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CORE VARIETIES, EXTENSIVITY, AND RIG GEOMETRY

F. WILLIAM LAWVERE

Abstract. The role of the Frobenius operations in analyzing finite spaces, as well
as the extended algebraic geometry over rigs, depend partly on varieties (Birkhoffian
inclusions of algebraic categories) that have coreflections as well as reflections and whose
dual category of affine spaces is extensive. Even within the category of those rigs where
1+1 = 1, not only distributive lattices but also the function algebras of tropical geometry
(where x + 1 = 1) and the dimension rigs of separable prextensive categories (where
x + x2 = x2) enjoy those features. (Talk given at CT08, Calais.)

Algebraic geometry, analytic geometry, smooth geometry, and also simplicial topology,
all enjoy the axiomatic cohesion described in my recent article [4]. The cohesion theory
aims to assist the development of those subjects by revealing characteristic ways in which
their categories differ from others. (Such considerations will be important in order to
carry out Grothendieck’s 1973 program [2] for simplifying the foundations of algebraic
geometry.)

An axiomatic theory often captures more examples than originally intended. In the
present case not only the smooth generalization (SDG) but also some semi-combinatorial
ones are of interest. Some of these can be approached via sites of definition that can be
handled in ways very closely analogous to Grothendieck’s algebraic geometry construc-
tions. Even ultra-basic properties of cohesive categories, such as extensivity, may not be
true in the sites themselves; a modest step toward the treatment of that problem is the
recognition of some algebraic categories as core varieties within others. But first I recall
another remarkable feature of many cohesive toposes that, although discovered through
its relevance to differential equations, nevertheless points toward the power of map spaces
in building combinatorial objects from simple ingredients.

1. Euler’s principle

Focussing on the role of map spaces in generating spaces reveals a distinct feature of
algebraic geometry over K-rigs (a feature shared by smooth geometry where the category
of algebras consists of C∞ rings) that I call Euler’s principle. He used the fact that
macro-quantities are representable as ratios of infinitesimals. We can objectify this by
exploiting the fact that the category of spaces has exponentiation. Considering the theory
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of K-rigs, let
D = specK[ε] ε2 = 0

R = specK[t]

where K[ε] is the finitely-generated module K ×K with the Leibniz multiplication and
where K[t] is the monoid rig over {tn}. Then the point-preserving maps D // D are
indeed ratios, and R, the space of these, is a retract.
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Note that this is true not only for K = real numbers but also, for example, for K = 2;
even in combinatorial settings the infinitesimals D have a definite role, the tangent bundles
(special map spaces) of affine spaces being still affine. The classifying topos for K-rigs
has as a site the spectra of finitely-presented K-rigs, and is cohesive relative to the topos
of those objects S for which SD = S. Euler’s principle can be used to recover the finitely-
presented algebras from the infinitesimal ones precisely, and so is much stronger than the
Birkhoff Nullstellensatz which only represents them up to a monomorphism.

For a combinatorial example of a closely analogous phenomenon, let D denote a suit-
able graph with just one vertex in a suitable topos of graphs. The self-exponential of D
contains the generic arrow, which is a generator for the entire topos.

2. Extensivity and the disjoint covering topology

A small category C with coproducts is extensive [1] if and only if the category of product-
preserving presheaves is a topos G(C). If C is the opposite of the category of finitely-
presented algebras for an algebraic theory, we may briefly refer to the whole category of
algebras as co-extensive; in case C has finite limits we say for short that C is lextensive
and note that such categories satisfy the distributivity of products over coproducts. The
topos G(C) is the classifying topos for a certain strengthening of the equational theory.
To understand what sort of strengthening, we consider some examples.

3. Rigs and generalizations

The category of rigs is co-extensive; that is seen concretely via partitions of unity by
disjoint idempotents: if (si)i∈I is a finite family of elements of a rig for which sisj = 0 for
i 6= j while Σsi = 1, then the rig is uniquely a cartesian product of smaller rigs such that
si becomes 1 in the ith factor. Thus a possible strengthening of the equational theory of
rigs requires connectedness in the sense that all such partitions are trivial, even though
the rig itself is non-trivial.
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There are many concrete generalizations. Since C/X is extensive whenever C is, it
is clear that the category of K-rigs is co-extensive. But there are other examples of co-
extensive algebra, inspired by the rig case, yet not of the simple form ‘all L-rigs’ for any
L. Obvious examples include G-actions on K–rigs where G is any given group (or monoid
or Lie algebra). However, there are subexamples of these, not quite as obvious, that I will
call core varieties.

