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AN ALGEBRAIC DESCRIPTION OF

LOCALLY MULTIPRESENTABLE CATEGORIES

JIŘÍ ADÁMEK, JIŘÍ ROSICKÝ

Transmitted by Robert Paré

Abstract. Locally finitely presentable categories are known to be precisely the cate-
gories of models of essentially algebraic theories, i.e., categories of partial algebras whose
domains of definition are determined by equations in total operations. Here we show an
analogous description of locally finitely multipresentable categories. We also prove that

locally finitely multipresentable categories are precisely categories of models of sketches
with finite limit and countable coproduct specifications, and we present an example of a
locally finitely multipresentable category not sketchable by a sketch with finite limit and
finite colimit specifications.

Introduction.

We have shown in [AR1] how each locally finitely presentable category K in the sense of
[GU] can be described by an essentially algebraic theory. This means that there exists a
(finitary, many-sorted) signature Σ = Σt ∪Σp such that K is equivalent to the category
of partial Σ-algebras A such that

(i) each operation σA with σ ∈ Σt is total (i.e., everywhere defined)
(ii) for each σ ∈ Σp a finite set Defσ of equations in signature Σt is given and

σA(a1 . . . an) is defined iff all equations of Defσ are fulfilled in (a1, . . . , an).

and

(iii) a set of equations is given which all partial algebras of the given category satisfy.

In the present paper we discuss locally finitely multipresentable categories, as introduced
by Y. Diers [D]. Recall that a category is locally finitely multipresentable iff it has

(a) connected limits (or, equivalently, multicolimits)
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and

(b) a set of finitely presentable objects A such that each object is a directed colimit
of A-objects.

Examples: fields and homomorphisms, linearly ordered sets and strictly increasing maps.
We describe a natural generalization of the concept of essentially algebraic theory, called
essentially multialgebraic theory, and we show that a category is locally finitely multi-
presentable iff it is equivalent to the category of models of such a theory. Here we again
work with partial algebras of signature Σ = Σt∪Σp (where Σt are the total operations).
But rather than having a finite set of equations for each element of Σp, we assume that
Σp is decomposed into a doubly indexed union Σp =

∪
γ∈Γ

∪
i∈Iγ

Σγi and for each γ ∈ Γ a

finite set Defγ of equations in the signature Σt is given. In each model A the equations
of Defγ determine the domain of definition of all operations of

∪
i∈Iγ

Σγi as follows: if all

equations of Defγ are fulfilled in (a1, . . . , an) then there exists precisely one i ∈ Iγ such
that σA(a1, . . . , an) are defined for all σ ∈ Σγi, whereas all τ(a1, . . . , an) for τ ∈ Σγ−Σγi

are undefined.
We consider next sketches describing locally finitely multipresentable categories: we

have shown in [AR1] that a category is locally finitely multipresentable iff it can be
sketched by a (finite limit, coproduct)-sketch. We now prove that, assuming the non-
existence of measurable cardinals, we can restrict ourselves to (finite limit, countable
coproduct)-sketches. On the other hand, finite coproducts are not sufficient: a locally
finitely multipresentable category K is exhibited which cannot be sketched by a (finite
limit, finite coproduct)-sketch. Curiously, K can be sketched by a (finite limit, finite
colimit)-sketch.

I. Essentially Multialgebraic Theory

Throughout the paper we work with partial Σ-algebras, where Σ is a many-sorted (fini-
tary) signature. That is, if S is the set of sorts under consideration, then Σ is a set of
operation symbols σ with prescribed arities

σ : s1 × · · · × sk → s .

This means that a partial Σ-algebra A consists of an S-sorted set, i.e., a collection
(As)s∈S of sets, together with partial maps

σA : As1 × · · · ×Ask → As

for each σ : s1×· · ·×sk → s. A homomorphism from a partial Σ-algebra A into a partial
Σ-algebra B is an S-sorted map h = (hs)s∈S : A → B (i.e., hs : As → Bs are maps)
preserving the operations in the strong sense: whenever σA(a1, . . . , ak) is defined in A, it
follows that σB(hs1(a1), . . . , hsk(ak)) is defined in B and has the value h(σA(a1, . . . , ak)).
This results in the category PAlgΣ of partial algebras and homomorphisms.

