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DOCTRINES WHOSE STRUCTURE FORMS A FULLY FAITHFUL
ADJOINT STRING

F. MARMOLEJO
Transmitted by Ross Street

ABSTRACT. We pursue the definition of a KZ-doctrine in terms of a fully faithful
adjoint string Dd ⊣ m ⊣ dD. We give the definition in any Gray-category. The concept of
algebra is given as an adjunction with invertible counit. We show that these doctrines are
instances of more general pseudomonads. The algebras for a pseudomonad are defined
in more familiar terms and shown to be the same as the ones defined as adjunctions when
we start with a KZ-doctrine.

1. Introduction

Free co-completions of categories under suitable classes of colimits were the motivating
examples for the definition of KZ-doctrines. We introduce in this paper a not-strict version
of such doctrines defined via a fully faithful adjoint string. Thus, a non-strict KZ-doctrine
on a 2-category K consists of a normal endo homomorphism D : K −→ K, and strong
transformations d : 1K −→ D, and m : DD −→ D in such a way that Dd ⊣ m ⊣ dD forms
a fully faithful adjoint string, satisfying one equation involving the unit of Dd ⊣ m and
the counit of m ⊣ dD. Given an object C in K, we think of DC as the co-completion of C,
consisting of suitable diagrams over C, dC : C −→ DC as the functor that assigns to every
object of C the diagram on that object with identities for every arrow in the diagram,
and mC : DDC −→ DC as a colimit functor. The idea of pursuing the adjoint string as
definition follows in the steps of [3] and was suggested by R. J. Wood.

Now, Dd ⊣ m ⊣ dD being a fully faithful adjoint string means that the counit β :
m ◦ dD −→ Id of m ⊣ dD is invertible (equivalently, the unit η : Id −→ m ◦ Dd is
invertible [7]).

Recall that A. Kock’s algebraic presentation of KZ-doctrines [9] asks for equalities
m ◦ dD = Id and Id = m ◦Dd, and for a 2-cell δ : Dd −→ dD satisfying four equations.

We can produce from the adjoint string a 2-cell δ : Dd −→ dD, namely, the pasting of
β−1 and the unit for the adjunction Dd ⊣ m. This δ satisfies similar (‘non-strict’ versions
of) the conditions required for a KZ-doctrine in [9]. Thus, the KZ-doctrines of [9] are
particular instances of our KZ-doctrines.

Since the algebras for a KZ-doctrine are given in terms of adjunctions it seems reason-
able to define the doctrine in terms of adjunctions. Instead of having equality as in [9] we
have the invertible 2-cells β and η. This laxification is justified if only because associativity
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in [9] is deduced up to isomorphism, but that paper also mentions some shortcomings of
insisting on normalized algebras. We believe also that the approach via the adjoint string
gives us a better insight into the nature of δ : Dd −→ dD.

We work in the framework of enriched category theory [2], where the category V is
equal to the category Gray with strict tensor product [5] (see [4] as well). By working in
the context of Gray-categories we are developing the ‘formal theroy of KZ-doctrines’ in the
way that, by working in a 2-category, [13] develops the ‘formal theory of monads’. Notice
that this is a very general setting since every tricategory is equivalent to a Gray-category
[5]. The idea of defining KZ-doctrines in an enriched setting is also suggested in [9].

We adopt the definition of a pseudomonoid given in [1]. We show that every KZ-
doctrine is a pseudomonad (pseudomonoid in the Gray monoid determined by an object
of the Gray-category), and that the 2-categories of algebras defined as adjunctions coincide
with the classical algebras for a pseudomonad (Theorem 10.7). We follow [13] in defining
the algebras for a pseudomonad and the algebras for a KZ-doctrine with arbitrary objects
of the Gray-category as domains.

R. Street [13] gives a conceptual global account of KZ-doctrines in terms of the sim-
plicial category ∆. Recall that in that context a doctrine on a bicategory K is a homo-
morphism of bicategories ∆ −→ Hom(K,K) that preserves the monoid structure (ordinal
addition on the domain and composition on the codomain), with ∆ considered as a locally
discrete 2-category. A KZ-doctrine is a doctrine that agrees in the common domain with
a homomorphism of bicategories ∆+ −→ Hom(K,K) where ∆+ is the 2-category of non-
empty finite ordinals, order and last element preserving functions and inequalities. As
pointed out in [9] this definition explicitly excludes the left most adjoint Dd ⊣ m, without
any indication as to whether it can be put back on. We show that, for a pseudomonad to
be a KZ-doctrine either one of the adjunctions Dd ⊣ m or m ⊣ dD is enough.

For examples of free cocompletions of categories under different kinds of colimits we
refer the reader to the bibliography of [9].

I would like express my thanks to R. J. Wood who not only provided ideas for this
paper but also agreed to discuss them with me. I would like to thank Dalhousie University
for its hospitality. I would like thank the referee as well, whose revisions of the different
versions of this paper were very helpful on the one hand, and very fast on the other.

2. Background

We work in the context of Gray-categories, where Gray is the symmetric monoidal closed
category whose underlying category is 2-Cat with the tensor product as in [5]. A Gray-
category is then a category enriched in the category Gray as in [2]. If A is a Gray-category
and A, B and C are objects of A, then the multiplication

A(A,B)⊗A(B, C) −→ A(A, C)

corresponds to a cubical functor of two variables

M : A(A,B)×A(B, C) −→ A(A, C).
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We denote the action of M by juxtaposition M(F,G) = GF . Given f : F −→ F ′ in
A(A,B) and g : G −→ G′ in A(B, C) we denote the invertible 2-cell Mf,g by

GF //gF

��
Gf

G′F

��
G′f

v~

gf

uuu
uuu

uuu
uuu

GF ′ //
gF ′ G′F ′.

