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MONAD COMPOSITIONS I: GENERAL CONSTRUCTIONS AND
RECURSIVE DISTRIBUTIVE LAWS

ERNIE MANES AND PHILIP MULRY

ABSTRACT. New techniques for constructing a distributive law of a monad
over another are studied using submonads, quotient monads, product mon-
ads, recursively-defined distributive laws, and linear equations. Sequel papers
will consider distributive laws in closed categories and will construct monad
approximations for compositions which fail to be a monad.

1. Introduction

Is the free group generated by a free Boolean algebra a free algebra of yet a third type?
In categorical language, the generalized question is “do monads compose?” It is known
that a further element of structure called a distributive law classifies the composition of
two monads just as additional structure is necessary to take the semidirect product of
two groups. In [5], it was shown that a wide class of monad compositions are classified by
distributive laws. While many papers about distributive laws have appeared in the interim
including [1, 16, 25], less attention has been paid to general techniques for producing
examples of these laws. Recent use of monads to model certain data types by functional
programmers offers a new opportunity to uncover distributive laws as well as provide an
interpretation of monad composition as a data structure whose elements are of another
data structure.

Monads have found many applications over their forty year history: simplicial reso-
lutions for sheaf cohomology, algebras over a monad (generalized universal algebra), the
Kleisli category of a monad (frameworks for programming language semantics) and as data
types in functional programming. See [22] for a survey with an extensive bibliography.

The classical duality theories such as Pontrjagin duality and Stone duality greatly
enrich their subjects, particularly in situations where structure is better understood on
one side. For example, the topological product of compact Hausdorff totally disconnected
spaces is more familiar than the coproduct of Boolean algebras. There is a well known
duality theory for monads as well, since the category of monads in a category C and
monad maps is contravariantly equivalent to the category of monadic functors and for-
getful functors over C. See Remark 2.4.4 below.
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We assume that the reader is familiar with elementary category theory, including
basic definitions and facts about monads (some of which are reviewed in this paper).
The category of sets and total functions will be denoted Set. See [19, Theorem VI.7.1,
Page 147] for Beck’s monadicity theorem: a functor U is monadic if and only if it has a
left adjoint and satisfies Beck’s coequalizer condition. An equationally definable class of
algebras is monadic over Set if and only if the underlying set functor has a left adjoint,
and this always happens if the operations are finitary.

In [5], Beck showed that if H, K are monads in the same category with functor parts
H, K, then certain monads with functor part KH are classified by what he called dis-
tributive laws, which are natural transformations HK → KH subject to four axioms.
The terminology is motivated by an example: the free ring is constructed from the free
abelian group and the free monoid by a distributive law which expresses the usual dis-
tributivity of multiplication over addition (see Example 2.4.5 below). As Beck showed,
distributive laws are also classified by functorial liftings of one monad to the category of
algebras of the other.

General functorial liftings were introduced by [2, 7, 20, 26, 32]. More recently, the
second author, in [28], developed a comprehensive parallel theory of liftings to the Kleisli
category which had only previously been hinted at in [3, 26]. Distributive laws, it turns
out, induce both types of liftings and can be characterized in terms of these liftings.

Section 2 and Section 3 set down some new results about distributive laws generally,
while also providing a general introduction to past results. Section 4 establishes a class of
recursive distributive laws for commutative monads over polynomial functors as well as
the use of quotient distributive laws of these which are obtained by dividing out by linear
equations. Finally, Section 5 applies the theory to lists and trees.

With regard to uncited basic facts and examples, the authors do not claim originality.

2. Preliminaries

To provide a clear framework for this paper and its sequels, we carefully review basic facts
about monads and distributive laws and establish notations.

2.1. Monads.

2.1.1. Definition. A monad H = (H,µ, η) on category C is a triple consisting of an
endofunctor H and two natural transformations η : idC → H and µ : H2 → H satisfying

µ(Hη) = idH = µ(ηH) (1)

µ(Hµ) = µ(µH) (2)

Alternatively ([20, Exercise 12, page 32]), a monad can be defined as H = (H, (–)#, η)
where H : Obj(C) → Obj(C), η assigns a morphism ηA : A→ HA to each object A, and
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the extension operation (–)# assigns to each α : A→ HB a morphism α# : HA→ HB
subject to the following three axioms for α : A→ HB, β : B → HC.

α#ηA = α (3)

(ηA)# = idHA (4)

(β#α)
#

= β#α# (5)

The first version gives the second if

α# = HA
Hα−−−→ HHB

µ
B−−−→ HB (6)

The second gives the first as follows where one defines

f♦ = (A
f−−→ B

η
B−−→ HB) (7)

Hf = (f♦)
#

(8)

µA = (idHA)# (9)

Monads are plentiful as they can be generated by adjunctions as proved by Huber in
[11].

2.1.2. Definition. If C has I-indexed products, then for every every I-indexed family
Ti = (Ti, µi, ηi) of monads in C, define the cartesian product monad T = (T, µ, η) by

TX =
∏

TiX

prj ηX
= η

j X

prj (X
[αi ]−−→ TY )

#

= TX
prj−−→ TXj

αj
#

−−→ TYj

prj (TTX
µX−−→ TX) = TTX

pri pri−−−→ TiTiX
µi−−→ TiX

Proof is routine.

2.1.3. Remark. For monad H = (H,µ, η), the definition of an (Eilenberg-Moore) H-

algebra, (A, ξ), and the corresponding category CH of algebras is well known [8]. As
first observed by [3, Definition 1, page 185], an equivalent definition is given by the axiom
ξηA = idA and the following implication for α, β : C → HA

ξα = ξβ ⇒ ξα# = ξβ# (10)

which we will explain in the next paragraph.

Such ξ is called the structure map of (A, ξ). A functor U : A → C is monadic

if there exists a monad H in C and an isomorphism of categories Φ : A → CH with
UHΦ = U where UH : CH → C is the underlying functor. UH has a left adjoint
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A 7→ (HA,µA). If f : A→ B and if (B, θ) is an H-algebra, the unique H-homomorphism
f# : (HA,µA) → (B, θ) with f#ηA = f is given by

f# = HA
Hf−−−→ HB

θ−−−→ B (11)

(For f# : (TA, µA) → (TB, µB), the two notions of (·)# are easily seen to agree).
To see why (10) and ξηA = idA are equivalent to the H-algebra axioms (which are

ξηA = idA, ξµX = ξ(Hξ)), if the implication holds then then ξidA = (ξηA)ξ = ξ(ηAξ) ⇒
ξ(Tξ) = ξ(ξ♦)

#
= ξ(ηAξ)

# = ξ(idTA)# = ξµA. Conversely, if (A, ξ) is an H-algebra,
ξα# : (HC, µC) → (HA,µA) is the unique H-homomorphism extending ξα whence (10)
holds.

Our next definition originates with [13].

2.1.4. Definition. Let H be a monad in C. The Kleisli category of H is the category
CH with the same objects as C and with morphisms CH(A,B) = C(A,HB). The identity
morphisms are ηA : A→ HA and composition is given by

(B
β−→ HC) ◦ (A

α−→ HB) = A
α−→ HB

β#

−→ HC (12)

2.1.5. Example. The list monad L = (L, µ, η) in Set is important in functional
programming and we describe it in notations which are standard in computer science.
LA is the set of all lists of elements of A, ηA(x) = [x] is the coercion function and
α#[x1, . . . , xn] = α(x1)++ · · ·++α(xn) (++ = concatenation). The algebras for the monad
are monoids and µA is commonly referred to as flatten.

2.1.6. Example. The power set monad in Set is P = (P, µ, η) with PX = 2X ,
ηX x = {x}, µX(A) = {x : ∃ x ∈ A ∈ A}, and α#A =

⋃
a∈A

αa. SetP is the category of

sets and relations and SetP is the category of complete semilattices. Detailed proofs are
given in [20, Examples 3.5, 5.15].

2.1.7. Example. A trivial example of a monad in C is the identity monad id =
(id, id, id). It is obvious that Cid

∼= C ∼= Cid. If C has binary powers X × X we may
form the product monad R = id×id of Definition 2.1.2. For reasons we shall now explain,
R is the rectangular bands monad.

When C = Set we have for α, β : X → Y , RX = X×X, η
X
x = (x, x), (α, β)#(x1, x2) =

(αx1, βx2), and µX(a, b; c, d) = (a, d). Here we have abbreviated ((a, b), (c, d)) as (a, b; c, d).
Now a rectangular band is a semigroup satisfying the equation xyx = x. If X is a rect-
angular band with multiplication ξ : X ×X → X, then (X, ξ) is an R-algebra as follows.
ξ ηXx = ξ(x, x) = x, noting that x2 = xx3 = xx2x = x. Thus ξ ηX = id. For f : X → Y ,
Rf = (ηY f)# = f × f . Thus ξ(Rξ)(x, y; a, b) = ξ(ξ(x, y), ξ(a, b)) = xyab = (xbx)yab =
xb(xya)b = xb = ξµX(x, y; a, b) which is the other algebra axiom. Conversely, if (X, ξ) is
an R-algebra, then xy = ξ(x, y) is a rectangular band as follows.

(xy)z = ξ(ξ(x, y), ξ(z, z)) = ξµX(x, y; z, z) = ξ(x, z) = xz
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Similarly, x(yz) = xz. In particular, xyx = xx = x. The reader may easily check that the
R-algebra maps between rectangular bands are precisely the semigroup homomorphisms.
For a general category with binary powers, it is an easy exercise to express the rectan-
gular band equations by commutative diagrams and once again the resulting category of
rectangular bands is the algebras over the monad id× id.

2.1.8. Example. Let S be a fixed set of states. The functor (–) × S is left adjoint to
functor (–)S and so defines a monad M = (M, ν, ρ) in Set where MA = (A × S)S.
Utilized in programming language semantics, this monad has been called both the side-
effects monad and state transformers monad [27, 31] where the unit and counit are well
known: η(a) = λs.(a, s) and µ(T ) = λs.let(t1, s1) = Ts in t1(s1).

We provide a more neutral description of this monad (which we call the state monad)
that will prove useful later in Example 4.2.18. A typical element of MA is (f, t) with
f : S → A, t : S → S. For a ∈ A write â : S → A for the function constantly a and
define ηA(a) = (â, id). We introduce the alternate notation 〈ψ, x〉 as a synonym for the
evaluation ψx = ψ(x) of the function ψ on the argument x. For α : A→ (B × S)S define
α#((f, t)) = λs .〈α(fs), ts〉.

2.2. Liftings. Fix monads H = (H, η, µ) and K = (K, ρ, ν) on categories C and D
respectively. Let F be a functor F : C → D. The notion of the lifting of a functor F
exists for both Kleisli and Eilenberg-Moore categories as we now explore.