A partial algebra is said to satisfy an equation provided that whenever a tuple is
such that both sides of the equation are defined in it, then the results are equal.
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Definition. By an essentially multialgebraic theory is understood a quadruple

T = (Σ, E,Γ,Def)

where

Σ is a signature;
E is a set of equations (in the signature Σ);
Γ is a set of collections γ = (Σγi)i∈Iγ of finite subsets Σγi ⊆ Σ such that Σγi are

pairwise disjoint for γ ∈ Γ, i ∈ Iγ ;
Def is a map assigning to each γ ∈ Γ a finite set Defγ of equations in the signature

Σt
def
= Σ−

∪
γ∈Γ

∪
i∈Iγ

Σγi

such that variables appearing in the equations of Defγ are the same as those
used by any operation of

∪
i∈Iγ

Σγi .

Remark. (1) The collection γ can also be empty, i.e., the case Iγ = ∅ is not excluded.
(2) The last clause concerning variables is only needed because the set

∪
i∈Iγ

Σγi can

be infinite.

Definition. By a model of an essentially multialgebraic theory T we understand a
partial Σ-algebra A such that

(1) A satisfies all equations in E;
(2) σA is a total operation for each σ ∈ Σt;
(3) Given γ ∈ Γ, then whenever σA(a1, . . . , an) is defined for some σ ∈

∪
i∈Iγ

Σγi then

all equations of Defγ hold in the n-tuple (a1, . . . , an);
(4) Given γ ∈ Γ, then when all equations of Defγ hold in some n-tuple (a1, . . . , an),

then there exists a unique i0 ∈ Iγ such that σA(a1, . . . , an) is defined for each
σ ∈ Σγi0

.

The category of all models of T and homomorphisms is denoted by ModT.

Remark. In case Iγ = ∅, a model A of T has the property that for no n-tuple of A all
equations of Defγ are satisfied.

Examples. (1) Fields. We start with the algebraic theory (Σt, Et) of rings with a unit
element. We introduce two unary operation symbols o and i (where o(x) will be defined
precisely when x = 0 and i(x) is the inverse of x for all x ̸= 0). We put

Σ = Σt ∪ {o, i}
Γ = {γ, γ′}
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where

γ = {{o}, {i}}
γ′ = ∅

Defγ = ∅
Defγ′ = {0 = 1}

E = Et ∪E′

where E′ are the following four equations:

i(x) · x = 1

x · i(x) = 1

o(x) = 1

x · o(x) = 0 .

Thus, a model of this theory is a ring with a unit and with two partial unary operations
such that for each element x exactly one of i(x) and o(x) is defined, and 0 nonequal
1. Moreover, if i(x) is defined then i(x) = x−1 and if o(x) is defined, then x = 0 (and
o(0) = 1). This precisely describes all fields.

(2) Graphs. The category of graphs, i.e., sets with a binary relation, and homo-
morphisms is locally finitely presentable. Thus, it can be described by an essentially
algebraic theory. The following theory was presented in [AR1]: we have sorts edge and
vertex. We put Σ = {σ, τ, ρ} where

σ, τ : edge → vertex

are the operations of source and target, respectively, and

ρ : edge× edge → edge

is an auxiliary operation to express the implication

σ(x) = σ(y) ∧ τ(y) = τ(y) → x = y .

Thus, Σt = {σ, τ} and

Def{ρ} = {σ(x) = σ(y), τ(x) = τ(y)}

whereas E consists of two equations

ρ(x, y) = x(1)

ρ(x, y) = y .(2)
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A model of this theory is a pair of sets Aedge, Avertex together with two operations

σA, τA : Aedge → Avertex

satisfying the above implications. This can be identified with the graph on the set Avertex

with vertices p, q connected by an edge iff p = σ(x) and q = τ(x) for some x ∈ Aedge.
(3) Linearly ordered sets. We will now model the full subcategory of the category

of graphs consisting of all strictly linearly ordered sets. We extend the above essentially
algebraic theory as follows:

(i) Linearity. We introduce two binary operations α1, α2 of arity

vertex× vertex → edge

and one binary operation α3 of arity

vertex× vertex → vertex.

We put

γ = {{αi}}i=1,2,3

Defγ = ∅

and add the following equations to E:

σα1(u, v) = u and τα1(u, v)=v(3)

σα2(u, v) = v and τα2(u, v)=u(4)

α3(u, v) = u and α3(u, v) =v .(5)

Thus, in a model A, given vertices u and v precisely one of αi(u, v) is defined for
i = 1, 2, 3. In case i = 1 we have u < v (since α1(u, v) is the edge u → v), if i = 2 we
have v < u, and in case i = 3 we have u = v.

