We discuss two versions of a conjecture attributed to M. Barr. The Harrison cohomology of a commutative algebra is known to coincide with the Andre/Quillen cohomology over a field of characteristic zero but not in prime characteristics. The conjecture is that a modified version of Harrison cohomology, taking into account torsion, always agrees with Andre/Quillen cohomology. We give a counterexample.
Keywords: Hochschild homology, Harrison homology, Andr'e/Quillen homology.
AMS Classification (1991): 13D03, 18C15.
Theory and Applications of Categories, Vol. 2, 1996, No. 3, pp 36-39.
http://www.tac.mta.ca/tac/volumes/1996/n3/n3.dvi
http://www.tac.mta.ca/tac/volumes/1996/n3/n3.ps
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1996/n3/n3.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1996/n3/n3.ps