2.2.1. Definition. As shown in the diagram below, a functor F ? : CH → DK is an
Eilenberg-Moore lifting or algebra lifting of F if the left square commutes, and a
functor F : CH → DK is a Kleisli lifting of F if the right square commutes.

C D-
F

CH DK-F ?

?
UH

?
UK

C D-
F

CH DK
-F

6iH
6iK

Many authors would generally call an F ? a lifting and an F an extension. We give some
reasons why calling both a lifting seems preferable. First, liftings and extensions are cat-
egorically dual but algebra lifts and Kleisli lifts are not categorically dual; secondly, the
term extension is already used to denote a monad operation so using this word differ-
ently would add confusion; thirdly, both algebra and Kleisli lifts are classified by natural
transformations as specified in the next theorem, and it is useful to call these lifting trans-
formations rather than needing two separate terms; fourthly, in what is arguably the most
mainstream use of the word “lifting”, the homotopy lifting property, the lifting map is
both a lifting and an extension; finally, the term Kleisli lift already appears in [28, 29].
The following results classify both types of lifting. The proofs are routine, if tedious,
diagram chases. Details can be found in [2, 12, 28].
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2.2.2. Theorem. Eilenberg-Moore liftings F ? : CH → DK are in bijective correspon-
dence with natural transformations σ : KF → FH, and Kleisli liftings F : CH → DK are
in bijective correspondence with natural transformations λ : FH → KF satisfying

F KF-ρF

Fη

@
@

@
@

@@R
FH

?

σ

FHH�
Fµ

KKF�νF

(F ?A) (F ?B)

KFH
?
Kσ

?
σH

F FH-Fη

ρF

@
@

@
@

@@R
KF

?

λ

KKF�
νF

FHH�Fµ

(FA) (FB)
KFH

?
λH

?
Kλ

The bijective correspondences between F ? and σ and between F and λ are given by

F ?(A, ξ) = (FA, KFA
σ

A−−→ FHA
Fξ−−→ FA) (13)

σA = KFA
KFη

A−−−→ KFHA
γA−−→ FHA (14)

FA = FA, F (A
α−→ HB) = FA

Fα−−−→ FHB
λB−−−→ KFB (15)

λA = F (idHA) (16)

where F ?(HA,µA) = (FHA, KFHA
γA−−→ FHA). 2

2.2.3. Definition. An important special case of the preceding theorem occurs for C = D
and with F the identity functor. In that case, id? : CH → CK is a functor over C, an
“algebraic forgetful functor”, and it is classified by a monad map σ : K → H (note the
reversal of direction).

Diagrams (F ?A), (F ?B) above reduce to (MMA), (MMB) respectively.

id K-ρ

η

@
@

@
@

@
@
@R
H
?

σ

HH�
µ

KK�ν

?

σσ

(MMA) (MMB)

KB HB-
σB

KA HA-σA

?

α#

?

(σBα)##
(MM #)

It is not hard to see that an assignment A 7→ σA : KA→ HA (not assumed a priori to
be natural) is a monad map if and only if it satisfies (MM A) and (MM #) (where we
use two versions of # to distinguish between the extension operations of the two monads).

Similarly monad maps can equivalently be characterized via Kleisli liftings. We leave
the details to the reader.

Monads and monad maps form a category and the cartesian product monad in Defi-
nition 2.1.2 is indeed a product in this category. Details can be found in [30].
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2.2.4. Definition. If H = (H,µ, η) is a monad in C and for each X there is a given
monic jX : H0X → HX, then we say that H0 is a submonad of H if ηX = η0X jX

factors through jX and if, for all α : A → H0B, H0A
jA−−→ HA

(jB α)#−−−→ HB = α##jB
factors through jB. Setting µ0X = id##

H0X , H0 = (H0, µ0, η0) is a monad with j : H0 → H
a monad map.

2.2.5. Example. The power set monad P of Example 2.1.6 has many natural submonads,
e.g. finite subsets, non-empty subsets and non-empty finite subsets [20]. Likewise, any
intersection of submonads is a submonad in any category with appropriate intersections
of subobjects.

It is possible to characterize Kleisli liftings without iterating any of the three functors,
as we next see. A corresponding result for general algebra lifts is not known at this time,
even though we succeeded for the special case of monad maps.

2.2.6. Proposition. Kleisli liftings F : CH → DK are in bijective correspondence with
families λA : FHA → HFA satisfying (F A) above and (F #) for α : A → HB, and

γ = FA
Fα−−→ FHB

λB−−→ KFB

KFA KFB-
γ##

FHA FHB-Fα#

?

λA

?

λB
(F #)

where α# is the extension operation of H and γ## is the extension operation of K.

Proof. The correspondences are just those of (15) and (16). We show that naturality,
(F A) and (F B) are equivalent to (F A) and (F #). First assume naturality and (F B)

and show (F #). γ##λA = νFB (Kγ)λA (by 6) = FHA
λ

A−−→ KFA
KFα−−−→ KFHB

Kλ
B−−−→

KKFB
ν

FB−−→ KFB = νFB (KλB)λHB(FHα) (λ natural) = λB (FµB)(FHα) (by (F B))
= λB (Fα#)

Conversely, (F A) and (F #) imply naturality and (F B) as follows. Given f : A→ B,

Hf = (A
f−−→ B

η
B−−→ HB)

#

, so λB (FHf) = λB F ((η
B
f)#) = (FA

Ff−−→ FB
Fη

B−−−→
FHB

λ
B−−→ KFB)## λA (by F #)) = (FA

Ff−−→ FB
ρ

FB−−→ KFB)## λA(by (F A)) =
(KFf)λA shows naturality. If α = idHB, α# = µB and γ = λB, so (F #) is exactly
(F B). 2

The natural transformations that arise via functor liftings can be applied to arbitrary
monads and functors. We denote such natural transformations as lifting transformations.
Many examples of lifting transformations can be found in [28, 29]. A very special case of
a lifting transformation is a distributive law which will be introduced shortly.

2.3. Monad Map Lemmas. We state three basic lemmas that will prove useful in the
study of the category of distributive laws to be defined shortly. We work in a category C.
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2.3.1. Lemma. Let σ : (H ′, µ′, η′) → (H,µ, η), τ : (K ′, ν ′, ρ′) → (K, ν, ρ) be monad maps.
Then the following five diagrams commute.

id K ′H ′-ρ′η′

ρη

@
@

@
@

@@R
KH

?

τσ

K ′H ′ KH-
τσ

K ′K ′H ′H ′ KKHH-ττσσ

?

ν ′µ′

?

νµ

H ′ K ′H ′-ρ′H ′

ρσ

@
@

@
@

@@R
KH

?

τσ

(τσ A) (τσ C)

(τσ B)

K ′ K ′H ′-K ′η′

τη

@
@

@
@

@@R
KH

?

τσ

K ′H ′K ′H ′ KHKH-
τστσ

K ′H ′ KH-τσ

?

K ′η′ρ′H ′

?

KηρH

(τσ D)

(τσ E)

Proof. The proofs are straightforward diagram chases exploiting the monad properties
of σ and ρ. 2

2.3.2. Lemma. Let σ : Q→ R be a natural transformation. Let η : id → Q, µ : QQ→ Q,
ρ : id → R, ν : RR→ R be maps (not assumed to be natural transformations) satisfying

id Q-η

ρ

@
@

@
@

@@R
R
?

σ

RR�
ν

QQ�µ

?

σσ

Then the following hold:

1. If σ has monic components (that is, each σA is monic) and (R, ν, ρ) is a monad then
(Q,µ, η) is a monad.

2. If σ and Qσ have epic components and (Q, µ, η) is a monad then (R, ν, ρ) is a
monad.

Proof. We’ll prove the second statement. The first is similar and easier. Referring
to the diagram below, (A,A’) are given. For (B), (Rν)(σσσ) = (Rν)(σRR)(Qσσ) =
(σR)(Qν)(Qσσ) = (σR)(Qσ)(Qµ) = (σσ)(Qµ) by the functoriality of Q and (A). (B’)
commutes if either µ or ν are natural as follows. If µ is natural, then (νR)(σσσ) =
(νR)(σσR)(QQσ) = (σR)(µR)(QQσ) = (σR)(Qσ)(µQ) = (σσ)(µQ) whereas, if ν is nat-
ural, (νR)(σσσ) = (νR)(RRσ)(σσQ) = (Rσ)(νQ)(σσQ) = (Rσ)(σQ)(µQ) = (σσ)(µQ).
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This diagram shows that under the hypotheses of (1.), µ(Qµ) = µ(µQ) whereas, under
the hypotheses of (2.) (which guarantee σσσ has epic components) that ν(Rν) = ν(νR).
An entirely similar diagram (but much less complicated proof) relates the naturality of µ
and ν.

QQ Q-
µ

QQQ QQ-Qµ

?

µQ

?

µ

RR R-
ν

RRR RR-Rν

?

νR

?

ν

σσσ
@

@
@@R

σσ
�

�
��	

σσ
�

�
���

σ
@

@
@@I

(A)

(B)

(B′) (A′)

2.3.3. Lemma. Given monads (Q, µ, η), (Q′, µ′, η′), (R, ν, ρ), (R′, ν ′, ρ′) and a commuta-
tive square

R′ R-
β

Q′ Q-α

?

γ

?

σ

in which γ, σ are monad maps and α, β are natural transformations, the following hold:

1. If β is a monad map and σ has monic components then α is a monad map.

2. If α is a monad map and if γγ has epic components (e.g. if γ and either of Q′γ,
R′γ have epic components) then β is monad map.

Proof. The proof is left to the reader 2

2.3.4. Lemma. If λ : (H,µ, η) → (K, ν, ρ) is a monad map then λX : (HX,µX) →
(KX, νXλKX) is an H-homomorphism.

Proof. The induced forgetful functor CK → CH maps (KX, νX) to (KX, νXλKX), so
the latter is an H-algebra. That λX is a homomorphism is then precisely (MM B). 2
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2.3.5. Lemma. Let λ : (H,µ, η) → (K, ν, ρ) be a monad map with monic components.
Let ψ : (KX, νXλKX) → (KY, νY λKY ) be an H-homomorphism and suppose that there
exists a fill-in ϕ as shown

KX KY-
ψ

HX HY-ϕ

?
λX

?
λY

Then ϕ : (HX,µX) → (HY, µY ) is an H-homomorphism as well.