(ii) Irreflexivity. We introduce γ′ = ∅ with

Defγ′ = {σ(x) = τ(x)} .

(iii) Transitivity. Choose an operation β : edge× edge → edge and put

γ′′ = {{β}}
Defγ′′ = {τ(x) = σ(y)}

and add to E the equations

σβ(x, y) = σ(x) and τβ(x, y) = τ(y) .(6)
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The theory of signature

Σ∗ = {σ, τ, ρ, α1, α2, α3, β}

with the equation (1)-(6) forming E, with

Γ = {γ, γ′, γ′′}

and with the above Def axiomatizes linearly ordered sets.

Remark. We recall from [AR1] 4.30 a characterization of locally finitely multipresent-
able categories as precisely the ω-cone-orthogonality classes in locally finitely presentable
categories:

Let L be a locally finitely presentable category. For each setM of conesm = (Dm
dmj→

Dmj)j∈Jm in L we denote by M⊥ the full subcategory of L consisting of all objects
L such that given m ∈ M then L is orthogonal to m, i.e., given a morphism f :
Dm → L, there exists a unique j ∈ Jm such that f factorizes through dmj , and also
the factorization is unique (i.e., there exists a unique morphism f ′ : Dmj → L with
f = f ′ · dmj). We call M⊥ a cone-orthogonality class, and in case each Dm and Dmj

is finitely presentable in L, M⊥ is called an ω-cone-orthogonality class. The latter
subcategories of L are locally finitely multipresentable. Conversely, every locally finitely
multipresentable category is equivalent to an ω-cone-orthogonality class of some locally
finitely presentable category.

Proposition 1. For every essentially multialgebraic theory TTT the category ModT
is locally finitely multipresentable.

Proof. Denote by L the full subcategory of PAlgΣ which consists of all partial Σ-
algebras which satisfy all equations in E and in which all Σt-operations are everywhere
defined. It is easy to see that L is a locally finitely presentable category. We are now
going to present a set M of cones such that M⊥ is equal to ModT.

For each element γ ∈ Γ we construct a cone (Fγ

fγi→ Fγi)i∈Iγ in L as follows. Let
x0, . . . , xn−1 be all variables which appear in Defγ . (Since the same variables appear in
operations of

∪
i∈Iγ

Σγi , we can consider each of these operations σ as n-ary, and write

σ(x0, . . . , xn−1). This is done for technical convenience only since we can simply forget
those variables on which σ does not depend.) Denote by F ′

γ the free algebra generated by
{x0, . . . , xn−1} in the equational class of all (total) Σt-algebras satisfying the equations
of Defγ . We consider F ′

γ as a partial Σ-algebra by leaving all operations of Σ − Σt

nowhere defined. Then F ′
γ has a reflection in L, say, rγ : F ′

γ → Fγ . Since both the set
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of generators and Defγ are finite sets, it follows that Fγ is finitely presentable in L.
Next, for each i ∈ Iγ we form a free algebra F ′

γi
generated by {x0, . . . , xn−1} ∪ Σγi in

the above equational class, and we consider F ′
γi as a partial Σ-algebra as follows: for

any σ ∈ Σγi we define
σF ′

γi
([x0], . . . , [xn−1]) = [σ]

(where [ ] denotes the inclusion of generators to F ′
γi
) and leave σFγi

undefined in all

other n-tuples; for any σ ∈ Σ − (Σt ∪ Σγi
) the operation σFγi

is nowhere defined. Let

rγi : F
′
γi

→ Fγi be a reflection of F ′
γi

in L ; again, Fγi is finitely presentable in L. The
inclusion of the sets of generators extends to a Σ-homomorphism f ′γi

: F ′
γ → F ′

γi
whose

reflections is denoted by fγi : Fγ → Fγi . Put

mγ = (Fγ

fγi→ Fγi)i∈Iγ .

If an algebra A ∈ L is orthogonal to the cone mγ then it has the property that

(∗) for each n-tuple (a0, . . . , an−1) in which all Defγ-equations are satisfied there exists
precisely one i ∈ Iγ such that σA(a0, . . . , an−1) is defined for each σ ∈ Σγi .