M being a cubical functor implies that ( )F : A(B, C) −→ A(A, C) and

G( ) : A(A,B) −→ A(A, C)

are 2-functors. It also implies that ( )f : ( )F −→ ( )F ′ and g( ) : G( ) −→ G′( ) are
strong transformations. Furthermore, if φ : f −→ f ′ and γ : g −→ g′ then ( )φ :
( )f −→ ( )f ′ and γ( ) : g( ) −→ g′( ) are modifications. Given f ′′ : F ′ −→ F and
g′′ : G′ −→ G′′ we also have that g(f ′′◦f) = (G′f ′′ ◦ gf ) · (gf ′′ ◦ Gf) and (g′ ◦ g)f =
(g′′f ◦gF )·(g′′F ′◦gf ). If h : H −→ H ′ is a 1-cell in A(C,D), then properties like hgF = hgF
follow from the pentagon, and properties like 1AF = F follow from the triangle that define
a Gray-category. We will use these properties in the sequel without explicit mention.

3. KZ-Doctrines

3.1. Let A be a Gray-category and K be an object in A.

3.2. Definition. A KZ-doctrine D on K consists of an object D, 1-cells d : 1K −→ D,
and m : DD −→ D in A(K,K) and a fully-faithful adjoint string η, ϵ : Dd ⊣ m; and
α, β : m ⊣ dD : D −→ DD such that

1K D D

DD

DD

β ⇓
η ⇓

//d

::dD tttttt

$$Dd
JJJ

JJJ
//IdD $$

m
JJJ

JJJ

::

m

tttttt

= 1K

D

D

DD D.(dd)−1⇓

<<
d zzzzzz

""d
DD

DD
DD

""
dDDDD

D

<<
Dd

zzzz

//m
(1)

The adjoint string being fully-faithful means that the counit β is invertible. It follows
from a folklore result, whose statement and proof can be found in [7], that this is the case
if and only if the unit η is also invertible.

Compare this condition with condition T0 of [9], in which strict equality m ◦ Dd =
m ◦ dD = Id is asked for. As a matter of fact that paper points out some limitations that
arise by requiring commutativity on the nose. Furthermore, associativity of m is deduced
there only up to isomorphism.

The other piece of information given in [9] is a 2-cell from Dd to dD. In our case, this
2-cell comes from the adjoint string.
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Define δ : Dd −→ dD to be the pasting

D D

DD DD.

β−1⇓
ϵ ⇓

//IdD

//
IdDD

$$dD
JJJJJJ ::

m

tttttt $$
Dd

JJJJJJ

(2)

We know from [12] that δ is equal to the pasting (dD ◦ η−1) · (α ◦Dd) and that it is unique
with the property m ◦ δ = β−1 · η−1.

Condition T1 from [9] now takes the form:

Proposition 3.1

1K D DDδ ⇓//d ((
Dd

66
dD

= 1K

D

D

DD.dd ⇓
88d rrrr

&&d
LLLL 88

dD

rrrr

&&
DdLLLL

Proof. Observe that as a consequence of (1), dd is equal to the pasting

1K

D

D

DD D

D

DD.(dd)−1⇓
β−1⇓

η−1⇓

dd ⇓

<<
d zzzzzz

""d
DD

DD
DD

��

d

,,
,,

,,
,,

,,
,

""
dD
DDD

DD

<<

Dd

zzzzz

//m ##

IdD

;;

IdD

//Dd

99

dD

(3)

Notice that ϵ ◦Dd = Dd ◦ η−1 (consequence of one of the triangular identities). Cancel dd
with its inverse. Finally observe that δ ◦ d = (ϵ ◦Dd ◦ d) · (Dd ◦ β−1 ◦ d).

The condition T2 of [9] takes the form of the uniqueness property for δ mentioned
above. We write it as a lemma.

Lemma 3.2 m ◦ δ = β−1 · η−1

We define the algebras for a KZ-doctrine with an arbitrary object of the Gray-category
A as domain. This is in agreement with [8], where the algebras for a monad on a 2-category
are defined over arbitrary objects of the 2-category.

3.3. Definition. Let X be an object of A. A D-algebra with domain X is an adjunction

φ, ψ : x ⊣ dX : X −→ DX

in A(X ,K), with the counit ψ invertible.
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A D-algebra as above, produces a co-fully-faithful adjoint string Dx ⊣ DdX ⊣ mX.
As in the definition of δ, we obtain

DDX DDX

DX DX

ϵX ⇓
Dψ−1 ⇓ =

//
IdDDX

//IdDX

;;
mX wwwwwww ##DdX

GGG
GGG

G ;;

Dx

wwwwwww

DDX DDX

DX DX.

Dφ ⇓
ηX−1⇓

//IdDDX

//
IdDX

##Dx GGG
GGG

G ;;

DdX

wwwwwww ##

mX

GGG
GGG

G

(4)
The following proposition tells us that for a D-algebra, the unit is uniquely determined

by the counit

Proposition 3.3 If φ, ψ : x ⊣ dX : X −→ DX is a D-algebra, then φ is equal to the
pasting

DX
,,DdX

22
dDX

δX⇓
''

IdDX

Dψ−1⇓

''
x

OOOOOOOOOOOOO DDX //
Dx

DX.