Proof. It is obvious that if a map followed by a monic homomorphism is a homomorphism
then the map is itself a homomorphism. Now use the previous lemma. 2

2.4. Distributive Laws. Beck [5] defined distributive laws in terms of the four diagrams
(DL A), (DL B), (DL C), (DL D) below. As we’ve already noted, Kleisli liftings came
later. We continue to fix monads H = (H,µ, η), K = (K, ν, ρ), but now in the same
category C.

2.4.1. Definition. A distributive law of K over H is a natural transformation
λ : HK → KH for which the following four diagrams commute.

H HK-Hρ
HKK� Hν

KKH�
νH

KH
?

λ
?
λK

KHK

?
Kλ

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

ρH

(DL A) (DL B) (Kleisli lift H)

K HK-ηK
HHK� µK

KHH�
Kµ

KH
?

λ
?
Hλ

HKH

?
λH

Z
Z

Z
Z

Z
Z

Z
Z

ZZ~

Kη

(DL C) (DL D) (Algebra lift K?)

We emphasize that (DLA) = (F A), (DLB) = (F B) with F = H and that (DLC) =
(F ? A), (DLD) = (F ? B) with F = K. Thus we have

2.4.2. Theorem. Given monads H and K on C, a natural transformation λ : HK →
KH is a distributive law of K over H if and only if it classifies both a Kleisli lifting
H : CK → CK and an algebra lifting K? : CH → CH. 2

The next few results are due to [5] so no proofs are given.
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2.4.3. Theorem. If λ : HK → KH is a distributive law of K over H then

K ◦λ H = (KH, (νµ)(KλH), ρη) (17)

is a monad in C whose algebras are isomorphic to the category of all (A, ξ, θ) with (A, ξ)
a K-algebra and (A, θ) an H-algebra such that the following composite law holds:

HKA KHA-λA

A-
θ

HA
?

Hξ
?
Kθ

KA

?
ξ

(CL)

Here, the morphisms f : (A, ξ, θ) → (A′, ξ′, θ′) are simultaneous H- and K-homomorphisms.
The K ◦λ H-structure map corresponding to (A, ξ, θ) is ξ(Kθ), whereas if (A, γ) is a
K ◦λ H-algebra, the corresponding composite structure (A, ξ, θ) is given by ξ = γ(KηA),
θ = γ(ρHA). The passage λ 7→ K ◦λ H is a bijection from the class of distributive laws of
K over H to the class of natural transformations m : KHKH → KH with (KH,m, ρη) a
monad for which ρH, Kη are monad maps and m(KηρH) = idKH . The inverse bijection
is given by

λ = HK
ρHKη−−−−−→ KHKH

m−−−→ KH (18)

2

Since (Kθ)λA is the structure map of K?(A, θ), the composite law simply asserts that

K?(A, θ)
ξ−→ (A, θ) is a H-homomorphism (19)

2.4.4. Remark. In [18], Lüth and Ghani advocate monad coproduct as a useful way to
combine monads in monad programming. Here, we very briefly discuss how coproducts
relate to distributive laws.

By the duality between monads and their algebras, if the coproduct K + H exists in
the category of monads in C and monad maps, its algebras must be CK ×C CH, the
category whose objects are all (X, ξ, θ) with (X, ξ) a K-algebra and (X, θ) an H-algebra,
satisfying no further condition; the maps are simultaneous K- and H-homomorphisms.
We discuss only C = Set; see [20, 22] for tools to generalize to other categories. If K+H
exists, the equations (CL) show that if λ : HK → KH is a distributive law, its algebras
form a variety of (K + H)-algebras so that every monad K ◦λ H is a quotient of K + H
([20, Theorem 3.3.6]).

Even if λ is not a distributive law, the monad defined by (CL) exists as a quotient
of K + H which is a better approximation of the composition than K + H itself. These
matters will be considered in the sequel paper [24].
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K+H does not always exist. For example, let P be the power set monad of Example
2.1.6 and let H be the monad whose algebras are (X, 0, 1, (·)′ ,∧) with 0, 1 ∈ X, x′ a unary
operation and x∧ y a binary operation. Then complete Boolean algebras forms a variety
of (P+H)-algebras which —if P+H exists— is monadic by [20, Theorem 3.3.6]. But by
the theorems of [9, 10], free complete Boolean algebras do not exist, so P + H does not
exist either.

On the other hand, if (Σ, E) and Σ′, E ′) are bounded equational presentations (i.e.
there exists a cardinal n such that Σm = ∅ = Σ

′
m for m ≥ n) then, by [20, Theorem 3.1.27],

the corresponding categories of algebras are monadic by monads H, H′ and H+H′ exists
with algebras presented by (Σ + Σ′, E + E ′).

The next example led Beck to the term “distributive law”.

2.4.5. Example. The equational classes of abelian groups and monoids give rise, respec-
tively, to monads K and L. KA is the free abelian group ⊕AZZ generated by A and L
is the list monad of Example 2.1.5. Write an element of KA as an A-indexed sequence
(ma : a ∈ A) in ZZ (understood to be finitely nonzero) and write an element of LA as a list
[a1, . . . , an] of elements of A (n ≥ 0). Then a distributive law λ : LK → KL is defined by

λA[(m1
a1

), . . . , (mn
an

)] =
∑
a1

· · ·
∑
an

[m1
a1
, . . . ,mn

an
]

(i.e., a product of sums transforms to a sum of products, the usual distributivity of mul-
tiplication over addition). The resulting monad K ◦λ L is that induced by the forgetful
functor from rings with unit.

2.4.6. Example. Let C be any category and let G be an object. The category of G-pointed
objects, G/C, is monadic over C providing that C has binary coproducts. In that case,
if H is the resulting monad, for every monad K in C there is a canonical distributive
law of K over H whose composite algebras are all (A, ξ, x) with (A, ξ) a K-algebra and
(A, x) a G-pointed object. H is defined by HA = A + G, ηA = in1 : A → A + G,
µA = 1 + [1, 1] : (A +G) +G ∼= A + (G +G) → A +G. λA : KA +G → K(A +G) has
first coordinate Kin1 and second coordinate ρ

A+G
in2. The reader may easily provide all

the details.

2.4.7. Example. The families monad is P2 = (P 2,m, e) where P 2X = P (PX) = 22X

is the set of families of subsets of X, eXx = {{x}} and m : P 4 → P 2 is defined on families
AA whose elements Λ are sets whose elements are families A ∈ P 2X by

mX(AA) = {
⋃
A∈Λ

SA : Λ ∈ AA, (SA) ∈
∏
A∈Λ

A}

Moreover, for ϕ : X → P 2Y ,

ϕ#(A) = {
⋃
x∈A

Bx : A ∈ A, Bx ∈ ϕx}
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A complete proof that the above gives a monad appears in [22, pages 78-79]. If (P, µ, η)
is the power set monad of Example 2.1.6, e = ηη : id → P 2. We leave to the reader the
verification that Pη and ηP are monad maps P → P2 (hint: use (MM #)) and that
m(PeP ) = idP 2 , so it follows from Theorem 2.4.3 that λ = m(ηP 2η) : P 2 → P 2 is a
distributive law of P over itself. One calculates that

λX(A) = {{aA : A ∈ A} : (aA) ∈
∏
A∈A

A}

In an email communication, Steve Vickers pointed out to us that a verification of (DL B)
or (DL D) would appear to involve the axiom of choice. Our approach via Theorem 2.4.3
avoids AC.

2.4.8. Example. Let P be the power set monad and let L be the list monad. Define a
distributive law λ : LP → PL of P over L by λX [A1, . . . , An] = {[a1, . . . , an] : ai ∈ Ai}.
We leave it to the reader to check that λ satisfies the conditions of Definition 2.4.1. A
composite algebra is (A,

∨
, ∗, e) with (A,

∨
) a complete sup-semilattice and (A, ∗, e) a

monoid satisfying the composite law

(
∨

ai) ∗ (
∨

bj) =
∨
ij

(ai ∗ bj)

These algebras are called quantales in the literature. The algebra lifting P ? maps
the monoid (A, ∗, e) to the monoid (PA, ∗P , {e}) where A ∗P B = {a ∗ b : a ∈ A, b ∈ B}.
The Kleisli lift L maps the relation R : A→ PB to the relation LR : LA→ PLB where
[a1, . . . , an] (LR) [b1, . . . , bm] ⇔ m = n and (∀ i) aiR bi.

Continuing with general background from Beck’s paper, we have the following theorem.

2.4.9. Theorem. If λ : HK → KH is a distributive law, not only does K lift to K? :
CH → CH but, additionally, for each H-algebra (A, θ),

ρA : (A, θ) −→ K?(A, θ)

νA : K?K?(A, θ) −→ K?(A, θ)

are H-homomorphisms, so that the entire monad K lifts to a monad K? in CH. The pas-
sage from distributive laws λ to lifted monads (K?, ρ, ν) in CH is bijective. The algebras
over the lifted monad are exactly the composite algebras of K ◦λ H, but now with forgetful
functor CK◦λH → CK. 2

The next result –no doubt known to some– seems not to be in print, so we include it
here for completeness, leaving the details to the reader.

2.4.10. Proposition. The free composite algebra generated by A has K-structure νHA :
KKHA→ KHA, and H-structure (KµA)λHA : HKHA→ KHA. Moreover, the map
λA : (HKA,µKA) → (KHA, (KµA)λHA) is an H-homomorphism. 2
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3. The Category of Distributive Laws

In this section we work in a category C and consider a category whose objects are dis-
tributive laws of monads in C. We focus on situations that produce new distributive laws
from old ones.

3.1. Preliminaries. The next two results can be found in [30].

3.1.1. Definition. Let H = (H,µ, η), H′ = (H ′, µ′, η′), K = (K, ν, ρ), K′ = (K ′, ν ′, ρ′)
be monads in C and let λ : HK → KH, λ′ : H ′K ′ → K ′H ′ be distributive laws. A
morphism of distributive laws λ′ → λ is a pair (σ, τ) where σ : H′ → H, τ : K′ → K
are monad maps such that the following square commutes.

HK KH-
λ

H ′K ′ K ′H ′-λ
′

?

στ

?

τσ

A category of distributive laws results with identities (id, id) and composition (σ1, τ1)(σ, τ)
= (σ1σ, τ1τ).

3.1.2. Theorem. If (σ, τ) : λ′ → λ is a morphism of distributive laws, τσ : K′ ◦λ′ H
′ →

K ◦λ H is a monad map. The corresponding algebraic functor CK◦λH → CK′◦λ′H
′

is
described at the level of composite algebras by

(A,KA
ξ−−→ A,HA

θ−−→ A) 7→ (A,K ′A
τA−−→ KA

ξ−−→ A,H ′A
σA−−→ HA

θ−−→ A)

2

The next result is one of our principal tools for creating new distributive laws.

