,C, g),

c(A,B,C; f : TA→ B; g : TB → C) = (A,C, g.Tf : T 2A→ C).

Finally, the double limit of T is the ordinary limit of the diagram (84). It is a full
subcategory of >T (because d is monic, and the pair p, q jointly monic); and it contains
precisely those objects (A,B, f : TA→ B) of >T which are algebras

B = A, f.ηA = 1A; f.µA = f.Tf. (85)

7.4. Unitary lax versus lax. One can give a similar, simpler example to compare
the setting LxDblu with LxDbl.

With I = 1, again, a lax double functor S : 1 → QCath (with values in the horizontally
opposite double category) amounts to a monad on the category S(0). Its double limit A,
corresponding to the unitary right Kan extension, is the category of Eilenberg-Moore
algebras, while the general lax right Kan extension is trivial and coincides with S.

7.5. Local products. The following works both in Dblu and LxDblu. Take for I the
strict double category 2I , having two objects, 0 and 1, and a small set I of vertical arrows
i : 0 •→ 1. Let R : 2I → 2 be the obvious projection, with R(i) = (0 •→ 1)

2I
R //

•1•

��

2

•G

��
ε



2I u
// A

(86)

A unitary (necessarily strict) double functor u : 2I → A is a family of parallel vertical
arrows ui : A •→ B. The pointwise unitary, lax or colax, Kan extension G = RanR,u(1)
amounts to an arrow u : A0 •→ A1 equipped with a family of special cells σi : u → ui,
universal in the obvious sense. We shall call it the local product of the family.

This does not exist in QSet or QCat (showing that this extension is independent
of the existence of double limits). But it does exist in Rel (the double category of sets,
mappings and relations, see I.3.4), where it gives the intersection of our relations (even
for a large I). It also exists (for a small I) in Set, where it is constructed with a limit.
And in Cat, where we have

u : Aop×B → Set, u(a, b) =
∏

i ui(a, b),

pi : u→ ui, pi(a, b) : u(a, b) → ui(a, b).
(87)

7.6. Lax versus colax. This example is an extension of the previous one. It is based
on the strict double category 3, which is again a vertical ordinal, generated by two vertical
arrows 0 •→ 1 •→ 2. Of course, unitary lax or colax double functors 3 → A no longer
coincide.
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Take as I the (vertical) double category freely generated by three objects 0, 1, 2 and
two sets of vertical arrows

u′i : 0 •→ 1, u′′j : 1 •→ 2 (i ∈ I, j ∈ J). (88)

It has thus vertical arrows u′′ju
′
i : 0 •→ 2 indexed on I×J , and is horizontally discrete.

Form now the following diagram

I R //

•1•

��

3

•G

��
ε



I
S

// A

(89)

where R is the obvious projection (preserving objects), A = Rel, and S is a strict double
functor.

First, let us consider the setting D = LxDblu and let G be the unitary lax right Kan
extension. Plainly, G is computed by intersection of parallel relations (the ‘local products’
of 7.5), and is a pointwise extension

G(0 •→ 1) =
⋂

i F (u′i), G(1 •→ 2) =
⋂

j F (u′′i ),

G(0 •→ 2) =
⋂

ij F (u′′i u
′
i), G(0 •→ 1)⊗G(1 •→ 2) ⊂ G(0 •→ 2).

(90)

Note that G is not strict (i.e., not colax), generally: one can easily construct a finite
example where both G(0 •→ 1) and G(1 •→ 2) are empty, while G(0 •→ 2) is not.

On the other hand, the unitary colax right Kan extension, in (89), also exists, and has
G′(0 •→ 2) = G(0 •→ 1)⊗G(1 •→ 2); therefore, it is not pointwise.
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F̄iz. Zh. 43 (1998), no. 6-7, 836-841.

[13] C.B. Spencer and Y.L. Wong, Pullback and pushout squares in a special double
category with connection, Cah. Topol. Géom. Différ. 24 (1983), 161-192.
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Robert Paré, Dalhousie University: pare@mathstat.dal.ca
Jiri Rosicky, Masaryk University: rosicky@math.muni.cz
Brooke Shipley, University of Illinois at Chicago: bshipley@math.uic.edu
James Stasheff, University of North Carolina: jds@math.unc.edu
Ross Street, Macquarie University: street@math.mq.edu.au
Walter Tholen, York University: tholen@mathstat.yorku.ca
Myles Tierney, Rutgers University: tierney@math.rutgers.edu
Robert F. C. Walters, University of Insubria: robert.walters@uninsubria.it
R. J. Wood, Dalhousie University: rjwood@mathstat.dal.ca