4. Algebraic geometry where 1 + 1 = 1

Algebraic geometry over rigs (not only in the traditional cases K = Z, or K = a field) is
a suggested aid to understanding not only K = N, but also K = 2 (wherein 1 + 1 = 1).
Schanuel has shown that the simple objects in the category of rigs are the fields in the
usual sense, plus the single additional example 2 itself. Note that the example that
launched ring theory was not a ring but a 2-rig, namely the system of ideals of a ring.
Schanuel’s [5] classification of the spaces in certain lextensive categories required a pair of
invariants: an ‘Euler characteristic’ in the ring Z⊗ B but also a ‘dimension’ in the 2-rig
2⊗B derived from the rig B of isomorphism classes of spaces. Because

dim(X + Y ) = max(dimX, dimY )

addition is idempotent in the dimension rig, but multiplication is not. (In simple cases
the usual dimension numbers can be read off logarithmically.) At the level of abstract
algebra, a monoid rig over 2

2[M ]

just consists of all finite subsets of the monoid, with the usual set-wise product and with
union as addition. In case M is a free commutative monoid, this monoid rig 2[M ] is the
corresponding polynomial rig over 2; any finite 2-rig is a quotient of 2[M] for some finite
monoid M.

5. The inexactness of affine schemes

Algebraic geometry constructs categories X of spaces from categories A of algebras in
such a way that every space has an algebra of functions and every algebra has a spectral
space, a contravariant adjointness; experience shows that it is not a duality in the naive
sense of equivalence. More specifically, the finitely-presented algebras

C ⊂ Aop

permit representingA as the left exact functors on C and X as a subtopos of the classifying
topos (consisting of all contravariant functors on C), whereas the Yoneda embedding
Kan-extends to spec : Aop // X . The need for a subtopos (i.e. for Grothendieck
topology) is due to the fact that neither the ‘affine schemes’ C nor the presheaves have
the geometrically correct colimits!
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The co-extensivity of the algebra permits a first step toward resolving the colimit
problem, because it suggests that we can assume that X � � //G(C), the topos of product-
preserving presheaves. Because of this easy disposal of finite disjoint families the study
of deeper choices of Grothendieck topology can focus on coverings by single maps.

While a category of algebras is Barr-exact, its opposite C is not (even when it is
extensive). Yet that opposite category is confronted with the pretopos exactness of spaces
via the spec construction. I conjecture that in a suitable sense lextensivity is all the
exactness these two categories have in common, so that lextensive categories form the
smallest reasonable common umbrella for this basic construction. Though pretoposes
have exactness properties that are clearly ‘good’, one should not conclude that C is ‘bad’;
the category of pointed objects in C supports a whole category of modules as abelian
group objects in its opposite (whereas that construction would fail in a pretopos).

6. Core varieties

I follow Birkhoff in calling a variety any subcategory of a given algebraic category which
is in its own right also an algebraic category, in such a way that the inclusion is induced
by a surjective map of theories. There are typically non-varieties that are full algebraic
subcategories, but with the inclusion induced by introducing inverses for given operations,
rather than by merely imposing identities on given operations; such an inclusion might
be called ‘open’ by analogy. For example, the category of Boolean algebras is not a
variety within distributive lattices; it is not even open because the distributive lattice
operations are all order preserving. Of course, it is a variety in another environment
obtained by adding more operations, and it is classified by a subtopos of the classifier for
distributive lattices. Our concern here is to gain some understanding through examples
of the question: when is a variety in an extensive algebraic category also extensive? In
general, extensivity is not hereditary in that sense, but there is a specific approach to
certain of those subvarieties.

In an extensive category the summands of X induced by a given map to a coproduct
are in fact pullbacks. In an opposite algebraic category these pullbacks are of course
amalgamated coproducts (amalgamated tensor products in the case of K-rigs). Thus co-
extensivity of a variety is easily verified if finite colimits there agree with the colimits in
the ambient co-extensive algebraic category. Of course that also often fails, but there is
a standard way to guarantee it.

If a functor has a right adjoint, then it preserves coproducts. Thus a further extensive
theory arises if we can find, inside a given co-extensive algebraic category, a core variety,
meaning a variety whose inclusion has a further right adjoint, for then those algebras
satisfying the additional identities will be closed under the ambient ⊗. Gavin Wraith [6]
studied algebraic functors that have (besides the usual left adjoint relatively free functor)
also a right adjoint, but because we are limiting ourselves here to full inclusions, in the
single-sorted case a ‘core’ of this kind is given simply by a set of unary equations such that,
for any algebra, the subset satisfying them is an algebra. Because K[t] is free, its core will
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typically be only K (even if we assume that K itself satisfies the additional identities);
the new algebraic theory is as usual given by the reflection, not the coreflection.