3.1.3. Theorem. Let H = (H,µ, η), H′ = (H ′, µ′, η′), K = (K, ν, ρ), K′ = (K ′, ν ′, ρ′) be
monads in C, let σ : H′ → H, τ : K′ → K be monad maps and let λ : HK → KH, λ′ :
H ′K ′ → K ′H ′ be maps (that are not necessarily assumed to be natural transformations)
such that the following square commutes.

HK KH-
λ

H ′K ′ K ′H ′-λ
′

?

στ

?

τσ

Then the following hold.

1. If λ is a distributive law of K over H and τσ has monic components, then λ′ is a
distributive law of K′ over H′.
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2. If λ′ is a distributive law of K′ over H′, if σ, τ have epic components, if either H
or H ′ preserves epics and if either K or K ′ preserves epics, then λ is a distributive
law of K over H.

Proof. The proof is left to the reader. 2

3.2. Distributive Laws for Products.

3.2.1. Theorem. Let λi : HKi → KiH be distributive laws and let the pointwise product
monad K =

∏
Ki exist as in Definition 2.1.2. Define λ by

HKi KiH-
λi

HK KH-λ

?

Hpri

?

priH

Then λ is a distributive law.

Proof. Though not a formal corollary of Theorem 3.1.3 (1) (with σ = id, τ = pri), the
same proof works since priH is a jointly monic family. 2

3.2.2. Example. Let C be a category with binary powers, let H = (H,µ, η) be any monad
in C and let R = (R, ν, ρ) be the rectangular bands monad of Example 2.1.7. The unzip
map unzip : HR→ RH is defined as (Hpr1, Hpr2). (When H is the list monad, this is
the usual unzip map).

As was first shown by [6] for Set, unzip is a distributive law of R over H. To show this
in the current more general context, first observe that id : H id → idH is a distributive
law (whose algebras are just CH). The preceding theorem then gives a distributive law
HR → RH which is routinely checked to be unzip. It is easily computed that R?(A, ξ)
is the product algebra (A, ξ)× (A, ξ) and that

H(A
(a,b)−−−→ B ×B) = HA

(Ha,Hb)−−−−−→ HB ×HB

3.2.3. Theorem. Let λi : HiK → KHi be distributive laws and let the pointwise product
H =

∏
Hi exist and be preserved by K. Then λ defined as

HiK KHi
-

λi

HK KH-λ

?

priK

?

Kpri

is a distributive law.
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Proof. The proof is entirely similar to that of Theorem 3.2.1 and is left for the reader.
2

3.3. Distributive Laws for Submonads. We study the consequences of Theorem
3.1.3 when σ, τ are submonads. To begin, we make an observation about monads of sets.
Let f : X → Y be an injective function. For every functor K : Set → Set, Kf is monic if
X 6= ∅ or X = KX = ∅. If X = ∅, KX 6= ∅ then Kf might not be monic. For example,
let A have more than one element and consider the functor K∅ = A, KY = 1 if Y 6= ∅.
However, we have

3.3.1. Lemma. If (K, ν, ρ) is a monad in Set then K preserves monics.

Proof. Let f : ∅ → Y be the unique function. If K∅ 6= ∅ let g : Y → K∅ be any function.

Then K∅ Kf−−→ KY
g#

−−→ K∅ is the unique K-homomorphism idK∅ so Kf is monic. 2

Thus the condition that τσ have monic components in part (1) of Theorem 3.1.3
always holds in Set if σ, τ both have monic components, since τσ = (τH)(K ′σ) and K ′σ
has monic components.

3.3.2. Example. Let K be the monad for abelian groups, let L be the list monad of
Example 2.1.5 and let λ : LK → KL be the distributive law of Example 2.4.5 for which the
K◦λL-algebras are rings with unit. Let K0A = ⊕A IN ⊂ ⊕A ZZ = KA, so that τ : K0 → K
is a submonad of K whose algebras are abelian monoids, as is easily calculated. Let
σ : L+ → L be the submonad of non-empty lists, whose algebras are semigroups. When
λA is applied to a nonempty product of non-negative sums, the resulting sum of products
lies in K0 L

+A, giving rise to a fill-in λ′ : L+K0 → K0L
+ which is a distributive law by

the theorem.

We leave it to the reader to verify that the K0 ◦λ′ L
+-algebras are semirings (without

unit). The axiom x0 = 0 = 0x is established by considering empty sums.

3.3.3. Example. Let λ : PP → PP be the distributive law of Example 2.4.7. Let
σ : P0 → P be the submonad of finite subsets —it is a submonad because a finite union of
finite sets is finite. Similarly, a countable union of countable sets is countable giving rise to
the submonad τ : Pω → P of countable subsets. If A is a finite family of countable subsets
of X, λX(A) = {{aA : A ∈ A} : (aA) ∈

∏
AA} is a countable family of finite sets, a

finite product of countable sets being countable. The resulting fill-in λ′ : P0Pω → PωP0 is a
distributive law by the theorem. It is routine to check that there is no fill-in PωP0 → P0Pω.

We turn now to corollaries of Theorem 3.1.3 that result when one of σ, τ is the identity
and the other is a submonad.

3.3.4. Corollary. Let H = (H,µ, η), K = (K, ν, ρ) be monads in C and let σ :
(H ′, µ′, η′) → H be a submonad of H in such a way that Kσ has monic components.
Let λ : HK → KH be a distributive law of K over H. If there exists a (necessar-
ily unique) fill-in λ′ in the left diagram then λ′ is a distributive law of K over H′ and
Kσ : K ◦λ′ H

′ → K ◦λ H is a submonad. In that case, if U : CH → CH′
is the forgetful

functor corresponding to σ, the right square commutes.
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HK KH-
λ

H ′K KH ′-λ
′

?

σK

?

Kσ

CH CH′-
U

CH CH′-U

?

K?

?

K?

Proof. By part (1) of the theorem with τ = id, λ′ is a distributive law and Kσ is a
submonad by Theorem 3.1.2. As U and both K? are over C, we need only chase objects.
For (A, ξ) an H-algebra we have K?U(A, ξ) = K?(A, ξ σA) = (KA, (Kξ)(KσA)λ′A) =
(KA, (Kξ)λA σKA) = U(KA, (Kξ)λA) = UK?(A, ξ) 2

3.3.5. Example. In the context of Example 3.2.2, let σ : H′ → H be a submonad. Then
(σ × σ) unzip = unzip (σR).

The previous corollary applies because, in any category with binary powers, f × f is
monic when f is.

Before stating the next result, we observe that if ι : S → K is a submonad then the
induced functor CS → CK, A

α−−→ SA 7→ A
α−−→ SB

ιB−−→ KB, is a subcategory. This is
obvious since ιB is monic.

3.3.6. Corollary. Let λ : HK → KH be a distributive law of K over H and let
τ : (K ′, ν ′, ρ′) → K be a submonad. Then there exists a fill-in λ′ (necessarily unique, not
assumed to be natural a priori) as shown, if and only if H maps CK′ into CK′. In that
case, λ′ is a distributive law of K′ over H and τH : K′ ◦λ′ H → K ◦λ H is a submonad.

HK KH-
λ

HK ′ K ′H-λ
′

?

Hτ

?

τH

Proof. If the fill-in λ′ exists, it is a distributive law by (1) of the theorem with σ = id,
and then τH is a submonad by Proposition 3.1.2. First assume that λ′ exists. For

α : A→ K ′B, define Ĥα = HA
Hα−−→ HK ′B

λ′B−−→ K ′HB. As

H(A
α−−→ K ′B

τ
B−−→ KB) = HA

Hα−−→ HK ′B
Hτ

B−−−→ HKB
λ

B−−→ KHB

we have
τ

HB
(Ĥα) = λ

B
(Hτ

B
) (Hα) = H(τ

B
α)

that is, H maps CK′ into CK′ (via Ĥ). Conversely, assume Ĥ exists such that
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CK CK
-

H

CK′ CK′-Ĥ

? ?

commutes. As CK′ is a subcategory and H is functorial, Ĥ must be functorial as well so
Ĥ classifies a Kleisli lift with transformation λ′A = Ĥ(idK′A) following (16). We have

HK ′A
λ′

A−−→ K ′HA
τ
HA−−→ KHA = H(K ′A

id−−→ K ′A
τ
A−−→ KA)

= HK ′A
Hτ

A−−→ HKA
λ

A−−→ KHA

so that λ′ is the desired fill-in. 2

3.3.7. Example. Let λ be the distributive law of Example 2.4.8. The non-empty subset
monad P+ is clearly a submonad of P. The Kleisli lifting of that example takes total
relations to total relations. Thus the lifting L on SetP factors through SetP+. By Corollary
3.3.6, there exists a distributive law λ′ : LP+ → P+L and P+L is a composite monad.
Similarly, if P0 is the submonad of finite sets, then the lifting L takes finite relations to
finite relations generating a distributive law λ′ : LP0 → P0L.

3.4. Distributive Laws for Quotients. In this section, we study the consequences
of Theorem 3.1.3 (2). While little is known about the relation between algebras of a
submonad in terms of the algebras of the ambient monad, monad quotients are better
understood. For monads on sets, H, the algebras of a quotient form a variety of algebras
of H (see [22]). The next lemma shows that over general categories we can at least expect
a full subcategory of the original algebras.

3.4.1. Lemma. For the monads H = (H,µ, η), H′ = (H ′, µ′, η′), let σ : H → H′ be a
monad map which has epic components and with induced forgetful functor Ψ : CH′ → CH.
Then Ψ is a full subcategory. Moreover, if HσX is epic for all X and ξ′ : H ′X → X is
such that (X, ξ′σX) is an H-algebra, then (X, ξ′) is an H′-algebra.

Proof. If (X, ξ′) is an H′-algebra, Ψ(X, ξ′) = (X, ξ′ σX). Ψ is injective on objects because
σX is epic. If f : Ψ(X, ξ′) → Ψ(Y, θ′) is an H-homomorphism, fξ′σX = θ′σY (Hf) =
θ′(H ′f)σX (as σ is natural) so that, as σX is epic, θ′(H ′f) = fξ′ and f : (X, ξ′) → (Y, θ′)
is an H′-homomorphism. Now assume that (X, ξ) is an H-algebra with ξ = ξ′σX . Then
ξ′η′X = ξ′σXηX (σ monad map) = ξηX = idX is the first algebra law. For the second,

ξ′(H ′ξ′)σH′X(HσX) = ξ′σX(Hξ′)(HσX) (σ natural)

= ξ(Hξ) = ξµX (H-algebra)

= ξ′σXµX = ξ′µ′X(σσ)X (σ monad map)

= ξ′µ′XσH′X(HσX)
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As σH′X(HσX) is epic, ξ′(H ′ξ′) = ξ′µ′X , which is the second algebra law. 2

The next result will be important in establishing Theorem 4.3.4 below. We note that
if σ : H → H′ is a natural transformation which has epic components, if H preserves
epics then H ′ necessarily does, so we condense the hypothesis of (2) of Theorem 3.1.3 to
H preserving epics. Of course, all endofunctors of Set preserve epics.