In fact, since the n-tuple is satisfied by all equations of Defγ , we have a unique Σ-
homomorphism h′ : F ′

γ → A with h′([xk]) = ak for k = 0, . . . , n− 1; let h : Fγ → A be
the Σ-homomorphism with h′ = h · rγ . We have a unique i ∈ Iγ such that h factorizes
through fγi . Let us show that, then, σA(a0, . . . , an−1) is defined for each σ ∈ Σγi . Given
a Σ-homomorphism h̄ : Fγi → A with h = h̄ ·fγi , then since σF ′

γi
([x0], . . . , [xn−1]) = [σ],

and since f ′γi
([xk]) = [xk] for k = 0, . . . , n− 1, we obtain

σA(h̄ · rγi([x0]), . . . , h̄ · rγi([xn−1])) = h̄ · rγi([σ]),

thus

σA(a0, . . . , an−1) = h̄ · rγi([σ]) .

Conversely, if j ∈ Iγ has the property that all σA(a0, . . . , an−1) with σ ∈ Σγi are defined,
then i = j because the unique Σt-homomorphism h̄′ : F ′

γi
→ A with h̄′([xk]) = ak and

h̄′([σ]) = σA(a0, . . . , an) for all σ ∈ Σγj then is, obviously, a homomorphism h̄′ : F ′
γj

→
A of partial Σ-algebras. Let h̃ : Fγj → A be the Σ-homomorphism with h̄′ = h̃ · rγj ,
then we have

h · rγ([xk]) = h̃ · rγj · f ′γj
([xk]) for k = 0, . . . , n− 1,

thus h · rγ = h̃ · rγj · f ′γj
= h̃ · fγj · rγ , from which it follows that h = h̃ · fγj . Therefore,

h factorizes through fγj , which proves i = j. Thus, (∗) is established.



Theory and Applications of Categories, Vol. 2, No. 4 47

Conversely, let A ∈ L have the property (∗), then A is orthogonal to mγ . In fact, for
each homomorphism h : Fγ → A the n-tuple ak = h · rγ([xk]), k = 0, . . . , n− 1 satisfies
all the equations of Defγ . Thus, there is a unique i ∈ Iγ with all σA(a0, . . . , an−1),
σ ∈ Σγi , defined. It follows that h factorizes through fγi : let h̄

′ : F ′
γi

→ A be the unique

Σt-homomorphism with h̄′([xk]) = ak and h̄′([σ]) = σA(a0, . . . , an−1) for all σ ∈ Σγi ,
then h̄′ = F ′

γi
→ A is a homomorphism of PAlgΣ, thus, h̄′ = h̄·rγi for a homomorphism

h̄ : Fγi → A; it follows that h = h̄ · fγi . Moreover, this factorization is unique: suppose
h = h∗ · fγi , then we prove h∗ · rγi = h̄ · rγi (which implies h∗ = h̄) by showing that
these homomorphisms agree on all the generators of F ′

γi
. In fact,

h∗ · rγi([xk]) = h∗ · rγi · f ′γi
([xk])

= h∗ · fγi · rγ([xk])
= h · rγ([xk])
= ak

and for [σ], where σ ∈ Σγi , the equality σF ′
γi
([x0], . . . , [xk−1]) = [σ] implies

h∗ · rγi([σ]) = σA(h
∗ · rγi([x0]), . . . h

∗ · rγi([xn−1]))

= σA(a0, . . . , an−1) .

This shows that h factorizes uniquely through fγi . Conversely, if h factorizes through
fγi , we show that j = i by verifying that σA(a0, . . . , an−1) is defined for all σ ∈ Σγj –
this is performed precisely as in the above proof that h∗ · rγi([σ]) = σA(a0, . . . , an−1).
We conclude that

ModT = {mγ ; γ ∈ Γ}⊥ .

Since all domains and codomains appearing inmγ are finitely presentable (for all γ ∈ Γ),
we conclude by the preceding Remark that ModT is locally finitely multipresentable.

Remark. Locally finitely multipresentable categories were also characterized in [AR1]
4.30 as multireflective subcategories of AlgΣ (categories of total Σ-algebras) closed
under directed colimits. More precisely, a category is locally finitely multipresentable iff
there exists a finitary signature Σ and a full subcategory K of AlgΣ equivalent to the
given category, which has the following properties:

(i) Every Σ-algebra A has a multireflection in K, i.e., a cone (A
ri→ Ai)i∈I such that

all Ai lie in K and any homomorphism h : A → B with B in K factorizes through a
unique ri, i ∈ I, and the factorization h′ with h = h′ri is also unique;
(ii) K is closed under directed colimits, or, equivalently, a Σ-algebra K lies in K

whenever it is orthogonal to the multireflection of each finitely presentable Σ-algebra

A. If (A
ri→ Ai)i∈I is such a multireflection, then it is easy to verify that Ai are also

finitely presentable for all i.
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Theorem 1. A category is locally finitely multipresentable iff it is equivalent to the
category of models of some essentially multialgebraic theory.