X

77

dX

dx ⇓
ooooooooooooo

(5)

Proof. Start with the above pasting. Replace δX by (ϵX ◦ dDX) · (DdX ◦ βX−1). Use
(4). Since the pasting of dx and ddX is equal to d(dX◦x), we have that

DDX DX DDX

DX X DX

Dφ⇓

dx
=⇒

ddX
=⇒

//
Dx

))
//

DdXOO

dDX

//
x

OO

dX

//
dX

OO

dDX =
DX DX DDX.

X

φ⇓
//

%%x KKK
K

//dDX

99
dX
ssss

Therefore we have that (Dφ ◦ dDX) · (DdX ◦ dx) = (dDX ◦ φ) · (d−1
dX ◦ x). Make this last

substitution. As a consequence of (1) we have that the pasting of d−1
dX , βX

−1 and ηX−1 is
the identity.

Observe that, for any invertible 2-cell ψ : x ◦ dX −→ IdX the pasting (5) is always
defined. Denote this pasting by ψ̂. Now we show that one of the triangular identities is
always satisfied.

Lemma 3.4 If ψ : x ◦ dX −→ IdX is an invertible 2-cell in A(X ,A), then the pasting

DX

X X

DX
ψ̂ ⇓

ψ ⇓
//

IdX

::dX tttttt $$
x

JJJJJJ
//IdDX

::

dX

tttttt

is the identity on dX.
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Proof. We know from Proposition 3.1 that δX ◦ dX = ddX . The pasting of ddX with dx
is d(x◦dX). The pasting of this last 2-cell with Dψ−1 is equal to dX ◦ ψ−1.

So, in order to see if an invertible ψ : x◦dX −→ IdX determines a (necessarily unique,
in view of Proposition 3.3) D-algebra, all we have to do is to check the other triangular
identity.

Proposition 3.5 An invertible 2-cell ψ : x ◦ dX −→ IdX in A(X ,A) is the counit of an
adjunction x ⊣ dX if and only if the pasting

DX DX

X X

ψ̂ ⇓
ψ ⇓

//IdDX

//
IdX

$$x JJJJJJ ::

dX

tttttt $$
x

JJJ
JJJ

is the identity on x.

Since we have m ⊣ dD with invertible counit β, we have as a corollary the condition
corresponding to condition T3 in [9]

Corollary 3.6 The pasting

DD
,,DdD

22
dDD

δD⇓
''

IdDD

Dβ−1⇓

''
m

OOOOOOOOOOOOO DDD //
Dm

DD

&&

m

β ⇓ LLLLLLLLLLL

D

77

dD

dm ⇓
ooooooooooooo //
IdD

D

is the identity on m.

Observe that a KZ-doctrine in A, gives with the same data a KZ-doctrine in Atrop but
with the roles of α, ϵ and β, η interchanged. Here Aop is the dual in the enriched sense,
whereas Atr is such that for every A and B in A, we have Atr(A,B) = A(A,B)co. We
thus obtain the condition corresponding to T3∗ of [9]

Corollary 3.7 The pasting

DD
,,DdD

22
DDd

Dδ⇑
''

IdDD

ηD−1⇑

''
m

OOOOOOOOOOOOO DDD //
mD

DD

&&

m

η ⇑ LLLLLLLLLLL

D

77

Dd

md ⇑
ooooooooooooo //
IdD

D

is the identity on m.
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4. Normalized KZ-doctrines vs. KZ-doctrines

In this section we make explicit the comparison between the definition of KZ-doctrines
in [9] and the definition given in this paper. Notice first that our definition is given in a
general Gray-category, whereas the definition in [9] is given in 2-Cat. Notice furthermore,
that we have replaced invertible 2-cells where the definition in [9] asked for strict equalities.

The definition given in [9] makes sense in a general Gray-category provided that the
2-cell dd is an identity. So what we do is to compare the definitions in this more general
setting.

Let’s assume first then, that we have a KZ-doctrine D in our sense, such that β, η and
dd are identities. Define δ = ϵ◦dD (pasting (2)). In this case the conditions corresponding
to T1, T2 and T3 above are identical to the conditions T1, T2 and T3 of [9].

Conversely, assume we have (D, d,m, δ) a KZ-doctrine in the sense of [9] (where we
are assuming that dd is an identity). It follows from the work done in [9] that Dd ⊣ m
with identity unit and m ⊣ dD with identity counit. We have therefore a KZ-doctrine in
our sense. All we have to show now is that δ = ϵ ◦ dD, where ϵ is the counit of Dd ⊣ m.
But this is clear since δ is unique with the property m ◦ δ = β−1 · η−1.

5. Associativity up to isomorphism for KZ-doctrines

We deduce associativity up to isomorphism for a KZ-doctrine D as a corollary to the
following technical proposition. Recall that D-algebras have objects of A as domains.

Proposition 5.1 Let ψ : x ◦ dX −→ IdX and ζ : z ◦ dZ −→ IdZ be D-algebras with the
same object X of A as domain. Let h : X −→ Z be a 1-cell in A(X ,K). If h has a right
adjoint then the pasting

DX DX DZ

X Z Z

⇓ψ̂ ⇓dh

⇓ζ

//IdDX

��
x ==

==
==

==
=

//Dh

��

z

==
==

==
==@@

dX

���������
//

h

@@

dZ

��������
//

IdZ

is invertible.

Proof. Assume π, χ : h ⊣ k. The inverse of the above pasting is

DX DX

DZ DZ
X X

Z Z.