3.4.2. Corollary. Let H = (H,µ, η), K = (K, ν, ρ), H′ = (H ′, µ′, η′) be monads in C
and let σ : H → H′ be a monad map with epic components. Assume that H, K preserve
epics. Let λ : HK → KH be a distributive law of K over H with corresponding algebra lift
K? : CH → CH. Then there exists a (necessarily unique, not a priori assumed natural)
fill-in λ′

H ′K KH ′-
λ′

HK KH-λ

?

σK

?

Kσ

if and only if K? maps CH′
into itself. In that case, λ′ : H ′K → KH ′ is a distributive

law of K over H′.

Proof. If λ′ exists, it is a distributive law by the theorem with τ = id. Kσ is then a
monad map by Proposition 3.1.2. If (A, θ′) is an H′-algebra, it is the H-algebra (A, θ′ σA).
K?(A, θ′ σA) is then the H-algebra (KA, (Kθ′)(KσA)λA) = (KA, (Kθ′)λ′A σKA) so that
(KA, (Kθ′)λ′A) is an H′-algebra by Lemma 3.4.1. Conversely, assume that K? maps CH′

into itself. Note that σX : (HX,µX) → (H ′X,µ′XσH′X) is an H-homomorphism. Writing

K?(HX,µX) = (KHX,HKHX
γX−−→ KHX)

K?(H ′X,µ′XσH′X) = (KH ′X,HKH ′X
γ̂X−−→ KH ′X)

K? maps σX to the H-homomorphism Kσ : (KHX, γX) → (KH ′X, γ̂X) with

γ̂X = HKH ′X
σ

KH′X−−−−−→ H ′KH ′X
γ′X−−−→ KH ′X

for a unique H′-algebra structure γ′X . By (14),

λ = HK
HKη−−−→ HKH

γ−−−→ KH

This suggests that we define

λ′ = H ′K
H′Kη′−−−→ H ′KH ′ γ′−−−→ KH ′
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and we do. We can now verify the fill-in property.

(Kσ)λ = (Kσ) γ (HKη)

= γ̂ (HKσ)(HKη) (Kσ H-homomorphism)

= γ̂ (HKη′) (σ MM A)

= γ′ (σKH ′)(HKη′)

= γ′ (H ′Kη′)(σK) (σ natural)

= λ′ (σK)

2

3.4.3. Corollary. Let λ : HK → KH be a distributive law of K over H and let
τ : K → K′ be a monad map with epic components. Assume that H and K ′ preserve
epics and that there exists a fill-in

HK ′ K ′H-
λ′

HK KH-λ

?

Hτ

?

τH

Then λ′ is a distributive law of K′ over H.

Proof. By Theorem 3.1.3 (2). 2

3.4.4. Example. An example of the previous corollary obtains if λ : LK → KL is the
distributive law for rings of Example 2.4.5 and τ : K → P0 is the quotient obtained by
mapping a finitely non-zero sequence to its set of non-zero indices; here, P0 is the finite
subsets monad.

We leave it to the reader to verify that τ is a monad map and that there is a fill-
in LP0 → P0L for which the free P0 ◦λ′ L-algebra P0LX is the usual semiring of finite
languages on X.

4. Recursively-defined distributive laws

The main goals of this section are Theorem 4.2.20 and Theorem 4.3.4 which establish a
wide class of recursively-defined distributive laws for monads in Set.

4.1. Polynomial Functors and Σ-Algebras.

4.1.1. Definition. A (finitary) signature is a sequence of sets Σ = (Σn : n =
0, 1, 2, . . .), any of which may be empty. For such Σ, a Σ-algebra is (X, δ) where X
is a set and δ assigns to ω ∈ Σn an n-ary operation δω : Xn → X (if n = 0, δω ∈ X is a
constant). A Σ-homomorphism f : (X, δ) → (Y, ε) is a function f : X → Y such that
∀ω ∈ Σn, εω(fx1, . . . , fxn) = f(δω(x1, . . . , xn)).

Evidently, Σ-algebras and their homomorphisms form a category.



192 ERNIE MANES AND PHILIP MULRY

4.1.2. Definition. Let C be any category and F : C → C an endofunctor. An F -
algebra is (X, δ) where δ : FX → X. An F -algebra homomorphism f : (X, δ) →
(Y, ε) is a morphism f : X → Y such that the following square commutes:

X Y-
f

FX FY-Ff

?

δ

?

ε

It is again clear that, with the composition and identities of C, that one gets a category
which we denote by CF . Notice that if (F, µ, η) is a monad then CF is a full subcategory
of CF .

We now represent a signature Σ by its “generating functor” FΣ : Set → Set namely

FΣX = Σ0 + (Σ1 ×X) + (Σ2 ×X2) + · · ·+ (Σn ×Xn) + · · · (20)

where + is the coproduct (disjoint union), × is cartesian product and Xk is cartesian
power, so that FΣ is a functor. The functor FΣ is called a polynomial functor in Set.
Because of the the commutativity and associativity isomorphisms for cartesian product
and the natural isomorphisms A× (B + C) ∼= A×B + A× C, any functor that can be
constructed from identity functors by finite use of + and × is isomorphic to a polynomial
functor.

It is obvious that SetFΣ is the category of Σ-algebras. We now define a monad F@
Σ =

(F@
Σ , µ, η) with SetF@

Σ ∼= SetFΣ as follows. F@
ΣX is defined as the least solution of the

recursive equation

F@
ΣX = X + FΣF

@
ΣX (21)

Set ηX : X → F@
ΣX to be the first coproduct injection. In the diagram below, there exists

unique α#, given α.

X X + FΣF
@
ΣX

-ηX
FΣF

@
ΣX

�in2

FΣF
@
Σ Y

�
in2

F@
Σ Y
?

α#

?

FΣα
#

Z
Z

Z
Z

Z
Z

Z
ZZ~

α

(22)

To see this, observe that the two diagrams amount to the inductive definition

α#(x) = α(x)

α#(ω(t1, . . . , tn)) = ω(α#(t1), . . . , α
#(tn))
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Replacing F@
Σ Y with any FΣ-algebra shows that (F@

ΣX, in2) is the free FΣ-algebra gener-
ated by X and that F@

Σ is just the monad induced by Huber’s theorem from the functor
SetFΣ → Set and its left adjoint. This functor is then monadic by Beck’s monadic-
ity theorem, so that SetF@

Σ is isomorphic over Set to SetFΣ [4]. Note that the fixed point
equation in (21) is the familiar construction of the set of Σ-terms with variables in X from
universal algebra, namely that each variable is a term and that for ω ∈ Σn, if τ1, . . . , τn
are terms then so is ω(τ1, . . . , τn).

The recursive property in (21) will be used to construct a canonical distributive law
of M over F@

Σ where M is a commutative monad. These monads are the subject of the
next subsection.

4.2. Commutative Monads. Commutative monads were defined in closed categories
by Kock [15]. In this section we will consider commutative monads in Set. In the sequel
paper [23] the definition will be generalized to closed categories and there will be new
examples even in Set. In this subsection, we fix a monad M = (M, ν, ρ) in Set.

4.2.1. Definition. A function g : MX1 × · · · × MXn → MY with n ≥ 1 is said to
be a multihomomorphism (or mh for short) if for fixed ωj ∈ MXj for all j 6= i, the
resulting function

λω.g(ω1, . . . , ωi−1, ω, ωi+1, . . . , ωn) : MXi →MY

is an M-homomorphism. When n = 2, we say g is a bihomomorphism. Given a
function f : X1 × · · · ×Xn → Y , a multihomomorphic extension (mh-extension) of
f is a multihomomorphism f̂ such that the following square commutes

Y MY-
ρ

Y

X1 × · · · ×Xn MX1 × · · · ×MXn
-

ρ
X1
× · · · × ρ

Xn

?

f

?

f̂

4.2.2. Lemma. If f̂ , g are mh-extensions of f : X1 × · · · ×Xn → Y then f̂ = g.

Proof. For n = 1, f̂ = Mf is the unique M-homomorphic extension of X
f−−→ Y

ρY−−→
MY . Proceeding inductively, for fixed x ∈ Xn+1, f̂(–, x), g(–, x) are mh-extensions of
f(–, x) : X1 × · · · × Xn → Y so that f̂(–, x) = g(–, x) by the induction hypothesis. Fix
ωi ∈MXi for i = 1 · · ·n. As f̂(ω1, . . . , ωn, –) and g(ω1, . . . , ωn, –) are M-homomorphisms
agreeing on the generators, they are equal. 2

If C is any category and if H = (H,µ, η) is a monad in C, H × H is a monad
in C ×C with functor (A,B) 7→ (HA,HB), similarly for maps, and with unit (ηA, ηB),
multiplication (µA, µB) and extension (α#, β#). The details are trivial. To avoid confusion
with the earlier product monad in C we shall denote this monad as (H,H).

If (Y, θ) is an M-algebra and X is a set, the cartesian power (Y, θ)X is an algebra as
well. See [20, 22] for details.
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Each ω ∈Mn induces an n-ary operation δω : Xn → X on each M-algebra (X, ξ) by

δω(n
f−−→ X) = (Mn

Mf−−→MX
ξ−−→ X)(ω)

4.2.3. Notation. When the identity map idX1×···×Xn : X1×· · ·×Xn → X1×· · ·×Xn has
an mh extension MX1 × · · · ×MXn → M(X1 × · · · ×Xn), we will denote the extension
by Γn

X1×···×Xn
. In the case of n = 2, we may drop the superscript.

4.2.4. Theorem. The following conditions on a monad M in Set are equivalent. If any,
and hence all, hold we say M is commutative.

1. Each function f : X × Y → Z has a bihomomorphic extension.

2. Each function f : X1 × · · · ×Xn → Y has a unique multihomomorphic extension.

3. The product bifunctor × : Set×Set → Set has a Kleisli lift × : (Set×Set)(M,M) →
SetM. Moreover, if λ : MX × MY → M(X × Y ) classifies ×, the map ψ :
(MX)A × (MY )B → (M(X × Y ))A×B defined by ψ(α, β) = λ(X,Y ) (α × β) is a
bihomomorphism with respect to the cartesian power M-algebra structures.

