A new description of the exact completion $\cal C_{ex/reg}$ of a regular category $\cal C$ is given, using a certain topos $Shv(\cal C)$ of sheaves on $\cal C$; the exact completion is then constructed as the closure of $\cal C$ in $Shv(\cal C)$ under finite limits and coequalizers of equivalence relations. An infinitary generalization is proved, and the classical description of the exact completion is derived.
Keywords: regular category, exact category, exact completion, category of sheaves.
1991 MSC: 18A35, 18A40, 18E10, 18F20.
Theory and Applications of Categories, Vol. 5, 1999, No. 3, pp 70-80.
http://www.tac.mta.ca/tac/volumes/1999/n3/n3.dvi
http://www.tac.mta.ca/tac/volumes/1999/n3/n3.ps
http://www.tac.mta.ca/tac/volumes/1999/n3/n3.pdf
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1999/n3/n3.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1999/n3/n3.ps