⇓Dπ

⇓ζ̂

⇓dk

⇓ψ

⇓χ

//

��?
??

��4
44

44
44

//

��4
44

44
44

33ggggggggggggggggg

DD







//

��9
99

9

DD








33gggggggggggggggggggg //
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As a corollary we have,

Proposition 5.2 The pasting

DDD DDD DD

DD D D

⇓αD
⇓dm

⇓β

//IdDDD

��
mD ==

==
==

==
=

//Dm

��

m

==
==

==
==@@

dDD

���������
//

m

@@

dD

��������
//

IdD

(6)

is invertible.

Proof. Apply 5.1 with ψ = βD, ζ = β and h = m.

As a corollary of the following lemma, we are able to write (6) in terms of Dϵ,md and
η.

Lemma 5.3 Denoting pasting (6) by µ, we have

DD

DDD DD

DD D

⇐
Dη

⇐=
µ

��
DDd

""

IdDD

EE
EE

EE
EE

E

//
Dm

��
mD

//
m

��
m

=

D.

DD D

DDD DD
⇐
η⇐=

md

""

IdD

EE
EE

EE
EE

EE

//
m

//m

��
DDd

//
mD

��
Dd

Proof. Start on the left hand side. Substitute (6) for µ. Make the substitution

DD DDD DDD

DD

αD⇓
//DDd

""mD
DDD

D
//

::

dDD

vvvvv =

DD D DD

DDD DD DDD.

α ⇓

md
⇐=

dDd⇐=

//
m

))
//

dD

��
DDd

//
mD

��
Dd

//
dDD

��
DDd

Then the substitution

DD DDD DD

D DD D

Dη ⇓

dDd
=⇒

dm
=⇒

//
DDd

))
//

DmOO

dD

//
Dd

OO

dDD

//
m

OO

dD =
D D DD

DD

η⇓
//

%%
Dd

KKK
//dD

99
m
sss

recalling that dDd = dDd. Finally, use the fact that α and β define an adjunction.
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Corollary 5.4 Pasting (6) equals

DDD DDD DD.

DD D D

⇓Dϵ
⇓md

⇓η

//
IdDDD

@@
Dm

���������
//

mD

@@

m

����������

DDd

==
==

==
==

=
//m

��

Dd

==
==

==
==

//IdD

Another corollary to Proposition 5.1 is

Proposition 5.5 For any D-algebra (X, x, ψ), the pasting

DDX DDX DX

DX X X

⇓αX
⇓dx

⇓ψ

//IdDDX

��
mX ==

==
==

==
=

//Dx

��

x

==
==

==
==@@

dDX

���������
//

x

@@

dX

��������
//

IdX

(7)

is invertible.

Proof. Apply 5.1 with ψ = βX, ζ = ψ and h = x.

Denote pasting (7) by χψ.

Proposition 5.6 For any D-algebra (X, x, ψ), we have that

DX DDX DX

DX X

⇐
(ηX)−1

⇐=
χψ

//DdX

""IdDX EE
EE

EE
EE

E
//Dx

��
mX

//
x

��
x =

DX DX

DDX

X.

⇓Dψ

//
IdDX

EE
DdX

������ ��
Dx
33

33
33

//x

Proof. Replace χψ by (7). Notice then that the pasting of ηX with αX produces δX.
Now paste with Dψ and its inverse and use 3.5.

6. 2-categories of algebras for a KZ-doctrine

Fix an object X in A. Define the 2-category D-AlgX of D-algebras with domain X as
follows: The objects of D-AlgX are D-algebras ψ : x◦dX −→ IdX with domain X . Given
another D-algebra ζ : z ◦ dZ −→ IdZ with domain X , define D-AlgX (ψ, ζ) to be the full
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subcategory of A(X ,K)(X,Z) determined by those 1-cells h : X −→ Z with the property
that

DX DX DZ

X Z Z

⇓ψ̂ ⇓dh

⇓ζ

//IdDX

��
x ==

==
==

==
=

//Dh

��

z

==
==

==
==@@

dX

���������
//

h

@@

dZ

��������
//

IdZ

(8)

is invertible. The horizontal composite of h : ψ −→ ζ and k : ζ −→ τ is k ◦ h.
There is a forgetful 2-functor UX : D-AlgX −→ A(X ,K) with UX (ψ) = X. The left

biadjoint FX : A(X ,K) −→ D-AlgX is defined as follows: For every X in A(X ,K) define
FX (X) = βX. If γ : h −→ h′ : X −→ Z, define FX (h) = Dh and FX (γ) = Dγ. It is
straightforward to show that FX is a 2-functor provided we know that Dh : βX −→ βZ
is a 1-cell in D-AlgX . To see this we need a lemma.

Lemma 6.1 For every 1-cell h : X −→ Z in A(X ,K) we have that the pasting

DDX DDX DDZ

DX DZ DZ

⇓αX
⇓dDh

⇓βZ

//IdDDX

��mX ==
==

==
=

//DDh

��
mZ
==

==
==

=@@

dDX

�������

//
Dh

@@

dDZ

�������

//
IdDZ

is equal to m−1
h .

Proof. Since

DX DDX DX

DZ DDZ DZ
βZ ⇓

dDh⇐=
mh
⇐=

//dDX

55

//mX

��
Dh

//dDZ

��DDh

//mZ

��
Dh =

DX DX DZ

DDX
βX⇓

//

99dDXss
//Dh

%%
mXKK

we have that (βZ◦Dh)·(mZ◦dDh) = (Dh◦βX)·(m−1
h ◦dDX). Make this last substitution

on the pasting of the lemma, and use the fact that α and β define an adjunction.