4. If (X, ξ), (Y, θ) are M-algebras, the set of M-homomorphisms (X, ξ) → (Y, θ) is an
M-subalgebra of the cartesian power (Y, θ)X .

5. Each M-operation δω : (X, ξ)n → (X, ξ) is an M-homomorphism, where (X, ξ)n has
the cartesian power algebra structure.

Proof. (1 ⇔ 2). That (2) ⇒ (1) is trivial. For (1) ⇒ (2), uniqueness is immediate
from Lemma 4.2.2. For existence, first claim that the mh extension Γn

X1×···×Xn
exists.

For n = 1, use the identity map. The case n = 2 is given. Proceeding inductively,
define Γn+1

X1···Xn
= Γ2

X1×···×Xn,Xn+1
◦ Γn

X1···Xn
× 1. Then Γ2 is given mh and Γn is mh by the

induction hypothesis. Fix ωi ∈ MXi. Then Γn+1(ω1, . . . , ωn, ω) = Γ2(Γn(ω1, . . . , ωn), ω)
is homomorphic in ω because Γ2 is a bihomomorphism. For 1 ≤ i ≤ n,

Γn+1(ω1, . . . , ωi−1, –, ωi+1, . . . , ωn+1) = Γ2(–, ωn+1) ◦ Γn(ω1, . . . , ωi−1, –, ωi+1, . . . , ωn)

is the composition of two homomorphisms and so is again one. This shows, so far, that
Γn is mh for all n. We next show that Γn extends id. For n = 1 this is clear and for n = 2
this is given. Proceeding inductively, we have

Γn+1 (ρX1 × · · · × ρXn+1) = Γ2 (Γn × 1) (ρX1 × · · · × ρXn+1)

= Γ2( Γn(ρX1 × · · · × ρXn), ρXn+1)

= Γ2(ρX1×···×Xn , ρXn+1) (induction hypothesis)

= ρX1×···×Xn+1

Now consider f : X1 × · · · ×Xn → Y and define f̂ : MX1 × · · · ×MXn →MY by

f̂ = MX1 × · · · ×MXn

Γn
X1···Xn−−−−−→M(X1 × · · · ×Xn)

Mf−−−→MY (23)
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As Mf is a homomorphism and Γn is mh, f̂ is mh. Moreover, f̂ extends f because

f̂ (ρX1 × · · · × ρXn) = (Mf) Γn (ρX1 × · · · × ρXn)

= (Mf) ρX1×···×Xn (Definition of Γn)

= ρY f (ρ is natural)

(1 ⇒ 3) We show that Γ2
XY : MX×MY →M(X×Y ) as above classifies a Kleisli lift

of the product bifunctor × : Set×Set → Set. In (2.2.2, 2.2.6), H = (M,M), F = −×−
and K = M . (F A) holds by the definition of Γ2. For (F #), given α : W → MY ,

β : X → MZ, γ = W ×X
α×β−−−→ MY ×MZ

Γ2

−−→ M(Y × Z), we must show that the
following square commutes:

M(W ×X) M(Y × Z)-
γ#

MW ×MX MY ×MZ-α# × β#

?

Γ2
WX

?

Γ2
Y Z

As α#, β# and γ# are homomorphisms and Γ2 is a bihomomorphism, both paths are
bihomomorphisms so, by Lemma 4.2.2, we need only check equality on the generators.
Indeed,

γ# Γ2 (ρW × ρX) = γ# ρW×X (definition of Γ2)

= γ = Γ2 (α× β) = Γ2 ( (α#ρW )× (β#ρX) )

= Γ2 (α# × β#) (ρW × ρX)

Thus Γ2 classifies a Kleisli lift of the product bifunctor. Notice that this lift (Set ×
Set)(M,M) → SetM maps (A

α−−→MX,B
β−−→MY ) to γ = A×B α×β−−−→MX×MY

Γ2

−−→
M(X × Y ) which is the map ψ in (3). For a ∈ A, b ∈ B, β ∈ MY B we have, by the
definition of ψ, that the following square commutes:

MX M(X × Y )-
Γ2(–, βb)

MXA M(X × Y )A×B-
ψ(–, β)

?

pra

?

pr(a,b)

As MXA has the product algebra structure, pra is a homomorphism. Γ2(–, βb) is a
homomorphism since Γ2 is a bihomomorphism. Thus ψ is a homomorphism in its second
variable. The proof for the first variable is similar.
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(3 ⇒ 1) Let λXY : MX ×MY → M(X × Y ) classify a Kleisli lift of the product
bifunctor such that the map ψ : MXA ×MY B → M(X × Y )A×B given by ψ(α, β) =

A × B
α×β−−−→ MX × MY

λ−−→ M(X × Y ) is a bihomomorphism with respect to the
cartesian power algebra structures. Letting A,B be singleton sets, we see that λXY is
itself a bihomomorphism. Moreover, by axiom (F A), λXY extends ρX × ρY . Given
arbitrary f : X × Y → Z, define f̂ = (Mf)λXY . Then f̂ is bihomomorphic since λXY is
and Mf is a homomorphism. Further, f̂ extends f since

f̂ (ρX × ρY ) = (Mf) λXY (ρX × ρY )

= (Mf) ρX×Y = ρY f (ρ is natural)

The equivalence of (1, 2) with (4) and (5) is Linton’s theorem [17]. (We note that
while (1,2) were not put into the statement of his theorem, they are prominent in the
proof). 2

We now explore some examples and basic properties of commutative monads in Set.
Let R be a semiring with 1, that is, (R,+, 0) is an abelian monoid and (R, ·, 1) is

a monoid satisfying the laws (x + y)z = xz + yz, z(x + y) = zx + zy, 0x = 0 = x0. An
R-module is an abelian monoid (X,+, 0) on which R acts satisfying the usual laws for
r, s ∈ R, x, y ∈ X, namely (r+ s)x = rx+ sx, r(x+ y) = rx+ ry, (rs)x = r(sx), 1x = x,
0x = 0. The category of R-modules is equationally definable with finitary operations
(think of elements of R as indexing unary operations) and hence is monadic over Set.

4.2.5. Example. For R a semiring, the monad MR = (MR, ν, ρ) for R-modules, is
constructed by Huber’s theorem as follows. MRX is the free module ⊕XR generated by
X whose elements are all formal sums

∑
x rxx with rx ∈ R, rx = 0 for all but finitely

many x ∈ X. We have ρ
X
x =

∑
y δ

x
yy with δx

y the Kronecker delta, that is, taking the
value 0 ∈ R for y 6= x but with value 1 ∈ R when y = x. Given α : X → MRY ,
α#(

∑
rxx) =

∑
r(x)α(x) is the unique R-linear extension of α.

To explain the definition of α#, MRY is a module with abelian group
∑
ryy +∑

syy =
∑

(ry + sy)y and action r
∑
ryy =

∑
(rry)y. From a data type perspective,∑

x rxx is a generalized finite bag with rx the “multiplicity” of element x. Notice that
composition in the Kleisli category of MR is matrix multiplication.

4.2.6. Proposition. If R is a commutative semiring with 1 then MR is commutative.

Proof. f : X × Y → Z has unique bihomomorphic extension f̂ : MX ×MY → MZ
given by

f̂(Σrxx,Σsyy) =
∑

rxsyf(x, y)

2

In this context, it is standard to call multihomomorphisms multilinear maps. The
reader should provide the proof details to see where the commutativity of the semiring is
used.
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4.2.7. Example. If R = IN = {0, 1, 2, . . .} with the usual addition and multiplication,
MR -algebras are abelian monoids and MRX is the set of all finite bags

∑
nxx with nx

the number of occurrences of x in the bag.

4.2.8. Example. “Fuzzy set theory” uses the real unit interval R = [0, 1] with supremum
as addition and infimum as multiplication.

The Boolean semiring is 2 = {0, 1} with 1 + 1 = 0. A 2-module is then an abelian
monoid for which x+ x = (1 + 1)x = 1x = x, that is, a semilattice. We then have

4.2.9. Example. For R the Boolean semiring, MR is the finite power set monad P0, a
submonad of P. This monad is commutative. The formula of Proposition 4.2.6 gives

f̂({x1, . . . , xm}, {y1, . . . , yn}) = {f(xi, yj) : i = 1, . . . ,m, j = 1, . . . , n}

4.2.10. Example. Consider the monad MX = X×C, where C is a monoid, ηXx = (x, 1),
and for α : X → Y × C, α#(x, d) = (y, cd) if αx = (y, c). This monad is commutative
when C is a commutative monoid. In that case,

f̂((x1, e1), . . . , (xn, en)) = (f(x1, . . . , xn), e1 + · · ·+ en)

4.2.11. Example. For G a non-empty set, the monad MX = X + G of Example 2.4.6
is commutative if and only if G has one element.

To see this, use Theorem 4.2.4 (4). An M-algebra is a pair (X, (∗g : g ∈ G)) with
each ∗g ∈ X and a morphism is a function mapping ∗g to ∗g for all g. For a cartesian
power algebra (Y, (∗g)))

X , the constant ∗g is the function X → Y which is constantly ∗g.
A subalgebra is any subset containing all these constant functions. On the other hand, if
both G and Y have more than one element and different ∗g exist in Y , no homomorphism
is constant so the set of homomorphisms cannot be a subalgebra. When G = {∗}, the
unique multihomomorphic extension f̂ : (X1 + {∗})×· · ·× (Xn + {∗}) → (Y + {∗}) maps
(x1, . . . , xn) to f(x1, . . . , xn) if no xi = ∗ and maps to ∗ otherwise.

4.2.12. Proposition. Any cartesian product of commutative monads is a commutative
monad. 2

Pursuant to our next result, we remind the reader that for monads H of Set (see
[20, 22]) quotient monads of H correspond bijectively to full subcategories of H-algebras
which are closed under products, subalgebras and quotient algebras.

4.2.13. Proposition. Any quotient of a commutative monad is commutative.

Proof. This is clear from Theorem 4.2.4 (4) since products and subalgebras in the cor-
responding full subcategory are the same as in the ambient category. 2

4.2.14. Proposition. Any submonad of a commutative monad is commutative.
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Proof. Let ι : M → H be a submonad of the commutative monad H = (H,µ, η).
Fix X, Y and let ΓXY : HX × HY → H(X × Y ) be the bihomomorphism extending
idX×Y . Noting that every H-homomorphism is also an M-homomorphism via the forgetful
functor, it suffices to find a fill-in

HX ×HY H(X × Y )-
ΓXY

MX ×MY M(X × Y )-
Γ′XY

?

ιX × ιY
?