Proof. Due to the preceding Proposition and Remark, it is sufficient to show that
any full subcategory K of Alg Σ satisfying (i) and (ii) above is equivalent to ModT for
some essentially multialgebraic theory T. The signature Σ∗ of the theory T we define
now will be an extension of the given signature Σ (where the operations of Σ will be
precisely the total operations, Σ = Σ∗

t ). Let (Ai)i∈I be a set of representatives of all
finitely presentable Σ-algebras w.r.t. isomorphism. For each i ∈ I we have, since Ai is
finitely presentable, a finite set of variables x1, . . . , xk (of sorts t1, . . . , tk, respectively)
and a finite set called Defi of equations in those variables such that Ai is presented by
those variables and equations. That is, Ai can be identified with the quotient algebra
of the free Σ-algebra F (x1, . . . , xk) generated by {x1, . . . , xk} modulo the congruence

∼i generated by Defi. We also form a multireflection (Ai
mij→ Aij)j∈Ji

and, since Aij

is finitely presentable, we can choose a finite set Gij of generators of Aij for each
j ∈ Ji (containing mij([xn]), n = 1, . . . , k where [xn] is the congruence class of xn in
Ai = F (x1, . . . , xk)/ ∼i).
We now extend Σ to Σ∗ by adding, for each i ∈ I, j ∈ Ji and each element a of sort

s(a) in Aij , an operation
σija : t1 × · · · × tk → s(a) .

(The informal idea of σija in models K is the following: the defining equations Defi
guarantee that if σija (x1, . . . , xk) is defined, then the interpretation of the variables
x1, . . . , xk yields a homomorphism h : Ai → K. Then h factors as h = h′mij and the
result of σija will be the image of a under h′.) Thus, we put Σ∗ = Σ∪{σija; i ∈ I, j ∈ Ji
and a ∈ Gij} and

Σ∗
ij = {σija; a ∈ Gij}.

We defined Defi above for each i ∈ I. It remains to define the set E of equations in the
signature Σ∗. These will be of two types:
(a) xn = σijx∗

n
(x1, . . . , xk) for all i ∈ I, j ∈ Ji, n = 1, . . . , k where x1, . . . , xk are the

variables of the given presentation of Ai, and x
∗
n = mij([xn]).

(b) Since Aij is generated by Gij = {g1, . . . , gm}, we can choose, for each element
a ∈ Aij , a Σ-term ρ′a(x1, . . . , xm) such that (ρ′a)Aij (g1, . . . , gm) = a; we denote by
ρa = ρ′a(σijg1 , . . . , σijgm) the corresponding Σ∗-term. For each τ ∈ Σ and each instance
of computation of τA, say, τA(a1, . . . , an) = a, we add to E the equation

τ(ρa1 , . . . , ρan) = ρa.

We thus defined an essentially multialgebraic theory

T = (Σ∗, E,Γ,Def)

where Γ = {{Σ∗
ij}j∈Ji}i∈I . We will prove that K is equivalent to ModT. For each Σ-

algebra K in K we define a partial Σ∗-algebra H(K) as follows. Given i ∈ I and j ∈ Ji
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then for a ∈ Gij we define (σija)K in a tuple (b1, . . . , bk) iff there exists a homomorphism
h : Aij → K with (h ·mij)tn([xn]) = bn, and then

(σija)K(b1, . . . , bk) = hs(a)(a) .

Let us verify H(K) is a model of T. It satisfies the equations of E:
(a) If (σijx∗

n
)K is defined in (b1, . . . , bk), then we have h : Aij → K with

(h ·mij)tn([xn]) = bn and

(σijx∗
n
)K(b1, . . . , bn) = htn(x

∗
n) = htn(mij)tn([xn]) = bn .