Notice that FX ◦ UX = D( ) : A(X ,K) −→ A(X ,K). The unit for the biadjunction
FX ⊣ UX is d( ) : 1A(X ,K) −→ D( ). The counit s : FX ◦ UX −→ 1D-AlgX

is given by the
structure maps, that is to say, for ψ : x ◦ dX −→ IdX we put sψ = x : βX −→ ψ. Notice
that Proposition 5.5 says that x is a 1-cell in D-AlgX . Given h : ψ −→ ζ in D-AlgX , we
define the transition 2-cell sh as the inverse of (8).

The invertible modification IdFX −→ (sFX ) ◦ (FXd( )) is defined to be ηX at every X
in A(X ,K). The invertible modification (UX s) ◦ (d( )UX ) −→ IdUX is defined to be ψ at
every ψ in D-AlgX . To see that this defines a modification we have to show:



Theory and Applications of Categories, Vol. 3, No. 2 32

Lemma 6.2 h ◦ ψ is equal to the pasting

X DX X

Z DZ Z.

dh⇐=
sh
⇐=

ζ ⇓

//dX

��
h

//x

��
Dh

��
h

//dZ
77
//mZ

Proof. Consider the inverse of the above pasting composite and use the definition of sh.
Notice that ψ̂ ◦ dX = dX ◦ ψ−1.

Change of base. Assume that we have two objects X and Z of A, and H an object
in A(X ,Z). Then the 2-functor ( )H : A(Z,K) −→ A(X ,K) induces a change of base
2-functor Ĥ : D-AlgX −→ D-AlgZ such that

D-AlgZ

��
UZ

//Ĥ
D-AlgX

��
UX

A(Z,K) //
( )H

A(X ,K)

commutes.

7. The Gray-category of D-algebras

We can, by allowing the domain to change, define the Gray-category D-Alg made up of
D-algebras for a KZ-doctrine D.

The objects of D-Alg are D-algebras with any object ofA as domain. Given D-algebras
ψ : x◦dX −→ IdX with domain X and ζ : z ◦dZ −→ IdZ with domain Z, the 2-category
D-Alg(ψ, ζ) is defined as follows:

The objects of D-Alg(ψ, ζ) are pairs (N, h), where N is an object in A(X ,Z) and
h : X −→ ZN is a 1-cell in A(X ,K), such that the pasting

DX DX DZN

X ZN ZN

⇓ψ̂ ⇓dh

⇓ζN

//IdDX

��
x ==

==
==

==
=

//Dh

��

zN

==
==

==
==@@

dX

���������
//

h

@@

dZN

��������
//

IdZN

is invertible.
A 1-cell (n, n̄) : (N, h) −→ (N ′, h′) in D-Alg(ψ, ζ) consists of a 1-cell n : N −→ N ′ in

A(X ,Z) and a 2-cell n̄ : Zn ◦ h −→ h′ in A(X ,K).
A 2-cell ν : (n, n̄) −→ (n′, n̄′) is a 2-cell ν : n −→ n′ in A(X ,Z) such that n̄ =

n̄′ · (Y ν ◦ h). Vertical composition is the obvious one.
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Define Id(N,h) = (IdN , idh).
Given (n, n̄) : (N, h) −→ (N ′, h′), and (ℓ, ℓ̄) : (N ′, h′) −→ (N ′′, h′′) define (ℓ, ℓ̄) ◦

(n, n̄) = (ℓ ◦ n, ℓ̄ · (Zℓ ◦ n̄)). If λ : (ℓ, ℓ̄) −→ (ℓ′, ℓ̄′) and ν : (n, n̄) −→ (n′, n̄′) define
λ ◦ (n, n̄) = λ ◦ n and (ℓ, ℓ̄) ◦ ν = ℓ ◦ ν. This completes the definition of the 2-category
D-Alg(ψ, ζ).

Define 1ψ = (1X , IdX).
For another D-algebra τ : y◦dY −→ IdY with domain Y , we define the cubical functor

M : D-Alg(ψ, ζ)× D-Alg(ζ, τ) −→ D-Alg(ψ, τ)

denoted by juxtaposition as for A, as follows:
Given (N, h) in D-Alg(ψ, ζ) and ω : (o, ō) → (o′, ō′) : (O, g) −→ (O′, g′) in D-Alg(ζ, τ),

define (O, g)(N, h) = (ON, gN ◦ h), and (o, ō)(N, h) = (oN, ōN ◦ h), and ω(N, h) = ωN .
On the other hand, given ν : (n, n̄) −→ (n′, n̄′) : (N, h) −→ (N ′, h′) in D-Alg(ψ, ζ)

and (O, g) in D-Alg(ζ, τ) we define (O, g)(N, h) = (ON, gN ◦ h), and (O, g)(n, n̄) =
(On, (gN ′ ◦ n̄) · (gn ◦ h)), and (O, g)ν = Oν. The proof that we obtain 2-functors with
these definitions is fairly straightforward.

For (n, n̄) : (N, h) −→ (N ′, h′) and (o, ō) : (O, g) −→ (O′, g′) we define the invertible
2-cell (o, ō)(n,n̄) = on : (O′, g′)(n, n̄) ◦ (o, ō)(N, h) −→ (o, ō)(N ′, h′) ◦ (O, g)(n, n̄).

These definitions give us a cubical functor since we have a cubical functor A(X ,Z)×
A(Z,Y) −→ A(X ,Y).

