Strong promonoidal functors are defined. Left Kan extension (also called "existential quantification") along a strong promonoidal functor is shown to be a strong monoidal functor. A construction for the free monoidal category on a promonoidal category is provided. A Fourier-like transform of presheaves is defined and shown to take convolution product to cartesian product.
Keywords: monoidal functor, promonoidal category, Kan extension, Fourier transform, convolution tensor product.
AMS Classification (1991): 18D10.
Theory and Applications of Categories, Vol. 1, 1995, No. 4, pp 72-78.
http://www.tac.mta.ca/tac/volumes/1995/n4/v1n4.dvi
http://www.tac.mta.ca/tac/volumes/1995/n4/v1n4.ps
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1995/n4/v1n4.dvi
ftp://ftp.tac.mta.ca/pub/tac/html/volumes/1995/n4/v1n4.ps