7. Fixed points of Frobenius in arbitrary toposes

A particular way to obtain a core variety is to find a central unary operation of a theory,
i.e. an operation whose application is an algebra endomorphism, and then define a core
to consist of its fixed points. For example, in the category of K-algebras where K is a
given finite field, suitable powers are homomorphisms and hence define cores. Because
these algebraic adjoints also induce additional operations in the corresponding geometric
toposes, the Frobenius operations of algebraic geometry are seen to have a rather precise
analog also in general algebra. There is a formulation independent of the particular
algebraic theory: the center of a topos E (or any category) is the commutative monoid
of natural endomorphisms of the identity functor; let Q be the center considered as poset
under divisibility. The Frobenius analysis of each object is the E-valued presheaf on Q
obtained by extracting fixed points.

8. Distributive lattices, tropical geometry, dimension rigs

Of course, the equations defining a core need not involve homomorphisms, it is only the
closure properties of the result that are required. For example, among 2-rigs we might
consider those where (not only addition but) multiplication is idempotent; however, x+1
is not necessarily idempotent even if x is, so this variety is not a core variety. But if we
adjoin a second equation x + 1 = 1, we find that the set of elements in a 2-rig satisfying

x2 = x

x + 1 = 1

is closed under addition and multiplication and that, moreover, multiplication is the
infimum in the semilattice ordering given by addition. This core variety is the algebraic
category of distributive lattices.

What is algebraic geometry over distributive lattices? The full classifying topos for the
algebraic theory is the category of presheaves on the category C of finite partially-ordered
sets. The subtopos G(C) classifies those distributive lattices which are ‘connected’ in that

st = 0 & s + t = 1 entails s = 1 or t = 1.

Of course there are still smaller subtoposes (most of which do not classify core varieties
or even equational varieties). The simplicial sets classify the totally-ordered distributive
lattices; in that context the spectrum of a distributive lattice is the nerve of the cor-
responding poset. Intermediate is the analog of the Zariski topos that classifies ‘local’
distributive lattices; it is distinguished by the fact that the characteristic map of the
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unit is a homomorphism of rigs from the generic local lattice to the truth value object
in its topos. Recall that Johnstone’s topological topos [3] was an antidote to his per-
plexing discovery that the classical unit interval is not totally-ordered. While that fact
is probably best viewed as a result of the excess generality of the classical definition of
continuity, calling therefore for a monoid of endomaps of the interval which is more ‘tame’
in the sense of Grothendieck, an alternate diagnosis is that the use of simplicial sets (as
the combinatorial objects whose geometric realization should be exact) is too restrictive.
Certainly, any sort of classical unit interval is a distributive lattice and therefore there
is a good geometric realization functor on the full presheaf topos of the category C ; it
should be possible to determine the subtoposes that still receive the right adjoint of this
realization.

Consider the equation x + 1 = 1 by itself (i.e.the condition x ≤ 1); in a 2-rig the
elements satisfying that equation are closed under addition and multiplication. This
identity implies that whenever b divides a one has also a ≤ b; thus the free algebra on one
generator x for the subcategory can be calculated to consist just of 0, . . . , xn, . . . x2, x, x0 =
1; its spectrum can be visualized as an interval I (not a lattice) and the spectra of
the free algebras can be visualized as cubes In. It seems that a canonical form for an
element of a more general reduced monoid rig can be obtained by considering a sum
of a set of monomials with no mutual divisibility. (One can alternatively view I as an
extended positive line by reading the structure logarithmically; this example suggests a
topos simplification of the recently-popular ‘tropical geometry’.)

The ‘opposite’ inequality 1 ≤ x would exclude 0, but if we consider a slight general-
ization

x ≤ x2, (i.e. x + x2 = x2)

we find again a core variety in 2-rigs and hence a potentially important algebraic geometry.
A 2-rig belongs to this variety if for every x there is a y for which x+y = x2, because as in
any semi-lattice, if there is a proof y of an inequality, then the larger of the two elements
compared will also serve as a proof. The Schanuel dimension rig of a lextensive category
will lie in this core variety in case all objects are separable, because the complement y of
the diagonal in x2 yields, under the map from B to 2⊗B, a proof that x ≤ x2.
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