We have to show now that the diagrams required for a Gray-category are satisfied. We
only do the pentagon. Given another D-algebra θ : w ◦ dW −→ IdW with domain W , we
have that the pentagon commutes if and only if the diagram of cubical functors

D-Alg(ψ, ζ)× D-Alg(ζ, τ)× D-Alg(τ, θ)

��
D-Alg(ψ,ζ)×M

//
M×D-Alg(τ,θ)

D-Alg(ψ, τ)× D-Alg(τ, θ)

��
M

D-Alg(ψ, ζ)× D-Alg(ζ, θ) //
M

D-Alg(ψ, θ)

commutes. This is equivalent to the following six conditions for (n, n̄) : (N, h) −→ (N ′, h′)
in D-Alg(ψ, ζ), (o, ō) : (O, g) −→ (O′, g′) in D-Alg(ζ, τ) and (p, p̄) : (P, k) −→ (P ′, k′) in
D-Alg(τ, θ):

1. (( )(N, h)) ◦ (( )(O, g)) = ( )((O, g)(N, h)) : D-Alg(τ, θ) −→ D-Alg(ψ, θ).

2. ((P, k)( )) ◦ (( )(N, h)) = (( )(N, h)) ◦ ((P, k)( )) : D-Alg(ζ, τ) −→ D-Alg(ψ, θ).

3. (P, k)( )) ◦ (O, g)( )) = ((P, k)(O, g))( ) : D-Alg(ψ, ζ) −→ D-Alg(ψ, θ).

4. (p, p̄)(o,ō)(N,h) = ((p, p̄)(o,ō))(N, h).

5. (p, p̄)(O,g)(n,n̄) = ((p, p̄)(O, g))(n,n̄).

6. (P, k)((o, ō)(n,n̄)) = ((P, k)(o, ō))(n,n̄).

All the above conditions follow from the definitions and the corresponding facts for the
Gray-category A.
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8. Pseudomonads

We adopt the definition of pseudomonoid given in [1]. That is, given a Gray-category A,
and an object K in A, we define a pseudomonad D on K to be a pseudomonoid in the
Gray monoid A(K,K). Explicitly, D consists of an object D in A(K,K) together with
1-cells d : 1K −→ D and m : DD −→ D and invertible 2-cells

D DD D

D

⇐
β

⇐
η

//dD

��
IdD ==

==
==

==
=

ooDd

��
IdD

��
��

��
��

�

��
m

DDD DD

DD D

⇐=
µ

//Dm

��
mD

��
m

//
m

satisfying the following two conditions

DDDD DDD

DDD DD

DDD

DD D

Dµ
⇐=

µD
⇐=

µ
⇐=

//DDm

%%

DmD

LLLLLLLLL

��
mDD %%

Dm

LLLLLLLLL

//
Dm

��
mD

��

m

%%mD LLLLLLLL

//
m

=

DDDD DDD

DD

DD

DDD

DD D

m−1
m⇐=

µ
⇐=

µ
⇐=

//DDm

��
mDD %%

Dm

LLLLLLLLL

��
mD

%%

m

LLLLLLLLL

��
m

//
Dm

%%mD LLLLLLLL

//
m

(9)

DD DDD

DD

D

DD

µ ⇓//DdD

77Dm ooooooo

''mD
OOOOOOO

''
m

OOOOOOOO

77

m

oooooooo

= DD

DDD

DDD

DD D.
Dβ⇓

ηD ⇓

77DdD ooooooo

''DdD
OOOOOOO

//
''

Dm
OOOOOOO

77

mD

ooooooo

//m

(10)
Warning: The direction of the arrows η and µ is the opposite to that given in [1]. Since
they are invertible this represents no problem.

As pointed out in [1], a pseudomonoid in the cartesian closed 2-category Cat of categor-
ies, functors and natural transformations is precisely a monoidal category, where condition
(9) corresponds to the pentagon and condition (10) corresponds to the triangle that has
the distinguished object I in the middle. It is well known that in this case the commut-
ativity of these diagrams implies the commutativity of the two triangles that have I on
one extreme or the other, and that the ‘right’ and ‘left’ arrows I ⊗ I −→ I coincide [6].
(This in turn implies the commutativity of all the diagrams [11]). Results like those of [6]
can be shown in the present context.
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Proposition 8.1 If D = (D, d,m, β, η, µ) is a pseudomonad on an object K, then we
have the following equalities:

1. 1K D D

DD

DD

β ⇓
η ⇓

//d

::dD tttttt

$$Dd
JJJ

JJJ
//IdD $$

m
JJJ

JJJ

::

m

tttttt

= 1K

D

D

DD D.(dd)−1⇓

<<
d zzzzzz

""d
DD

DD
DD

""
dDDDD

D

<<
Dd

zzzz

//m

2.

DD DDD DD

DD D

⇐
βD

⇐=
µ

//dDD

""IdDD EE
EE

EE
EE

E
//Dm

��
mD

//
m

��
m =

DD DDD

D DD

D.

⇐=
dm

⇐
β

//dDD

��

m
��
Dm

//
dD

""
IdD EEEEEEEEEEE

��

m

3.

DD

DDD DD

DD D

⇐
Dη

⇐=
µ

��DDd

""

IdDD

EE
EE

EE
EE

EE

//
Dm

��
mD

//
m

��
m

=

D.