(b) The equations τA(ρa1 , . . . , ρan) = ρa are satisfied since h is a Σ-homomorphism.
Furthermore, if all equations of Defi are satisfied in (b1, . . . , bk), then the homo-

morphism f : F (x1, . . . , xk) → K determined by ftn(xn) = bn, n = 1, . . . , k, fac-
torizes through Ai = F (x1, . . . , xk)/ ∼i, i.e., we have a homomorphism g : Ai → K
with gtn([xn]) = bn. Since K ∈ K, there exists a unique j such that g = hmij for
a unique Σ-homomorphism h : Aij → K. Since (h · mij)tn([xn]) = bn, we conclude
that (σija)K(b1, . . . , bk) is defined for each a ∈ Gij . Conversely, given j′ such that
(σij′a′)K(b1, . . . , bk) is defined for each a′ ∈ Gij′ , it follows that a homomorphism
h′ : Aij′ → K exists with h′ · mij′ = h · mij – consequently, j = j′ and h = h′.
(In fact, define h′ by h′s(a)(a) = σij′a′(b1, . . . , bk); the equations in (b) guarantee that h′

is a Σ-homomorphism and those of (a) guarantee h = h′ ·mij′ .)
We conclude that H(K) is a model of T. We obtain a functor

H : K → ModT

defined on homomorphisms byH(h) = h. To show thatH is an equivalence of categories,
it is sufficient to verify that whenever a partial Σ∗-algebra B is a model of T then its
Σ-reduct B0, i.e., the Σ-algebra obtained by forgeting the operations in Σ∗−Σ, lies in K
– it then follows that B = H(B0). We can assume, without loss of generality, that B0 is
a finitely presentable Σ-algebra. In fact, since B is a model of T, for each Σ-subalgebra
C of B0 the restriction of the partial operations of B to C defines a partial Σ∗-algebra
C ′ which is also a model of K. Suppose that we know already that this implies that
C (the reduct of C ′) lies in K, then B0 also lies in K since K is closed under directed
colimits (and B0 is a directed colimit of all such C.) Thus, B0 can be assumed to be Ai

for some i ∈ I. The equations of Defi are all satisfied in the tuple ([x1], . . . , [xk]) of B,
thus, there exists j ∈ Ji such that (σija)B are defined in that tuple for each element a
of Gij (because B is a model of T) and thus, also (ρa)B([x1], . . . , [xn]) are defined. This
allows us to define

k(a) = (σija)B([x1], . . . , [xk]) for all a ∈ Gij .

The equations of E guarantee that k is a Σ-homomorphism k : Aij → B satisfying

k ·mij = idAi .
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In fact, let τAij (a1, . . . , an) = a for some τ : s1 × · · · × sn → s in Σ, then from the
equation in (b) above we conclude that

k(a) = k((ρ′a)Aij (g1, . . . , gm))

= (ρ′a)B(k(g1), . . . , k(gm))

= (ρ′a)B((σijg1)B([x1], . . . , [xk]), . . . , (σijgm)B([x1], . . . , [xk])

= (ρa)B([x1], . . . , [xk])

= τB((ρa1)B([x1], . . . , [xk]), . . . , (ρan)B([x1], . . . , [xk]))

= τB((ρ
′
a1
)B((σijg1)B([x1], . . . , [xk]), . . . , (σijgn)B([x1], . . . , [xk])), . . . )

= τB((ρ
′
a1
)B(k(g1), . . . , k(gm)), . . . , (ρan)B(k(g1), . . . , k(gm))

= τB(k(a1), . . . , k(an)),

thus, k is a homomorphisms. To verify k ·mij = idAi , it is thus sufficient to prove that
k · mij ([xn]) = [xn] for all n = 1, . . . , k, and this follows from the equation (a). This
shows that mij is an isomorphism: from

(mij · k) ·mij = mij = idAij ·mij

and from Aij ∈ K we get, by the definition of multireflection, that mij · k = idAij , thus

k = m−1
ij . This proves that B0 = Ai

∼= Aij lies in K. Consequently, H : K → ModT is
an equivalence of categories.

Remark. The above theorem has an immediate generalization to infinitary algebras;
given a regular cardinal λ, we can introduce essentially multialgebraic theories of λ-ary
partial algebras – here Defγ is a set of less than λ equations and Γ is a collection of
subsets of Σ of cardinality less than λ, otherwise the definition is quite analogous. A
category is locally λ-multipresentable iff it is equivalent to the category of models of
some essentially multialgebraic λ-ary theory.