ιX×Y

for then Γ′XY is an M-bihomomorphism by Lemma 2.3.5 and each f : X × Y → Z

then has M-bihomomorphic extension MX × MY
Γ′XY−−−→ M(X × Y )

Mf−−−→ MZ. For
x ∈ X write inx : Y → X × Y , y 7→ (x, y). Then ΓXY (x, -) = H(inx) maps MY into
MZ as ι : M → H is natural, defining Γ′XY (x, -) : MX → MZ. With respect to the
product algebra structure, let γ : MX → MZMY be the M-homomorphism extending
x 7→ Γ′XY (x, -) and write Γ′XY (ω, ζ) = (γζ)(ω). By the uniqueness of homomorphic
extensions, the square above commutes for each fixed ζ ∈MY and hence commutes. 2

4.2.15. Example. Consider the exponential monad MX = XA, the cartesian power of
the identity monad. By Proposition 4.2.12, this is a commutative monad. For ψ : X1 ×
· · · ×Xn → Y , ψ̂ : XA

1 × · · · ×XA
n → Y A is defined by (ψ̂(f1, . . . , fn))a = ψ(f1a, . . . fna).

4.2.16. Example. A special case of the previous example is the rectangular bands monad
R = (R, ν, ρ) of Example 2.1.7. For f : X1×· · ·×Xn → Y ,Here f̂((x1, y1), . . . , (xn, yn)) =
(f(x1, . . . , xn), f(y1, . . . , yn)).

4.2.17. Example. The list monad L is not a commutative monad.

For consider an arbitrary map f : A × B → C. Suppose there is a multihomomor-
phic extension f̂ : LA × LB → LC. In particular, λw.f̂([a, b], w) : LB → LC and
λw.f̂(w, [x, y]) : LA→ LC are list homomorphisms. Now f̂([a, b], [x, y]) = λw.f̂([a, b], w)
applied to [x, y] which equals [f(a, x), f(b, x), f(a, y), f(b, y)] but also f̂([a, b], [x, y]) =
λw.f̂(w, [x, y])([a, b]) which equals [f(a, x), f(a, y), f(b, x), f(b, y)]. Thus f(a, y) = f(b, x)
for arbitrary a, b, x, y. But this will only work if f is a constant function.

4.2.18. Example. Let M be the state monad of Example 2.1.8 and recall the notations
used there. Fix sets A,B and suppose that Γ = Γ2

AB : MA ×MB → M(A × B) is a

bihomomorphism with Γ ◦ (ρA × ρB) = ρA×B, that is, Γ([â, id], [b̂, id]) = [â, b̂, id]. We
shall show that this leads to a contradiction when S has at least two elements and so we
conclude that the state monad is not commutative.

To see this, for fixed a ∈ A consider α : B → (A × B × S)S, α(b) = [â, b̂, id]. Then
Γ([â, id], –) = α# since both are homomorphisms which restrict to α on the generators.
Thus for g : S → B, u : S → S,

Γ([â, id], [g, u]) = α#([g, u]) = λs . < α(gs), us >
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= λs . < [â, ĝs, id], us > = λs .[a, gs, us]

= [â, g, u]

Thus if β : A→ (A×B × S)S, β(a) = [â, g, u], Γ(–, [g, u]) = β#. Hence

Γ([f, t], [g, u]) = β#([f, t]) = λs . < β(fs), ts >

= λs . < [f̂ s, g, u], ts > = [f, g ◦ t, u ◦ t]

forces a general formula for Γ. But we could perform this construction by fixing variables
in the other order. For fixed b ∈ B define γ : A → (A × B × S)S, γ(a) = [â, b̂, id] and
compute

Γ([f, t], [b̂, id]) = γ#([f, t]) = [f, b̂, t]

so that, for δ : B → (A×B × S)S, δ(b) = [f, b̂, t],

Γ([f, t], [g, u]); = δ#([g, u]) = [f ◦ u, g, t ◦ u]

These two formulas are not equal if S has at least two elements: if t, u are different
constant functions, t ◦ u 6= u ◦ t.

4.2.19. Lemma. For commutative M, each Γn is a natural transformation.

Proof. For n = 1, Γ1 = id and the result is clear. For n = 2, we need to show that
for functions f : A → B and g : C → D, Γ2

B,D(Mf ×Mg) = M(f × g)Γ2
A,C . As both

maps are bihomomorphisms, it is enough to check equality on the generators ρA × ρC .
M(f × g)ΓA,C(ρA × ρC) = M(f × g)ρA×C = ρB×D(f × g) = ΓB,D(ρB × ρD)(f × g) =
ΓB,D(Mf ×Mg)(ρA × ρC). The result for general n is now obvious from the inductive
definition. 2

We are now ready to construct a class of recursively-defined distributive laws.

4.2.20. Theorem. Let Σ be a signature, inducing polynomial functor F = FΣ and monad
F@ = (F@, µ, η). Let (F@X, π) be the free Σ-algebra generated by X, πω : (F@X)n →
F@X for ω ∈ Σn. Let M be a commutative monad and let π̂ω : (MF@X)n → MFX be
the unique multihomomorphic extension of πω. Define λ recursively, by means of the free
Σ-algebra structure, by

MX F@MX-
η

MX
FF@MX� in2

FMF@X�
π̂

MF@X
?

λX

?

FλX

Z
Z

Z
Z

Z
Z

Z
ZZ~

Mη
X

Then λ is a distributive law of M over F@.



200 ERNIE MANES AND PHILIP MULRY

Proof. Noting that SetF@ ∼= SetF , define an algebra lift M? : SetF → SetF as follows.
On objects, M?(X, δ) = (MX, δ̂) with δ̂ω : (MX)n →MX the unique multihomomorphic
extension of δw : Xn → X for ω ∈ Σn, n ≥ 1. For ω ∈ Σ0, define δ̂ω = ρX(δω) ∈MX. To
show that M? is functorial, let f : (X, δ) → (Y, ε) be a Σ-homomorphism; we must show
that Mf : (MX, δ̂) → (MY, ε̂) also is, that is, that the following square commutes:

MX MY-
Mf

(MX)n (MY )n-
(Mf)n

?

δ̂ω

?

ε̂ω

For n = 0 this is immediate from the naturality of ρ. For n ≥ 1, argue as follows.
Mf : (MX, νX) → (MY, νY ) is an M-homomorphism by the naturality of ν. Both
paths in the square are multihomomorphisms, so we need only check agreement on the
generators (ρX)n : Xn → (MX)n. To this end, we have

ε̂ω(Mf)n(ρX)n = ε̂ω(ρY )nfn (ρ natural)

= ρY εω f
n (ε̂ extends ε)

= ρY f δω (f Σ-homomorphism)

= (Mf)δ̂ω(ρX)n (δ̂ extends δ)

as desired. Considering (11) and (14), the natural transformation λ that classifies the
lifting M? is the unique Σ-homomorphism λX : (F@MX,µMX) → M?(F@X, π) which
extends MηX . But M?(F@X, π) = (MF@X, π̂) by definition. The λ recursively specified
in the statement of the theorem is precisely the unique Σ-homomorphism extending MηX ,
so is the λ corresponding toM?. To complete the proof, we show that the monad M lifts to
SetF . By the definition of δ̂, the left square below commutes and this says, precisely, that
ρX : (X, δ) →M?(X, δ) is a Σ-homomorphism. Let (X, δ) be an F -algebra, (MMX, δ̃) =
M?(MX, δ̂) where (MX, δ̂) = M?(X, δ). To show νX : (MMX, δ̃) → (MX, δ̂) is a
Σ-homomorphism, we must show the right square below commutes.

X MX-
ρX

Xn (MX)n-
(ρX)n

?

δω

?

δ̂ω

MMX MX-
νX

(MMX)n (MX)n-
(νX)n

?

δ̃

?

δ̂

It amounts to one of the monad laws that νX : (MMX, νMX) → (MX, νX) is an
M-homomorphism for any monad M. Hence both paths in the square are multihomo-
morphisms so we need only check commutativity restricted to the generators (ρMX)n. We
have δ̂ω(νX)n(ρMX)n = δ̂ω(νX ρMX)n = δ̂ω = νX ρMX δ̂ω = νX δ̃ω (ρMX)n and the proof is
complete. 2
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4.3. Linear Equations. Let Σ0 = {1}, Σ2 = {·}, Σn = ∅ if 0 6= n 6= 2. Then writing
x · y as xy, a commutative monoid is a Σ-algebra satisfying the equations

x(yz) = (xy)z

x1 = x = 1x (24)

xy = yx

and a semilattice is a commutative monoid also satisfying

xx = x (25)

Given a full subcategory V of SetFΣ , V consists of all Σ-algebras satisfying a given set
of equations if and only if V is closed under products, subalgebras and quotient algebras
if and only if there exists a monad map with epic components τ : F@

Σ → S with V
corresponding to the full subcategory of Σ-algebras of Lemma 3.4.1. In this case, V is
called a variety of Σ-algebras. Given sets of Σ-equations E, F , respectively inducing
varieties W , V , then E ⊂ F ⇔ V ⊂ W and there is a commutative triangle of monad
maps with epic components

F@
Σ SW-τW

τV
@

@
@

@@R
SV

?

τWV

Monad maps of type τWV arise naturally in data type situations. Consider the list monad
L, a quotient of F@

Σ with Σ0 = {1}, Σ2 = {·} corresponding to the equations

x(yz) = (xy)z (26)

x1 = x = 1x

Instead of thinking of the equations as defining monoids, consider the following. F@
ΣX

consists of terms built by the rules

• 1 is a term

• If x ∈ X, x is a term

• If p, q are terms then p · q is a term.

Two terms are equivalent if one can be transformed into the other by using the three
equations, and this happens if and only if both are 1 or else both have the same list of
values when all instances of 1 are deleted. In this way, lists represent the equivalence
classes. Quotients of L lead to further data types. Imposing the further equation xy = yx
makes the order of listing unimportant, giving rise to finite bags. To get finite subsets,
eliminate repetition by imposing xx = x.
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Given a commutative monad M, a signature Σ with canonical distributive law λ :
F@

ΣM →MF@
Σ as in Theorem 4.2.20 and a set E of Σ-equations inducing monad quotient

τ : F@
Σ → S, what conditions on E will guarantee that Corollary 3.4.2 will apply to

provide a quotient distributive law λ′ : SM →MS? The main theorem of this section is
that linear equations do this. The definition is as follows.

4.3.1. Definition. A Σ-equation is linear if the same set of variables occurs without
repetition on both sides.

All of the equations of (24) are linear (in “x1 = x”, 1 ∈ Σ0 is not a variable —x is the
only variable). But (25) is not linear because x is repeated. The equation xx−1 = 1 of
group theory is not linear because x is repeated and because x appears on only one side.

Before continuing with the theory, it is illustrative to consider an example.