DD D

DDD DD
⇐
η⇐=

md

""

IdD

EE
EE

EE
EE

EE

//
m

//m

��
DDd

//
mD

��
Dd

Proof. To show 2 start with the following pasting

DD

DDD

DD

DD D

DDD DDD DD

DDD
DD D.

βD⇓ µ ⇓

d−1
m⇐=

ηDD⇓
µ ⇓

β−1⇐

77dDD oooooo
//

��
dDD
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mD
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m

??
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m

�� dD

��?
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??
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// //Dm

''
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''DdDD
OOOOO

''

m

OOOOOOOOOOOOOO::

mDD

ttttt

//
m
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Make the substitution

DD

DDD

DD

DD D

DDD DDD DD

βD⇓ µ ⇓

d−1
m⇐=

88dDD rrrrr
//

��
dDD

66
Dm mmmmmmmm

##
mDFFF ��

m
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77

77
77

//
m

�� dD

// //Dm

= DD

DDD

DD

DDDD
D

DDD DDD DD

DDD

DβD⇓
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dDD⇐=

d−1
Dm⇐=

d−1
m⇐=

Dµ
⇐=

88dDD rrrrr

��
dDD
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Dm mmmmmmmm
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dDDD ��

m

77
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��
dDD

## DmDFF

66
DDm mmmmmmmmm

�� dD
88

DdDD rrrr
// //Dm

��
Dm 77

77
77

77

(using the fact that d−1
m◦Dm◦dDD is equal to the pasting of d−1

dDD, d
−1
Dm and d−1

m ). Make the
substitution (10) multiplied on the right by D. Now make the substitution (9). Make the
substitution

DD DDD DD

DDD DDDD DDD

d−1
dDD⇐=

d−1
Dm⇐=

//dDD

��
dDD

//Dm

��
dDDD

��
dDD
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DdDD
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DDm

=

DDD

DD D DD

DDD DD DDD

DDD

dm⇓

Dd−1
m⇓

d−1
m⇐=

d−1
dD⇐=

''

Dm

PPPPPPPPPP77
dDD

nnnnnnnnnn
//m

��
dDD

//dD

��
dD
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dDD

//
Dm

''DdDD PPPPPPPPP
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DdD 77

DDm

nnnnnnnnn

Then the substitution

D DD D

DD DDD DD

d−1
dD⇐=

d−1
m⇐=

//dD
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dD

//m
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dDD

��
dD
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DdD

//
Dm

=

DD

D D

DD DD.

DDD

β ⇓

Dβ−1⇓

''

m

PPPPPPPPPPP77
dD

nnnnnnnnnnn

��
dD
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��
dD

''DdD PPPPPPPPPP
//
77

Dm

nnnnnnnnnn

Notice that, as consequence of (10), the pasting of Dβ−1 and µ is equal to m ◦ ηD. The
pasting of ηD, Dd−1

m and m−1
m is equal to Dm ◦ ηDD. Observe that the bottom part of

the resulting diagram is equal to the bottom part of the pasting we started from. Since
all the 2-cells are invertible, we conclude 2.

3 can be proved similarly or by duality.
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To show 1, we show first that the pasting

1 D

DD

DD

DDD DD DddD⇓
ηD ⇓

βD⇓
//d

55dD lllllll

))dD
RRRRRRR

))
DdDRRRRR

&&

88
//

mD
//m

55
dDD

lllll

(11)

is the identity. To do this, replace m ◦ ηD by a pasting of Dβ−1 and µ, using (10). Use
condition 2 of the proposition proved above. The pasting of Dβ−1, ddD and dm is dD◦β−1.
We thus obtain an identity.

Start again with (11). Paste dd and its inverse on top of it. Now, ηD ◦Dd is equal to
the pasting of Ddd, md and η. The pasting of Ddd, dd and ddD is equal to the pasting of
dd, dDd and dd. The pasting of dDd, md and βD is Dd ◦ β. Since (11) is an identity, the
resulting pasting is an identity. We thus obtain another identity if we remove dd and its
inverse. Now paste with η and η−1.

9. 2-categories of algebras for a Pseudomonad

As in the case of algebras for a KZ-doctrine we define the algebras for a pseudomonad
with an object of A for domain.

Let D be a pseudomonad on an object K of the Gray-category A. Let X be an object
of A. We define the 2-category D-AlgX of D-algebras with domain X as follows.

An object of D-AlgX consists of an object X in A(X ,K), together with a 1-cell x :
DX −→ X, and invertible 2-cells

X DX

X

⇐
ψ

//dX

""
IdX EEEEEEEEEEE
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x

DDX DX

DX X.

⇐=
χ

//Dx

��
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x

This data must satisfy the following two conditions
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(12)
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DX DDX
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(13)
We denote an object in D-AlgX by the pair (ψ, χ).

Given another D-algebra (ζ, θ) with ζ : z ◦ dZ −→ IdZ , a 1-cell in D-AlgX is a pair
(h, ρ) : (ψ, χ) −→ (ζ, θ), where h : X −→ Z is a 1-cell in A(X ,K) and

DX DZ

X Z

⇐=
ρ

//Dh

��

x
��
z

//
h

is an invertible 2-cell in A(X ,K), such that the following two conditions are satisfied.
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(15)

Given (h, ρ), (h′, ρ′) : (ψ, χ) −→ (ζ, θ), a 2-cell ξ : (h, ρ) −→ (h′, ρ′) is a 2-cell ξ :
h −→ h′ in A(X ,K) such that (ξ ◦x) ·ρ = ρ′ · (z ◦Dξ). Vertical composition is the obvious
one.