II. Finitary Sketches for Locally Multipresentable categories

Recall that a sketch is a quadruple S = (A,L,C, σ) where A is a small category, L and
C are sets of diagrams in A and σ assigns to each diagram D ∈ L a cone σ(D) and
to each diagram D ∈ C a cocone σ(D). A model of S is a functor F : A → Set such
that for each diagram D ∈ L the image of σ(D) under F is a limit of FD and for each
diagram D ∈ C the image of σ(D) is a colimit of FD.
A category is said to be sketchable by S if it is equivalent to the full subcategory of

SetA consisting of all models of S. It is proved in [AR1] 4.32 that a category is locally
finitely multipresentable iff it is sketchable by a (finite limit, coproduct)-sketch (i.e. a
sketch with all diagrams in L finite and all diagrams in C discrete). We will now present
an example showing that it is, in general, not sufficient to work with finite limits and
finite coproducts:
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Example. (4) The following locally finitely multipresentable category is not sketchable
by a (finite limit, finite coproduct) - sketch.

Objects: 0 and all primes p > 2.

Morphisms: (a) a unique morphism 0 → p for each object p
(b) hom (p, p) is the cyclic group of order p
(c) no other morphisms except those in (a), (b).

This category has only trivial directed colimits, thus, each object is finitely presentable.
It has connected limits: an equalizer of any pair of distinct morphisms in hom (p, p) is
0 → p, analogously with pullbacks. Thus, the category is locally finitely multipresent-
able.
Any (finite limit, finite coproduct)-sketchable category K an be axiomatized by a

first-order theory. That is, there exists a many-sorted, finitary signature Σ and a theory
T of the first-order logic of Σ-structures such that K is equivalent to the category of
all T -models and Σ-homomorphisms – see [MP]. Thus, it is sufficient to prove that our
category K cannot be axiomatized. In fact, suppose that E is an equivalence between
K and the category ModT of all models of T . It is well-known that ModT is closed
under ultraproducts in the category StrΣ of all Σ-structures. Let U be a free ultrafilter
on the set of all objects of K. Since the ultraproduct

∏
U E(p) lies in ModT , there

exists an object q with E(q) isomorphic to
∏

U E(p). To obtain the desired contradic-
tion, we will show that the above ultraproduct has infinitely many endomorphisms,
although hom (E(q), E(q)) ∼= hom (q, q) is finite. In fact, for each element f of the
product

∏
p∈K

hom (p, p) we obtain an endomorphism f ′ of the ultraproduct, defined by

f ′([xp]) = [Efp(xp)], and for two such elements f, g we have f ′ = g′ iff U contains the
set {p; fp = gp}. It is sufficient to choose an infinite set M ⊆

∏
hom (p, p) such that for

f, q ∈M with f ̸= q the set of all p′s with fp = gp is always finite, then {f ′; f ∈M} is
an infinite set of endomorphisms of

∏
U E(p). This proves that K is not axiomatizable

in first-order logic.

Theorem 2. Assuming the non-existence of measurable cardinals, each locally finitely
multipresentable category can be sketched by a (finite limit, countable coproduct)-sketch.

Proof. Let K be a locally finitely multipresentable category. By [AR1] 4.32 there exists
a (finite limit, coproduct)-sketch S with K equivalent to ModS. Let α be a cardinal
such that each coproduct-specification of S has less than α objects. We will construct
a (finite limit, countable coproduct)-sketch S ∗ with ModS ∼= ModS ∗.
Since no cardinal is measurable, for each cardinal β there exists a basic theory Tβ

which is one-sorted, has constants ci (i ∈ β) in the signature, and has, up to iso-
morphism, a unique model B such that (ci)B ̸= (cj)B for i ̸= j and {(ci)B}i∈β is
the underlying set of B. In fact, Tβ is explicitely described in [AJMR]. By inspecting
that description, it can be easily seen that all disjunctions used in all sentences of Tβ
are actually disjoint. This means that whenever p ∨ q was used we can write, instead,
(p∨q)∧(p∧q → ⊥) and where

∨
n∈ω

pn was used, we can write
∨

n∈ω
pn∧

∧
n ̸=m

(pn∧pm → ⊥).
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Here ⊥ denotes the formula false. It means that Tβ uses only

(a) finite conjunctions
(b) finite quantifications

and

(c) finite or countable disjunctions which are disjoint.

We now apply the procedure of [MP] 3.2.5 associating with each basic theory a sketch S
with ModS equivalent to the category of all models of that theory. Let Sβ be the sketch
associated to Tβ . Due to (a)–(c), Sβ is a (finite limit, countable coproduct)-sketch. Sβ

contains the object Aβ describing the unique sort, and each of the constants ci gives us

a morphism cβi : 1β → Aβ such that the (essentially unique) model of Sβ has the above
properties.