4.3.2. Example. Let M = P0 be the finite power set monad and let Σ2 = {·}. If
m : X×X → X is a Σ-algebra, consider the unique bihomomorphic lift m̂ : P0X×P0X →
P0X. Writing xy for m(x, y), Example 4.2.9 gives m̂(A,B) = AB = {ab : a ∈ A, b ∈ B}.
If X is a semigroup, so is P0X because (AB)C = {abc : a ∈ A, b ∈ B, c ∈ C} = A(BC).
On the other hand, P0X need not satisfy x2 = x if X does because A2 is {ab : a, b ∈ A}
rather than {a2 : a ∈ A}. This illustrates why linear equations lift to M whereas nonlinear
ones need not.

4.3.3. Lemma. Let Σ be a signature, let E be a set of linear Σ-equations and let (X, δ)
be a Σ-algebra which satisfies all the equations in E. Then for any commutative monad
M, the Σ-algebra (MX, δ̂) (as in the proof of Theorem 4.2.20) also satisfies all of the
equations in E.

Proof. This is precisely [21, Metatheorem 6.10]. 2

We can now establish the main result of this section.

4.3.4. Theorem. Let Σ be a signature and let E be a set of linear Σ-equations corre-
sponding to the quotient monad map τ : F@

Σ → S. Write S = (S, µ′, η′). Let M be
a commutative monad and let (SX, µ′X) have Σ-algebra structure (SX, πX) inducing the
Σ-algebra (MSX, π̂X). Writing F for FΣ, define ψX recursively by means of the free
Σ-algebra structure, by

MX F@MX-in1

Mη′X

@
@

@
@

@@R
MSX

?

ψX

FMSX�
π̂X

FF@MX� in2

?

FψX

(27)

Then ψ respects τ -equivalence classes, that is, there exists a factorization
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F@MX SMX-τMX

MSX
?

ψX λ′X

�
�

�
�

��	

and λ′ is a distributive law of M over S.

Proof. Let λ : F@M → MF@ be the distributive law of Theorem 4.2.20, so that the
induced algebra lift is M?(Y, ε) = (MY, ε̂) with ε̂ω the unique multihomorphic extension
of εω. By Lemma 4.3.3, M? maps algebras satisfying E to algebras satisfying E so, by
the quotient theorem 3.4.2 there exists a factorization

MF@X MSX-
MτX

F@MX SMX-τMX

?

λX

?

λ′X

with λ′ a distributive law of M over S. Now λ′X : (SMX, πMX) → (MSX, π̂) is the
unique S-homomorphic extension of Mη′X as τMX is a Σ-homomorphism and as

λ′X τMX ηMX = λ′X η
′
MX = Mη′X

where the last equality is (DL C). Thus λ′X τMX = ψX because both satisfy the same
recursive specification. 2

5. Composing Recursive Data Types

We conclude the paper by cataloging examples of distributive laws involving two familiar
recursive data type monads.

5.1. Lists and Trees.

5.1.1. Definition. The data type of binary trees V X with leaves in X can be re-
cursively defined by

V X = 1 +X + (V X × V X)

where the unique element of 1 is the empty tree E. Clearly, V is the monad F@ corre-
sponding to the signature Σ0 = {E}, Σ2 = {·} and all other Σn = ∅, and we denote this
monad as V = (V, µ′, η′). V-algebras are sets equipped with a binary operation and a
constant.

Let M = (M, ν, ρ) be a commutative monad in Set. By Theorem 4.2.20 there is a
distributive law of λ : VM →MV of M over V defined recursively by the diagram
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MX VMX-
η′

MX

Mη′
X

@
@

@
@

@@R
MVX

?

λX

MVX ×MVX�
π̂X

VMX × VMX�
in2

?

λ
X
× λ

X

where π̂ is the bihomomorphic extension of the obvious inclusion π : V X × V X → V X.

5.1.2. Example. As seen earlier for the finite case 4.2.9, the power set monad P is a
commutative monad. The distributive law λ : V PA → PV A takes a tree of subsets to
a subset of trees. An algebra structure of the composite monad PV on A consists of a
complete sup-semilattice (A,∨) and a binary operation with identity (A, ∗, e) satisfying a
composite law similar to that of Example 2.4.8.

For instance, if we denote a trivial tree (i.e. a leaf) with value x by Lx and a tree
consisting of left and right subtrees v1 and v2 by N(v1, v2), then λ(N(L{a, b}, L{c, d})) =
{N(La, Lc), N(La, Ld), N(Lb, Lc), N(Lb, Ld)}.

Many other examples composing commutative monads with V exist. By previous
work, these compositions also exist for linear quotients of V. To avoid repetition, we only
detail these composites for a familiar V -quotient monad, the list monad.

Let M = (M, ν, ρ) be a commutative monad in Set. By Theorem 4.2.20 there is a
recursive ψ : VM → ML and a distributive law λ : LM → ML of M over L defined by
the diagrams

MX VMX-
η′

MX

Mη
X

@
@

@
@

@@R
MLX

?

ψX

MLX ×MLX�
+̂+

VMX × VMX�
in2

?

ψ
X
× ψ

X

VMX LMX-
τ

MX

ψ
X

@
@

@
@

@@R
MLX

?

λ
X

where +̂+ is the bihomomorphic extension of the list concatenation map ++ : LX ×LX →
LX. Let’s look at some examples for specific M.

5.1.3. Example. For the commutative monad MR of Example 4.2.5,

λX

[∑
r1
xx, . . . ,

∑
rn
xx

]
=

∑
x1

· · ·
∑
xn

r1
x1
· · · rn

xn
[x1, . . . , xn]

Example 2.4.5 is recovered if R = ZZ.

5.1.4. Example. For the monad of Example 4.2.10 with C a commutative monoid,

λX [(x1, e1), . . . , (xn, en)] = ( [x1, . . . , xn], e1 · · · en )
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5.1.5. Example. For the monad MX = X + {∗} of Example 4.2.11, λX [x1, . . . , xn] is
equal to [x1, . . . , xn] if no xi = ∗, and is otherwise ∗.

5.1.6. Example. For the exponential monad MX = XA of Example 4.2.15, for fi : A→
X,

λX [f1, . . . , fn] (a) = [f1a, . . . , fna]

5.1.7. Example. For the rectangular band monad of Example 4.2.16, λ : [(x1, y1), . . . , (xn, yn)]
= ([x1, . . . , xn], [y1, . . . , yn]) is exactly the usual unzip map for lists.

5.1.8. Example. The bags monad B = (B, µ, η) is the quotient monad τ : L → B
obtained by imposing the further linear equation xy = yx to L. All the previous examples
that composed with lists also compose with B.

Does the list monad compose with itself? When M and L are both the list monad, M
is no longer a commutative monad. Consequently, we can no longer appeal to Theorem
4.3.4. The question is subtle and we begin by showing an example where composition
fails.

5.1.9. Example. Define λ′X : LLX → LLX as follows.

λ′X [ ] = [ ]

λ′X [ [x1, . . . , xn] ] = [ [x1], . . . , [xn] ]

λ′X [ [x1, . . . , xm], [y1, . . . , yn] ] = [ [x1, y1], . . . , [x1, yn], [x2, y1], . . . , [xm, yn−1], [xm, yn] ]

· · ·

so that, e.g.

λ′X [ [a, b], [c, d], [e, f ] ] = [ [a, c, e], [a, c, f ], [a, d, e], [a, d, f ], [b, c, e], [b, c, f ], [b, d, e], [b, d, f ] ]

Similarly, fixing rightmost variables first instead of leftmost, there is λ′′ : LL → LL so
that, e.g.,

λ′′X [ [a, b], [c, d], [e, f ] ] = [ [a, c, e], [b, c, e], [a, d, e], [b, d, e], [a, c, f ], [b, c, f ], [a, d, f ], [b, d, f ] ]

Both λ′ and λ′′ are natural transformations satisfying (DL A), (DL C) and (DL D).
The claim in [14] that these are distributive laws is incorrect, however. To see that
(DL B) fails observe that the two paths in (DL B) give rise to different values on the
list [ [ [a, b], [c, d] ] , [ [e, f ], [g, h] ] ] ∈ LLL{a, b, c, d, e, f, g, h}, where one path begins with
[ [a, e], [a, f ], [b, e], . . . ] and the other path beginning [ [a, e], [a, f ], [a, g], . . . ].

The existence of a distributive law of L over itself remains an open question. On the
other hand, there does exist a distributive law of L+ over L where L+ is the submonad of
nonempty lists. We turn to the details. The construction is the same for L+ over itself,
and we emphasize this version because of its unusual involutory property.
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5.1.10. Example. For the non-empty list monad L+ there exists a distributive law λ :
L+L+ → L+L+ which is an involution, that is, λλ = id.

The simplest way to construct the law is with Theorem 2.4.9. Let S be the category
of semigroups, these being the algebras for L+. Define a lift L+ : S → S as follows. For
(A, ·) a semigroup, (L+A, ∗) is again a semigroup if

[x1, . . . , xm] ∗ [y1, . . . , yn] = [x1, . . . , xm−1, xmy1, y2, . . . , yn]

Here, xmy1 refers to semigroup product in A. That ηA : A→ L+A is a semigroup homo-
morphism is obvious. It is also clear that f# : L+A→ L+B is a semigroup homomorphism
if f : A→ L+B is because ∗ amalgamates only the last symbol of its first argument and
the first symbol of its last argument. Thus the monad lifting corresponds to a distributive
law σ of L+ over itself. Rather than compute σ by deciphering (16) we use a direct con-
struction due to Koslowski [16]. Recall that µA : L+L+A→ L+A flattens a list of lists to
a list. An element of L+L+A amounts to a pair (w, I) where w ∈ L+A is a word of length
n and I ⊂ {1, . . . , n− 1}. If w = [x1, . . . , xn] the corresponding list of lists is constructed
as follows. First add leading and trailing brackets, [[x1, . . . , xn]]. Then replace the ith “,”
with “], [”. For example, ([a, b, c, d], {2, 4}) corresponds to [[a], [b, c], [d]]. For fixed w this
establishes a bijection between the 2n−1 subsets and all lists of lists µA of which is w. We
then define λ : L+L+ → L+L+ by λA(w, I) = (w, I ′) where I ′ denotes set complement.
Thus λA([a, b, c, d], {2, 4}) = ([a, b, c, d], {1, 3}), i.e., λA maps [[a], [b, c], [d]] to [[a, b], [c, d]].
It is obvious that such λ is a natural transformation and it is easily checked that the
corresponding algebra lift is the one constructed above, so λ = σ.

The construction above easily adapts to a distributive law LL+ → L+L.

References
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