Horizontal composition: for (h, ρ) : (ψ, χ) −→ (ζ, θ) and (k, π) : (ζ, θ) −→ (τ, σ) we
define (k, π) ◦ (h, ρ) = (k ◦ h, (k ◦ ρ) · (π ◦Dh)).

This completes the definition of D-AlgX .

A proof very similar to that of condition 2 of Proposition 8.1 produces:
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Lemma 9.1 For every D-algebra (ψ, χ) we have

DX DDX DX

DX X
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βX
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χ

//dDX

""IdDX EE
EE

EE
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E
//Dx

��
mX
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x
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""
IdX EEEEEEEEEEE

��

x

(16)

As a matter of fact, condition 2 of Proposition 8.1 is the above lemma applied to the
D-algebra (β, µ).

The Gray-category D-Alg of algebras for a pseudomonad D can be defined along the
same lines as the Gray-category D-Alg of algebras for a KZ-doctrine.

10. Every KZ-doctrine is a pseudomonad

Assume we have a KZ-doctrine D = (D, d,m, α, β, η, ϵ) as in Section 3. Define µ as pasting
(6). We already know that µ is invertible.

Proposition 10.1 D = (D, d,m, β, η, µ) is a pseudomonad.

Proof. Condition (10) is Proposition 5.6 applied to the D-algebra β. As for the other
condition, start on the left hand side of (9). Substitute (6) and (6) multiplied by D on the
right for µ and µD respectively. The pasting of βD and αD is the identity. The pasting of
dmD, dm and Dµ equals the pasting of dDm, dm and µ. Paste with (dDD ◦β) · (αD ◦dDD)
in the middle. Use Lemma 6.1.

To be able to say anything meaningful on this connection between KZ-doctrines and
pseudomonads, we must show first that the categories of algebras D-AlgX and D-AlgX for
any X are essentially the same. We devote the rest of this section to show that they are
2-isomorphic. So we fix an object X of A, and a KZ-doctrine D on K. We take D as the
pseudomonad induced by D as in the above proposition.

We start by stating the recognition lemma [13] in the form we will use it

Lemma 10.2 Given ψ : x◦dX −→ IdX and ζ : z ◦dZ −→ IdZ in D-AlgX , h : X −→ Z
a 1-cell in A(X ,K) and ρ : z ◦Dh −→ h ◦ x a 2-cell, we have that

ρ =

DX DX DZ

X Z Z

⇓ψ̂ ⇓dh
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IdZ
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if and only if
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$$
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Let ψ : x ◦ dX −→ IdX be an object in D-AlgX . Let χψ be equal to pasting (7).

Lemma 10.3 (ψ, χψ) is a D-algebra.

Proof. Condition (12) is shown as condition (9) in Proposition 10.1. Condition (13) is
Proposition 5.6.

Conversely

Lemma 10.4 If (ψ, χ) is a D-algebra with ψ : x ◦ dX −→ IdX , then ψ is a D-algebra
and χ = χψ (pasting 7).

Proof. To show that ψ is a D-algebra it suffices to show that the pasting in Proposition
3.5 is the identity on x. Substitute pasting (5) for ψ̂. Paste with χ and its inverse. Use
(13) on the pasting of Dψ−1 and χ. By Lemma 3.2 the pasting of ηX and δX is βX−1.
Now use (16). The condition for χ follows from Lemma 10.2 and (16).

Lemma 10.5 Let ψ : x ◦ dX −→ IdX and ζ : z ◦ dZ −→ IdZ be objects and h :
ψ −→ ζ be a 1-cell in D-AlgX . Define ρh as pasting (8). Then we have that (h, ρh) :
(ψ, χψ) −→ (ζ, χζ) is a 1-cell in D-AlgX .

Proof. Condition (14) follows immediately from the definition of ρh. The proof of (15)
is very similar to the proof of condition (9) in Proposition 10.1.

Conversely

Lemma 10.6 If (h, ρ) : (ψ, χ) −→ (ζ, θ) is a 1-cell in D-AlgX , then h : ψ −→ ζ is a
1-cell in D-AlgX and ρ = ρh (pasting (8)).

The situation for 2-cells is similar. We thus have

Theorem 10.7 If we define Φ : D-AlgX −→ D-AlgX such that for every ξ : h −→ h′ :
ψ −→ ζ in D-AlgX we have Φ(ψ) = (ψ, χψ), Φ(h) = (h, ρh) and Φ(ξ) = ξ, we obtain a
2-isomorphism.

It can also be shown that the Gray-categories D-Alg and D-Alg are isomorphic.
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11. Pseudomonads vs. KZ-doctrines

In [13], the leftmost adjoint in the definition of KZ-doctrine is explicitly excluded. A
question raised in [9] asks whether it can be put back on. The answer given here is in the
affirmative.

Theorem 11.1 If D = (D, d,m, β, η, µ) is a pseudomonad on an object K of a Gray-
category A, then, the following statements are equivalent

1. m ⊣ dD with counit β.

2. Dd ⊣ m with unit η.

Proof. Assume α, β : m ⊣ dD. Notice that we can still define δ as

.

⇓η−1 ⇓α

//

99rrrrrrrrr

99rrrrrrrrr%%LLLLLLLLL //

Define ϵ as the pasting

D

DD DDD DD.
⇓md

⇓Dδ

⇓ηD−1

))

Dd

RRRRRRRRRRRRRR55
m
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Then ϵ is the counit for an adjunction η, ϵ : Dd ⊣ m. The converse follows similarly or by
duality.
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