II. The rest of the proof is analogous to that of Theorem 12 of [AJMR]. Let K be a
locally finitely multipresentable category. There exists a (finite limit, coproduct)-sketch
S sketching K, see [AR1] 4.32. For each uncountable coproduct-specification

(Bi
bi→ B)i∈β (β a uncountable cardinal)

of S we take a copy of the above sketch Sβ and we denote byS̄ the disjoint union of the
sketch S and all these sketches Sβ . Let S ∗ be the sketch we obtain fromS̄ by deleting
all of the uncountable coproduct specifications and, instead, by adding to S̄

(a) a formal new morphism f : B → Aβ

(b) the following pullback-specifications for all i ∈ β

Bi

bi
> B

ti

∨ ∨

f

1α
cαi

> Aβ

where ti = tβ · f · bi.
It is easy to see that the sketches S,S̄, and S ∗ have equivalent categories of models.

Remark. The statement of the Theorem 2 is actually logically equivalent to the non-
existence of measurable cardinals. That is, assuming that a measurable cardinal λ ex-
ists, there are locally finitely multipresentable categories not sketchable by (finite limit,
countable coproduct)-sketch. In fact, not sketchable by λ-ary sketches, i.e., sketches in
which all diagrams in L ∪C have sizes smaller than λ:
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Example. (5) If λ is a measurable cardinal, the following category is locally finitely
multipresentable, but it is not sketchable by a λ-ary sketch:

Objects: all ordinals i < λ.

Morphisms: (a) a unique morphism 0 → i for each object i
(b) hom (i, i) is a group of cardinality ℵi for all i > 0
(c) no other morphisms except those in (a), (b).

The proof of local finite multipresentability is analogous to that in Example (4). Also
the proof that the category is not sketchable by a λ-ary sketch is quite analogous: by
[MP], any λ-ary sketchable category can be axiomatized by infinitary first-order theory
of the λ-ary logic Lλ,λ. Thus, if our category K would be sketchable by a λ-ary sketch,
there would exist an equivalence E between K and ModT for some first-order theory
in a λ-ary signature Σ. Then E(K) would be closed in ModΣ under ultraproducts over
all λ-complete ultrafilters. Since λ is measurable, there exists a nontrivial λ-complete
ultrafilter U on the set of all objects of K. The proof is then concluded by showing that
the ultraproduct

∏
U E(i) has ℵλ pairwise distinct endomorphisms (whereas hom (i, i)

has cardinality ℵi < ℵλ for each object i of K).

Remark. The category K of Example (4) has the following remarkable property: we
have seen above that

(a) K is sketchable by a (finite limit, coproduct)-sketch

and

(b) K is not sketchable by a (finite limit, finite coproduct)-sketch.

We now show that, nevertheless,

(c) K is sketchable by a (finite limit, finite colimit)-sketch.

In fact, as proved in Theorem 3 of [AJMR], for (c) it is sufficient to find an axiomati-
zation of K by a σ-coherent theory in the logic Lω1,ω. A σ-coherent theory consists of
sentences

(∀x1, . . . , xn)(φ→ ψ)

where φ and ψ are formulas built from atomic formulas by finite conjunctions, countable
disjunctions, and finite existential quantification. Now observe that K is equivalent to
the category of all graphs (i.e. Σ-structures where Σ consists of one binary relation
symbol R) isomorphic either to G0, the empty graph, or Gp, the circuit of length p
(with vertices 0, 1, . . . , p− 1 and edges i→ i+ 1 for all i < p− 1 and p− 1 → 0) for all
primes p > 2. The latter category has the following σ-coherent axiomatization in which
R2(x, y) is a shorthand for (∃z)(R(x, z) ∧R(z, y)), analogously with R3, R4, . . . :

(1) (∀x)(∃ !y)R(x, y)
(2) (∀y)(∃ !x)R(x, y)
(3) (∀x)(Rnm(x, x) → Rn(x) ∨Rm(x))

where n,m are arbitrary natural numbers
(4) (∀x)(∃y)((x = y) → ⊥)
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(5) (∀x, y)
∨

n∈ω
R2m(x, y) (R0(x, y) means x = y).

In fact, each Gn is a model of (1)–(5). Let G ̸= G0 be a model of (1)–(5). By (5),
each pair of vertices can be connected by a path of even length. By (1) and (2),
G is a circuit or an infinite path, but (5) excludes the latter and forces the length
P of the circuit to be larger than 2. Finally, by (3) we know that p is a prime. Thus,
G ∼= Gp, and Gp is a model of (1)–(5).
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